THE ABSTRACT GROUP G SIMPLY ISOMORPHIC WITH THE ALTERNATING GROUP ON SIX LETTERS.

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, December 29, 1902.)

1. A slight correction of a theorem due to De Séguier* leads to the result that G is generated by three operators a, b, c, subject only to the relations

$$
\begin{array}{rlrl}
a^{2}=I, & b^{4}=I, & & c^{3}=I, \\
\left(a b^{-1} a b\right)^{3}=I, & & \left(a b^{-2} a b^{2}\right)^{2}=I \\
\left(c b^{-1} a b\right)^{2}=I, & & \left(c b^{-2} a b^{2}\right)^{2}=I \tag{3}
\end{array}
$$

But these generators are not independent, since

$$
\begin{equation*}
a=c b^{-1} c b c \tag{4}
\end{equation*}
$$

A simple verification of (4) results from the correspondence

$$
a \sim(12)(34), \quad b \sim(12)(3456), \quad c \sim(123)
$$

between the generators of the simply isomorphic groups.
It is shown in this section that G is generated by the two operators b and c, subject to the complete set of generational relations

$$
\begin{equation*}
b^{4}=I, \quad c^{3}=I, \quad\left(b^{-1} c b c^{-1}\right)^{2}=I, \quad\left(b^{2} c\right)^{4}=I \tag{5}
\end{equation*}
$$

These relations follow from (1), (2), (3); for, by the above correspondence, $b^{-1} c b c^{-1} \sim(14)(23), \quad b^{2} c \sim(1235)(46)$.

If a be defined by (4), relations (1), (2), (3) follow from (5).

$$
\begin{gathered}
a^{2}=c b^{-1} c b c^{-1} b^{-1} c b c=c\left(b^{-1} c b c^{-1}\right)^{2} c^{-1}=I \\
(a c)^{3}=c b^{-1} c^{3} b c^{-1}=I
\end{gathered}
$$

[^0]As an auxiliary result, we note that

$$
\begin{equation*}
c\left(b c b^{-1} c b\right)=\left(b c b^{-1} c b\right) c . \tag{6}
\end{equation*}
$$

The condition (6) may be given the successive forms

$$
\begin{aligned}
& c b c b^{-1} \cdot c b c^{-1} b^{-1} \cdot c^{-1} b c^{-1} b^{-1}=I \\
& c b c b^{-1} \cdot b c b^{-1} c^{-1} \quad c^{-1} b c^{-1} b^{-1}=\left(c b c^{-1} b^{-1}\right)^{2}=I \quad\left[\operatorname{by}\left(5_{3}\right)\right]
\end{aligned}
$$

Since (6) may be written $c b a c^{-1}=b a$, we have

$$
\begin{equation*}
c \cdot b a=b a \cdot c \tag{7}
\end{equation*}
$$

In view of (6) and (5_{3}), we get

$$
\begin{equation*}
\left(c b^{-1} c b\right)^{3}=c b^{-1} \cdot b c b^{-1} c b \quad c^{2} b^{-1} c b=I \tag{8}
\end{equation*}
$$

To verify (31) we note that, by (8),

$$
c b^{-1} a b=c b^{-1} \cdot c b^{-1} c b c \quad b=c b^{-2} c^{-1} b c^{-1} b^{-1} c^{-1} b^{2}
$$

In the indicated square of the latter, we replace $b^{2} c b^{-2}$ by $c^{-1} b^{2} c^{-1} b^{2} c^{-1}$, in view of $\left(5_{4}\right)$, and transform by $c b^{2}$, and get

$$
\begin{array}{rll}
& c^{-1} \cdot b c^{-1} b^{-1} c \cdot b^{2} c^{-1} b^{2} \cdot c b c^{-1} b^{-1} \cdot c^{-1} b^{2} c b^{2} & \\
= & c^{-1} \cdot c^{-1} b c b^{-1} \cdot b^{2} c^{-1} b^{2} \cdot b c b^{-1} c^{-1} \cdot c^{-1} b^{2} c b^{2} & {\left[\operatorname{by}\left(5_{3}\right)\right]} \\
= & c b \cdot c b c^{-1} b^{-1} \cdot c b^{-1} c b^{2} c b^{2} & \\
= & c b \cdot b c b^{-1} c^{-1} \cdot c b^{-1} c b^{2} c b^{2}=\left(c b^{2}\right)^{4}=I & {\left[\operatorname{by}\left(5_{4}\right)\right] .}
\end{array}
$$

To verify $\left(3_{2}\right)$, we transform by $b^{2} c^{-1}$ and get

$$
\begin{aligned}
& c b^{2} c b^{2} \cdot c b^{-1} c b \cdot c b^{2} c b^{2} \cdot c b^{-1} c b \\
= & b^{2} c^{-1} b^{2} c^{-1} \cdot c b^{-1} c b \quad b^{2} c^{-1} b^{2} c^{-1} \cdot c b^{-1} c b \\
= & b^{-1}\left(b^{-1} c^{-1} b c\right)^{2} b=I .
\end{aligned}
$$

To verify (2), we note that

$$
\begin{aligned}
a b^{-1} a b & =c b^{-1} c b \cdot c b^{-1} c b^{-1} c b c b \\
& =c b^{-1} c b\left(c b^{-1} c b^{-1} c b c b\right)^{-1}=c b^{-2} c^{-1} b c^{-1} b c^{-1}
\end{aligned}
$$

Cubing the inverse and transforming by c, we get (8).
To verify $\left(2_{2}\right)$, we note that

$$
\begin{aligned}
a b^{-2} a b^{2} & =a c^{-1} \cdot c b^{-2} a b^{2}=a c^{-1} \cdot b^{-2} a^{-1} b^{2} c^{-1} \\
& =c b^{-1} c b^{-1} c^{-1} b^{-1} c^{-1} b c^{-1} b^{2} c^{-1} .
\end{aligned}
$$

Transforming its square by $c b^{2}$, we get

$$
\begin{aligned}
& b c b^{-1} c^{-1} \cdot b^{-1} c^{-1} b c^{-1} \cdot b c b^{-1} c^{-1} \cdot b^{-1} c^{-1} b c^{-1} \\
= & c b c^{-1} b^{-1} \cdot b^{-1} c^{-1} b c^{-1} \cdot c b c^{-1} b^{-1} \cdot b^{-1} c^{-1} b c^{-1} \\
= & c b c^{-1} b^{-2} c^{-1} b^{2} c^{-1} b^{-2} c^{-1} b c^{-1} .
\end{aligned}
$$

Transforming by $c b$ and taking the inverse, we get $\left(b^{2} c\right)^{4}=I$.
2. In a paper entitled "The abstract group simply isomorphic with the group of linear fractional transformations in a Galois field," communicated November 2, 1902 to the London Mathematical Society, the writer shows that the group G is generated by three operators subject to the relations

$$
\begin{gather*}
T^{2}=I, \quad S_{1}^{3}=I, \quad S_{j}^{3}=I, \quad S_{1} S_{j}=S_{j} S_{1} \tag{9}\\
\left(S_{1} T\right)^{3}=I, \quad .\left(S_{j} T\right)^{4}=I, \quad\left(S_{j} S_{1} T S_{j}^{-1} S_{1} T\right)^{2}=I
\end{gather*}
$$

From these we obtain relations (1), (2), (3), if we set

$$
a=T, \quad b=S_{j} T, \quad c=S_{1} .
$$

This is evident for relations (1). Also,

$$
\begin{aligned}
& \left(a b^{-1} a b\right)^{3}=\left(S_{j}^{-1} T S_{j} T\right)^{3}=S_{j}^{-1} \cdot T S_{j} T S_{j} S_{j} T S_{j} T \cdot S_{j}^{-1} T S_{j} T \\
& \quad=S_{j}^{-1} \cdot S_{j}^{-1} T S_{j}^{-1} T \cdot T S_{j}^{-1} T S_{j}^{-1} T \cdot S_{j}^{-1} T S_{j} T=\left(S_{j} T\right)^{4}=I
\end{aligned}
$$

Also $\left(2_{2}\right)$ and $\left(3_{2}\right)$ follow from (9) and $\left(S_{j} T\right)^{4}=I$, while $\left(3_{1}\right)$ follows from (9) and the first and third relations (10). We thus obtain a new proof that (9) and (10) define G.

We may readily derive directly from (9) and (10) a complete set of relations between the two generators $b=S_{j} T$ and $c=S_{1}$ of $G . \quad$ We note that, from $\left(10_{1}\right)$,

$$
T=S_{1} T S_{1} T S_{1}=S_{1} \cdot T S_{j}^{-1} \cdot S_{1} \cdot S_{j} T S_{1}=c b^{-1} c b c
$$

We therefore have

$$
S_{1}=c, \quad T=c b^{-1} c b c, \quad S_{j}=b c^{-1} b^{-1} c^{-1} b c^{-1}
$$

Then $\left(S_{j} T\right)^{4}=I$ follows from $\left(5_{1}\right), S_{1}^{3}=I$ from $\left(5_{2}\right), T^{2}=I$ from (53), $S_{1} S_{j}=S_{j} S_{1}$ from (55). Thus

$$
\begin{aligned}
S_{1} S_{j} & =c b c^{-1} b^{-1} \cdot c^{-1} b c^{-1}=b c b^{-1} c^{-1} \cdot c^{-1} b c^{-1} \\
& =b c \cdot b^{-1} c b c^{-1}=b c \cdot c b^{-1} c^{-1} b=S_{j} S_{1} .
\end{aligned}
$$

Since $S_{1} T=c^{-1} b^{-1} c b c$ is the transform of c by $b c$, it is of period three.

The final relation (10) becomes

$$
\begin{aligned}
\left(b c^{-1} b^{-1} c \cdot b^{-1} c b c\right)^{2} & =\left(c^{-1} b c b^{-1} \cdot b^{-1} c b c\right)^{2}=\left(c^{-1} b c b^{2} c b c\right)^{2} \\
& =c^{-1} b\left(c b^{2}\right)^{4} b^{-1} c=I .
\end{aligned}
$$

Since S_{j} is commutative with S_{1}, the condition $S_{j}^{3}=I$ follows from $\left(b^{-1} c^{-1} b^{2} c^{-1}\right)^{3}=I$ or $\left(c b^{2} c b\right)^{3}=I$.

The University of Chicago,
December 11, 1902.

NOTE ON A PROPERTY OF THE CONIC SECTIONS.

BY PROFESSOR H. F. BLICHFELDT.
(Read before the San Francisco Section of the American Mathematical Society, December 20, 1902.)

It is easily proved that if P, Q, R are any three points on the conic $A x^{2}+B y^{2}=1$, and O the center of the conic, then the areas of the triangles $O P Q, O P R, O Q R$ will satisfy an equation independent of the position of the points P, Q, R. If a, b, c are the areas in question, this equation is

$$
\begin{equation*}
a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}-2 b^{2} c^{2}+16 A B a^{2} b^{2} c^{2}=0 \tag{1}
\end{equation*}
$$

Now we can prove that such an invariant relation is possible for no plane curves except the central conics ; i. e., if we seek a plane curve C and a point O in its plane such that, if P, Q, R are any three points on C, the triangles $O Q R, O R P, O P Q$ are connected by a relation independent of the coördinates of the points P, Q, R, we find C to be a central conic section and O its center.

To prove this theorem, let O be the origin of coördinates, and let the coördinates of P, Q, R be respectively $x_{1}, y_{1} ; x_{2}, y_{2}$; x_{3}, y_{3}. Then twice the areas of the three triangles are

$$
\begin{gathered}
2 a= \pm\left(r_{2} x_{3}-y_{3}^{\prime} x_{2}\right), \quad 2 b= \pm\left(y_{3} x_{1}-y_{1} x_{3}\right) \\
2 c= \pm\left(y_{1} x_{2}-y_{2} x_{1}\right)
\end{gathered}
$$

[^0]: *Journal de Math., 1902, p. 262. For $y=2, \ldots, n-3$ in his formula (6 , should stand $y=1, \ldots, n-4$.

