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<p = S2 + R2 - PQ. 

In terms of the initial variables x, xv y, yl9 we see that <ff 
vanishes identically. Also 

P^\x + Ix1\^\X\, Q = \T\, 

Y_R-IS X_R+ IS 
x - p 9 Y~ Q ' 

The group G is hemiedrically isomorphic with the group 
of linear fractional substitutions 

f!R\ 7>-a + ?Z 7 - Y 

(18) Z-(T+3Z> A=T 
The quaternary group on P, Q, R, S is isomorphic with 
a ternary fractional group on Q/P, R/P, S/P. But 

i -(?)"+ (I)" 
Eliminating Q/P, we obtain a group of birational quad­

ratic transformations in the plane. I t may evidently be 
obtained more directly from the transformations (18). 

T H E U N I V E E S I T Y OF CHICAGO, 

January, 1901. 

OlST HOLOMORPHISMS AND PRIMITIVE KOOTS. 

BY DR. G. A. MILLER. 

(Read before the American Mathematical Society, February 23, 1901.) 

I N an earlier note * it was observed that every holomor-
phism of an abelian group with itself can be obtained by es­
tablishing an isomorphism between the abelian group and 
one of its subgroups (which may sometimes be the entire 
group) and associating the product of corresponding oper­
ators with the original operator of the group. The present 
note is devoted to some additional developments along this 
line and especially to some elementary results in the theory 
of numbers which may be derived by this method. 

Let sl represent an operator of order pm ( p being any 
prime number) and let P, the group generated by sv be 

* BULLETIN, Vol. 6 (1900), p. 337. 



1 9 0 1 . ] HOLOMORPHISMS AND PRIMITIVE ROOTS. 3 5 1 

made isomorphic wi th one of i ts subgroups of order pmi? 

mx < m. E a c h operator of P is t ransformed, by some oper­
a to r t in the group of isomorphisms of P, in to itself mul t i ­
plied by the corresponding operator in th is isomorphism. 
Assuming t h a t t~Ysat — sa+lsa, we have 

n(n —1) • ' • (n — r-\- 1) 

t Sat = Sa_j.nSa4-n_i***Sa_j_n_r • ••S a_j_i 8a. 

I t is easy to prove t h a t the order of t he product of the 
operators which are mult ipl ied into sa is equal to the order 
of s^ + 1 whenever p is odd. I n case n is pr ime to p th is fol­
lows directly from the fact t h a t each of t h e factors which 
precede sa+l is of a lower order t h a n « a + 1 . I n general , let 
n — kp\, h being pr ime to p. T h e exponent of sa+p is divis­
ible by pK~m\ where m' is t he exponent of the highest power 
of p t h a t is contained in /3, since the product of n successive 
numbers is divisible by n !. As t he order of sa+p does no t 
exceed the order of (sa + i ) p / 3 ~ \ the order of the power of 
sa + £ which occurs in t he above formula cannot exceed 

(*a+i)pX + fi~~m'~1- Hence it is less t han the order of sZ + 1 

whenever /3 > 1, and the product of all the factors which are 
multiplied into sa is of the same order as s^+l when p is odd. 

W h e n p is even we assume t h a t m1 <Cm — 1. W i t h t h e 
same nota t ion as above it is clear t ha t the order of sa + p 
does not exceed the order of (Sa + i)2^^- Hence the order 
of the power of sa + p in t h e formula cannot exceed 

, 2X + 2|3—m' —2 
KSa+ l) 

As m' + 2 is less t h a n 2/3 whenever /5 > 1 , i t follows t h a t in 
th i s case t h e order of t h e product of the factors which a re 
mult ipl ied in to sa is again equal to sn

a + v Hence t is always 
of order p™1 and the group of isomorphisms of P contains a cyclic 
subgroup of order pm~1 whenp is odd and one of order 2m~2 when 
p is even. 

T h e group of isomorphisms of a cyclic group is abel ian,* 
and can be represented as a regular subst i tut ion group 
whose elements correspond to the operators of highest 
order in the cyclic group.f Hence the group of isomorph­
isms of t he cyclic group of order pm is of order pm~~1(p — 1) . 
I n par t icular , t he group of isomorphisms I of the cyclic 
group of order 2m is of order 2m~1. W e have jus t found 
t h a t I contains a cyclic subgroup of order 2m~\ formed 
by all i ts operators which t ransform in to itself an operator 
of order 2l ( 7 > 1) in P. 

* Trans. Amer. Math. Soc, vol. 1 (1900), p. 397. 
f The order of a cyclic group is said to have primitive roots whenever 

i ts group of isomorphisms is cyclic. 
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T h e group I contains an operator s' of order two which 
t ransforms each operator of P in to i ts inverse. As s' is not 
contained in the above cyclic subgroup of order 2m~~2, which 
is composed of all t he operators of I which transform an 
operator of order four in P in to itself, i t and this subgroup 
m u s t generate L 

I t is now easy to determine the exponent to which a num­
ber belongs mod 2m, since th is exponent is the order of the 
corresponding operator in L I n the above mentioned cyclic 
subgroup of order 2m~~2, an operator of order 2k is commuta­
t ive wi th the operators of order 2m~7c in P, bu t not with those 
of order 2m~k^1. F r o m this fact and the fact t ha t s' t r ans ­
forms each operator of P i n t o i ts inverse i t follows tha t all 
t he numbers which belong to exponent 2k (h > 1 ) mod 2m are 
of t h e form ± (I2m~k + 1) where I is any one of the <p(2k) 
numbers not greater t han 2k and pr ime to 2k ; and vice versa. 
W h e n k = 1 we have to add 2m — 1 to the numbers obtained 
in th is way. Hence the numbers which belong to exponent 
2m~2 a re = 3 or 5 mod 8.* 

F r o m w h a t is proved above it follows t ha t the group of 
isomorphisms IY of P contains a cyclic subgroup of order 
pm'~\ p being any odd prime, which is composed of all the 
operators of Ix commutat ive with each of the operators of 
order p in P. By adding to th is subgroup the operators 
which transform transi t ively these p — 1 operators of order 
p, we obtain thep m ~ 1 (p — 1) operators of I. T h e group 
of order p — 1 according to which the operators of order 
p are t ransformed contains no more than d operators whose 
orders divide d, any factor of p — 1, since xd = 1 mod p 
can have no more than d roots, f Hence it cannot have 
two subgroups of the same order and mus t therefore be 
cyclic. Since It is abelian i ts operators of highest order are 
obtained by mul t ip ly ing the operators of order p — 1 in this 
cyclic subgroup by the operators of order p™"1 in the above 
mentioned cyclic subgroup of order pm~1. Hence I2 is cyclic 
a n d the pr imit ive roots of pm are also pr imit ive roots of p.% 
I t may be observed t h a t the above furnishes an independent 
proof of the existence of primitive roots of pm. T h a t t he cyclic 
group of order 2pm has the same group of isomorphisms as 
t he cyclic group of order pm follows directly from the fact 
t h a t the operator of order two in the former must corres­
pond to itself in every holomorphism of the group wi th i t ­
self. Hence 2pm also has pr imit ive roots. 

* Cf. Mathews, Theory of numbers, 1892, p. 30. 
t Gauss, Disquisitiones Arithmeticse, 1801, Art. 54. 
J lb id . , Art. 92. 
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T h e holomorphisms ment ioned in the second and th i rd 
paragraphs show t h a t all numbers of the form hprn-a + 1, 
where k is any one of t h e <p(pa) na tu ra l numbers which are 
not greater t han pa and pr ime to pa, belong to the exponent 
pa ; a being any positive integer less t h a n m when p is odd 
and less t h a n m — 1 when p is even. I n the preceding para­
graph i t is proved t h a t these are the only numbers which be­
long to an exponent which is a power of an odd prime. The 
product of all t he numbers which belong to exponent pm ~ *, 
and the <p(j> — 1) powers of a number which is not a pr imit ive 
root of pm, bu t belongs to exponent p — 1 modp, will clearly 
give all t h e pr imit ive roots of pm, since the corresponding 
operators in Ix a re all i ts operators of order pm~1(p — 1 ) . I n 
par t icular t he pr imit ive roots of 3m a re t he products of 
3m — 1 and the numbers of the form 3£ + 1, I being any one 
of t he positive integers not greater t h a n S™-1 and pr ime to 
3 ™ - \ 

T h e necessary and sufficient condition t ha t an operator of 
IY corresponds to a pr imit ive root of pa is t ha t i ts order is 
divisible by p — 1 and t ha t i ts (p — l ) t h power corresponds 
to a holomorphism of P with itself which may be obtained 
by establishing a p, 1 isomorphism between P and its sub­
group of order pm~1. Hence the 'primitive roots of pa (a > 1) 
are also the primitive roots of every power of p.* The pth power 
of a pr imi t ive root of p is also a pr imit ive root of p, bu t the 
pth power of a pr imi t ive root of pa is not a pr imit ive root 
of pa . T h e pr imit ive roots of p are thereforeffnot a lways 
pr imi t ive roots of pa. I n fact, we observe directly, from the 

p — 1 
orders of the operators of Iv t h a t jus t of the pr imit ive 

roots of p which are less t h a n pm a re also pr imit ive roots of pm. 
T h e preceding considerations can readily be applied to the 

general cyclic group C of order 2a<>p1
aip2

a2 ••• pm
am (pv pv •••, pm 

being odd pr ime numbers ) . By mak ing C isomorphic wi th 
i ts subgroup of order 2a°/p1

aifp2
a2' ••• pm

am' (where a0' < aQ — 1 ; 
ay < «y, y = 1, 2, ••• , m) , and mult iplying the corresponding 
operators, we obtain a holomorphism of Cwi th itself, which 
corresponds to an operator of order l^'p^'p** ••• pam in i ts 
group of isomorphisms. Since t he la t ter group is the direct 
product f of the groups of isomorphisms of the cyclic groups 
of orders 2 a i ,p 1

a i , p2
a*, •••, pm

am and since the group of isomor­
phisms of each one of these groups involves operators of 
order two whenever t he order of t he group exceeds two, the 

* Lebesgue, Liouville's Journal, vol. 19 (1854), p. 344. 
t Trans. Amer. Math. Soc, vol. 1 (1900), p. 396. 
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group of isomorphisms of C is cyclic only when aQ = 0 or 1 
and just one of the other exponents differs from 0, or when 
a0 — 1 or 2 and all the other exponents are 0.* 

CORNELL U N I V E R S I T Y , 
February, 1901. 

BESSEL FUNCTIONS. 

Einleitung in die Theorie der BesseV schen Funktionen. By 
PROFESSOR J . H. GRAF und DR. E. GITBLER. Zweites 
Heft : Funktionen zweiter Art. Bern, Wyss and Co., 1900. 
T H E first part of this work appeared in 1898 and was re­

viewed in the BULLETIN, February, 1899, pp. 253-8. The 
general arrangement of the second part is similar to that of 
the first, the authors again emphasizing the fact that the 
work is done in the spirit of Schlâfli's lectures, the manu­
scripts of which were in their hands, though many problems 
are extended and modernized. This fact explains the ab­
sence of many important phases of the theory of the Bessel 
functions which one might expect in a symmetric treatise. 
Moreover, the authors have been rather overgenerous in 
their references to papers originating at Bern, omitting 
others which contained proofs of fundamental theorems prior 
to their discovery by the Bern school, although probably no 
plagiarism could be charged. Several fundamental theorems 
by American authors have received no recognition in the 
book. 

Here, as in Volume I, the loop integral is the principal 
factor in the investigation, and next in importance is the 
expansion in series. The differential equation is less fre­
quently used. The procedure is rather original, and fre­
quently markedly different proofs for well-known theorems 
are given, which in some instances have led to detection of 
error in papers already published. 

The only attempt at a concrete illustration or application 
is the expansion of a few functions in terms of Bessel func­
tions, though the relations which exist between these func­
tions and others are quite fully brought out. 

The second part begins with the expansion of in 
x y 

terms of Bessel functions, the result being 

* Gauss, Disquisitiones Arithmetics, 1801, Art. 92 . 


