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MUTH'S ELEMENTARTHEILER. 

Theorie und Anwendung der Elementartiieiler. Von Dr. P. 
MUTH. Leipzig, B. G. Teubner, 1899. xvi and 236 pages. 
T H E work under review covers an important subdivision 

of general invariant theory, a branch which deserves to be 
more widely known than it is. No doubt the cause of this 
neglect has been the lack of a text book, and Dr. Muth's 
monograph will help to remedy the defect. 

The original problem which led to the series of investiga­
tions in this theory was that of the canonical reduction of 
two quadratic forms. In 1829 Cauchy published a paper 
on the secular inequalities of the planets,* in the course of 
which he showed that two quadratic forms can in general 
be reduced to sums of squares of the same variables. He 
also proved that the latent roots of the family f are all real, 
in the special case when one of the quadratic forms is posi­
tive for all real (non-zero) values of the variable, i. e., is defi­
nite. Cauchy's results, though not perfectly general, cover 
most of the cases which occur in the first stages of geometry 
and dynamics. Jacobi (1834) found similar results by a 
somewhat different process. J Both Jacobi and Cauchy ex­
clude the possibility of equal latent roots appearing in the 
problem. 

The first systematic account of all possible types of two 
quadratic forms (allowing for equal latent roots) is to be 
found in Sylvester's paper (1851) on the contact of lines 
and surfaces of the second order. § Here we meet with the 
idea of classification by means of invariant factors. \ | Sylves­
ter obtains 4 types of contact for conies, and 12 for quad-
rics ; of course the algebraical possibility that the two forms 
differ only by a constant factor is trivial in a geometrical 

* Exercices de mathématiques, vol. 4, p. 140 = Oeuvres (2d series), vol. 
9, p. 174. Cauchy really discusses only the case when one of the original 
forms is already a sum of squares. 

f If A, B are two given quadratic forms, the system of forms uA -f- vB 
(u, w arbitrary parameters) will be called a, family (as an equivalent for 
Kronecker's term Schaar). The latent roots are the values of the ratio 
(—u :v) for which the determinant of the family vanishes; this determi­
nant will be denoted by \uA + vB\. 

% Orelle, vol. 12, p. 1 = G e s . Werke, vol. 3, p. 191. 
$Phil. Magazine (4th series), vol. 1, p. 119. 
|| Weierstrass's Elementartiieiler, and Sauvage's élémentaire diviseur. A 

definition is given in a later footnote on Weierstrass's work. 
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sense.* Unfortunately Sylvester did not prove that the 
invariant factors do constitute a complete set of invariants 
for two quadratic forms ; nor did he explain how to effect 
the reduction of given forms to his standard types, f 

In 1855 Cayley pointed out that Sylvester's ideas could 
be applied to the classification of homographies (i. e., 
one-to-one transformations of space, or collineations). J 
Here will be found a general formula for the number of pos­
sible collineations in space of any dimension n ; and the cal­
culation is given for n= 1, 2, •••, 11. Cayley gives symbols to 
represent each type by means of the indices of its invariant 
factors and enumerates the possibilities for n = 1, 2, 3, 4.§ 
In concluding the paper he says : uJe reviendrai à cette théorie 
à une autre occasion ;" but apparently this promise was not 
fulfilled. 

The next advance in the general theory was made in 1858 
by Weierstrass, who gave a general method of reducing 
two quadratic forms to sums of the same squares. || He 
proved that if one of the forms be definite, the reduction 
is still possible, even if equalities exist among the latent 
roots. Using this result in connection with the dynamical 
problem of small oscillations about a position of equilibrium, 
Weierstrass showed that the stability is not destroyed by 
the presence of equal periods in the system ; both Lagrange 
and Laplace supposed that equal periods would involve in­
stability. ̂ [ Weierstrass's theorem is commonly attributed 

* In the algebraical problem we must further allow for the case of no 
contact, so that in all we have 6 and 14 as the numbers of the distinct 
types of families of quadratic forms (n = 3 or 4). 

t To illustrate the simplification introduced by the use of invariant 
factors in geometry, the reader may compare the condition for double 
contact of two conies as found by Salmon (Conies, p. 346) with Sylves­
ter 's ; which is simply that there should be two equal linear invariant 
factors of the determinant of the family. 

$''Recherches sur les matiicesdont les termes sont des fonctions linéaires 
d'une seule indéterminée." Crelle, vol. 50, p. 313--—Coll. Math. Papers, 
vol. 2, p. 216. 

31 21 I In his list for n = 4 the two symbols .. , 2 1 are omitted : Muth 

would write these [(21)1], [ (11)(11)] . This is obviously an oversight 
on Cayley's part, as he states that 14 types are possible, but gives only 
12. The indices of the invariant factors are the différences between Cay-
ley's numbers. 

1 Berl. Moyiatsberichte, 1858, p. 207 = Ges. Werke, vol. 1, p. 233. 
If The point of the theorem will probably be grasped better by consid­

ering a special (imaginary) example. Suppose we had a system with 
kinetic and potential energies, T—x'y', V=p2xy-\- \x2, then the equa­
tions of motion are x/f = —p2x, y// —— (p2y -f- a;), and corresponding to 

At 
a term A sin pi in x we have one — cos pt in y. Weierstrass proves that 

2p 
such a case is impossible in a real dynamical system. 
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by English writers * to Routh who rediscovered the theorem 
in his Adams prize essay (1877). Routh's elementary proof 
of the theorem requires to be supplemented by Weierstrass's 
algebraical theorem. 

A beautiful and elementary proof of Weierstrass's the­
orem was given by Kronecker f in 1868, which appears to 
be less familiar than it ought to be. 

Weierstrass J finally completed the theory of quadratic 
forms in 1868 ; and extended his theorems to the more gen­
eral idea of bilinear forms. He proved that two families of 
forms are capable of transformation into each other if (and 
only if) the invariant factors § of the two families are the 
same. The only case of exception to Weierstrass's re­
sults occurs when the determinants of the two families are 
identically zero ; and this case was examined by Kronecker 
in a paper immediately following Weierstrass's (and quoted 
above). The complete statement of the conditions of equiv­
alence in every case has been effected by Kronecker in a 
number of memoirs. 11 

Invariant factors presented themselves from another 
point of view to H. J . S. Smith, who encountered them in 
connection with linear equations with integral coefficients.•fl 
He proves that many of the results known for the invari­
ant factors of a family of forms hold for those of a matrix 
of integers. 

We turn next to the historical development of Cayley's 

* E. g., Thomson and Tait, Natural Philosophy, vol. 1, \ 343 e and m ; 
where the reader will find some useful remarks on the physical side of 
the theorem. Routh was led to his theorem by the consideration of lin­
ear differential equations with constant coefficients ; and in this connec­
tion obtained some other results due to Weierstrass, which were given 
originally in a communication to the Berlin Academy (in 1875), but were 
only published in vol. 2 of his works. 

t Berl. Monatsberichte, 1868, p. 339 = Ges. Werke, vol. 1, p. 165. 
%Berl. Monatsberiehte, 1868, p . 310 = Ges. Werke, vol. 2, p. 19. 
| Definition : Suppose that the determinant of the family (uA -\- vB) 

has a repeated factor (au-\- bv)p ; and further that every first minor is di­
visible by (au -f* bv)q but not by (au-\~bv)q+l ; every second minor by 
(au -f- bvf ; and so on. Then the numbersp — </, q —r, •••are the indices 
of the invariant factors to the base (au-\-bv) ; they have the property 
('P — Q)^-{Q — v)^"'5^h which was recognized by Cay ley ( l a , supra). 
The invariant factors can also be defined rationally, by means of highest 
common divisors (a remark due to Smith and Kronecker). 

|| For the results ( which are rather long) the reader may consult § 8 of 
Dr. Muth's book ; there is another investigation and a list of papers in 
the Proe. Land. Math. Soc, vol 32 (1900), p. 98. 

11 Math. Papers, vol. 1, p 367, and vol. 2, p. 623 ; some of Smith's re­
sults were published before the corresponding theorems for a family. For 
other references in this direction consult the Encyklopâdie der Math. 
Wiss., vol. 1, pp. 582-597. 
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theory of matrices*; the foundations were given by him 
in 1855 f and his first long memoir on the subject appeared 
in 1858 X ; together with an application (in a consecutive 
paper) to Hermite's theory of the automorphic substitutions 
of a given quadratic form. Some years later (1867) La-
guerre§ published an independent account of his calculus 
of "l inear systems77 which are virtually Cayley7 s matrices. 
But in 1853, Hamilton || had given certain results relating 
to a "l inear and vector77 function ; which is essentially a 
matrix of order 3. For instance he proved that such a 
function satisfies a certain cubic equation with constant co­
efficients, and he found the reciprocal function. He there­
fore anticipated Cayley7s theorem on matrices^] (for the 
special case n = 3). Further, in 1867, he showed (Ele­
ments of quaternions) that the cubic may reduce to a quad­
ratic (a special case of Frobenius's theorem referred to be­
low). Probably this is the theory alluded to by Study (in 
the reference quoted above). 

Inale t ter to iVa^re(vol . 44 (1891), p. 79), Professor J . W. 
Gibbs claims for Grassmann the first suggestion of the theory 
of matrices (Ausdehnungslehre, 1st ed., 1844). In this con­
nection Whitehead (Universal algebra, Cambridge, 1898, vol. 
1, p. 248) refers only to the second edition (1861) of Grass­
mann7 s work and implies that Cayley had anticipated Grass­
mann. I am unable to give any opinion on this point ; nor 
do I know the extent of Grassmann7s results. 

In 1878 Frobenius** pointed out the important connection 
between bilinear forms and matrices (or linear substitutions). 
Being familiar with the results of Weierstrass and Kronecker 
on the equivalence of families of bilinear forms, f f he was 
naturally led to introduce the idea of invariant factors into 
the theory of matrices. This step has proved most fruitful 
in both theories ; it enabled Frobenius to give the first gen­
eral proof of Cayley7s theorem, and to modify the theorem in 
the case when some of the latent roots of the matrix are 

* Study in his report on complex units (Encyklopâdie der Math. Wiss., 
vol. 1, p. 169) states that a theory had been hinted at by Hamilton. (See 
below. ) 

f Crelle, vol. 50, p . 282 = Coll. Math Papers, vol. 2, p. 185. 
% Land. Phil. Trans., vol. 148, p . 17 = Coll. Math. Papers, vol. 2, p. 475. 
§ Jour. École Polyt., vol. 25, p. 215. 
|| Lectures on quaternions, pp. 559-569. 
*[ That is : A matrix of order n satisfies an identical equation of order n. 

Apparently Cayley himself only verified the theorem up to n = 3; his proof 
is for the case n ~ 2 only. 

** Crelle, vol. 84, p. 1. 
t f I t may be remarked that Frobenius gives a very convenient summary 

of these results in §6 of his paper. 
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equal. * Amongst other methods suggested in this paper is 
the use of the expansion of (ÀE — A)~^ to investigate prop­
erties of A, or rather of the latent roots of A ; the expan­
sion is made in powers of (A — a) (a being any latent root), 
and starts with a term in (À — a)"~a, (A — a) a being the first 
invariant factor of | IE — A |, which belongs to a. f 

Among other applications of this method we may men­
tion Frobenius's definition % of any function of A : provided 
that f (A) can have a meaning, it is equal to the sum of the 
residues of /(/I) (XE — A)~^ taken for all the latent roots of 
A. While speaking of this, I should call attention to what 
appears to be an oversight in the Clark University decen­
nial volume (Worcester, Mass., 1899) ; in the report on 
the mathematical faculty, it is stated that Sylvester (in 
1882) was the first to give an expression for the general 
power of a matrix. But according to Frobenius, Stickel-
berger (in 1881) gave the expression, and moreover for the 
case of repeated latent roots ; while Sylvester assumes all 
the latent roots to be unequal. § For the generalized func­
tion of a matrix Sylvester was the first to give a result || (but 
with the same restriction on the latent roots) ; it is claimed 
in the Clark volume that the extension to the case of equal 
latent roots was made by Professor Henry Taber (in 1893, 

"* By " latent roots " of a matrix A, we mean the roots of the determi-
nantal equation | "kE — A \ = 0, where E is the unit matrix. Probably 
the simplest proofs of the theorems are those of Frobenius (Berl. Sitz-
ungsberichte, 1896, p. 604), though the same proof of Cayley's theorem had 
been given by Buchheim (Mess, of Math., vol. 13 (1883), p. 62). 

t To illustrate the method 1 collect six theorems on special matrices 
giving their authors and dates of publication. All the theorems can be 
proved most simply by Frobenius's method. (L. B. denotes latent roots; 
L F , invariant factors. ) 
A svmmetrical I L' E' r e a l ( C a u c h y , 1829). 
A symmetrical j j R H n e a r ( W e i e r s t r a s S ) 1 8 5 0 ) 
A orthogonal i L' B' ^ ( B r i o s c h i > 1 8 5 4 >-A orthogonal j L R H n e a r ( F r o b e n i u S ) 1 8 7 8 ) 

A altPrnatP I L' R' i m a g i n a r y ( Weierstrass, 1879). A alternate ^ j F U n e a r ( W e i e r s t r a s s ? 1 8 7 9 ) . 

All these theorems were rediscovered by Professor Henry Taber (Proc. 
Land. Math. Soc, vol. 22 (1891), p. 449). 

%Berl. Sitzungsberichie, 1896, p. 7. 
| After defining f {A) as above, Frobenius (1. c , p. 11) says—"In 

dieser Weise hat Stickelberger in seiner akademischen Antrittsschrift : Zur 
Th. d. Un. Diffgl. (Leipzig, 1881) dieallgemeine Potenz definirt und . . . 
benutzt. Eine weniger genaue Definition giebt Sylvester : Sur les puissances 
et les racines des subst. Un. (Comptes rendus, vol. 94 (1882), p. 55 ) . " 
Professor Stickelberger informs me (in a private letter) that some copies 
of his paper were published at the end of 1880. 

|| Johns Hopkins University Circulars, vol. 3 (1882); of course the step 
from the generalized power to the general function is almost self-evident. 
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1894). But Buchheim* (in 1886) had already made the 
extension, and in a more concise form ; both forms are, of 
course, contained in Frobenius's statement quoted above. 

In referring to Frobenius we should remark that he has a 
claim to be a joint discoverer of a theorem, frequently attri­
buted to Jordan,f to the effect that every periodic linear 
substitution can be reduced to the form 

Vr' = erVr 

where er is a root of unity. This theorem has been recently 
taken up afresh by E. H. Moore and H. Maschke.J On 
the whole, the investigation of Frobenius seems the most di­
rect and the clearest of all that I have seen ; though, as it 
requires an elementary acquaintance with the theory of mat­
rices, students of group-theory and differential equations 
may prefer an independent proof. 

Of recent developments, we may refer to a recent paper by 
S. Kantor§ (1900) in which the theory of invariant factors 
of higher kinds (Stufen) is examined by the aid of geometry 
in space of n2 dimensions. This appears to be an entirely 
fresh departure. 

Dr. Muth's book is the first published account of the 
theories which we have sketched above ;|| our thanks are 
due to the author for having collected so many useful re­
sults into one convenient volume. On the other hand it 
may be questioned if readers beginning the subject will not 
do well to modify his arrangement. Thus §1, on general 

* Phil. Magazine, 5 th series, vol. 22, p . 173. 
f On p. 16 of his paper, Frobenius shows that for periodic substitutions 

all the invariant-factors are linear and that the latent roots are roots of 
unity. On p. 21 it is stated that the reduced forms depend only on the 
invariant factors (using Weierstrass's results for bilinears), and the 
combination of these two facts leads directly to the theorem as given. 
Jordan's statement occurs later in the same volume of Crelle (p. 112) ; 
there can be little doubt as to their independence. 

t Math. Annalen, vol. 50 (1898), pp. 215 and 220 ; cf. L. E. Dickson, 
u Report on progress in the theory of linear groups," BULLETIN, vol. 6 
(1900), p. 13. 

$ MonaUhefte fiir Math, und Phys., vol. 11, p 193 ; another way of ap­
plying n dimensional geometry to matrices has been given by Buchheim 
(Proc. Land. Math. Soc, vol. 16 (1885), p. 63) after Grassmann. We may 
consult also Whitehead's Universal algebra (vol. 1, p. 248). 

|| Two fairly complete accounts of the theory have appeared recently : 
Ed. Weyr. Monatshefte für Math, und Phys., vol. 1 (1890), p. 163 ; Sauvage, 
Ann. Ecole Norm. Sup. (3d series), vol. 8 (1891), p. 285, and vol. 10 
(1893), p. 9. Neither of these covers so much ground as Dr. Muth's 
work For sketches and references we may consult also F. Meyer's re­
ports on general invariant theory ; Jahresbericht der Deutsehen Math. Ver., 
vol. 1 (1890), p . 106 and Encyklopâdie der Math. Wiss., vol. 1, p. 327. 
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properties of invariant factors, will probably be found one 
of the hardest in the book. In §2 will be found a good ac­
count of the theory of l c multiplying ' ' bilinear forms ; the 
author follows Frobenius in preference to Cay ley,* and 
introduces a matrix only as a picture (Bild) of the bilinear 
form. The theory of forms (or systems) with elements 
which are integers in various regions of rationality, occupies 
§§3-5 and 18. I t may be pointed out that these methods 
can be appliedf to deduce the principal theorems of §1. 

In §§6-9 the theory of equivalence of families of forms is 
considered by the methods of Weierstrass and Kronecker ; 
it seems to me that a somewhat easier introduction to the 
theory will be found in Darboux's paper on quadratic 
forms ;J and in Stickelberger's extension of the same to 
bilinears ;§ after which Muth' s work will follow. I t may be 
questioned if any advantage is obtained by the use of double 
suffixes in the reduced forms, at any rate in the tables (pp. 
91, 116, 124, 133). The geometrical interpretation of the 
results on p. 124 by means of conies should be noted ; this 
will be found in Sylvester's paper, already noted. 

The remainder of the book is occupied chiefly with special 
applications ; §10 contains Frobenius's method of reducing 
a given bilinear form by means of congruent substitutions ;|| 
§11 gives a method of reducing a linear substitution to 
Jordan's canonical form, though it seems to me that the most 
practical method for reducing any substitution (whose latent 
roots are known) is that due to Jordan himself.^[ 

An application of the results of §11 is made in §16 to the 
theory of a system of linear differential equations with con­
stant coefficients ; this seems to be due to Weierstrass. 

In §§12, 13, we have an account of linear substitutions 
which are automorphic for a given form ; but it ought to be 
remarked that the first result in this direction is due to 

* I t is somewhat remarkable that Dr. Muth nowhere refers to Cayley— 
not even in his historical account of the subject. 

t Cf. Hensel, Crelle, vol. 114 (1894), pp. 25 and 109. Two papers re­
lated to this point of view have just been published by Dr. Muth himself, 
Crelle^ vol. 122 (1900), pp. 84 and 89. 

% Liouville's Jour, de Math., 2d series, vol. 19 (1874), p. 347. 
% Crelle, vol. 86 (1878), p. 20. 
|| This problem was attacked by Kronecker (in 1866) in connection 

with Weierstrass's general theta functions. Kronecker finally settled 
the problem in 1874, after some controversy with Jordan. The problem 
is of interestin certain dynamical questions, as well as in connection with 
theta functions. 

If Cours d' Analyse, vol. 3, Art. 143 ; a reproduction is given in Craig's 
book on Differential equations. A series of papers on this subject will 
be found in vols. 30-32 of the Loud. Math. Soe. Proc. (1899-1900). 
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Hermite,* whose conclusions were translated into the lan­
guage of matrices by Cayley. No references are given to 
recent researches on the so-called u singular " cases of au-
tomorphic substitutions/)- I t is perhaps worth while to call 
attention to a result of Loewy's J which shows that, by us­
ing a Hermite form (with complex coefficients) in place 
of the real symmetrical and alternate forms hitherto con­
sidered, we avoid all consideration of the singular cases. 
Loewy's paper contains many other valuable results and 
will repay careful study. 

In §§14, 15, Dr. Muth obtains certain results on linear 
invariant factors ; here we should note Klein's results in 
his inaugural dissertation (1868)§, which have been further 
extended by Loewy.|| §17 contains an elaborate account 
of all possible collineations in space of n dimensions, which 
is afterwards applied to spaces of two and three dimensions. 
As stated before, the first attempt to classify such transfor­
mations is due to Cayley, who did not, however, include the 
possibility of " s ingu la r " collineations; as an illustration 
of what is meant by such collineations we may take the 
perspective of ordinary drawing, in which a point of the 
picture represents all the points on a certain line through 
the eye. Another form of classification has been given by 
Whitehead. «[J 

Apparently it is usual to conclude a review with a list of 
misprints. Of those which I have noticed, not many need 
delay the reader. In several places the short vertical lines 

*Creile, vol. 47(1854), p. 309 (n = 3) and Camb. and Dublin Math. 
Jour., vol. 9 (1854), p. 63 (n = 4). In connection with Muth's table 
on p. 172 we may refer to Jordan, LiouvUWs Jour, de Math. (4th series), 
vol. 4(1888), p. 349. 

t See $ 11 of Frobenius's paper; it had been considered previously (in the 
special case n — 3) by Bachmann, Tannery and Hermite, without the aid of 
matrices. More recent investigations are those of Loewy in Math. Annalen, 
vol. 48 (1897), p. 97 and vol. 49, p. 448; of Taber, Proe. Lond. Math. Soc, 
vol. 24 (1893), p. 290, and vol. 26 (1895), p. 364 ; also in Math. Annalen, 
vol. 46 (1895), p. 561, and a number of papers in the BULLETIN. In con­
nection with Taber's work we should notice a paper by Rettger (Amer. 
Jour, of Math., vol. 22 (1900), p. 62, which gives similar results from 
the point of view of general continuous group theory. (See also the 
Clark volume, already quoted. ) 

%Nnva Acta Leopoldina, vol. 71 (1898), p. 379 =Math. Annalen, vol. 50, 
p. 569. Cf. GMtinçer Nachrichten, 1900, p. 298. 

$ Reprinted in Math. Annalen, vol. 23 ; the theorem alluded to is given 
on pp. 561, 562 and is, from the point of view of Klein's dissertation, a 
subsidiary result. In the reprint Klein remarks that the theorem seems 
not to have been sufficiently considered. 

|| Crefle, vol. 122 (1900), p. 53. 
If Universal algebra, vol. 1, p. 316. 
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(used to indicate determinants) have been misplaced. In 
the lists of reduced forms some small errors have caught 
my eye ;* on p. 142 (footnote) in reference to Frobenius's 
paper in Crelle, vol. 86, we should read p. 146 for p. 20. 
Near the foot of p. 166, (S + T)~x (S + T) should be 
(S + T)-1 (#-— T) ; and in some places there are slight 
errors in the titles of papers quoted. 

In conclusion I may say that Dr. Muth's book is of great 
interest and very useful in extending one's knowledge of 
certain branches of the subject. I hope that it may induce 
other readers to take up this part of invariant theory, 
which is important on account of its applications as well as 
for its intrinsic interest. 

T. J. I 'A. BROMWICH. 
ST. J O H N ' S COLLEGE, CAMBRIDGE, 

January 1, 1901. 

SHORTER NOTICES. 

Kurzgefasste Vorlesungen über verschiedene Geblete der höheren 
Mathematik, mit Berüehsiehtigung der Anwendungen. Von 
D R . ROBERT FRICKE. Large 8vo. Pp. ix + 520. Leip­
zig, E. G. Teubner, 1900. 

Two objects are sought in Dr. Fricke's timely book : 
first, to supply a defect in German mathematical literature, 
a handbook for students who have mastered the elements 
of analysis and are not yet qualified to read profitably the 
highly specialized treatises ; second, to smooth the way for 
technical students who discover a taste for the more ab­
stract branches of mathematics. The present volume is 
confined to analysis and theory of functions, a second is an­
nounced as in preparation, to treat of advanced portions of 
algebra and geometry. 

The reader is presumed to have a pretty thorough ac­
quaintance with integral calculus, though not with the cal­
culus of imaginaries. Fourier's series are first introduced, 
with applications to vibrating strings and to diffusion of 
heat. A short chapter is given to spherical and cylindri­
cal harmonics, with tables for the functions P ] (M) , 
JP2(/-0, — P 6( /0 according to Byerly, and of J0(#) and JJC*) 

* The second form in each of the following needs correction : p. 91 
(c. 3) ; p. 117 (5) and (8). The last of these has an x instead of a y ; in 
each of the other two a suffix has been misprinted. 


