THE STRUCTURE OF THE HYPOABELIAN GROUPS.

BY DR. L. E. DICKSON.
(Read in abstract before the Chicago Section of the American Mathematical Society, April 9, 1898.)

1. This paper gives a marked simplification both in the general conceptions and in the detailed developments of the theory of the two hypoabelian groups of Jordan and of the writer's generalization $*$ to the Galois field of order 2^{n} of the first hypoabelian group. It is important, especially for the generalization, to give these groups an abstract definition independent of the theory of "exposants d'échange," by means of which Jordan derived them. The crucial point in the simplified treatment lies in the discovery of the explicit relations

$$
\sum_{i, j}^{1 \ldots m} a_{j}^{(i)} \delta_{j}^{(i)}=m, \quad \sum_{i, j}^{1 \ldots m} a_{j}^{(i)} \delta_{j}^{(i)}+\alpha_{1}^{\prime}+\beta_{1}^{\prime}+\gamma_{1}^{\prime}+\delta_{1}^{\prime}=m,
$$

satisfied by the substitutions of the simple sub-groups J and J_{1}, respectively, but ruling out the remaining substitutions of the total hypoabelian groups G and G_{1}. We may therefore avoid the dependence made \dagger in $\S \S 274$ and 289 upon the last book of the Traité (see $\S 672$, page 506).

Basing the investigation upon the groups J and J_{1}, which are to be proved simple, and not upon G and G_{1} as in the earlier treatments, we wholly avoid the delicate analysis and calculations necessary in $\$ \S 275$ and 290 . For the first hypoabelian group, the sub-division into cases is diminished one-half. For the second hypoabelian group, decided simplifications may be made in $\S \$ 284,286-8$. Some errors have been detected ; thus the groups G and G_{1} do not have the same order, as stated in Jordan, §279. §291 is wholly wrong.
2. The groups G and G_{1} are sub-groups of the simple \downarrow

[^0]Abelian group H composed of the linear substitutions on $2 m$ indices in the $G F\left[2^{n}\right]$,

$$
\left\{\begin{array}{l}
\xi_{i}^{\prime}=\sum_{j=1}^{m}\left(\alpha_{j}^{(i)} \xi_{j}+\gamma_{j}^{(i)} \eta_{j}\right), \tag{1}\\
\eta_{i}^{\prime}=\sum_{j=1}^{m}\left(\beta_{j}^{(i)} \xi_{j}+\delta_{j}^{(i)} \eta_{j}\right)
\end{array}(i=1, \cdots, m)\right.
$$

whose coefficients satisfy the relations:

$$
\begin{aligned}
& (j, k=1, \cdots, m ; j \neq k) .
\end{aligned}
$$

In virtue of these relations the reciprocal $*$ to (1) is :
$(1)^{-1} \quad\left\{\begin{array}{l}\xi_{i}^{\prime}=\sum_{j=1}^{m}\left(\delta_{i}^{(\nu)} \xi_{j}+\gamma_{i}^{(j)} \eta_{j}\right) \\ \eta_{i}^{\prime}=\sum_{j=1}^{m}\left(\beta_{i}^{(j)} \xi_{j}+\alpha_{i}^{(j)} \eta_{j}\right)\end{array} \quad(i=1, \cdots, m)\right.$
so that we reach a set of relations (2) by replacing in (2) $\alpha_{j}^{(i)}, \beta_{j}^{(i)}, \gamma_{j}^{(i)}, \delta_{j}^{(i)}$ by respectively $\delta_{i}^{(j)}, \beta_{i}^{(j)}, \gamma_{i}^{(j)}, \alpha_{i}^{(j)}$.

Among the substitutions (1) occur the following (where only the indices altered are written):

$$
\begin{array}{ll}
N_{i, j, \lambda}: & \xi_{i}^{\prime}=\xi_{i}+\lambda \eta_{j}, \xi_{j}^{\prime}=\xi_{j}+\lambda \eta_{i} ; \\
R_{i, j, \lambda}: & \eta_{i}^{\prime}=\eta_{i}-\lambda \xi_{j}, \eta_{j}^{\prime}=\eta_{j}-\lambda \xi_{i} ; \\
Q_{i, j, \lambda}: & \xi_{i}^{\prime}=\xi_{i}+\lambda \xi_{j}, \eta_{j}^{\prime}=\eta_{j}-\lambda \eta_{i} ; \\
T_{i, \lambda}: & \xi_{i}^{\prime}=\lambda \xi_{i}, \quad \eta_{i}^{\prime}=\lambda^{-1} \eta_{i} ; \\
P_{i, j}=\left(\xi_{i} \xi_{j}\right)\left(\eta_{i} \eta_{j}\right) ; \quad M_{i} M_{j}=\left(\xi_{i} \eta_{i}\right)\left(\xi_{j} \eta_{j}\right) .
\end{array}
$$

Part I.-The Group $J, \S \S 3-10$.

3. Consider the group generated as follows:

$$
J=\left\{M_{i} M_{j}, N_{i, j, \lambda} \quad(i, j=1, \cdots, m ; i \neq j)\right\}
$$

where λ runs through all the quantities of the $G F\left[2^{n}\right]$. J contains $Q_{i, j, \lambda}$, the transformed of $N_{i, j, \lambda}$ by $M_{j} M_{k}$, and

[^1]also $R_{i, j, \lambda}$, the transformed of $Q_{i, j, \lambda}$ by $M_{i} M_{k}$. Further, J contains the substitutions
\[

$$
\begin{gathered}
P_{i, j}=Q_{j, i, 1}^{-1} Q_{i, j, 1} Q_{j, i, 1} \\
T_{1, \mu} T_{2, \mu}=M_{1} M_{2} P_{1,2} R_{1,2, \mu-1} N_{1,2, \mu} R_{1,2, \mu} .
\end{gathered}
$$
\]

Having $T_{1, \mu} T_{2, \mu}, J$ contains its transformed by $P_{i, j}$ and hence contains the product

$$
T_{1, \mu} T_{2, \mu} \cdot T_{2, \mu^{-1}} T_{3, \mu^{-1}} \cdot T_{3, \mu} T_{1, \mu}=T_{1, \mu^{2}}
$$

Thus if $m \equiv 3, J$ contains all the substitutions

$$
P_{i, j}, T_{i, \lambda}, \quad Q_{i, j, \lambda}, \quad R_{i, j, \lambda}, \quad N_{i, j, \lambda}, \quad M_{i} M_{j} .
$$

4. Theorem. The group J consists of the totality of substitutions (1) which satisfy the relations* (2) and

$$
\left\{\begin{array}{l}
\sum_{j=1}^{m} \beta_{j}^{(i)} \delta_{j}^{(i)}=0, \quad \sum_{j=1}^{m} \alpha_{j}^{(i)} \gamma_{j}^{(i)}=0 \quad(i=1, \cdots, m) \tag{3}\\
\sum_{i, j}^{1} \alpha_{j}^{(i)} \delta_{j}^{(i)}=m
\end{array}\right.
$$

First, we prove that, if Σ be a substitution (1) which satisfies the relations (2) and (3), then will also $M_{r} M_{b} \Sigma$ and $N_{r, s, \lambda} \sum$ satisfy them. It will then follow by induction that every substitution of J satisfies the relations. The product $N_{r, s, \lambda} \Sigma$ when expressed in the form (1) has the coefficients

$$
\begin{gathered}
\bar{\alpha}_{j}^{(i)}=a_{j}^{(i)}, \quad \bar{\beta}_{j}^{(i)}=\beta_{j}^{(i)} \quad(i, j=1, \cdots, m), \\
\bar{\gamma}_{j}^{(i)}=\gamma_{j}^{(i)}, \quad \bar{\delta}_{j}^{(i)}=\delta_{j}^{(i)} \quad(i, j=1, \cdots, m ; j \neq r, s), \\
\bar{\gamma}_{r}^{(i)}=\gamma_{r}^{(i)}+\lambda \alpha_{s}^{(i)}, \quad \bar{\gamma}_{s}^{(i)}=\gamma_{s}^{(i)}+\lambda \alpha_{r}^{(i)} \\
\bar{\delta}_{r}^{(i)}=\delta_{r}^{(i)}+\lambda \beta_{s}^{(i)}, \quad \bar{\delta}_{s}^{(i)}=\delta_{s}^{(i)}+\lambda \beta_{r}^{(i)}
\end{gathered}
$$

Thus $\quad \sum_{j=1}^{m} \bar{a}_{j}^{(i)} \gamma_{j}^{(i)}=\sum_{j=1}^{m} \alpha_{j}^{(i)} \gamma_{j}^{(i)}+\alpha_{r} \cdot \lambda \alpha_{s}+\alpha_{s} \cdot \lambda \alpha_{r}=0$,

$$
\sum_{i, j}^{1 \ldots m} \bar{\alpha}_{j}^{(i)}{\overline{\delta_{j}^{(i)}}}^{1 \ldots m} \sum_{i, j} \alpha_{j}^{(i)} \delta_{j}^{(i)}+\lambda \sum_{i=1}^{m}\left(\alpha_{r}^{(i)} \beta_{s}^{(i)}+\alpha_{s}^{(i)} \beta_{r}^{(i)}\right)=m .
$$

[^2]The product $M_{r} \Sigma$ satisfies the first set of conditions (3), but not the last one, since its coefficients $\overline{\bar{\alpha}}$, etc., give

$$
\left.\sum_{i, j}^{1 \ldots m} \overline{\bar{a}}_{j}^{(i)} \overline{\bar{\delta}}_{j}^{(i)}=\sum_{i, j}^{1 \ldots m} \alpha_{j}^{(i)} \delta_{j}^{(i)}+\sum_{i=1}^{m}\left(\gamma_{r}^{(i)} \beta_{r}^{(i)}-\alpha_{r}^{(i)}\right)_{r}^{(i)}\right)=m+1 .
$$

But the product $M_{r} M_{s} \Sigma$ evidently satisfies all of the conditions (3), the modulus being 2 .

Inversely, every substitution (1) satisfying the relations (2) and (3) belongs to the group J.

We first find a substitution S in J which replaces ξ_{1} by
where

$$
f_{1} \equiv \sum_{j=1}^{m}\left(a_{j}^{\prime} \xi_{j}+\gamma_{j}^{\prime} \eta_{j}\right)
$$

$$
\sum_{j=1}^{m} a_{j}^{\prime} \gamma_{j}^{\prime}=0
$$

If $\alpha_{1}^{\prime} \neq 0$, we may take for S the product

$$
T_{1, a_{1}^{\prime}} Q_{1,2, a_{2}^{\prime}} N_{1,2, \gamma_{2}^{\prime}} \cdots Q_{1, m, a_{m}^{\prime}} N_{1, m, \gamma_{m^{\prime}}}
$$

If $\alpha_{1}^{\prime}=0, \gamma_{1}^{\prime} \neq 0$, we may choose for S

$$
T_{1, \gamma_{1}^{\prime}-1} Q_{2,1, \gamma_{2}^{\prime}} R_{1,2, a^{2}} \cdots Q_{m, 1, \gamma m^{\prime}} R_{1, m, a_{m^{\prime}}} M_{1} M_{2} .
$$

Finally, if $\alpha_{j}^{\prime}=\gamma_{j}^{\prime}=0(j=1, \cdots, k-1), a_{k}^{\prime}$ or $\gamma_{k}^{\prime}+0$, there exists by the preceding cases a substitution $S^{\prime \prime}$ in the group J, replacing ξ_{k} by f_{1}. We thus take $S=S^{\prime} P_{1, k}$.

Thus, if Σ denote the given substitution (1), we may set $\Sigma=S \Sigma^{\prime}$, where Σ^{\prime} is a new substitution leaving ξ_{1} fixed and, by the proof above, satisfying the relations (2) and (3). Let Σ^{\prime} replace η_{1} by

$$
f_{1}^{\prime}=\sum_{j=1}^{m}\left(\beta_{j}^{\prime} \xi_{j}+\delta_{j}^{\prime} \eta_{j}\right)
$$

where by $\left(2_{1}\right)$ and (3),

$$
\begin{equation*}
\delta_{1}^{\prime}=1, \beta_{1}^{\prime}+\beta_{2}^{\prime} \delta_{2}^{\prime}+\cdots+\beta_{m}^{\prime} \delta_{m}^{\prime}=0 . \tag{4}
\end{equation*}
$$

A substitution in J leaving ξ_{1} fixed and replacing η_{1} by $f_{1}{ }^{\prime}$ is given by

$$
S^{\prime}=R_{2,1, \beta_{2}^{\prime}} Q_{2,1, \delta_{2}^{\prime}} \cdots R_{m, 1, \beta_{m^{\prime}}} Q_{m, 1, \delta_{m^{\prime}} .}
$$

Setting $\Sigma^{\prime}=S^{\prime} \sum_{1}, \Sigma_{1}$ will be a substitution leaving ξ_{1} and η_{1} fixed and satisfying the relations (2_{1}) and (3). Hence it takes the form

$$
\left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1}, \xi_{i}^{\prime}=\sum_{j=2}^{m}\left(\alpha_{j}^{(i)} \xi_{j}+\gamma_{j}^{(i)} \eta_{j}\right) \\
\eta_{1}^{\prime}=\eta_{1}, \eta_{i}^{\prime}=\sum_{j=2}^{m}\left(\beta_{j}^{(i)} \xi_{j}+\delta_{j}^{(i)} \eta_{j}\right)
\end{array}(i=2, \cdots, m)\right.
$$

with conditions for the coefficients analogous to (2) and (3). Proceeding similarly with Σ_{1}, we find ultimately that

$$
\Sigma=S S^{\prime} \cdots S_{m-2} S_{m-2}^{\prime} T_{m, a_{m}(m)}
$$

since a substitution altering only ξ_{m} and η_{m} and satisfying (2) and (3) is of the form $T_{m, a}$.

Corollary. The substitutions $M_{i}=\left(\xi_{i} \eta_{i}\right)$ do not belong to the Group J.
5. The order $\Omega_{m, n}$ of J is readily determined. The number of distinct functions f_{1} by which the substitutions of J can replace ξ_{1} is $P_{m, n}-1$, if $P_{m, n}$ denotes the number of solutions of

$$
\sum_{j=1}^{m} a_{j}^{\prime} \gamma_{j}^{\prime}=0 .
$$

But

$$
\alpha_{1}^{\prime} \gamma_{1}^{\prime}=\lambda, \quad \alpha_{2}^{\prime} \gamma_{2}^{\prime}+\cdots+\alpha_{m}^{\prime} \gamma_{m}^{\prime}=\lambda
$$

gives $\left(2^{n+1}-1\right) P_{m-1, n}$ sets of solutions when $\lambda=0$, and $\left(2^{n}-1\right)\left(2^{n(2 m-2)}-P_{m-1, n}\right)$ sets of solutions when λ runs through the marks $\neq 0$ of the $G F\left[2^{n}\right]$. Thus

$$
P_{m, n}=2^{n} P_{m-1, n}+\left(2^{n}-1\right) 2^{n(2 m-2)} .
$$

By (4) the number of functions f^{\prime} is $2^{n(2 m-2)}$. Thus

$$
\Omega_{m, n}=\left(P_{m, n}-1\right) 2^{2 n(m-1)} \Omega_{m-1, n}
$$

Enumerating the substitutions of the form $T_{m, a}$, we have

$$
\Omega_{1, n}=2^{n}-1=\frac{1}{2}\left(P_{1, n}-1\right)
$$

Hence

$$
\Omega_{m, n}=\frac{1}{2}\left(P_{m, n}-1\right) 2^{2 n(m-1)}\left(P_{m-1, n}-1\right) 2^{2 n(m-2)} \cdots\left(P_{1, n}-1\right) .
$$

From the above investigation we derive the recursion formula

$$
P_{s, n}-1=2^{n}\left(P_{s-1, n}-1\right)+\left(2^{n}-1\right)\left(2^{2 n(s-1)}+1\right)
$$

the initial term $P_{1, n}-1$ being $2\left(2^{n}-1\right)$. Then by induction we derive the result

$$
P_{s, n}-1=\left(2^{n s}-1\right)\left(2^{n(8-1)}+1\right) .
$$

We thus obtain for the order of J the simple formula

$$
\begin{gathered}
\Omega_{m, n}=\left(2^{n m}-1\right)\left[\left(2^{2 n(m-1)}-1\right) 2^{2 n(m-1)}\right]\left[\left(2^{2 n(m-2)}-1\right) 2^{2 n(m-2)}\right] \\
\cdots\left[\left(2^{2 n}-1\right) 2^{2 n}\right] .
\end{gathered}
$$

Simplicity of the group $J, \S \S 6-9$.
6. Let I be an invariant sub-group of J not the identity. By the proof in the Quarterly Journal, l. c., §4, I contains a substitution not the identity and replacing ξ_{1} by $\alpha \xi_{1}$. Further, if $m \equiv 3, I$ contains a substitution not the identity, leaving ξ_{1} and η_{1} fixed. The proof differs slightly from $\S 5$ of the paper cited. Thus, for case (1), we may suppose S_{1} to be commutative with every substitution of J which leaves $\xi_{1}, \eta_{1}, \xi_{2}$ fixed. Equating the two values by which $S_{1} R_{2,3, \lambda}$ and $R_{2,3, \lambda} S_{1}$ replace η_{2} and the two by which they replace η_{3}, we have

$$
\xi_{3}^{\prime}=\delta_{3}^{\prime \prime} \xi_{2}+\delta_{2}^{\prime \prime} \xi_{3}, \quad \xi_{2}^{\prime}=\delta_{2}^{\prime \prime \prime} \xi_{3}+\delta_{3}^{\prime \prime \prime} \xi_{2} .
$$

Equating the two values by which $S_{1} Q_{3,2, \lambda}$ and $Q_{3,2}, \lambda S_{1}$ replace ξ_{3} and the two by which they replace η_{2}, we have

$$
\xi_{2}^{\prime}=\alpha_{3}{ }^{\prime \prime \prime} \xi_{2}+\gamma_{2}^{\prime \prime \prime} \eta_{3}, \quad \eta_{3}^{\prime}=\beta_{3}{ }^{\prime \prime} \xi_{2}+\delta_{2}{ }^{\prime \prime} \eta_{3} .
$$

Applying the conditions (2) and (3), S_{1} takes the form

$$
\begin{aligned}
& S_{1}\left\{\begin{array}{cc}
\xi_{1}^{\prime}=\alpha \xi_{1}, \quad \eta_{1}^{\prime}=\alpha^{-1} \eta_{1}+\xi_{2}, & \eta_{2}^{\prime}=\alpha \xi_{1}+\beta_{2}^{\prime \prime} \xi_{2} \\
& +\eta_{2}+\beta_{2}^{\prime \prime \prime} \xi_{3}+\alpha_{2}^{\prime \prime \prime} \eta_{\beta}+\cdots \\
\xi_{2}^{\prime}=\xi_{2}, \quad \xi_{3}^{\prime}=\xi_{3}+\alpha_{2}^{\prime \prime \prime} \xi_{2}, \quad \eta_{3}^{\prime}=\eta_{3}+\beta_{2}^{\prime \prime \prime} \xi_{2}, \cdots
\end{array}\right. \\
& \text { where } * \quad \beta_{2}^{\prime \prime}=\alpha_{2}^{\prime \prime \prime} \beta_{2}^{\prime \prime \prime}+\beta_{4}^{\prime \prime} \delta_{4}^{\prime \prime}+\cdots+\beta_{m}^{\prime \prime \prime} \delta_{m}^{\prime \prime} .
\end{aligned}
$$

The demonstration may now be completed as in The Quar. terly Journal. In the proof of case (2) we need only make the .trivial variation of replacing M_{3} by $M_{2} M_{3}$ which is permissible since M_{2} leaves $\xi_{2}+\eta_{2}$ unchanged.
7. Applying again the reasoning of $\$ 6$ we conclude that, if $m \equiv 4, I$ contains a substitution leaving $\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}$ fixed ; finally, that I contains a substitution leaving fixed

$$
\xi_{i}, \gamma_{i} \quad(i=1, \cdots, m-2) .
$$

Transforming it by $P_{1, m-1} P_{2, m}$, we reach a substitution S of

[^3]I altering only $\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}$. Applying the conditions (2_{1}) (3) we see that it has the form

$S: \begin{cases}\xi_{1}^{\prime}=\alpha_{1}^{\prime} \xi_{1}+\gamma_{1}^{\prime} \eta_{1}+\alpha_{2}^{\prime} \xi_{2}+\gamma_{2}^{\prime} \eta, & \eta_{1}^{\prime}=\beta_{1}^{\prime} \xi_{1}+\delta_{1}^{\prime} \eta_{1} \\ & +\beta_{2}^{\prime} \xi_{2}+\delta_{2}^{\prime} \eta_{2}, \\ \xi_{2}^{\prime}=\alpha_{1}{ }^{\prime \prime} \xi_{1}+\gamma_{1}{ }^{\prime \prime} \eta_{1}+\alpha_{2}^{\prime \prime} \xi_{2}+\gamma_{2}^{\prime \prime} \eta_{2}, & \eta_{2}^{\prime}=\beta_{1}^{\prime \prime} \xi_{1}+\delta_{1}^{\prime \prime} \eta_{1} \\ & +\beta_{2}^{\prime \prime} \xi_{2}+\delta_{2}^{\prime \prime} \eta_{2} .\end{cases}$
8. If $m>2$, the group I contains a substitution R_{α}

Case I: $\gamma_{1}^{\prime} \neq 0$. Transform S by $T_{1, \gamma_{1}-1} R_{2,1, a_{2}}^{a,} Q_{2,1, \gamma_{2}}{ }^{\prime}$ we reach a substitution S_{1} in I which replaces ξ_{1} by $\gamma_{1}^{\prime \prime}{ }^{1} \eta_{1}$ but otherwise of the same form as S.

If S_{1}, be commutative with $M_{2} M_{3}$, it reduces $*$ to

$$
T_{1, \gamma_{1}} M_{1} M_{2} Q_{2,1, \beta_{2}^{\prime}} R_{1,2, \beta_{2}^{\prime}}
$$

Case $\left(\mathrm{I}_{a}\right): \beta_{2}^{\prime}=0$. If $\gamma_{1}^{\prime}=1, I$ contains $M_{1} M_{2}$ and therefore its transformed by $N_{1,2,1} Q_{1,2,1}$, giving $R_{1,2,1} Q_{2,1,1}$ (Case III). If $\gamma_{1}^{\prime} \neq 1, I$ contains

$$
T_{1, \gamma_{1}} M_{1} M_{2} \cdot P_{1,2}^{-1} T_{1, \gamma_{2}^{\prime}} M_{1} M_{2} P_{1,2}=T_{1, \gamma_{1}^{\prime}} T_{2, \gamma_{2}^{\prime}}{ }^{-1}
$$

and hence its transformed by $M_{2} M_{3}$ giving $T_{1, \gamma_{2}} T_{2, \gamma_{2}}$. This in turn $R_{1,2, \lambda}$ transforms into $R_{1,2, \lambda\left(1+\gamma_{1}{ }^{\prime 2}\right)} T_{1, \gamma_{1}{ }^{\prime}} T_{2 . \gamma_{1} \cdot}$. Hence I contains $R_{1,2, \lambda\left(1+\gamma_{1}{ }^{\prime 2}\right)} \neq 1$.

Case $\left(I_{b}\right): \beta_{2}^{\prime} \neq 0$. If $n>1$, a mark $\rho \neq 1, \neq 0$ exists.
The transformed of S_{1} by $T_{2, \rho}$ will not be commutative with $M_{2} M_{3}$. If $n=1, I$ contains

$$
\left(M_{1} M_{2} Q_{2,1,1} R_{1,2,1}\right)^{-1} P_{1,2} M_{1} M_{2} Q_{2,1,1} R_{1,2,1} P_{1,2}=P_{1,2} Q_{2,1,1}
$$

when by Jordan, p. 204, 11. 15-17, I contains $Q_{3,1,1}$.
If, however, S_{1} be not commutative with $M_{2} M_{3}, I$ contains $S_{1}^{-1} M_{2} M_{3} S_{1} M_{2} M_{3} \neq 1$ which leaves $\xi_{1}, \xi_{3}, \eta_{3}$ fixed (Case III.).

Case II. $\quad \gamma_{1}^{\prime}=0, a_{2}^{\prime}$ and γ_{2}^{\prime} not both zero.
J contains a substitution T^{\prime} leaving ξ_{1} fixed and replacing ξ_{2} by
$\alpha_{1} \xi_{1}+\gamma_{1}^{\prime} \eta_{1}+\alpha_{2}^{\prime} \xi_{2}+\gamma_{2}^{\prime} \eta_{2} ;$
while, for $\quad \gamma_{2}^{\prime} \neq 0, T \equiv M_{2} M_{3} T_{2, \gamma_{2}}{ }^{\prime} Q_{2,1, a_{1}}$.
Hence $S_{1} \equiv T^{-1} S T$ replaces ξ_{1} by ξ_{2} and leaves ξ_{3}, η_{3} fixed. If S_{1} be not commutative with $R_{1,2, \lambda}, I$ contains

$$
S_{1}^{-1} R_{1,2, \lambda} S_{1} R_{1,2, \lambda} \neq 1
$$

which leaves ξ_{1} fixed (Case III.).

[^4]If S_{1} be commutative with $R_{1,2, \lambda}$ it reduces to

$$
P_{1,2} Q_{2,1, \delta_{1}^{\prime}} \cdot R_{1,2, \beta_{1}} .
$$

Then I contains

$$
P_{1,2} S_{1} P_{1,2} S_{1}^{-1}=Q_{2,1, \delta_{1}^{\prime}} Q_{1,2, \delta_{1}^{\prime}} .
$$

But, when $\delta_{1}^{\prime}=0, I$ contains $P_{1,2} R_{1,2, \beta_{1}{ }^{\prime}}$ whose transformed by $Q_{1,2,1}$ leaves ξ_{1} fixed (Case III.).

If $\hat{\delta}_{1}^{\prime}=1, I$ contains

$$
Q_{2,1,1} Q_{1,2,1} \equiv P_{1,2} Q_{2,1,1},
$$

when, as in Case (I_{b}), I contains $Q_{3,1,1}$.
If $\delta_{1}^{\prime} \neq 0, \neq 1$, the transformed of $Q_{2,1, \delta_{1}^{\prime}} Q_{1,2, \delta_{1}^{\prime}}$ by $T_{1, \rho}$ gives $Q_{2,1, \delta \rho^{-1}} Q_{1,2, \delta \rho}$, so that I contains

$$
Q_{2,1, \delta \rho^{-1}} Q_{1,2, \delta \rho} \cdot Q_{2,1, \delta \sigma^{-1}} Q_{1,2, \delta \sigma},
$$

which, for $\sigma=\rho\left(1+\delta^{2}\right) \neq 0$, reduces to

$$
T_{1,1+\delta^{2}} T_{2,1+\delta^{2}}^{-1}
$$

Case III. $\quad \gamma_{1}^{\prime}=\alpha_{2}^{\prime}=\gamma_{2}^{\prime}=0$.
We may verify in detail that S reduces to

$$
T_{1, a_{1}} R_{1,2, \beta_{2}^{\prime}} Q_{2,1, \delta_{2}^{\prime}} T_{2, \alpha_{2}^{\prime \prime}}
$$

Transforming this by $T_{2, a_{2}}^{-1}{ }_{1,2, \lambda}$, we obtain

$$
R_{1,2, \lambda\left(1+a_{1}^{\prime} a_{2}^{\prime \prime}\right)} T_{1, a_{1}^{\prime}} T_{2, a_{2}{ }^{\prime \prime}} R_{1,2, \beta_{2}^{\prime}} Q_{2,1, \delta_{2}^{\prime}}
$$

Thus if $\alpha_{1}{ }^{\prime} \alpha_{2}^{\prime \prime} \neq 1, I$ contains $R_{1,2, \lambda\left(1+a_{1}{ }^{\prime} \alpha_{2}{ }^{\prime \prime}\right)} \neq 1$.
For $\alpha_{2}^{\prime \prime}=\alpha_{1}{ }^{\prime-1}$, I contains [writing α for α_{1}^{\prime} and dropping affixes]

$$
\begin{gathered}
S=R_{1,2, \alpha \beta} Q_{2,1, \alpha \delta} T_{1, a} T_{2, a}{ }^{-1} \\
P_{1,2} T_{2, \alpha}^{-1} S T_{2, a} P_{1,2}=T_{1, \alpha-1} T_{2, a} R_{1,2, \beta} Q_{1,2, \delta}
\end{gathered}
$$

Hence I contains their prodnct

$$
W \equiv R_{1,2, \beta(1+\alpha)} Q_{2,1, \alpha . \delta} Q_{1,2, \delta}
$$

Transforming W by $M_{1} M_{3}$ and the result by $P_{1,2}$, we obtain respectively,

$$
Q_{1,2, \beta(1+\alpha)} N_{1,2, a \delta} R_{1,2, \delta}, \quad Q_{2,1, \beta(1+\alpha)} N_{1,2, \alpha \delta} R_{1,2, \delta} .
$$

Hence I contains

$$
Q_{2,1, \beta(1+\alpha)} Q_{1,2, \beta(1+\alpha)} .
$$

Thus if $\beta(1+\alpha) \neq 0, I$ contains some $R_{1,2, \rho}$ [see end of Case II]. If $\beta(1+\alpha)=0$, the transformed of W by $T_{1, a^{3 / 4}}$ gives

$$
Q_{2,1, \delta a^{1 / 2}} Q_{1,2, \delta a^{132}},
$$

so that we reach an $R_{1,2, \rho}$ unless $\delta=0$. But for $\delta=0$, $\beta(1+\alpha)=0, \underset{\sim}{S}$ reduces to $R_{1,2, \beta}$ or $T_{1, \alpha} T_{2, a^{-1}}$ giving in either case an $R_{1,2, \rho}$.
9. Having a substitution of the form $R_{a, b, p}, I$ will contain its transform by $T_{a, \lambda}$, giving $R_{a, b, p \lambda-1}$. Thus I contains $R_{a, b, \lambda}$ ($\lambda=$ arbitrary). Transforming it by $P_{j, b} P_{a, i}$ we reach $R_{i, j, \lambda}$. This $M_{i} M_{k}$ transforms into $Q_{i, j, \lambda}$, which in turn $M_{j} M_{k}$ transforms into $N_{i, j, \lambda}$. Finally, $Q_{1,2,1,}, N_{1,2,1}$, transforms $R_{1,2,1} Q_{2,1,1}$ into $M_{1} M_{2}$. Hence I coincides with J, which is, therefore, a simple group.
10. For $m=2$, we may define the sub-group J of index 2 as follows:

$$
J=\left\{M_{1} M_{2}, N_{1,2, \lambda}, Q_{1,2, \lambda}, T_{1, \lambda}\right\}
$$

for it then contains also the substitutions

$$
\begin{gathered}
R_{1,2, \lambda}=M_{1} M_{2} N_{1,2, \lambda} M_{1} M_{2} \\
Q_{2,1,1}=R_{1,2,1} Q_{1,2,1} N_{1,2,1} M_{1} M_{2} N_{1,2,1} Q_{1,2,1} \\
P_{1,2}=Q_{2,1,1} Q_{1,2,1} Q_{2,1,1}
\end{gathered}
$$

The order of J is seen to be

$$
\frac{1}{2}\left(P_{2, n}-1\right) 2^{2 n}\left(P_{1, n}-1\right)=\left\{2^{n}\left(2^{2 n}-1\right)\right\}^{2} .
$$

Part II.—The Group J_{1}, $\S \S 11-21$.
11. Confining ourselves to the $G F\left[2^{1}\right]$, consider the first hypoabelian group J^{\prime} on the indices x_{2}, \cdots, x_{m}. Denote by J_{1} the group obtained by extending J^{\prime} by the three substitutions $M_{1} M_{2}, L_{1} M_{1}, U$, viz.:

$$
\begin{gathered}
L_{1} M_{1}: x_{1}^{\prime}=y_{1}, \quad y_{1}^{\prime}=x_{1}+y_{1} . \\
U:\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2}+y_{2}, \quad y_{1}^{\prime}=y_{1}+y_{2} \\
x_{2}^{\prime}=x_{1}+x_{2}+y_{2}, \quad y_{2}^{\prime}=x_{1}+y_{1}+x_{2}+y_{2} .
\end{array}\right.
\end{gathered}
$$

[^5]12. Theorem : Every substitution* of J_{1} is included among the linear substitutions
\[

\left\{$$
\begin{array}{l}
x_{i}^{\prime}=\sum_{j=1}^{m}\left(\alpha_{j}^{(i)} x_{j}+c_{j}^{(i)} y_{j}\right) \tag{1}\\
y_{i}^{\prime}=\sum_{j=1}^{m}\left(b_{j}^{(i)} x_{j}+d_{j}^{(i)} y_{j}\right)
\end{array}
$$ \quad(i=1 \cdots m)\right.
\]

whose coefficients, taken modulo 2, satisfy the relations: \dagger

$$
\begin{gather*}
\sum_{j=1}^{m} a_{j}^{(i)} c_{j}^{(i)}+a_{1}^{(i)}+c^{(i)} \equiv \sum_{j=1}^{m} b_{j}^{(i)} d_{j}^{(i)}+b_{1}^{(i)}+d_{1}^{(i)} \equiv \delta_{1 i}, \tag{5}\\
(i=1, \cdots, m) \\
\sum_{i, j}^{1 \ldots m} a_{j}^{(i)} d_{j}^{(i)}+a_{1}^{\prime}+b_{1}^{\prime}+c_{1}^{\prime}+d_{1}^{\prime} \equiv m, \tag{6}
\end{gather*}
$$

in addition to the relations (2) [when written in roman letters]. Writing the relations (5) for the reciprocal of (1) we have

$$
\left(5_{1}\right) \sum_{j=1}^{m} a_{i}^{(j)} b_{i}^{(j)}+a_{1}^{(j)}+b_{1}^{(j)} \equiv \sum_{j=1}^{m} c_{i}^{(j)} d_{i}^{(j)}+c_{1}^{(j)}+d_{1}^{(j)} \equiv \delta_{1 i},
$$

which must be a consequence of the relations (5) and (2).
Since the theorem is true for $L_{1} M_{1}, U$ and the substitutions of J^{\prime} [see §4], it follows by induction if we prove that, when any substitution Σ satisfies the above relations, $U \Sigma$ and $L_{1} M_{1} \Sigma$ also satify them.

Expressing $L_{1} M_{1} \Sigma$ in the form (1), it is seen to have the coefficients $\bar{a}_{j}^{(i)}, \bar{b}_{j}^{(i)}$, etc., where
$\bar{a}_{1}^{(i)}=c_{1}^{(i)}, \quad \bar{c}_{1}^{(i)}=a_{1}{ }^{(i)}+c_{1}{ }^{(i)}, \quad \bar{b}_{1}{ }^{(i)}=d_{1}{ }^{(i)}, \quad \bar{d}_{1}{ }^{(i)}=b_{1}^{(i)}+d_{1}{ }^{(i)}$, $\bar{a}_{j}^{(i)}=a_{j}^{(i)}, \quad \bar{c}_{j}^{(i)}=c_{j}^{(i)}, \quad \bar{b}_{j}^{(i)}=b_{j}^{(i)}, \quad \bar{d}_{j}^{(i)}=d_{j}^{(i)} \quad(j=2, \cdots, m)$.

The expression on the left of (6), when built in $\bar{a}_{j}^{(i)}, \bar{b}_{j}^{(i)}$, etc., reduces to m, on applying (6), in virtue of the relations

$$
\sum_{i=1}^{m} c_{1}^{(i)} b_{1}^{(i)}=\sum_{i=1}^{m} a_{1}{ }_{1}^{(i)} d_{1}^{(i)}+1, \quad \sum_{i=1}^{m} c_{1}^{(i)} d_{1}^{(i)}+c_{1}^{\prime}+d_{1}^{\prime}=1 .
$$

[^6]Similarly, UI has the coefficients

$$
\begin{gathered}
\bar{a}_{1}^{(i)}=a_{2}^{(i)}+c_{2}^{(i)}, \quad \bar{c}_{1}^{(i)}=c_{1}^{(i)}+c_{2}^{(i)}, \\
\bar{b}_{1}^{(i)}=b_{2}^{(i)}+d_{2}^{(i)}, \quad \bar{d}_{1}^{(i)}=d_{1}^{(i)}+d_{2}^{(i)}, \\
\bar{a}_{2}^{(i)}=a_{1}^{(i)}+a_{2}^{(i)}+c_{2}^{(i)}, \quad \bar{c}_{2}^{(i)}=a_{1}^{(i)}+a_{2}^{(i)}+c_{1}^{(i)}+c_{2}^{(i)}, \\
\bar{b}_{2}^{(i)}=b_{1}^{(i)}+b_{2}^{(i)}+d_{2}^{(i)}, \quad \bar{d}_{2}^{(i)}=b_{1}^{(i)}+b_{2}^{(i)}+d_{1}^{(i)}+d_{2}^{(i)}, \\
\bar{a}_{j}^{(i)}=a_{j}^{(i)}, \quad \bar{b}_{j}^{(i)}=b_{j}^{(i)}, \quad \bar{c}_{j}^{(i)}=c_{j}^{(i)}, \quad \bar{d}_{j}^{(i)}=d_{j}^{(i)} \quad(j=3, \cdots, m) .
\end{gathered}
$$

Thus
equals

$$
\sum_{i=1}^{m}\left(\bar{a}_{1}^{(i)} \bar{d}_{1}^{(i)}+\bar{a}_{2}^{(i)} \bar{d}_{2}^{(i)}\right)
$$

$$
\begin{gathered}
\sum_{i=1}^{m}\left(a_{1}^{(i)} b_{1}^{(i)}+a_{2}{ }^{(i)} b_{2}{ }^{(i)}+a_{1}^{(i)} d_{1}^{(i)}+b_{2}^{(i)} c_{2}^{(i)}\right) \\
+\sum_{i=1}^{m}\left(a_{1}^{(i)} b_{2}^{(i)}+a_{2}{ }^{(i)} b_{1}^{(i)}\right)+\sum_{i=1}^{m}\left(a_{1}{ }^{(i)} d_{2}^{(i)}+b_{1}^{(i)} c_{2}^{(i)}\right)
\end{gathered}
$$

The last two sums being zero, this reduces to

$$
a_{1}^{\prime}+b_{1}^{\prime}+1+a_{2}^{\prime}+b_{2}^{\prime}+\sum_{i=1}^{m}\left(a_{1}^{(i)} d_{1}^{(i)}+a_{2}^{(i)} d_{2}^{(i)}\right)+1
$$

Also

$$
\overline{a_{1}^{\prime}}+\bar{b}_{1}^{\prime}+\overline{c_{1}^{\prime}}+\overline{d_{1}^{\prime}}=a_{2}^{\prime}+c_{1}^{\prime}+b_{2}^{\prime}+d_{1}^{\prime}
$$

Hence $U \Sigma$ satisfies the relation (6). A like result may be proven for the relations (2) and (5). Hence the substitutions (1) satisfying the relations (2), (5), (6) form a group. This abstract definition of our group is independent of Jordan's theory of "exposants d'échange," from which also the group property follows.
13. It is interesting to note that it is impossible to generalize to the $G F\left[2^{n}\right], n>1$, the group of substitutions (1) satisfying the relations (2), (5), (6).

Thus, the coefficients of $L_{1} M_{1} \Sigma$ satisfy (5) only if

$$
\left(c_{1}^{(i)}\right)^{2}+c_{1}^{(i)}=0,\left(d_{1}^{(i)}\right)^{2}+d_{1}^{(i)}=0
$$

 sidering $M_{1} L_{1} \Sigma$, we find that $\alpha_{1}^{(i)}$ and $b_{1}^{(i)}$ must be integers. Likewise the coefficients of $U \Sigma$ satisfy (5) only when

$$
\left(a_{1}^{(i)}\right)^{2}+a_{1}^{(i)}+\left(a_{2}^{(i)}\right)^{2}+a_{2}^{(i)}=0,
$$

i. e., if $a_{2}^{(i)}$ also belongs to the $G F\left[2^{1}\right]$. By considering $P_{23} U P_{23} \Sigma$, we find that $a_{3}^{(i)}$ must be integers, etc.

Further no generalization is gained by extending J^{\prime} by * $L_{1}, \lambda M_{1}$, since $L_{1}{ }^{\prime}, \lambda L_{1,1} L_{1}{ }^{\prime}, \lambda$ satisfies (5) only when $\lambda=1$.
14. Inversely, every linear substitution (1), satisfying the relations (2), (5), (6), belongs to the group J_{1}. The proof varies only slightly from Jordan, §§ 279-281. At the end of $\S 279$, we replace the three products by

$$
S^{\prime} U M_{1} M_{2}, \quad S^{\prime} M_{1} M_{3} U M_{1} M_{3}, \quad L_{1} M_{1} S^{\prime \prime} U M_{1} M_{2},
$$

where $S^{\prime \prime}$ is the substitution in J^{\prime} which replaces y_{2} by

$$
\sum_{j=2}^{m}\left(\alpha_{j}^{\prime} x_{j}+c_{j}^{\prime} y_{j}\right)
$$

If $a_{j}^{\prime}=c_{j}^{\prime}=0(j=2 \cdots m)$ we take for S respectively :

$$
L_{1} M_{1}, 1, L_{1} M_{1} \cdot M_{1} M_{2}
$$

At the end of $\S 280$, we take for $S^{\prime \prime}$,

$$
\bar{S} M_{1} L_{1} U^{2} \text { or } \bar{S} M_{1} M_{3} U^{2}
$$

according as $b_{1}^{\prime}=1$ or 0 .
15. The order $\Omega_{m}{ }^{\prime}$ of the second hypoabelian group J_{1} is not equal to the order Ω_{m} of the first hypoabelian group $J_{n=1}$ as stated by Jordan, §279. In § 282 the reference should be to $\S 259$ and not to $\S 260$. Thus the number of solutions of
is

$$
\begin{gathered}
\sum_{j=2}^{m} a_{j}^{\prime} c_{j}^{\prime}+\left(a_{1}^{\prime}+1\right)\left(c_{1}^{\prime}+1\right)=0 \\
P_{m} \equiv 2^{2 m-1}+2^{m-1}
\end{gathered}
$$

Hence

$$
\Omega_{m}^{\prime}=2 P_{m} P_{m-1} \Omega_{m-1},
$$

where $\Omega_{m-1}=\left(2^{m-1}-1\right)\left(2^{2 m-4}-1\right) 2^{2 m-4} \ldots\left(2^{2}-1\right) 2^{2}$.
The order of the group J_{1} is thus

$$
\Omega_{m}^{\prime} \equiv\left(2^{m}+1\right)\left(2^{2 m-2}-1\right) 2^{2 m-i^{2}}\left(2^{2 m-4}-1\right) 2^{2 m-4} \cdots\left(2^{2}-1\right) 2^{2} .
$$

Simplicity of $J_{1}, \S \S 16-20$.
16. In the main, I will follow Jordan's developments in $\S \S 283-86$, but will replace $\S \S 287-89$, in which a couple of small errors occur, by a simpler method, and finally wholly avoid the elaboration left to the reader in § 290.

In $\S 283$ the treatment of the case $c_{1}^{\prime}=0$ will not verify. \dagger

[^7]If $a_{j}^{\prime}=c_{j}^{\prime}=0(j=2 \cdots m), S$ leaves x_{1} fixed. In the contrary case, we may suppose, for example, that $\alpha_{3}{ }^{\prime}=1$. We may thus suppose that $a_{2}^{\prime}=c_{2}^{\prime}$; for, if not, the transformed of S by $N_{2,3}$ replaces x_{1} by

$$
a_{1}^{\prime} x_{1}+a_{2}^{\prime} x_{2}+\left(c_{2}^{\prime}+a_{3}^{\prime}\right) y_{2}+a_{3}^{\prime} x_{3}+\left(c_{3}^{\prime}+a_{2}^{\prime}\right) y_{3}+\cdots
$$

in which the coefficients of x_{2} and y_{2} are equal. Thus I contains the substitution leaving x_{1} fixed

$$
S_{1}=S^{-1}\left(M_{1} L_{1}\right) M_{1} M_{2} S M_{1} M_{2}\left(L_{1} M_{1}\right)
$$

If S_{1} is the identity, on comparing the values by which S and $M_{1} L_{1} M_{1} M_{2} S M_{1} M_{2} L_{1} M_{1}$ replace y_{1}, we find that

$$
x_{1}^{\prime}=\left(b_{2}^{\prime}+d_{2}^{\prime}\right)\left(x_{2}+y_{2}\right)+d_{1}^{\prime} x_{1}
$$

where by the relations (5),

$$
\left(b_{2}^{\prime}+d_{2}^{\prime}\right)^{2}+d_{1}^{\prime}=1
$$

Since S does not leave x_{1} fixed, it replaces x_{1} by $x_{2}+y_{2}$. Hence I contains \bar{S}, the transformed of S by $N_{2,3}$, which replaces x_{1} by $x_{2}+y_{2}+y_{3}$. Using this \bar{S} in place of the former S, the product denoted by S_{1} will not be the identity and will leave x_{1} fixed.
17. We proceed as in $\S 284$, where the greater part of case 3° may be deleted. Indeed, the substitution S_{1} given at the top of p .210 is not hypoabelian ; for a substitution replacing y_{2} by $x_{1}+y_{2}+\beta\left(x_{2}+x_{3}+y_{3}\right)$ does not satisfy the relation (5),

$$
0=\sum_{j=1}^{m} \beta_{j}^{\prime \prime} \delta_{j}^{\prime \prime}+\beta_{1}^{\prime \prime}+\delta_{1}^{\prime \prime} \equiv \beta+\beta^{2}+1=1
$$

18. As in $\S 285, I$ contains the substitution

$$
A=\left[\left(P_{2,3} Q_{3,2}\right)^{-1}\left(M_{1} M_{3} R_{2,3} Q_{3,2}\right)^{-1} P_{2,3} Q_{3,2}\left(M_{1} M_{3} R_{2,3} Q_{3,2}\right)\right]^{2}
$$

which, on expansion, becomes

$$
A:\left\{\begin{array}{l}
x_{2}^{\prime}=y_{2}, \quad y_{2}^{\prime}=x_{2}+y_{2}+x_{3}+y_{3}, \\
x_{3}^{\prime}=y_{2}+y_{3}, \quad y_{3}^{\prime}=y_{2}+x_{3}
\end{array}\right.
$$

The substitutions $B \equiv B^{-1}$ and C of Jordan, p. 210, are seen to belong to our group J_{1}. Thus I contains

$$
A^{2} \cdot B^{-1} A B \equiv X: \begin{cases}x_{1}^{\prime}=x_{1}, & y_{1}^{\prime}=x_{1}+y_{1}+x_{3} \\ x_{2}^{\prime}=y_{2}, & y_{2}^{\prime}=x_{2} \\ x_{3}^{\prime}=x_{3}, & y_{3}^{\prime}=x_{1}+x_{3}+y_{3}\end{cases}
$$

Hence I contains $M_{1} M_{2} X M_{1} M_{2} \equiv M_{1} X M_{1}$ and, therefore, also $A^{-1} M_{1} M_{2}\left(M_{1} X M_{1}\right) M_{2} M_{1} A$ which gives the substitution

$$
Y:\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}, \quad x_{2}^{\prime}=x_{2}+y_{2}+x_{3}+y_{3}, \quad x_{3}^{\prime}=x_{1}+x_{2}+y_{2} \\
y_{1}^{\prime}=x_{1}+y_{1}+x_{2}+y_{3}, \quad y_{2}^{\prime}=x_{1}+x_{2}+y_{2}+y_{3} \\
y_{3}^{\prime}=y_{2}+x_{3}
\end{array}\right.
$$

Hence I contains the substitutions

$$
\begin{gathered}
Z \equiv\left(M_{2} M_{3} P_{2,3}\right)^{-1} Y M_{2} M_{3} P_{2,3} \cdot Y \equiv Q_{3,2} M_{2} M_{3} P_{2,3}, \\
B \equiv C^{-1} Z C \cdot Y, \\
Z\left[\left(P_{2,3} Q_{2,3}\right)^{-1} Z\left(P_{2,3} Q_{2,3}\right) \cdot B\right]^{3}=Q_{3,2}\left(Q_{2,3} B\right)^{3}=Q_{3,2},
\end{gathered}
$$

as seen by a simple reduction using the fact that B is commutative with $M_{2} M_{3} P_{2,3}$.

Containing $Q_{3,2}, I$ contains all the substitutions of J^{\prime} (see $\S \S 3$ and 9).
19. The substitution $\left(U M_{2}\right)^{2} M_{1} M_{3} P_{2,3}$ transforms $N_{2,3}$ into $G \equiv G^{-1}$ (Jordan, bottom of p. 211).

The group J_{1} contains the substitution *

$$
U_{1} \equiv U_{1}^{-1}\left\{\begin{array}{l}
x_{1}^{\prime}=y_{2}+x_{3}+y_{3}, \quad y_{1}^{\prime}=x_{2}+y_{2} \\
x_{2}^{\prime}=x_{1}+y_{1}+x_{3}+y_{3}, \quad y_{2}^{\prime}=x_{1}+x_{3}+y_{3} \\
x_{3}^{\prime}=y_{1}+x_{2}+y_{2}+x_{3}, \quad y_{3}^{\prime}=y_{1}+x_{2}+y_{2}+y_{3}
\end{array}\right.
$$

But U_{1} transforms $M_{2} M_{3}, N_{2,3} R_{2,3} Q_{2,3} N_{2,3}$, and $N_{2,3}$ into respectively $L_{1} M_{3}, M_{1} M_{2} Q_{3,2} N_{2,3}$ and F (bottom of p. 211). Hence I contains $M_{1} M_{2}$ and, therefore, $M_{1} M_{3}$ and consequently the products:

$$
\begin{gathered}
L_{1} M_{3} \cdot M_{3} M_{1}=L_{1} M_{1} \\
P_{2,3} F P_{2,3} \cdot M_{1} M_{2} \cdot G \cdot M_{1} M_{3} \cdot Q_{2,3} N_{2,3}=U
\end{gathered}
$$

Hence I coincides with J_{1}, which is, therefore, simple.
20. For $m=2, J_{1}$ is of order 60 and is generated by \dagger

$$
M_{1} M_{2}, L_{1} M_{1}, U, M_{1} U M_{1}
$$

We proceed as in Jordan, $\S 279$. If $a_{2}{ }^{\prime} c_{2}^{\prime}=1, U$ will replace x_{1} by $f_{1}=x_{2}+y_{2}$. If $a_{2}{ }^{\prime} c_{2}{ }^{\prime}=0$, we have three cases:

$$
\begin{equation*}
a_{2}^{\prime}=0, c_{2}^{\prime}=1 \tag{1}
\end{equation*}
$$

write U_{1} for the French capital U (p. 211, 1. 13).
\dagger We may drop $M_{1} U M_{1}$ from the list of generators; for, $U \cdot M_{1} U M_{1}=L_{1} M_{1} \cdot M_{1} M_{2}$

Then will

$$
U M_{1} M_{2}, M_{1} U M_{1}, \text { or } L_{1} M_{1} U M_{1} M_{2}
$$

replace x_{1} by f_{1}, according as respectively,

$$
\begin{gather*}
a_{1}^{\prime}=0, c_{1}^{\prime}=1 ; ~ a_{1}^{\prime}=1, c_{1}^{\prime}=0 ; \text { or } a_{1}^{\prime}=c_{1}^{\prime}=1 . \\
a_{2}^{\prime}=1, c_{2}^{\prime}=0 . \tag{2}
\end{gather*}
$$

We choose respectively

$$
M_{2} M_{1} \cdot M_{1} U M_{1}, M_{1} M_{2} U M_{1} M_{2}, L_{1} M_{1} \cdot M_{2} M_{1} \cdot M_{1} U M_{1}
$$

$$
\begin{equation*}
\alpha_{2}^{\prime}=c_{2}^{\prime}=0 \tag{3}
\end{equation*}
$$

We take respectively

$$
L_{1} M_{1}, 1, L_{1} M_{1} \cdot M_{1} M_{2}
$$

Continuing as in Jordan; §280, we seek a substitution S, which replaces y_{1} by $b_{1}{ }^{\prime} x_{1}+y_{1}+b_{2}{ }^{\prime} x_{2}+d_{2}{ }^{\prime} y_{2}$, where $b_{2}{ }^{\prime} d_{2}{ }^{\prime}=0^{\prime}$ without altering x_{1}.

$$
\begin{equation*}
b_{2}^{\prime}=d_{2}^{\prime}=0 \tag{1}
\end{equation*}
$$

According as $b_{1}^{\prime}=0$ or 1 , we take

$$
\begin{gather*}
S^{\prime}=1 \text { or } M_{1} M_{2} \cdot L_{1} M_{1} . \\
b_{2}^{\prime}=1, d_{2}^{\prime}=0 . \tag{2}
\end{gather*}
$$

We take respectively

$$
\begin{gather*}
S^{\prime}=\left(M_{1} U M_{1}\right)^{2} M_{1} M_{2} \text { or } M_{1} L_{1} U^{2} \\
b_{2}^{\prime}=0, d_{2}^{\prime}=1 \tag{3}
\end{gather*}
$$

We choose respectively

$$
S^{\prime}=M_{1} M_{2} U^{2} \text { or } M_{1} L_{1} \cdot M_{1} M_{2}\left(M_{1} U M_{1}\right)^{2} M_{1} M_{2}
$$

Since no power of $M_{1} U M_{1}$ reduces to U, which is of period 5 , J_{1} contains more than one cyclical sub-group of order 5. Hence $* J_{1}$ is simple. To put it into the form of the icosahedral group, we may set

$$
S_{2} \equiv U M_{1} M_{2}, S_{3} \equiv U M_{1} U M_{2}=L_{1} M_{1}, S_{5}=M_{2} U^{-1} M_{2}
$$

where S_{j} is of period j. It follows that $S_{2} S_{3} S_{5}=1$.
21. We have reached the interesting result that the simple group J_{1} on m indices is obtained by extending the group

[^8]J^{\prime} on $m-1$ indices (a simple group if $m-1>2$) by the simple icosahedral group of degree 60.

The lowest orders of the simple groups J and J_{1} are seen to be as follows :

$$
\begin{gathered}
\Omega_{2}^{\prime}=60, \quad \Omega_{3}^{\prime}=2^{6} \cdot 3^{4} \cdot 5, \\
\Omega_{4}^{\prime}=2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17, \quad \Omega_{5}^{\prime}=2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17, \\
\Omega_{3,1}=2^{6} \cdot 3^{2} \cdot 5 \cdot 7=\frac{1}{2} 8!, \quad \Omega_{4,1}=2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7, \\
\Omega_{5,1}=2^{20} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17 \cdot 31, \quad \Omega_{3,2}=2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17, \\
\Omega_{4,1}=2^{24} \cdot 3^{5} \cdot 5^{4} \cdot 7 \cdot 13 \cdot 17^{2}, \quad \Omega_{3,3}=2^{18} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 73 .
\end{gathered}
$$

Denote by (m, n, p) the order of the simple* group of linear fractional substitutions of determinant unity on $m-1$ indices in the $G F\left[p^{n}\right]$. We thus find

$$
\Omega_{3,1}=(4,1,2)=(3,2,2), \quad \Omega_{3,9}=(4,2,2)
$$

University of California, March 8, 1898.

ON THE HAMILTON GROUPS.

BY DR. G. A. MILLER.
(Read before the American Mathematical Society at the Meeting of April $30,1898$.

According to Dedekind a Hamilton group is a non-Abelian group all of whose subgroups are self-conjugate. \dagger If the order of such a group is $p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}} \cdots\left(p_{1}, p_{2}, p_{3}, \cdots\right.$ being prime numbers) it must be the direct product of its subgroups of orders $p_{1}{ }^{a_{1}}, p_{2}{ }^{a_{2}}, p_{3}{ }^{a_{3}}, \cdots$ since each of these subgroups is self-conjugate and no two of them can have any common operator except identity. \ddagger Each of these subgroups is either Abelian or Hamiltonian. We proceed to prove that one of the given prime numbers must be 2 and that every subgroup whose order is a power of any other prime number must be Abelian.

Suppose that G represents a Hamilton group of order p^{n}, p being an odd prime number. We may evidently select α in such a manner that all the operators of G whose orders

[^9]
[^0]: *"The first hypoabelian group generalized," The Quarterly Journal of Mathematics, 1898.
 \dagger The indefinite references in Jordan remained an enigma to me until quite recently. Jordan himself could not recall them upon my personal. request last year.
 \ddagger Dickson : "A triply infinite system of simple groups," The Quarterly Journal, July, 1897.

[^1]: * Jordan, \& 218.

[^2]: * The conditions that a substitution (1) have the absolute invariant

 $$
 \sum_{i=1}^{m} \xi_{i} \eta_{i}
 $$

 in the $G F\left[2^{n}\right]$ are seen to be the relations (2) and (3), omitting the last one $\Sigma a \delta=m$. The first hypoabelian group G is thas completely defined by the invariant $\Sigma \xi_{i} \eta_{i}$.

[^3]: * I do not find that $a_{2}{ }^{\prime \prime \prime}$ must be zero, so that S_{1} would reduce to $T_{1, a} R_{1,2,1}$ when $m=3$, as stated by Jordan.

[^4]: * I do not find that $\beta_{2}{ }^{\prime}$ must $=0$ as stated in Jordan, p. 204, 1. 1.

[^5]: ${ }^{*} J_{1}$ is a sub-group of the Abelian Group (for $p=2$); for

 $$
 U=P_{1,2} L_{1} Q_{2,1,1} L_{2}^{\prime} .
 $$

[^6]: *The conditions that (1) shall leave

 $$
 x_{1}+y_{1}+\sum_{i=1}^{m} x_{i} y_{i}
 $$

 invariant modulo 2 are seen to be the relations (2) and (5). This invariant thus characterizes the second hypoabelian group G_{1}.
 \dagger Following Kronecker's notation,

 $$
 \delta_{11}=1, \quad \delta_{1 i}=0(i \neq 1) .
 $$

[^7]: * For the notation see The Quarterly Journal, July, 1897.
 \dagger A simple correction suffices for Jordan's proof. Thus, I contains $S^{-1} L_{1}{ }^{-1} S L_{1}^{\prime}$ which leaves x_{1} fixed and reduces to the identity only when S itself leaves x_{1} fixed.

[^8]: * Burnside: The Theory of Groups, pp. 107-8. The statements of Jordan $\% 291$ are thus wholly wrong.

[^9]: * Dickson : Annals of Mathematics, 1897, p. 136.
 \dagger Mathematische Annalen, vol. 48 (1897), p. 549.
 \ddagger Cf. Dyck : Mathematische Annalen, vol. 22 (1883), p. 97.

