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Consider those values of w that yield values of z for which
F(2) is defined, and for which then F(z) is a function of w.
These values of F(z) do not constitute an analytic function
of w; for the domain of values of w consists of two sepa-
rate continua. Thus the theorem, unrestricted, would be
false in this case. *
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TrE following treatment of Poisson’s integral in two
dimensions seems to the writer to have at least one advan-
tage over the treatments ordinarily given ; viz., that it in-
volves no artifice.

Given a function V(z, y) which within and upon the cir-
cumference of a certain circle C' is a continuous function of
(z, y) and within C is harmonic (¢. e., has continuous first
and second derivatives and satisfies Laplace’s equation).
By a well-known theorem of Gauss the value of V at the
centre (x,, y,) of C is the arithmetic mean of its values on
the circumference.t 'That is, if we denote by V, the values
of V on the circumference and by ¢ the angle at the centre,

1 27
& Vieo )=o) Vids.

This theorem may be immediately generalized by the
method of inversion, if we remember on the one hand that
a harmonic function remains harmonic after inversion, and
on the other hand that angles are unchanged by inversion
and that circles invert into circles. We thus get the theo-
rem :

* Burkhardt has given simple examples of multiple-valued functions
for which the unrestricted theorem is false. See his book : ** Einfiihrung
in die Theorie der analytischen Functionen einer complexen Veridnder-
lichen,’’ vol. 1, Leipzig, 1897 ; p. 198.

1 An elementary proof of this theorem will be found in a paper by the
writer on p. 206 of the BULLETIN for May, 1895.



1898.] NOTE ON POISSON’S INTEGRAL. 425
If (z, y) is any point within the circle C,

1 2w
@ Ve, p)=o f Vs,

where ¢ 1is the angle measured from a fized circle through (x, )
which cuts C orthogonally to a variable circle of the same sort.

C LTS ~q

The formula (2) gives the value of V at any point within
C in terms of the values on the circumference, and is, in
fact, nothing but Poisson’s integral in a somewhat un-
familiar form. To reduce it to the ordinary forms we will

introduce the element of arc ds of C and write (2) in the
form :

1 7]
3) Vo, ) = o f Vg ds.

¢ may be regarded as a function of the coordinates (2, ¥')
of a point on the variable circle above referred to. Thus
regarded it is an (infinitely multiple valued) solution of
Laplace’s equation whose conjugate function islog p, — log p
where p is the distance from (2/, ¥') to (z, y) and p, the
distance from (2/, y') to the inverse of (x, y) with regard to
C. 1If then n denote the interior normal of C we have:

1 o[l —1
) Ve, y) = o [ 7. 2008108 0] gy

Other forms can be obtained by computing %% directly as a
function of (z, y, #/, ¥/).

‘We proceed now to the theorem :

Given a continuous function V, upon the circumference of the
circle C; the function V(x, y) defined by (2) throughout the in-
terior of C is harmonic throughout C and joins on continuously to
the values V_ on the circumference.

*Cf. Picard : Traité d’Analyse, vol. 2, p. 16.
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That V(z, y) thus defined is harmonic follows at once
from (3) since 5; is easily seen, either by direct computa-
tion or from its value :

9
n [log p, —log ¢]

to be a harmoniec function of (z, y).

For the proof of the second part of the theorem formula
(2) is particularly adapted. We have here to prove that
it (=, y) approaches a point P on the circumference V(z, y)
approaches asits limit the value of V_ at P. The idea upon
which this proof rests is that when (z, y) is near to Pa
small arc including P corresponds to a large range of values
of ¢ and, therefore, when we take the arithmetic mean as
indicated in (2) the value of V, at P will predominate.*
The exact proof based upon the idea just stated merely re-
quires the writing down of a few inequalities.
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By a Stieltjes polynomial will here be understood any
polynomial satisfying a regular linear differential equation
of the second order

&y (1A 1— 4\ dy

A P x—e,)az;

o(@)=Ax"+ A+ + A, y=
(& —e) (v—e¢,)

in which the singular points e, -, ¢, o0 are real and in which

also r exponent-differences 4,, -+, A are (algebraically) less
than unity. We shall here for the most part confine our
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+
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* It will be seen that this idea is similar to that suggested by Schwarz.
(Ges. Werke, vol. 2, p. 360. See also Klein-Fricke : Modulfunctionen,

vol. 1, p. 512.) We avoid, however, the artificiality of Schwarz’s
method.



