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T H E THEOBEMS OF OSCILLATION OF STUKM 
AND KLEIN. (SECOND PAPER.) 

BY PKOFESSOB MAXIME BÔCHEE. 

(Bead before the American Mathematical Society at the Meeting of Feb­
ruary 26, 1898.) 

T H E following pages form a continuation of §§ 1, 2 of a 
paper presented under the same title to the Society at its 
December meeting and printed on pp. 295-313 of the pres­
ent volume of the BULLETIN. This paper will be referred 
to for brevity as Th. of Ose. 1. No use is here made of the 
results contained in § 3 of the paper just mentioned, these 
results being merely very special cases of some of those now 
given. 

In § 1 of the present paper, after proving two simple * 
theorems of Sturm, by a method different from that used by 
him, I have used them to throw Sturm's theorem of oscilla­
tion into a slightly generalized form. In § 2 I have proved 
Klein's theorem of oscillation in a very general form, al­
though ^s I have restricted myself here, as in the previous 
paper, to the case in which the coefficients of the binomial 
differential equations are continuous the cases here consid­
ered are not yet the most general ones. I expect in a sub­
sequent paper to come back to these more general cases 
which do not seem to present any serious difficulty. 

The truth of the theorems proved in §2 (at least in im­
portant special cases) has been suspected by Klein partly 
from analogy with the special cases in which the differential 
equation has a polynomial solution, and partly from analogy 
with the simple cases of Lamé's equations ( I use the term 
here in Klein's most general sense) with two or at most 
three variable parameters, in which cases he had given rough 
geometrical proofs which however made no pretense at 
rigor.* In the more complicated cases no proof of any sort 
has as far as I know been given. 

§ 1. Sturm1 s Generalized Theorem of Oscillation. 

We will assume that in the interval a Ê=i x =. b p(x) and 
q(x) are single valued continuous real functions of the real 

*Cf. Klein's lithographed lectures: " Ueber lineare Differentialglei-
chungen der zweiten Ordnung," p. 401-431. We shall see that the re­
striction which Klein here makes to equations which are everywhere reg­
ular is unessential. 
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variable x. We know (Th. of Ose. 1, (E ) ) that in this 
interval no solution of the equation : 

(l) ^ + P(*)a| + 30Oy=o 

which is not identically zero can have more than a finite 
number of roots ; and also* that, if y1 and y2 are two linearly 
independent solutions, between two successive roots of yx lies 
one and only one root of y2. 

We proceed now to a theorem which enables us to com­
pare different solutions of the same differential equation in 
the same way as the first theorem of comparison (Th. of 
Ose. i , Theorem I ) enabled us to compare corresponding 
solutions of different equations : 

I . Assuming that yt and y2 are two solutions of (1) sueh that 
V 2 ( a ) H"^ and (eXGept when yx(a) = 0 when no further assumption 
is necessary) yt'(a) /yx(a) > y2(a) / y2(a) ; then, if yx has n 
roots xi sueh that a < xx <C #2 '" < xn == >̂ V* has just n roots in 
the interval a <^x < xn. 

For in the first place, since y2 is clearly linearly independent 
of yv in each of the intervalsx {^x^= xi+1 (i = 1, 2, •••, n — 1) 
y2 has one and only one root. I t is then merely necessary to 
prove that the same is true for the interval a < x s§ xv If 
yx(a) = 0 this follows as before since a and xx are then two 
successive roots of yv If yx(a) =(= 0 it is also clear at once 
that y2 cannot have more than one root in the interval 
a < x = xv as otherwise yx would have a root there. If then 
we can prove that the assumption that y2 has no root in the 
interval just mentioned leads to a contradiction, our theo­
rem will be proved. Consider the function : 

which is clearly a solution of (1) linearly independent of yv 

Since y(a) = 0 and y'(a) > 0, y(a+e) will, for small posi­
tive values of e, be positive. Now if y2(oc) had no root in 
the interval a<.x^==Lxl y2(xx) and y2(a) would have the 
same signs, so that y (^1)= — y2 (X) / 2/2(

a) < 0, and there­
fore y(x) would have at least one root in the interval 
a < x < xv Therefore, since y (a) = 0 , yx(x) would have at 
least one root in this interval, and this is contrary to hy­
pothesis. 

*I have recently had occasion to discuss this familiar theorem of Sturm. 
See BULLETIN for March, 1897, p. 210. 
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We come now to a proposition analogous to the second 
theorem of comparison (Th. of Osc. I, Theorem I I ) : 

I I . Assuming that yx and y2 are two solutions of (1) satisfying 
the same conditions as in Theorem I, and having in the interval 
a<x < 6 the same number n of roots (n may be zero) ; then if 
y2(b)^0 we shall have ̂ C^) H^0 and 

&(&) %(*) ' 
That yx(b) ==(=0 follows at once from Theorem I, as others-

wise y2 would have n + 1 roots in the interval a < x < 6. In 
order to prove the remainder of the theorem we will use 
Abel's formula : 

in which k is a real constant different from zero. Dividing 
this equation through by yxy2 we see that, except when yx or y2 
is zero, y(\ yx —- y2 / y2 has the same sign as h / yxy2. More­
over this sign is by hypothesis positive when x = a, except 
when yx(a) = 0, in which case it is clear that for a value of 
x a little greater than a the sign is positive since it is the 
same as the sign of yx / yv Now when x = b the sign of 
yxy2 is the same as when x is equal to or a little greater than 
a, since yx and y2 change sign the same number of times in 
the interval a < x < b. Accordingly yx/ yx — y2 / y2 is posi­
tive when x = b, as was to be proved. 

We proceed now to a generalized form of Sturm's theorem 
of oscillation : 

III. If when a-^x-^b and L > k> I*, <p (x, k) is a single 
valued continuous function of (x, k) and if when a ^x ^b and 
L > k' > k" >• I, <p (x, k') ^ <p (#, A")t ; if moreover 

l im (p (a?, k) = + oo and! l im ^ (#, A) = —- oo 

EXCEPT PERHAPS FOR A FINITE NUMBER OF VALUES OF X IN 
THE INTERVAL a-^x-^b ; then there will be one and only one 
value of k ( L > ky> I) for which the equation : 

(2) S - ? ( M ) y 

* We may have here L = + oo , or I = — oo, or both £ and J may be in^ 
finite. 

f The equality sign must not hold for all values of x in the interval 
<* ==#==& (cf. 2%. o/ Osc. 1, p. 304 and 305, footnotes). 
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has a solution which has just m roots in the interval a < x < b 
and which satisfies the conditions : 

a'y(a) — « / (a ) = 0, 

I t should be noted that except for the clause printed in 
small capitals the theorem just stated is identical in sub­
stance (although stated in a somewhat different form) with 
the simple form of Sturm's theorem of oscillation (Th. of 
Osc. 1, Theorem V I I I ) . * In order to prove the theorem 
in all its generality it is clearly sufficient to prove that : 
(a) we can find a quantity lx such that when Z<A § lx every so­
lution of (2) has more than m roots in the interval a < x < b; 
(/5)we can find a quantity Lx such that when Lx ^ X < i t h e 
solution of the differential equation for which y (a) = a, 
yf (a) = a' does not have any root in the interval a < x = b and 
(when 0 + 0) such that y' (b) / y (b) > ?/p. 

* This identity follows from the following fact : 
If when a^x^b and L > A > Z , #>(#, A) is a continuous function of 

(x} A) ; and if when L > V > V > Z, </>(#, A' ) ̂  0(o?, A") ; ewriJ if for every 
value of x in the interval a^x^b lim <j>(x, A) = -j- GO ; tfften no matter how 

large a positive quantity M we may choose it is possible to find a quantity K 
such that when L>A>K and a^x^b, (j>(x, A) > M . 

The idea contained in this theorem might be expressed by saying that 
<£(#, A) diverges towards -+- GO uniformly throughout the interval a ^ x :S= b. 
As I am unable to refer to any place where this theorem is proved I will 
give a proof of i t here. 

Take an infinite number of values A',fA", V", ... such that I < A' < W 
< ... < L and such that lim A M =L. ' Then we have 0(a?, A') < <?(#,A") 

n— oo 

< ... and lim <£(a;, AM ) = + oo. Now let xn be that value (or one of the 
n = oo 

values) of x in the interval aË2# — o at which 0(#, AM) is smallest. 
Then either lim 0(a?n, AM) = + oo, in which case our theorem is evidently 

W = CO 

true, or we can find a positive quantity M so large that no matter how 
large n is 0(#«, AM ) < if. To show that this last case is impossible let 
us consider the points xlt x21 x31.... These points must have at least one 
limiting point in the interval a ^ x ^ &. Let x be such a limiting point. 
Now by hypothesis it if possible to take A so near to L that </>(#, A) > üf. 
Suppose then that when n > %, 0(#, AM) > Jf. Since 0(a?, AM) i s con­
tinuous at x it is possible to take the positive quantity e so small that 
throughout the interval from x — e to x + e <p(a?, Ai>i3 ) > ilf, and accord­
ingly when n > nu <f>(x, AM ) > ^ th roughou t this interval. But this is im­
possible since there are within this interval an infinite number of the 
points xlt a*2, ... at which 0(#», AM) < jf. 

I will add that from this theorem may be deduced (or conversely that 
this theorem may be deduced from) the theorem that if a series whose 
terms are continuous functions converges throughout the interval a ^= x 
^ b to a continuous limit and if the terms of the series in this interval 
are nowhere negative, the series is uniformly convergent. 
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That we can find a quantity lx as described in (a) is ob­
vious at once. For let ax and bx be two points, such that 
a =s ax < bx ^ b but such that none of the points at which the 
formula lim y>(x, A) = — oo fails to hold lie in the interval 
ai=x = K' Then we can take lx so that when I < A <s lx 

Cm 4-1 VTT2 

<p (a?, >0 < — "Vr"^—~yr~ (ai=x^ h) s o t n a t (r*« °/ °5C- •*> (o — a; 
Theorem V) every solution of (2) has at least m + 1 roots 
in the interval ax < x < 6X and therefore a fortiori in the in­
terval a < x < &. 

The proof that we can find a quantity Lx as described in 
(/5) is less simple. Let us first consider the case in which 
the formula lim <p(x, A) = + oo holds at all points of the in-

terval a ^ x ^ b except at one or both of the extremities a, b.* 
Let us denote by yx(x, A) and y2 (x, A) the solutions of (2) 
which satisfy respectively the relations : 

yx(a, A) = a, y/(a, A) = a' and y2(b, A) = 0, y,'(&, A) = ,5'. 

Choose arbitrarily a fixed quantity A such that I < A < L. 
Then since ^(a;, A) and y2(#, A) each has at most a finite 
number of roots in the interval ab it is possible to find a 
positive quantity e so small that letting a + e = ax and 
b — s = bx yx(x, A) has no root in the interval a < x = ax and 
y2(#, A) has no root in the interval 6j :==#<&. I t fol­
lows by the first theorem of comparison (TA. of Ose. 1, 
Theorem I ) that when'A = A < X, yx(x, A) and y2(x, ^) have 
no roots in the intervals a < œ = a 1 and6 1 Ë=#<& respect­
ively. By the second theorem of comparison ( TA. of Ose. 
1, Theorem I I ) it follows that when A < A < L: 

y/(fli, V > y/CoiJ) a n d y/Cfti, ' ) < y/(M)t # 

yi (ai> A) Vi (avx) % (hvA) y2 (bvA) 

If now we denote by y («, A) the solution of (2) for which 
y(av A) = yx (av A) and yf (av A) = ^ (av A) (so that when 
X = X, yx and y are identical), we see (TA. o/ Ose. J, 
Theorems I I I and IV) that it is possible to find a quantity 

* This is, in fact, the only case we shall make any application of in 
this paper. The more general case would, however, be necessary in the 
problem mentioned in the third footnote on p. 376. 

f The reversal of the sign of inequality here is due to the fact that in 
order to apply the theorem of comparison we must introduce the new 
variable x' = — x and this reverses the sign of y2'. 
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Lx (A < Lx < L) such that when Lx = A < L, y(x, A) has no 
roots in the interval a1 = x = bl and y'(bv X} / y(bv X) 
> VziPv 'O I V^v ^)* ï ^ u s n o w compare ^ and y with 
each other by applying Theorems I and I I of the present 
paper to the interval ax = x — bv We see that when 
Lx < A < L, yx(x, A) has no roots in the interval ax = x = bx 
(and therefore none in the interval a < x Ë= bx) and that 

&'(&» *) / 2/! (*i, *) > y.' (*. J ) / y, ( M ) > »,'(*„ *) /y, (*„ ' ) • 
Finally applying the same theorems again to the interval 
bx=x^b so as to compare yx and y2 we see that when 
Lx = X < L, yx(x, A) has no roots in this interval (and there­
fore none in the interval a <x < b as was to be proved), 
and that : y/(6, A) / yx (6, A) > y/ (6, A) / yf (6, A) = /5' / fi 
(as was also to be proved). 

If now the formula lim cp{x, A) =• + oo fails to hold at the 
points c„ e2, — , cA? as well as perhaps at the extremities a, 6 
of the interval, we can easily prove the existence of the 
quantity Lx described in (/?) by breaking up the interval ab 
into sub-intervals acv cxc2, —, ckb. Then it is clear from the 
special case we have just treated that we can find constants 
L', L", Z'", - , Llk™ such that : 

(1) when Lf~X<^L the solution of (2) for which 
y Ça, A) = a and y (a, ^) = a' has no root in the interval 
a < x ~ cx and satisfies the relation yf(ev A) / y (cv A) > 1; 

(2) when Lm ^ A < L (i = 2, 3, - , Jfc) the solution of (2) 
for which ^(c^i , A)/y(ci_1,A) = l has no root in the interval 
<V-! = x = c4 and satisfies the relation y' (c4, A) / y (e., A) > 1; 

(3) when X [ * + 1 ] =A<Z the solution of (2) for which 
y'(.Gv ^) /y (Gv ^) = 1 has no root in the interval ck!~x = b 
and (when jff + O) satisfies the relation 

y'(M)/2/(M)>£7/2. 
If we let Lx be the largest of the quantities Lf, L", 

— ,L{k+l} the truth of (/5) follows at once from Theorems I ' 
and I I of the present paper. 

§2. Klein's Generalized Theorem of Oscillation. 

"We start here from the differential equation (1) in which 
we will suppose the coefficient q to have the form : 

q(x) =x(x) + </>(x) W + Ck^xk-1 + ... + C,x + CJ, 

and we will suppose that the functions p(x), / ( # ) , a n d <K#) 
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do not involve the parameters C0, Cv —, Ck. Let there be 
given k + 1 finite intervals a060, aYbv •••, akbk such that : 

ao<l>o = a i < b i = a2< h **• < 6 * - i = a* < &*> 

and let us assume that throughout each of the intervals 
a. ^x ^ b. (î = 0, 1, —, Jc) the functions p(x), x(x)i an<^ 
<P(x) are single valued, continuous, and real, and that (p(x) 
does not change sign in any one of these intervals nor have 
an infinite number of roots in them. Then we may state 
Klein's generalized theorem of oscillation as follows : 

IV. There is one and only one real determination of the param­
eters O0, Cv •••, Ckfor which the equation (1) has Jc + 1 solutions 
Vo> Vv '"iVk such that y{(i= 0 ,1 , •••, Jc) has just m. roots in the 
interval a. < x <C bi and satisfies the conditions : 

In this theorem the quantities mi are any integers posi­
tive or zero and «., «/, /5., /9/ are any real quantities subject 
only to the restriction that a. and «/ are not both zero and 
that ft. and (if are not both zero. 

In order to prove the above theorem we will introduce 
the variables : 

tt=gt\e
 Jd dx+û ( * = 0 , l , - , i ) 

where g{ and ƒ are real constants which may be arbitrarily 
chosen provided <ft + 0, and ?4 is any real constant subject to 
the condition a* ^ ^ ^ 6*. I t should be noticed that the vari­
able tt as thus defined is real when a^x^. bi7 and that this in­
terval of the #-axis corresponds in a one to one manner to 
a finite interval <riri of the £raxis. Written in terms of t{, 
(1) has the form : 

(4) ~J{ = 9<(x)y, 
i 

wrhere : 
x a? 

1 2/pdx 1 vfpdx 

*(*) = - r f * ( * > ^ - ~, 4-{x)eJU Id* + - + C0]. 
i/i o i 

I t is important to bear in mind in the following work that 
if a solution y. of (1) regarded as a function of » has 
m. roots in the interval a. < œ < 6. and satisfies the two con-



372 THEOREMS OF OSCILLATION. [May? 

ditions (3), the same function regarded as a function of 
t. will be a solution of (4) having mi roots in the interval 
(T. < tt < ri (or T4 < t. < <r.) and will satisfy relations of the 
form : 

(5) 

where ƒ = -—and where «. and /5\ are constant (not zero) 

multiples of a. and fit ; and that the converse of the state­
ment just made is also true. 

I t is easily seen that if h = 0 Theorem IV is merely a 
special case of Theorem I I I since then if 4 is negative in 
the interval a0bQ <p0(x) will continually increase (or rather 
never decrease) for every point of this interval as G0 in­
creases from — oo to + oo and will, except for the points 
where 4(x) = 0, increase from — oo to + oo ; while if 4 is 
positive the same will be true as — C0 increases from — oo 
to + oo. Theorem IV is therefore true if there is only one 
parameter and one interval. 

Let us then, following the ordinary method of mathemat­
ical induction, assume that Theorem IV is true for h param­
eters and h intervals. If from this assumption we can de­
duce the theorem for h + 1 parameters and intervals the 
proof of the theorem will be complete. 

Since in (1) we may write : 

q(x) = ~x OO + 4> (x) [ C ^ * - 1 + - + C0], 

where %(x) = / ( ^ ) + Ckx
k4(x), 

it follows (from the assumption we have made that our 
theorem holds when there are h parameters) that, Ck having 
an arbitrarily assigned fixed value, there is always one and 
only one real set of values C0, Gx ,•••, Ck_i for which (1) has h 
solutions y0, yv — , y^ satisfying in the intervals ab.(i = 0, 1, 
—, h — 1 ) the desired conditions. From this point on we will 
assume that C0, Cv •••, 0*_i, have thus been determined as 
single valued real functions of Gr I t remains then merely 
to show that there is one and only one value of Ck for which 
(1) has a solution yk which satisfies the desired conditions 
in the interval akbr 

In order to indicate the dependence of <pi on Ck we will 
write ç?.(#, Ck). Let us now assign to Gk two different values 
Ck and G" and consider the difference : 



1 8 9 8 . ] THEOREMS OF OSCILLATION. 3 7 3 

*(*, ct') - ?t o, en 

= =? ̂  (*)<^f [(o; - c/>* + - + (<?«'- c0*)]. 

Since by hypothesis each of the equations : 

3 £ = ?<(*, <V)y and ^ = ?,(*, 0/02/ 

has a solution with m̂  roots in the interval <ri < t. < rf 
(i = 0 ,1 , —, A; — l )and since these two solutions satisfy the 
same conditions (5) it follows at once from the theorems 
of comparison (Th. of Osc. 1, Theorems I and I I ) that 
the above difference must change sign in the interval 
^ < t. < r{ that is in the interval a. < x < b.. I t follows 
that the polynomial : 

(<V - en* + (CU' - c,.,")^1 + - + (<y - o0") 
must have a root #. in this interval. Accordingly when 
i= 0, 1, •••, A;: 

(6) 9*(x,c:)-Vi{x,cn 

where a, < ^ < &.( j> = 0,1,—, h — 1). From this funda­
mental formula we can deduce several important results : 

(a) <ph(x, Ck) is when ak^x^bk and for all values of Ck 
a continuous function of (x, Ck) and therefore of (tv Ck). 

For in the first place it is clear that it is a continuous func­
tion of x, so that however small the positive quantity e may 
bej we can choose the positive quantity ^ so small that when 
la? — x\<dv I <Pk(x2_Ck) — <pk(x, Ck)\<e/2. Moreover from 
(6) I <pk (a, Ck)-<pk (a, Ck) | < K\ Ck— C\]_where K is a posi­
tive constant, independent of x, C^and Cfc.* From the last 
formula it is clear that however small £ may be, we can 
choose a positive quantity d2 so small that when 

I Gt - C\\ < dlt I <pk <>, Ck) - <pk (¥, Ck) 1 < e/2. 

* We need merely to take K greater than the greatest value of : 

^ 2/pdx 

—Y I V> (») I c ^ (» — ÖT0) (» — «!) ... (» — aic-i) 

in the interval a& ^ a? s== &&. 
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Accordingly letting â denote the smaller of the two quanti­
ties ^ and d2 we see that when __ __ 
U - " £ l < * a n d l CM-T)M\<d, \<Pk(x, Ck)~<pk(x,Ck)\<e 
that is <pk (#, Ck) is a continuous function of (#, Gk) as was 
to be proved. 

(/9) J/ O/ > Ct" then 9k(x, <?/) jË ? / * , 0 / ' ) * (a £ * % bf) 
provided that <p(x) is negative in this interval; otherwise 

(^) Except at the points at which <l\%) = 0 and perhaps the 
point x = akwe have at every point x of the interval ak = x~bk: 

lim <ph(x, Ck) = oo. 
C = 00 

The truth of (/5) and (p) follows immediately from (6). 
Accordingly <pk(x, Gk) is at every point of the interval 

ak S x = 6ft, 1 e«, of <xs = £ft = rft? a continuous function of (^, Cft) 
which, except at a finite number of points, continually in­
creases with Ck(or — Oft), and except at a finite number of 
points increases from — oo to + oo as Ck(or —- Ck) varies 
from -—oo to + oo. Sturm's generalized theorem of oscil­
lation (Theorem I I I ) tells us therefore that there is one 
and only one value of Ck for which (4) has a solution satis­
fying the desired conditions in the interval <?krk and the 
proof of Theorem IV is complete. 

We proceed now to a generalization of the preceding 
theorem : 

V. In Theorem IV we may at some or at all of the points av 
b. drop the requirement that the functions p(x), /(a?), and <P(x) 
be continuous provided that as x approaches these points the func­
tions t. and <pt approach finite limits.f We must, however, then 
at these points replace conditions (3) 63/ conditions (5), the two 
sets of conditions being then no longer equivalent. 

I t is not necessary to give any new proof of this theo­
rem as the proof just given of Theorem IV applies at once 
since what is essential in that proof referred not to the 
form (1) of the differential equation but to the binomial 
form (4). 

We proceed now to recall certain important special cases 
of (1) to which Theorems IV and V apply : 

* The equality sign holding at most for a finite number of values of x 
namely for the points if any at which tp(x) = 0. 

f I should like to add here that we need not even require that the 
limit of (pi be finite, all that is necessary being that (pi do not become in­
finite too rapidly as x approaches a% and bt . The exact statement of the 
conditions here as well as all proof I must, however, reserve for a future 
occasion. 
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The most general homogeneous linear differential equa­
tion of the second order with rational coefficients which is 
everywhere regular and has as its finite singular points the 
points e. (i = 1, 2, ••• , n) with exponents x/, */' is :* 

( 7 ) A + J1-<-<' , ... + l - V - ^ " \ §y 
dx2 \ x — ex x — en J dx 

+ /(a?) L » — ex a? — en 

+ c n _ 8 s— + 0n_8a>»-»+ ... + o 0 ] 2/ = o, 

where /(re) = (a; — e j (x — e2) - (a; — en) 

and ƒ ' (a?) = df (x) / dx. The point a? = oo , the product 
of whose exponents is Cw_2? niay be singular or non-sin­
gular. 

"We will suppose that the coefficients of this equation are 
real for real values of x. For this to be the case it is nec­
essary and sufficient that : 

(a) the singular points ev e2, •••, en be conjugate imagi-
naries in pairs in so far as they are not real ; 

(6) the exponents x/, x." of a real singular point e. be 
either real or conjugate imaginaries ; 

(c) the exponents z/, x." and xj, *ƒ' of two conjugate im­
aginary singular points e. and e5 be so related that x.' is the 
conjugate of one and that x." is the conjugate of the other 
of the two quantities x', x "; 

(d) the quantities C'w_2, Ow_3, —, G0 be real. 
Let us now take k + 1 intervals a. 6̂  (t = 0 ,1 , •••, &) on the 

real #-axis as on p. 371, i. e., so that no two of these intervals 
overlap and none of the points ev e2, —, en lie within or at an 
extremity of any of these intervals: If we suppose that 
k =L n — 2 we see that we can determine the parameters 
Gv Cjc^u •••, G0 by means of the Theorem of Oscillation IV. 

Let us now assume that in equation (7) one of the sin­
gular points, which for the sake of simplicity we will take 
as ev is real and that x/' = 0 while x/ is real and satisfies 
the inequality 0 <C */ = J. Then if one of the intervals 
a. b. has an extremity at ev we see that t{ and <p. approach 
finite limits as x approaches ev so that we see by Theorem 
V that we can still determine the parameters GkJ C'ft_i, •••, G0 
by means of the theorem of oscillation. 

*Cf. for instance my book: "Ueber die Reihenentwickelungen der 
Potentialtheorie,"pp. 112-113. 
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I t goes without saying that any number of the extremi­
ties of the intervals aibi (i = 0, 1, ••• , k) may lie at singular 
points provided that the conditions above stated for the 
point e1 are satisfied at each of these points. 

I t should be noticed that the generalized Lame's equa­
tion, whether looked at from Heine's* or from Klein'sf 
standpoint, has as the exponents of each of its finite singu­
lar points the values 0, J, so that in this case any or all of 
the intervals a. bi may reach up to singular points. J 

We will note in conclusion that the cases we have just 
mentioned by no means exhaust the important applications 
of Theorems IV and V. For instance, the degenerate 
forms of Lame's equation where two or more singular points 
coincide come immediately under Theorem IV. 

HARVARD UNIVERSITY, CAMBRIDGE, MASS. 

T H E CONSTRUCTION OF SPECIAL REGULAK 
RETICULATIONS ON A CLOSED SURFACE. 

BY PROFESSOR HENRY S. WHITE. 

(Eead in part at the Mathematical Conference in Chicago, January 1, 
1897, and in final form at the Meeting of the American 

Mathematical Society, April 30, 1898. ) 

INTRODUCTORY. 

T H E reticulations whose existence is here to be discussed 
are called regular because of two properties : the number of 
termini of edges assembled in one vertex is the same for all 
vertices of the reticulation, and the number of edges in the 
boundary of a face is the same for all faces. These two 
numbers, r and s, together with p, the deficiency of the 
supporting surface, shall be assumed to characterize the 
reticulation sufficiently for present purposes. Of regular 
reticulations classified on this basis, only a finite number of 
classes are possible on a surface of given deficiency. Some 
of these possible classes, if p > 2, are derivable from those 
of lower deficiency ; those not so derivable are properly 

* Handbuch der Kugelfunctionen, vol. I., p. 445. 
fCf. my book: " Ueber die Keihenentwickelungen der Potential-

theorie," p. 114. 
t It is in fact easy to see that they may turn back at the singular points 

and thus cover parts of the a>axis more than once. Cf. p. 123 of my book 
just referred to. 


