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LIE'S DIFFERENTIAL EQUATIONS.* 

SOPHUS LIE—Vorlesungen uber Differentialgleiehungen mit 
behannten infinitesimalen Transfonnationen. Bearbeitet und 
herausgegeben von DR. GEORG SCHEFFERS. Leipsic, 
Teubner. 1891. 8vo, pp. xiv + 568. 
These lectures constitute one of the courses of Lie's cycle 

which has been repeating itself at the University of Leipsic 
since 1886. The course serves the double purpose of an 
elementary introduction to the theory of continuous groups 
and an exposition of how that theory subordinates the vari­
ous heterogeneous methods of integrating ordinary differen­
tial equations to one general method, the key to which is 
the notion of an infinitesimal transformation, first intro­
duced by Lie at the inception of his theories. The lectures 
have been edited with the double object of both scientific 
and pedagogic usefulness. They are so designed that a 
fourth semester student of a German university is prepared 
to read them, and they should offer no difficulty to the 
American reader who is familiar with the processes of the 
infinitesimal calculus. The numerous problems and illus­
trative examples drawn from geometry and mechanics com­
mend the book to the private student. 

The book falls into five parts : I . The Notions—Infini­
tesimal Transformation and One Parameter Group of the 
Plane, chapters 1-4, pp. 1-85; I I . Utility of the Notion of 
Infinitesimal Transformation in Differential Equations of 
the First Order in Two Variables, chapters 5-9, pp. 86-
187 ; I I I . One Parameter Groups in Three Variables, chap­
ters 10-13, pp. 187-286 ; IV. One Parameter Groups and 
Infinitesimal Transformations in % Variables, Application of 
these Notions to Differential Equations, chapters 14-20, 
pp. 286-472 ; V. Integration of Ordinary Differential Equa­
tions of the Second Order which Admit of a One Parameter 
Group, and Eelated Problems, chapters 21-25, pp. 473-566. 

I. A point transformation is an operation by which a 
point is carried into the position of a point. Two equations 
of the form 

*i = K*,y), y, = <K*,y), | ^ y + <>, (i) 

<P and <p being regular analytic functions, are said to deter­
mine a point transformation of the plane into itself. If the 
equations (1) contain a parameter a, they define a family of 

* An interesting account of this work, from a somewhat different point 
of view, was contributed by Professor E. Study to the Zeitschrift für Maihe-
matik und Physikr vol. 38 (1893), pp. 185-192.—EDITOKS. 
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oo1 such transformations. Such a family of oo1 transforma­
tions constitutes a one parameter finite continuous group of 
transformations when the successive performance of any 
two transformations of the family is equivalent to a trans­
formation belonging to the family, i. e., if the oo1 transfor­
mations 

xx= <p(x,y,a), y1 = <P(x1y,a) (2) 
form a continuous group, the elimination of (xv y±) between 
these equations and the two following 

must give rise to 

^2= ?0>2/>a)> y2=s(£(x>y>a)> 
where « is a function of a and ax alone. 

Only those groups are studied which contain the inverse 
transformation of every transformation in them, i. e., whose 
transformations can be arranged in pairs as inverse.* Ac­
cordingly, to every value of the parameter a there corre­
sponds a value a such that 

x = K*i» Vv a)i y = </'<>i> yv a)-
Since the successive performance of a transformation and 
its inverse yields the identical transformation, there is some 
value of the parameter a, say a0, which gives the identical 
transformation 

x= v(x,y}a0), y = 4>(x,y,a0), 

leaving all points at rest. A value of the parameter differ­
ing by an infinitesimal from that of the parameter of the 
identical transformation gives the transformation 

xi = <P(XJ y, %+ da)=x+ £ 0 , y) at + - , 
yi=4>(x,y, a0 + ôa)=:y + rj(x,y)ôt+ •••, 

by which the point (x7 y) is transformed into a point (x + 
ôx, y + dy) infinitely near, where 

Sx = Ç(xjy)dt, 9y = i(x,y)9t, 

to terms of the second order. Such a transformation is 
called an infinitesimal transformation. 

Consider now several examples of ordinary differential 
equations that are readily integrable. The differential 

* This limitation is really no restriction. It is only formal since Lie 
has devised means for deriving the defining equations of any finite con­
tinuous group from those of a group whose transformations are inverse in 
pairs. See Theorie der Transformationsgruppen, vol. 3, theorem 26. 
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equation y'=f(x + ky) assigns the same direction y' to 
every point of the straight line 

x -f Jcy = constant. (3) 
Hence all the integral curves of this equation may be de­
rived from any one of them by the translation of that one 
along the parallel straight lines (3). These translations 
however form a one-parameter group defined by the equa­
tions 

x1 = x — ha, y1 = y + a. 
By the transformations of this group the integral curves 

of the above differential equation are changed one into an­
other. 

The homogeneous equation 

gives to every point of the straight line y = mx the same di­
rection ; hence the integral curves of the homogeneous dif­
ferential equation can be found from any one of them by 
proportionately increasing or diminishing the latter from 
or toward the origin. These proportionate increasings and 
diminishings from the origin out constitute a group of op­
erations, namely the one parameter group of so-called sim-
ilitudinous transformations, xl = ax, yx = ay. Here again 
the family of integral curves as a whole remains invariant, 
the curves of the family being interchanged among them­
selves when all the transformations of the one parameter 
group are performed. 

As a third example the integrable form 
™f - V - 0* + H ' ) / 0 2 + f) = 0 

assigns to the points of a circle with centre at the origin 
directions which make the same constant angle with the 
circle, as is shown by the equivalent form 

where the left hand member represents the cotangent of the 
angle in question. Hence all the integral curves cut the 
circle under the same angle and accordingly they may all 
be found by rotating any one of them about the origin. All 
these rotations about the origin make up the one parameter 
group, xx = x cos a — y sin a, yx = x sin a -f y cos a. 

I t will also be observed that in any one of these illustra­
tions an infinitesimal transformation of the group considered 
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changes integral curve into an integral curve. In each case 
the differential equation or the family of integral curves is 
said to admit of the one parameter group of transforma­
tions. These examples show that when the integration of 
a differential equation can be effected there can be given a 
group of point transformations which transform the points of 
an integral curve into those of an integral curve. This fact 
suggests the high probability that the knowledge of such a 
group of transformations may be used to simplify and in­
deed methodically to systematize the processes of integra­
tion. I t is largely the business of the sequel of the book 
before us to reduce this probability to a certainty and thereby 
to develop a general method of integration of ordinary 
differential equations on the connection between differential 
equation and group of transformations pointed out in the 
above simple examples. This general method is the out­
growth of Lie's discoveries made in the years 1869 to '74. 

The intimate relationship between the notions one param­
eter group and infinitesimal transformation is of prime 
importance. In fact from Lie's theorem that a one param­
eter group contains but one infinitesimal transformation 
and conversely that an infinitesimal transformation carried 
out successively generates but one one parameter group, * 
the two notions may be regarded as coextensive. 

Two infinitesimal transformations whose f and y differ by 
the same constant factor are said to be dependent ; they are 
in no way essentially different, since St is arbitrary. The 
finite equations of the group generated by the infinitesimal 
transformation are found by integrating the simultaneous 
system 

dxi Œ
 dVi ^ dt 

with the initial conditions 
xi = x, 2/i = 2/> t = °> 

in the form 

Û ( ^ y i ) = Û(*,»), W(xvVl) - * = W(x,y), (4) 
or solved with regard to xvyl and developed in powers of t, 

f 
x, = x + ?0, y) t + (**, + y *y) — + »., 

* It is to be noted that when the term group is used in this review a 
one-parameter group of transformations inverse in pairs is meant. 
Similarly transformation in any geometrical connection is short for point 
transformation. 
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f 
Vi^y + ?(», y) t + (%% + •* \) j72 + "'• 

The infinitesimal transformation appears again by putting 
dt for t. 

If we remark that a change of variables does not affect 
the group property, by the substitution 

&(jn>y) =xi W{x,y) = y, 

the above equations (4) assume the form 

xi = x> Vi = y +t ; 

hence every one parameter group can be brought to the 
form of a group of translations by a proper change of vari­
ables. This form Lie calls the canonical form of the group 
and the reducing variables its canonical variables. 

Lie adopts 

Uf= *(x,y) ̂  + l(x,y)g=Sp + m 

as the symbol of an infinitesimal transformation. This 
choice of a symbol, which, by the theorem quoted above, 
may represent the infinitesimal transformation or the one-
parameter group indifferently, is a peculiarly happy one, 
because of several of its properties: 1° Ufdt is the incre­
ment which an arbitrary function ƒ(#, y) receives by the 
transformation; 2° an arbitrary function <p(xvyx) is given 
by the series 

t f 
?Oi yù = <P(x, y) + - U<p(x, y) + j - UU<p(x, y) + - ; 

3° the form of Ufis unchanged when new variables, func­
tions of the old, are introduced; 4° the commutator* of 
any two Uf 's is a symbol of the same form, namely, 

{VJJt)f=Ux(U,f)-Ut{TJJ) 

= W , - U&)p + ( Ufo - Ufo)q ; 

5° the symbol of an infinitesimal transformation of an r 
parameter group is expressible linearly with constant coef­
ficients in symbols of the above iorm; 6° it is a convenient 

* This may perhaps be taken as an English equivalent of Klammeraus-
druck ; it is suggested by the fact that the vanishing of the expression is 
the condition that the two operations be commutative. A direct transla­
tion of the term would be very cumbersome. 
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representative of a group when the group becomes the ob­
ject of another group. All necessary computations are 
made with this symbol. This operator U is to the theory 
of continuous groups what the operation of differentiation 
is to the calculus. 

Since the symbol Uf preserves its form when new variables 
are introduced every one parameter group may be changed 
into every other. If x'(x,y) and tf(x,y) are the new 
variables, 

hence the solutions of TJx' == 0 and Uy' = 1 give the canon­
ical variables of the group Uf; these canonical variables 
are accordingly determined by an integration followed by 
a quadrature. 

One of the first questions to arise in studying a family or 
group of transformations is—What functions, equations and 
geometrical configurations are invariant by the transforma­
tions ? If the transformations do not form a continuous 
group they may or may not have invariants ; * if they form 
a continuous group the group must have invariants. At 
this point Lie establishes the beautiful theorem—In order 
that a function, equation or curve admit of all the finite 
transformations of a one parameter group it is necessary 
and sufficient that it admit of the infinitesimal transforma­
tion of the group. 

The invariant functions are the solutions of the partial 
differential equation Uf = 0 ; an equation «>(<&, y) = 0 is in­
variant if Uu> = 0, by virtue of w = 0 ; an invariant curve 
is either 1° a path curve, f i. e.,the locus of all the positions 
which a point takes when subjected to all the transforma­
tions of the group, or 2° a curve all of whose points remain 
absolutely at rest by every transformation of the group. 
The first are given by equating an arbitrary invariant func­
tion to a constant ; the second by the common solutions of 
the equations £ = 0, y = 0. The first part concludes with 
a brief study of the projective, conformai and area-preserv­
ing point transformations of the plane relative to the points 
and properties of the preceding sections just enumerated. 

* The GO1 transformations x1=x-\-l, yx = y -\- t do not form a group ; 
tan 7TX is an invariant function but not every function of tan irx ; the fam­
ily of curves t&mrx — k is invariant. The ool transformations xl = xt, 
y1=y-\-t — 1 have no invariant function. The latter family contains the 
identical transformation and an infinitesimal transformation. There is a 
system of oo2 straight lines invariant by the family. 

t Bahncurve ; trajectoire. 
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I I . In order to successfully apply the theory of groups 
to differential equations admitting of known infinitesimal 
transformations there remains still a question to be met— 
When does a family of oo1 curves admit of the transforma­
tions of a group ? Lie gives the answer in the following 
theorem : A family of curves, w(x, y) = constant, admits of 
the group Uf in the case when Uo> = £(a>) and in no other. 
If each curve of the family is invariant, & = 0 ; if the curves 
of the family are interchanged among themselves, &*=%=0 ; 
and in the latter case £ may be taken equal to unity. The 
preceding theorem combined with the fact that the integral 
curves, w(x, y) = constant, of an ordinary differential equa­
tion X(x, y)dy = Y(x, y)dx, may be defined by the solution 
io of the associated homogeneous linear partial differential 
equation 

leads to the following theorem first published by Lie in 1874 
and establishing the fundamental connection between the 
integrating factor of Euler and the infinitesimal transforma­
tion of Lie : If the differential equation Xdy — Ydx = 0 ad­
mits of the known infinitesimal transform ationüjf = Çp + yq, 
where Xrt — Y ? + 0 , then 

1 
~X^Y^ 

is a Eulerian multiplier of the equation and the equation of 
the integral curves is 

f Xdy— Ydx x x 

i __^ _̂__ = constant. 
J Xq — r £ 

If Xr) — Fc = 0, each integral curve is invariant by itself 
and the transformation Uf is of no avail; Uf in this case is 
said to be trivial with regard to the given equation. 

For the practical application of this theorem there is 
necessary a criterion that a given differential equation ad­
mit of an infinitesimal transformation Uf. Lie finds this 
criterion to lie in the demand that the commutator (UA)f 
shall be identically equal to X(x-, y) • Af 

Conversely, if we are given a multiplier If of a differential 
equation, we shall have an infinitesimal transformation of 
which the equation admits, by determining £ and y from the 

condition = =^ = M, an indeterminate equation which 



162 LIE'S DIFFERENTIAL EQUATIONS. [Jan. , 

shows that every differential equation of the first order in 
two variables admits of an infinite number of infinitesimal 
transformations. A similar theorem does not hold for dif­
ferential equations of a higher order. 

If Uf is reduced to its canonical form the equation ad­
mitting of it assumes the immediately integrable form èy' — 
F(x') dx' = 0. If the equation admits of Uxf and UJ then 
{Xr)1 — F£x) / (Xrj2 — F£2) is either an integral of the equa­
tion or a constant; finally if the equation admits of the non-
trivial transformation Uf it admits of &(w)Uf + <p(x,y)Af 

On the other hand if we start from the finite equations of 
the group Uf we can determine by differentiation and 
elimination, all ordinary differential equations of the first 
order in x and y which admit of the group generated by Uf 
I n this way Lie finds all the known cases of integrability. 
For example for the homogeneous equation Uf is xp + yq 

and for the general linear equation Uf is e^ ~ ; the 

finite equations of these groups are x1 = ax, yx = ay ; x1 = x' 

Vi^y + ae > respectively. 
The second part concludes with a chapter on geometrical 

applications of the theory of integration developed in this 
part. I t includes, among other things, Lie's geometrical 
interpretation of Euler's multiplier and a number of the 
theorems relative to curves on surfaces that appeared in 
Lie's earlier geometrical work. 

I I I . The first chapters of the third part repeat the theor­
ems of the first part for groups in three variables. I t has 
been remarked that the applications were made in the pre­
ceding articles to the explicit form Xdy — Ydx == 0 ; by in­
troducing the notion extended group Lie makes possible the 
direct application of these theorems to the general form 
®(x,y, i/') = 0. The transformation in the three variables 
* > y j y' 

1̂ = K^2/),2/1-^,2/)^/-^ = H ^ = ^ ^ ' ^ ' 
axi rx-t y <Py 

Lie defines as the first extension of the point transforma­
tion xx = <p, yx = <p\ it is also called the once extended point 
transformation. If the transformation belongs to a Gx 
the extended transformation belongs to a Gx which is the 
extended group of the first Gv To the infinitesimal 
transformation Uf=£p + rtq corresponds the once extended 
infinitesimal transformation 
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A differential equation £(#, y, y') = 0 may now be re­
garded as an algebraic equation in the three variables 
x, y, yf and the group U'f as a Ĝ  in the same three variables 
and we have the criterion : The differential equation 
Q(x, y, y') = 0 admits of the group U'f, and, therefore, Uf, 
in the case when U'Q = 0, either identically, or by virtue 
of Q, r=z 0, and in no other case. Conversely all differential 
equations & = 0 which admit of a given group Uf are found 
by solving the problem of finding all surfaces in x, y, y' 
which admit of U'f. The latter problem is solved in the 
same way as the problem already handled in the plane. 
Any two independent solutions u and v of the linear partial 
differential equation U'f = 0 are two invariants and every 
invariant of the group is a function of these two. The oo2 

pathcurves are given by the equations u = const, and v = 
const. There are two kinds of invariant surfaces: 1° those 
generated by oo1 path curves and represented by a single 
arbitrary equation in u and v ; 2° those made up of invariant 
points. Lie calls an invariant of U'f a differential in­
variant of the first order of the original group Uf; hence 
his theorem that every differential equation &(x,-y,y') = 0 
which admits of Uf is found by equating a differential in­
variant to zero. 

IV. Extending the preceding notions to the case of n 
variables, the necessary and sufficient condition that 

Af = 2 "* Jr ^ ° admit of uf=X £ < - * - i s that 

l 0%i l 0%i 

(UA) = X(xv-,xn)Af. 

By means of the expression 
((UtyA) + ( ( t ^ X ü ) + {(AU^U^O, 

which he calls the identity of Jacobi, Lie finds that if 
Af**0 admits of UJ and U5f it also admits of (UtUt)f. 
If Af = 0 admits of n — 1 known infinitesimal transforma­
tions 

n 3 / 
UjfsssX^jk^Tf 
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which are linearly independent of each other and Af, then 
a multiplier of Af is given by 

1 
M~ 

« i 

*n 

^n—1, 

«2 

e„ 
fir 

1 ^»n--1 , 

•• 

2 ' 

;* . . 

•• < ? « - , 1 « 

Every differential equation of an order higher than the 
first does not necessarily admit of an infinitesimal transfor­
mation. The most general differential equation of the sec­
ond order which admits of the infinitesimal transformation 
or Gv Uf, is found by equating to zero the most general in­
variant of the twice extended group 

where 

UJ-**x + 7i*y+7> dy' + 7] dy"> 

V ~~ dx y dx' ^ ~~dx y dx ' 

The most general invariant of Uf, which by definition is 
also a differential invariant of the second order of Uf, is an 
arbitrary function of u, v, and w= dv : du, where u is an 
invariant of Uf, v a first order differential invariant of Uf 
to be found by a quadrature if u is known. In a similar 
manner all differential equations of a higher order which 
admit of Uf are found by differentiation and quadrature if 
a zero order differential invariant of Uf is known. The 
criterion that £(#, y, yf, y") = 0 admit of Uf is that 
Ü"Ü = 0, either identically, or by virtue of Ü = 0. If Ü == 0 
admits of a known Uf its integration demands the inte­
gration of two differential equations of the first order and 
two quadratures. If £(#, y, y\y") = 0 be taken in the solved 
form y" = (»(x,y, y'), then the latter admits of Uf, if the 
equivalent linear partial differential equation 

admits of uf. I n the latter event Af = 0 and Uf=0 form 
a so-called complete system, that is they have a solution in 
common, which according to a theorem of du Bois-Eeymond 
may be found by the integration of an ordinary differential 
equation of the first order in x, y, and a second solution is 
given by a quadrature. 
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A study of differential equations of the second order that 
admit of several infinitesimal transformations leads to the 
notion group of infinitesimal transformations, r independent 
infinitesimal transformations Uxf, •••, Urf form an r para-

r 

meter group when the commutators (U.Uk)= XsC
iksU8f ? 

the constants ciks determine the structure of the group. If 
P < r of the r infinitesimal transformations Di/, •••, Up/form 
a group, the latter is called a p parameter subgroup, which, 
in particular, is an invariant subgroup if the commutators 
of UJ, - , up/with all the Uxf - , Urf belong to the sub­
group. The commutators (U^) above form an invariant 
subgroup, the so-called first derived group of the original. 
Every infinitesimal transformation of the group belongs to 
at least one two-parameter subgroup which can always be 
found by algebraic process. 

The aggregate of all the infinitesimal transformations of 
which a differential equation of the second order can admit 
forms at most an eight-parameter group ; the equivalent 
linear partial differential equation in (#, y, y') admits of the 
group of the extended infinitesimal transformations; the 
latter group is determined by the theorem that the exten­
sion of a commutator is identical with the commutator of 
the extended transformations. Hence we see from the pre­
ceding that if an equation of the second order admits of two 
or more independent infinitesimal transformations it ad­
mits of at least one two-parameter group. This shows the 
necessity of reducing the two-parameter groups of the plane 
to canonical forms. The integration of the equation in 
these circumstances Lie effects, in the two following ways : 

1°. By reducing the two-parameter groups of the ^-plane 
to their four canonical forms : p , q) q, xq\ q, xp+yq; g, yq) the 
first three reductions demand at most two quadratures, the 
last the integration of an ordinary equation of first order ; 
and introducing the reducing or canonical variables in the 
given equation of the second order it assumes respectively 
one of the following forms : y" — <p(y') = 0 ; yn — <p(x)=0; 
Xy» — ̂ (j^-s-o . yff _ yr<pÇx^=-o. whose integration demand 
at most two quadratures. 

2°. By using the equivalent partial differential equation. 
The integration of a linear partial differential equation 
Af = 0 in the three variables x, y, z that admits of two dif­
ferent infinitesimal transformations involves either two 
quadratures or the integration of a differential equation of 
the first order in x, y. From this it follows that the inte-
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gration of an ordinary differential equation of the second 
order admitting of a two-parameter group can be effected 
by two independent or dependent quadratures at most. 

V. The fifth part is chiefly concerned with differential 
equations admitting of three-parameter groups. By the aid 
of the notions subgroup, derived group and invariant sub­
group referred to in the review of the fourth part, all three-
parameter groups of the plane are classified. If the three 
infinitesimal transformations are TJJ\ U2f, Usf, the com­
mutators (TJJJ^f, (U^)/, (TJJJJf form the first de­
rived group of the original one. There are six different 
types of structure of three-parameter groups in the plane, 
one, two, two, one, respectively, according as this first de­
rived group is three, two, one, or no parameter. Further 
division according to the nature of the path curves gives, all 
told, thirteen different types of three-parameter groups. 
These results are interpreted geometrically by representing 
every infinitesimal transformation of the family of trans­
formations cJJJ + c2UJ + eBUJ by a point in the plane 
whose homogeneous coordinates are ev c2, er The commu­
tator then expresses the relation between pole and polar 
with regard to a fixed conic. 

The problem of reducing a given three-parameter group 
to its type in the above scheme of thirteen types falls into 
two problems : 1° to determine the type ; 2° to determine the 
canonical variables. In Lie's terminology the first prob­
lem is to norm the given group ; the norming of a group in 
this case is the forming of the first derived group and ob­
serving to what type of structure it belongs. The deter­
mination of the canonical variables involves only algebraic 
operations, or, at most, quadratures, except in the case of 
two unfavorable types whose reduction demands the inte­
gration of a differential equation of the first order ; but 
these unfavorable cases do not appear in the integration 
theory of equations of the second order since there are no 
such equations admitting of the groups in question. The 
problem of integrating a differential equation of the second 
order admitting of a three-parameter group can be solved if 
the two following admit of solution : 1° to reduce a three-
parameter group to its canonical form ; 2° to integrate a 
differential equation of the second order which admits of 
one of the eleven canonical forms. By the preceding the 
solution of the first involves only possible operations ; the 
eight different types of equations of the second order admit­
ting of one or more of the eleven canonical forms are im­
mediately integrable ; hence the integration of an equation 
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of the second order admitting of a three-parameter group is 
effected by possible operations involving no more than 
quadratures in the most unfavorable cases. In most cases 
the introduction of the canonical variables can be avoided 
and the integration performed by operations purely alge­
braic, if the integration problem be referred to that of the 
equivalent linear partial differential equation which admits 
of necessity of the extended group U^f, U2'f, ü^'f; here 
again the most unfavorable case exacts no more than a 
quadrature. 

The concluding chapter shows how the application of the 
methods of the book may be made to differential equations 
of the third order in two variables having known infinites­
imal transformations and to partial differential equations 
of the first order in four variables admitting of three-param­
eter groups. If the first derived group of the latter has 
fewer than three parameters the integration is affected by 
three quadratures, the first two or last two of which are in­
dependent ; if the first derived group has three parameters 
the integration of a Riccati equation is demanded. 

A paragraph relative to the meaning and importance of 
the theories in exposition here for the general theory of dif­
ferential equations, calling attention among other points to 
analogies with Galois' theory of algebraic equations, con­
cludes this, the introductory volume of Lie's published 
works. 

E D G A R O D E L L L O V E T T . 
PBINCETON, N. J., 

5 November, 1897. 

SHORTER NOTICE. 

Famous Problems of Elementary Geometry. An authorized 
translation of F. KLEIN'S Vortrâge uber ausgewahlte Fragen 
der Elementargeometrie, by WOOSTER WOODRUFF BEMAN 
and DAVID EUGENE SMITH. Boston and London, Ginn 
and Company, 1897. 12mo, pp. i x+80 . 
Whatever opinion one may hold privately as to the de­

sirability of translations in general, the appearance of a 
readable English version of Professor Klein's pamphlet* 
can excite no feeling other than that of satisfaction. This 
lucid exposition of the historical and actual significance of 
the three great problems of Greek geometry is addressed to 
all interested in the teaching of elementary mathematics, 

*Leipzig, B. G. Teubner, 1895. 


