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ON CAYLEY'S THEORY OF THE ABSOLUTE. 

BY PROFESSOB CHARLOTTE ANGAS SCOTT. 

(Read at the January meeting of the Society, 1897. ) 

In the following pages I attempt to show, as a matter of 
purely pedagogic interest, how simply and naturally Cay ley's 
theory of the Absolute follows from a small number of very 
elementary geometrical conceptions, without any appeal to 
analytical geometry. Where assumptions are made, the fact 
is frankly stated; the few points where more advanced mathe­
matical reasoning is needed for the actual proof are clearly 
indicated ; my contention is not that every step in the 
rigorous proof can be presented under the guise of elemen­
tary mathematics, but that it is quite possible to develop the 
theory so as to be intelligible and interesting to average 
students at a much earlier stage than is customary. 

Let any simple diagram be drawn on a sheet of paper, e, gn 
a circle with a straight line cutting it in two points. Let 
this sheet of paper be held at some distance away, in such 
a position as to be slightly oblique to the line of sight. A 
difference will now present itself, of such a nature as to sug­
gest that the properties of the figure are of two distinct 
kinds. I t will be as evident as before that there is a straight 
line, and a curve cut by the line in two points ; but it will 
not be perfectly evident that the curve is a circle, it will ap­
pear as an oval curve. Similarly, if we have two straight 
lines intersecting at right angles, the fact that there are two 
intersecting straight lines will be evident under whatever as­
pect the figure may be viewed, but the angle between them 
will not appear to be a right angle. The same effect will be 
observed if, keeping the diagram fixed, the position of the 
eye be changed. Thus we see that the properties of a plane 
figure are of two distinct kinds ; some are purely relative, 
dependent on the point of view ; others are more intimately 
connected with the figure itself, they have no relation to the 
point of view. The effect of changing the point of view is 
considered in the mathematical theory of projection, which 
must now be briefly explained. 

Given any figure in a plane (1) , and a point V not in 
this plane, let F, the centre of projection, be joined to all 
the points of the given figure, -4, 2?, C, etc., and let the 
points in which these joining lines cut a second plane (2) 
be denoted by A', B'r C', etc. To an eye at V, with no 
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power of determining the actual position of a distant plane, 
the two figures would be indistinguishable; figure (2), in 
its proper place, might be substituted for figure (1) without 
the change being discovered. And yet in many ways the 
two figures if drawn side by side on one sheet of paper would 
appear very different ; one might contain a circle, a pair of 
straight lines at right angles, a number of parallel lines, 
while in the other figure no one of these things could be 
found. I t will be seen that the properties in which any 
difference is to be observed in the two figures all depend on 
measurement of lines or angles ; these properties are called 
metric ; the properties that are unaffected by the change 
from one figure to the other, unaffected, that is, by projec­
tion, are called projective. 

Starting with any figure, (1), we may project from any 
selected centre, thus obtaining a projection, (2) ; taking any 
new centre of projection, and from this projecting (2) on to 
any plane we obtain a figure (3) . This process can be re­
peated as often as we please, and after any number of projec­
tions we arrive at a figure which, while not strictly a pro­
jection of the first, in the sense just given to the word, is 
still in a projective relation to it ; the projective properties, 
being unaffected by every projection separately, are unaf­
fected by the series of projections, and thus the initial and 
final figures agree as regards all projective properties. 

By the definition of projection a point becomes a point. 
Also a straight line becomes a straight line ; for if points 
A, B, 0, etc., lie on a straight line, a simple application of 
Solid Geometry shows that their projections lie on a straight 
line. Moreover, straight lines that meet in a point project 
into straight lines that meet in a point. These laws may be 
formulated as follows:—points and straight lines become 
points and straight lines, and properties of collinearity and 
concurrence are unaltered by projection. These are the gen­
eral laws ; to these we admit no exceptions whatever. 

Certain apparent exceptions must be investigated. Let 
the plane through the centre F parallel to fche plane (2) cut 
the plane (1) in the line YZ. The line joining V to any 
point X o n TZis parallel to the plane (2), and accordingly, 
in the Euclidean phraseology, never meets it ; that is, the 
point X h a s no projection. This however being at variance 
with our general laws, is not an admissible form of speech ; 
we have to find some other mode of expressing the idea. 
Take in the plane (1) any line through X ; let a point A 
move along this line, approaching X ; the projection of A 
recedes more and more, and when A moves up to X the 
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point A' is certainly not at any finite distance ; we express 
this by saying that the projection of the point A is at infin­
ity. This we may regard as a conventional mode of speech 
expressing the same idea as the Euclidean " never meet "; 
geometrically we have postulated the existence of a special 
set of points, the points at infinity, for the sake of making 
our general laws hold without exception. As regards these 
points we have at once the theorem, all points at infinity 
lie on a straight line, the line at infinity; for the points at 
infinity are by definition simply and solely the projections 
of the points on the line YZ, and by our general laws the 
projection of this straight line, like that of any other, is a 
straight line. 

Now consider any two or more lines, AX, BX, that in­
tersect at X, on the line YZ. The point X projects to in­
finity, and thus the lines in the projection have their com­
mon point at infinity; now the planes VAX, VBX, etc., all 
contain the line VX, parallel to the plane (2), and conse­
quently the lines A'X', B'X', etc., in which they are cut by 
this plane (2) are parallel. We are thus led to the conclu­
sion that parallel lines meet at infinity, and this again is 
merely another way of stating the idea involved in the 
Euclidean phrase " never meet". Thus we see that while 
the law, concurrent lines project into concurrent lines, is 
not interfered with, the concurrent lines may happen to be 
parallel. The property of concurrence is projective ; the 
property of parallelism is metric. The first is unalterable 
by projection ; the second may be destroyed. 

We now consider the effect of projection on the separate 
points that lie on any one line. These being A, B, G, etc., 
we require only the lines VA, VB, etc., and the line in 
which the plane of these is cut by the plane (2) ; hence the 
whole diagram now lies in the plane VABG; we may even 
speak of projecting from the one line on to the other. I t is 
a t once apparent that by suitably chosing the position of V, 
the distance between two points can be altered to any ex­
tent ; and further, taking three points A, B, C, we can pro­
ject so that the distances apart shall become anything we 
please; for, taking any line through-4, and measuring on that 
the di&tances Ah, be, that we wish to be assumed by AB, BG, 
all that is necessary is to use the intersection of Bb, Cc, as the 
centre of projection. This is usually stated in the form :— 
any three collinear points can be projected into any three 
collinear points. To project A, B, G into A', Bf, G', join 
AC', use any point on the line GGf as centre of projection, 
so obtaining on the auxiliary line the points Ab C'; now 
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use the intersection of hBf, AAf as a new centre of projec­
tion, and project Ab C' on to the second line. Thus the three 
points A, B,C are projectively related to the three A', £ ' , 0 ' ; 
in the more extended sense of the term, the one figure is a 
projection of the other. Our conclusion is therefore that 
three points on a line have no projective relation other than 
that of collinearity. 

Passing on to consider four points on a line, we are led 
to the important result that four points have a projective 
relation. If we take four points A, B, Cf D on a line, and 
four points A', B', Cr, D' on another line, and attempt to 
connect them projectively, we proceed as before for the 
three points A, B, C, but then the point D on the first line 
gives us a definite point on the auxiliary line, and this gives 
a point D" on the second line ; it can be shown that D" 
will be the same however the arbitrary elements in the con­
struction may be varied ; we have then no control over the 
position of this point JD", we have no way of making it 
come at D'. The truth is more obvious if the two triads A, 
B, Cand A',<B', C' are in projective position; every point 
D on the first line gives as its correspondent on the second 
line a perfectly determinate point D' . Hence four points 
on a line have some relation that is unalterable by projec­
tion. For our present purpose it is not essential that we 
should know the precise nature of this relation; it is enough 
to assure ourselves that it must be expressible by some num­
ber. I t cannot be any length, nor any product of lengths, 
for these would certainly be altered by projection from a 
line on to any parallel line ; it is consequently some num­
ber that can be obtained without measurement, and this 
number is not even a simple ratio of lengths, for we have 
seen that two lengths can be made to assume any desired 
magnitude. 

There is one particular arrangement of the four points 
that is of special importance. Let four lines be taken, then 
every one intersects every other, thus giving six points of 
intersection, these falling into three pairs that are not joined; 
draw the three joining lines. The figure thus constructed 
is a complete quadrilateral ; the four lines by which it is 
determined are the sides, the six intersections of these lines 
are the vertices, and the three lines drawn to complete the 
joining of the vertices are the diagonals. On any diagonal 
we have two pairs of points, viz., two vertices and two in­
tersections with the remaining diagonals ; these two pairs 
are said to be harmonic. Thus two pairs of points on a line 
are harmonic when a quadrilateral can be described with 



1897»] CAYLEY'S THEORY OF THE ABSOLUTE. 239 

vertices at one pair, and diagonals through the other pair. 
The whole diagram, depending simply on points and straight 
lines, with properties of collinearity and concurrence, is 
plainly projective ; hence, if one of the two pairs be given, 
and one point of the other pair, the fourth point, the har­
monic conjugate to JPwith respect to A, B is determined. 
Moreover, if A, B are the pair at which the vertices lie, and 
P, Q the pair through which the diagonals pass, it is easy to 
construct a quadrilateral having vertices at P, Q and diag­
onals through A j B ; this proves that the harmonic relation 
involves the two pairs symmetrically, whatever relation the 
pair A, B has to the pair P, Q, that same relation has the 
pair P , Q to the pair A, B. Not only this, but also the two 
points of either pair are involved symmetrically ; this can 
be shown in the usual manner, by showing that ABPQ can 
be projected into BAPQ. Hence when two pairs of points 
are known to be harmonic, not only the order of the pairs, 
but also the order of the points in a pair, is a matter of ab­
solute indifference. Similarly, two pairs of concurrent lines 
may be harmonic, this being the case if the pairs of points 
in which they are cut by any transversal are harmonic. 

With the he}p of the idea of parallelism, the harmonic re­
lation leads at once to the idea of the bisection of a line. 
For let the quadrilateral be a parallelogram, then seeing 
that one of the three diagonals is entirely at infinity, the 
point Q on one of the remaining diagonals is at infinity. 
But in ordinary geometry the two diagonals of a parallel­
ogram are said to bisect one another, that is, AB is bisected 
at P ; hence in the modified phraseology here adopted, in­
stead of saying that AB is bisected at P, we say that AB is 
divided harmonically at P and infinity. 

This conception enables us to mark a scale of measure­
ment on any line. Let two points 0, Z, be arbitrarily as­
sumed, and assign to these any arbitrarily selected num­
bers, e. g.y 0 and oo ; take any point J., and assign to this 
the number 1; take the harmonic conjugate to 0 with re­
spect to AZ} call it Bj and assign to it the number 2; the har­
monic conjugate to A with respect to BZis to be called G, 
and marked with the number 3, and so on. The harmonic 
conjugate to Z with respect to OA is the point ^, the har­
monic conjugate to Z with respect to this and 0 is J, and 
so on. Thus every point has a numerical magnitude asso­
ciated with it ; when the point Z is actually the point at 
infinity on the line, the points 0,1,2, 3, etc., are all at equal 
distances apart ; the number associated with a point mea­
sures its distance from 0, the length OA being the unit of 
measurement. 
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But though this gives a scale on the line, that is, a means 
of measuring on the one line, it gives no way of comparing 
measures on different lines ; for even if we take th6 inter­
section of the two as the point 0, and suppose the line at 
infinity, and consequently the points at infinity on the two 
lines, to be given, we have still no way of comparing the se­
lected units, OA and OA'', on the two lines. 

Similarly with the help of the idea of perpendicularity, 
the harmonic relation gives us the idea of equality of angles 
about a point, and if we can draw at a point a line perpen­
dicular to any line through the point, then we can mark off 
a scale of angular measurement about that point. For let 
there be given two lines o and a ; through their intersection 
draw a line a' perpendicular to a, and let b be the harmonic 
conjugate to o with respect to the pair a, a' ; then the an­
gle oa is equal to the angle aô, as can be seen at once by 
drawing any transversal perpendicular to a. We can then 
draw through the point a line that shall make the same an­
gle with by and so on, and thus construct a scale of angular 
measurement about the point. 

But just as before, this gives no way of comparing angles 
about two different points.* 

We cannot get any further in measurement unless we 
take some postulate, e. g., that of the existence and possible 
construction of a circle. For we cannot obtain this as the 
locus of points at equal distances from a fixed point unless 
we define equal distances ; nor as the locus of the vertex of 
a right angle whose sides pass through fixed points unless 
we assume that angles between parallel lines are equal, and 
so assume that we can determine the equality of angles 
about different points. If however the existence and con­
struction of a circle with any centre and any radius be 
postulated, we can use this as a means of defining equality 
of lines in different directions, and, if we choose, of defin­
ing right angles. We can then deduce all properties and 
constructions for perpendicular and parallel lines—all the 
constructions of metric geometry, in fact—with very little 
alteration of the arrangement of the propositions in Euclid's 
elements, which is most literally the geometry of the 
straight line and circle. 

Now the circle projects into a curve that is not a circle, 

* One caution should be given here. It might be imagined that we 
could compare angles about different points by means of parallel lines, 
and lines in different directions by means of diagonals of a rectangle; 
but it must be remembered that we have not yet got so much as a defini­
tion of equality for lengths on different lines or angles about different 
points. 
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though agreeing with it in the properties that a straight line 
can be drawn to meet it in two points but not in more, and 
that from a point it may be possible to draw two tangents, 
but not more; the special properties of a circle are all metric. 
Thus all metric properties and constructions depend on the 
circle, though some are more simply expressed with refer­
ence to the ideas of parallelism and perpendicularity. 

We now pass on to see whether it is possible to construct 
any system of measurement that shall not have any depen­
dence on these ideas, that is, any truly projective system. 
This we consider in the first place as relating only to points 
on a line. 

We have seen that we cannot get any projective relation 
unless we use four points ; in order to obtain any relation 
between 0, P, we require other two points A, B, and then 
we have some number belonging to the set of four points 
( OP, AB). But here there is a certain lack of definiteness. 
If there be a number belonging to the four points, then any 
function of the number is itself a number equally belonging 
to the points, e. g., the logarithm or the square of the first 
mentioned number; some one of this set of numbers must be 
selected. Also, the points A, B, C, D, are not protectively 
the same as B, A, C, D, hence the number must depend in 
some way on the order of the -points. 

Supposing for the moment that these two things, the form 
of the function and its dependence on the order of the points, 
have been decided upon, then if three points 0, A, B, are 
arbitrarily chosen, the position of any point P on the line is 
absolutely determined by the value of this numerical mark. 
Bearing in mind that what we ordinarily do with points on 
a line is to measure their distances apart, position on the line 
being assigned by distance from any selected point, e. g,, the 
point 0, we see that if we adopt the order 0, P, A, B, in 
determining the value for the point P, we must adopt the 
order 0, Q, A, B, in determining the value for the point Q. 
Moreover, if we are to obtain a result that can be interpreted 
as referring to the distance OP, even by a convention, we 
must regard 0, P as points whose relation with respect to 
A, B has to be given. Hence we shall write the function as 
ƒ( OP, AB). Thus the mark which determines the position 
of the point P with regard to 0, with respect to the points 
A, B, is f(0P,AB); and similarly the mark for Q is 
ƒ( OQ, AB). By parity of reasoning the mark which deter­
mines the position of Q with regard to P i s / (PC , AB). 

The most important property of ordinary distances is 
that expressed by the relation OQ = OP + PQ ; in order that 
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the marks now under discussion may be susceptible of simple 
interpretation in terms of distances, we must therefore have 
f(OQ,AB) = f(OP, AB) +f(PQ,AB). This is found to 
be enough to determine, except as to a multiplier, which 
particular number out of all possible ones is to be selected ; 
assuming this to be the case, we have arrived at the conclu­
sion:—Instead of measuring the distance of a point P from 
a point 0 in the usual way, this giving a relation of the 
points that has no permanence in projection, we can assign 
a numerical mark, entirely unalterable by projection, ex­
pressing the relation of P to 0 with respect to an arbitrarily 
selected pair of points on the line. These two points being 
once selected, the mark belonging to any point P on the line 
with reference to 0 is called the generalized distance OP, 
and is denoted by the symbol OP. Generalized distances 
on a line obey the same law as ordinary distances, viz, 
TQ + QR==PB. 

Similarly we can measure angles about a point if we have 
a pair of lines a, b through the point as a standard of refer­
ence. The generalized angular distance from any line p to 
any line q, that is, the generalized measure of the angle made 
by q with p, is/(pg, a&), i. e., pq. And just as in the case of 
the linear measurements, these angles are subject to the law 
expressed by the equation pq + qr = pr. 

Thus we can construct a system of measurement on a line 
if we have on that line a certain absolute configuration, two 
fixed points ; and a system of measurement about any point 
if we have an absolute configuration, two fixed lines through 
the point. In attempting to apply this to a plane, we re­
quire an absolute configuration that shall give us two points 
on every line, and two lines through every point. I t is 
necessary that these be given by some configuration, for the 
number of lines in the plane being indefinitely great, it 
would not be possible to assign the two desired points sepa­
rately for every line, and similarly as regards the points. 
"Now the only configurations that can exist contain either a 
finite number of points and lines—which would not supply 
us with the necessary two points on every line, two lines 
through every point—or an indefinite number of points 
and lines. This last is therefore the one to be discussed. 
We confine ourselves for the moment to the points that 
have to be determined. We have nothing to do with ran­
dom assemblages of points, for we require a configuration 
that can be given ; hence the points must be given in one 
of two ways ; as lying on some line, straight or curved, or 
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as lying in some area. This last is plainly inapplicable, 
for it would give an indefinite number of points on any 
line passing through the area ; hence the desired config­
uration must be a line, straight or curved. The only essen­
tial property of this line is that it be met by a straight line 
in two points; this suggests the circle, or rather a projec­
tion of a circle. Now it can be proved that the only curve 
possessing this property of meeting a straight line in not more 
than two points is a projection of a circle; that is, a conic 
section, or a conic. 

Bub it may be argued that this does not necessarily give 
two points on every line, for some lines do not meet the 
curve at all. But just as in algebra it is found convenient 
to say that a quadratic equation has always two roots, 
though these may be equal or imaginary, this convenience 
presenting itself in the general consistency thereby obtained 
in the results, so in geometry it is convenient and legitimate 
to say that a straight line always meets a circle in the same 
plane with it in two points, though these may be coincident 
(when the line is a tangent), or imaginary (when the line 
does not visibly intersect the circle). That is, just as in 
algebra we postulate the existence of imaginary quantities, 
so in geometry we postulate the existence of imaginary 
points.* Hence any projection of a circle does give us the 
necessary two points on every line to serve as a standard of 
reference for a system of measurement on that line. 

Furthermore, from any point there can be drawn two 
tangents to a circle ; even if the point be within the circle, 
so that no real tangents can be drawn, yet we say that 
there are two, the existence of the imaginary ones being 
postulated exactly as in the case of the points. The same 
thing holds therefore of any projection of a circle; and we 
are led to the conclusion that if any conic be given in a 
plane, the points and lines (tangents) provide a frame­
work, a universal standard of reference, with respect to 
which metric relations can be projectively formulated. 
This conic is called the Absolute. 

Since all metric properties are expressible as relations of 
the figure to the Absolute, the properties of parallelism and 

* By the number of solutions of a geometrical problem is to be under­
stood the greatest number that can be obtained when the data are ar­
ranged at pleasure in accordance with the given conditions; if a different 
arrangement of the data gives apparently a smaller number, the differ­
ence gives the number of imaginary solutions. Thus imaginary points 
and lines are postulated; they are the missing solutions of geometrical 
problems; the justification for introducing them is the generality and 
consistency thereby gained. 
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perpendicularity can be thus expressed. There are two 
particular relations of straight lines with respect to the Ab­
solute that call for investigation, and it is found that one 
of these leads to the conception of parallelism, the other to 
that of perpendicularity. In the first place, two lines p, q, 
may meet on the Absolute. In this case, the tangents that can 
ordinarily be drawn from the point of intersection of the 
two lines coincide ; and it is found that the particular func­
tion* adopted for the expression of the numerical mark has 
in this case the value zero. In metric geometry, when the 
angle between two lines is zero, the lines are said to be par­
allel ; accordingly the system we are constructing will agree 
with ordinary geometry if we define parallel lines as lines 
that meet on the Absolute. The other relation of two 
straight lines is that expressed by the term conjugate; it is 
shown in elementary geometry that taking lines through a 
point P, cutting a circle in 17, V, the locus of Q, the har­
monic conjugate to P with respect to U, V, is a straight line, 
the polar of P; and that this is the chord of contact of 
tangents from P . Harmonic properties being projective, 
this holds for conies. The defining property of polars shows 
that if the polar of P pass through Q, then the polar of Q 
passes through P; the poles P, Q, as also their polars p, q, 
are said to be conjugate ; and it is at once seen that conju­
gate lines are harmonic conjugates with respect to the two 
tangents a, 6, that can be drawn from their intersection, and 
hence that (pq, ab) is protectively the same as (qp, ab)* 
Applying this, we have ƒ (pq, ab ) = ƒ ( qp, ab), i. e., 
pq~ qp, which states that the angle from q to p is equal 
to the angle from p to q. If we were speaking of angles in 
the ordinary sense, this would mean that the adjacent an­
gles are equal, that is, the lines p and q would be said to 
be perpendicular ; hence in the present system we define 
perpendicular lines as lines that are conjugate with respect 
to the Absolute. Hence one perpendicular to any given 
line can be drawn through any point T, by joining T to the 
pole of the line. 

I t has now been shown that with the help of the Abso­
lute, we can construct a system of metric geometry ; and 
the question arises, is there any way of choosing the conic, 
the Absolute, so that this system shall be the ordinary Eu­
clidean geometry ? 

( AP I AQ\ 
~PTi Tin) » a n d l o g 1 i s k n o w n 

to be •= 0. 
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I t is to be noted that a conic may be real or imagin­
ary ; the real conic, as already stated, has both real and 
imaginary points ; an imaginary conic has, in general, 
only imaginary points.* Again, a conic may be proper 
or degenerate; a pair of intersecting straight lines is 
met by any straight line in two points, and is therefore 
classed as a conic; and similarly a pair of points, J, J, 
is classed as a conic, and would serve to determine two 
lines through any point 0, viz. 01, OJ. The easiest way 
of forming a conception of this mode of degeneration is 
to consider an ellipse and hyperbola with the same axis 
AA', defined by the relation PN2 : AN.NA' = &, where for 
the ellipse k is positive, and for the hyperbola negative. 
Letting the quantity k diminish, it is seen that the curves 
become flatter and flatter, approximating to the straight 
line, while the tangents have a tendency to pass through 
the points A, A'. When we take k indefinitely small, the 
tangents become lines through one or other of the two 
points A, A'\ looked at in this way, the conic is said to 
have degenerated into these two points. But considering 
the description of the curve by a moving point, we see that 
a part of the straight line A A! is described twice ; if k be 
positive and indefinitely small, it is the inner part A A1 that 
is so described ; if negative, the outer part. If k be re­
garded as actually zero, there is no such distinction, and we 
have to regard the line (not any particular part of it) as 
described twice. Thus the full description of this form of 
degenerate conic is that it consists of a pair of points, with 
the line joining them taken twice. 

In considering what conic must be chosen in order that 
the system of measurement may agree with ordinary mea­
surement, we note^ that one of the fundamental principles 
of Euclidean geometry is that exactly one parallel can be 
drawn from a point T to a line. Now a real conic as Ab­
solute may give two real parallels, obtained by joining T t o 
the two points in which the line cuts the Absolute ; this 
gives a perfectly consistent system of geometry, but not the 
Euclidean ; it is a non-Euclidean system, the geometry of 
Bolyai and Lobatchewsky. An imaginary conic gives no 
real parallel in any case ; this is again a non-Euclidean sys­
tem, the geometry of Riemann and others. Neither of 
these will serve ; we have therefore to seek among the de­
generate conies. The pair of straight lines gives two dis­
tinct points on every line, and therefore two parallels ; the 

* It may, however, have two or four real points. 
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pair of points, I, J, with the repeated straight line joining 
them, gives the necessary two lines through every point, 
and on every line it gives two coincident points, and con­
sequently through a point there can be drawn precisely one 
parallel to a given straight line. Hence if there be 
any conic which as Absolute will give ordinary metric ge­
ometry, it must be of this type ; moreover, the fact that 
parallel straight lines intersect on the straight line at infin­
ity shows that the repeated straight line which is a part of 
this degenerate conic can only be the line at infinity. 
Hence the Absolute that we are in search of must be a pair 
of points on the line at infinity. 

Perpendicular lines, dividing the chord of contact of tan­
gents from their intersection harmonically, are in this case 
conjugate with respect to the points I, J. Now if the pairs 
PQy IJ are harmonic, the quadrilateral diagram shows that 
as P approaches /indefinitely on one side, Q approaches it 
indefinitely on the other ; hence if P be at I, Q is also at I , 
and thus any two lines meeting at one of the points J, J", 
satisfy the condition of perpendicularity, Eegarding a cir­
cle on ÀB as diameter as the locus of the intersection of 
perpendicular lines through A, B, the fact that AI, BI} are 
perpendicular shows that the circle passes through I, and 
likewise through J. Hence the points J, J, have the prop­
erty of lying on every circle ; they are the points in which 
every circle meets the line at infinity, and are obviously 
imaginary. 

The conclusion so far obtained is:—If it be possible to ex­
press the ordinary Euclidean measurement by reference to the 
Absolute, this Absolute must be a pair of imaginary points; the 
line joining these points will be the line at infinity, and every circle 
will pass through the points. By somewhat refined mathemati­
cal reasoning it is shown that the constants involved in the 
particular functions which give the numerical value for 
( OP,AB) and (op, ab) can be chosen so that the generalized 
expressions for the distance and the angle shall, in this case, 
become the ordinary expressions for the distance and the 
angle. This having been accomplished, the conditional 
conclusion stated above follows. 

Cayley's theory of the Absolute (in a plane) is therefore 
that all metric properties can be expressed under the form 
of projective relations to a given degenerate conic; it ap­
plies also to non-Euclidean systems of geometry, these being 
differentiated by a different choice of the Absolute. 
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