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" cosine circle " of a triangle (p. 316), that is, he noticed as a 
special case of one of his theorems that there is only one point 
p (the point now called the symmedian) through which if lines 
be drawn so that the intercepts made on them by the pairs of 
sides of a triangle are bisected at p, the ends of the intercepts 
lie on a circle, whose centre is of course p. 

Finally we have the handling of two integrals, the second 
of which 

S ± (ciX2dxs) ƒ Li W' « ) + i c&' (a*) +$<&' (««)] V/ (x , x) 

(where f(x, x) and g (x, x) are ternary quadratic forms, xly x2, x& 

are the coordinates of a point on g (x, x) = 0, c1? c2, c3, the co­
ordinates of a fixed point on the same conic), is transformed 

into ' 
•ƒ • Vflr(\) 

where g (X) is the cubic which determines the line-pairs of the 
pencil defined by ƒ and g. This covers, for example, the prob­
lem of transforming the elliptic integral I (xdx)/^/ax

4: to Weier-
strass's normal form. ^ 

F R A N K MORLEY. 

ON D I V E B G E N T SEEIES . 

BY PROFESSOR A. S. CHESSIN. 

T H A T every semi-convergent series can by a proper arrange­
ment of its terms be made divergent is a well-known fact. I t 
will be shown in this note that, conversely, every divergent 
series which does not tend towards infinity (series oscillating 
between finite limits) can by a proper arrangement of its terms 
be made convergent. 

Only series with real terms will be considered since the 
investigation of series with complex terms, at least with regard 
to the substance of this note, can be reduced to that of series 
with only real terms. 

THEOREM I. — An infinity of numbers being given within a 
limited interval, we know that there will be at least one infinite 
accumulation of numbers of the given totality within the given 
interval. Let, in general, NY, N2, "*,Ng be the numbers about 
which these infinite accumulations take place. It is always pos­
sible to form g distinct convergent series having for their respective 
sums the numbers NY, N2, NZ9 •••, Ng. 
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In fact, in the neighborhood of a number JSft there is an 
infinity of numbers of the given totality either on both sides 
of JSf{ or only on one side of it. In the last case, if aKti be one 
of these numbers, we can always find another one among them 
aK+i,i s u c n t ha t aK+i,i > aK,i o r a*+i,«< aK,i according as these 
numbers are on one side of N{ or on the other. We thus 
obtain a regular sequence of increasing or decreasing numbers 
such that lim (ctt) = ty. In the other case we can always find 
two numbers aM and ftjf among the given ones in the neigh­
borhood of the number Nt such that there will be an infinity of 
numbers of the given totality within the interval (aM, ft,,). In 
this interval we can again find two numbers a2ii, ft)t. such that 
<*2,i><*i,i and- ft< ft,i? and that the interval (a v , ft,*) shall 
contain'an infinity of numbers of the given totality. Continu­
ing this process, we arrive at two regular sequences of numbers 

ali) a2,i) a3,i) " • 

Pit'? ft,i>ft,i? " • 

the first having only increasing, the second only decreasing 
terms. Both define the same number Ni9 

i.e. lim (a,) = lim (ft) = JSTt. 
Let us now pu t 

a 2 , i — a l , i — ^2, i 

a8, i a 2 , i — ®3, i 

t hen an> < = a l t f + a2) < + • • • + a M 

and therefore 
•#< = %,i + %,H ha^H 

for all the values 1, 2,3, • • -, g of ï ; q. e. d. 
Suppose now that we have a divergent series which does not 

tend towards infinity 
Wi + WaH h^wH , 

and let us form the sequence of numbers 
7i? 72) •••>*/«? ••• 

where ym = % + w2 + • • • + wOT. This sequence contains an in­
finity of numbers within a limited interval. Let then 

be the numbers about which infinite accumulations of the num­
bers (y) take place. According to Theorem I. we can form g 
convergent series having for their respective sums the numbers 
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THEOREM II.— The g convergent series derived from the sequence 
(y) can be obtained directly from the given divergent series merely 
by associating its terms in a proper ivay (without deranging their 
places in the series). 

In fact, we have seen in Theorem I. that we can pick out 
among the numbers (y) in the neighborhood of the number Nt 
an infinity of numbers (y) forming a regular sequence 

yn, i' y m j ' ' *> y^n, s ',,? 

and that lim (yM<)= N"if for all the values 1, 2, • ••, g of i. 
In this sequence there is at least one index //.*,* >/*i,o ^or 

otherwise the number of terms following the term y^ i would 
be at the most equal to / ^ In like manner we prove that 
there must be at least one index /xM > /xM, and so on. We thus 
obtain the regular sequence 

*)Vi, # y^k, <? y^-e, s ' " 

in which /*!,«</**,«</*,,<<••' 5 a n d l i m ( y^ = •#<• 

But y*M ^ N I + N » + ••' + %<• 

If therefore we associate the terms of the given series in the 
following manner : 

(u1 + ti2+... + *vM)-fOvM+i + - + %kyt) 

this series will be convergent and have for its sum the number 
2Tt ; q. e. d. 

Remark. — It is obvious that g is always greater than unity, 
the numbers Nt being all finite, otherwise the given series (u) 
would be convergent. 

Examples : 
(1) In the famous series 

1 - 1 + 1 - 1 + 1 - . . . 
g = 2; j y i = 0 = ( l - l ) + ( l - l ) + - . 

j¥i = l = l + ( - l + l) + ( - l + l)+... 

(2) In the series 

* - * + * - * + * - * + -
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A divergent series which remains divergent whatever be the 
arrangement of its terms will be called unconditionally divergent 

THEOREM I I I . — Every unconditionally divergent series tends 
towards infinity. 

In fact, in such a series g = 1, but this is impossible in a 
divergent series unless JSf1= ±00. 

It is easy to see that conversely, every series which tends towards 
infinity is unconditionally divergent. 

A divergent series which becomes convergent after a proper 
arrangement of its terms will be called conditionally divergent 

THEOREM IV. — Every divergent series which does not tend 
towards infinity is conditionally divergent, and conversely, a con­
ditionally divergent series cannot tend towards infinity. 

THEOREM V. — Every semi-convergent series can by a proper 
arrangement of its terms be made conditionally divergent, and 
conversely, every conditionally divergent series can by a proper 
arrangement of its terms be made semi-convergent 

Remark. — Niemann has proved that by a proper arrangement 
(commutative, not associative) of the terms of a semi-convergent 
series this series can be made to converge to any arbitrarily 
assigned number. It follows from the above that by a proper 
arrangement (both commutative and associative) of the terms of 
a conditionally divergent series this series can be made to converge 
to any arbitrarily assigned number. 

T H E JOHNS HOPKINS UNIVERSITY, 
BALTIMORE, October, 1895. 

A SIMPLE PROOF OP A FUNDAMENTAL THEOREM 
OF SUBSTITUTION GROUPS, AND SEVERAL 
APPLICATIONS OF THE THEOREM. 

BY DR. G. A. MILLER. 

THEOREM. — The average number of elements in all the sub­
stitutions of a group is n — a,n being the degree of the group, and 
a the number of its transitive constituents.* 

"We shall first prove the theorem for a = 1, i.e. for the tran­
sitive groups. 

* FROBENIUS, Crelle, vol. 101, p. 287. 


