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Standard modules, induction and the

structure of the Temperley-Lieb algebra

David Ridout and Yvan Saint-Aubin

The basic properties of the Temperley-Lieb algebra TLn with param-
eter β = q + q−1, q ∈ C \ {0}, are reviewed in a pedagogical way.
The link and standard (cell) modules that appear in numerous
physical applications are defined and a natural bilinear form on the
standard modules is used to characterise their maximal submod-
ules. When this bilinear form has a non-trivial radical, some of the
standard modules are reducible and TLn is non-semisimple. This
happens only when q is a root of unity. Use of restriction and induc-
tion allows for a finer description of the structure of the standard
modules. Finally, a particular central element Fn ∈ TLn is studied;
its action is shown to be non-diagonalisable on certain indecom-
posable modules and this leads to a proof that the radicals of the
standard modules are irreducible. Moreover, the space of homomor-
phisms between standard modules is completely determined. The
principal indecomposable modules are then computed concretely
in terms of standard modules and their inductions. Examples are
provided throughout and the delicate case β = 0, that plays an
important role in physical models, is studied systematically.
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1. Introduction

The Temperley-Lieb algebras are key objects both in mathematics and
physics. Temperley and Lieb [1] introduced them as complex associative
algebras that arose in their study of transfer matrix approaches to (pla-
nar) lattice models. This family of algebras, indexed by a positive integer
n and a complex number β, spread quickly through the physics community
where it underlies the study of Potts models [2], ice-type models [3], and the
Andrews-Baxter-Forrester models [4]. That Temperley-Lieb algebras play a
fundamental role in our modern understanding of phase transitions cannot
be overstated. These algebras were subsequently rediscovered by Jones [5]
who used them to define what is now known as the Jones polynomial in knot
theory. The Temperley-Lieb algebras are also intimately connected with the
representation theory of the symmetric groups through their realisation as
natural quotients of the (type A) Hecke algebras (see [6] for example).

As is usual in physical applications, it is the representation theory of the
Temperley-Lieb algebra TLn which is the main focus of attention. Indeed,
Temperley and Lieb’s original contribution takes place in a 2n-dimensional
representation commonly used by physicists for the study of spin chains.
Such representations still form an active direction of research in mathemat-
ical physics. There are, in addition, somewhat smaller representations that
are perhaps more natural to consider including, in particular, those which
we shall refer to in what follows as link representations. From these, one
obtains quotients that have come to be described as being standard. It is
well-known that these standard representations are irreducible for almost
all values of the parameter β and that for such β, the (finite-dimensional)
representations of TLn are completely reducible. However, it is a curious
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fact that the β which are thereby excluded consist, to a large degree, of the
parameter values that are of most interest to physicists.

This failure of complete reducibility is also well-known and there have
been significant efforts by physicists and mathematicians to understand the
representation theory for these exceptional values of β. There is a continu-
ing interest in this quest due to the current reinvigoration of the study of
logarithmic conformal field theories. To explain, the lattice models studied
by physicists are believed to have limits (as n→∞ say) in which the model
should be replaced by a field theory possessing conformal invariance. The
representations upon which the lattice model is founded are supposed to be
replaced by representations of the quantised algebra of infinitesimal confor-
mal transformations, the Virasoro algebra (see [7] for a recent attempt to
formalise this). Moreover, the corresponding conformal field theory is now
believed not to be a minimal model, as the original paradigm suggested, but
rather some logarithmic version thereof [8–10]. Here, “logarithmic” indicates
that the Virasoro algebra representations involved also fail to be completely
reducible. Conjecturing results about these logarithmic theories through the
study of their lattice counterparts remains a popular approach.

Perhaps the first to seriously address the structure of Temperley-Lieb
representations for all β ∈ C was Martin. In [2], he devotes two chapters to
obtaining an explicit construction of the principal indecomposable represen-
tations of the Temperley-Lieb algebra. The arguments are rather involved
and rely heavily upon intricate combinatorics and a detailed study of a
collection of primitive idempotents introduced by Wenzl [11]. Shortly there-
after, and independently, Goodman and Wenzl [12] applied a similarly de-
tailed study of these idempotents to prove explicit results concerning the
structure of the blocks (two-sided ideals) of the Temperley-Lieb algebras.
The proofs require a long series of elementary but technical lemmata. Unfor-
tunately, they exclude the case when β = 0 which is of considerable physical
interest. Nevertheless, their methods lead to explicit and highly non-trivial
descriptions for the radicals of the blocks.

We should also mention the well-known contribution of Westbury [13].
His article approaches the representation theory of the Temperley-Lieb alge-
bras from a more algebraic, and less combinatorial, perspective. First, a suf-
ficient condition for complete reducibility is given whose form is very familiar
to conformal field theorists. This criterion is the non-degeneracy of an invari-
ant bilinear form acting on the standard representations and Westbury com-
putes the determinant of this form explicitly (the analogous result for the
Virasoro algebra is, of course, the formula of Kac for the determinant of the
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form defined on Verma modules). The technique employed involves recur-
sion relations and was suggested by older work of James and Murphy [14].
(The recursion Westbury employs contains a mistake, as is illustrated by the
example he gives.) The rest of Westbury’s article addresses what happens
when complete reducibility fails. The method involves using induction and
restriction to determine abstractly the spaces of homomorphisms between
standard representations (although there is mention of certain explicit con-
structions along the lines of Martin). Proofs are often minimal, incomplete
or, in one case, referred to Martin’s book. Crucial points are therefore left
without complete arguments: The exactness of the sequences satisfied by the
restriction and induction of standard modules, the existence of non-trivial
homomorphisms between certain standard modules when q is a root of unity,
and the construction and completeness of the set of principal indecompos-
able modules.

While the above makes our dissatisfaction with Westbury’s article evi-
dent, his algebraic approach to the Temperley-Lieb algebra provides, in our
opinion, an excellent road-map to learning this particular corner of represen-
tation theory. Indeed, our motivation for writing this article derives in large
part from a desire to have a pedagogical and (mostly) self-contained sum-
mary of Temperley-Lieb theory, including detailed proofs. We believe that
this will be of significant value to mathematical physicists working on lattice
models and conformal field theories, as well as provide novice representation-
theorists with an excellent worked example over C which explicitly illustrates
some of the difficulties of non-semisimple associative algebras.

Of course, there are many possible approaches to Temperley-Lieb theory
and we certainly do not claim that ours is in any way the best. Indeed, we
have tried to minimise the level of sophistication required wherever possi-
ble while still introducing the most basic tools that are indispensable for
non-semisimple representation theory. To illustrate our prejudices in this
regard (and to borrow from John Cardy [15]), we mention that the word
‘quiver’ has just made its only appearance. Other elegant alternatives include
deducing the results from their Hecke algebra analogues (see [6] for exam-
ple) or using Schur-Weyl duality and quantum group representation theory
(see [16] for a recent sketch in this direction). We also mention a powerful
category-theoretic approach due to Graham and Lehrer [17] in which struc-
tural results for TLn follow as special cases of their investigations into the
affine Temperley-Lieb algebras.

The article begins in Section 2 with a review of the diagrammatic and
algebraic definitions of the Temperley-Lieb algebras, proving their equiva-
lence using a standard combinatorial argument. As far as we are aware, the



Standard modules, induction and the Temperley-Lieb algebra 961

diagrammatic approach to Temperley-Lieb algebras is due to Kauffman [18],
though the equivalence to the algebraic approach is only sketched there using
an example.1 Here, we mostly follow the seminal work of Jones [5]. We note,
in particular, his result concerning a canonical form for monomials con-
structed from the standard Temperley-Lieb generators. This turns out to be
crucial for the analysis of inducing standard representations in Section 6.
We remark that we make a “heretical” choice for Temperley-Lieb diagrams,
orienting them at ninety degrees to that customarily found in the litera-
ture (see [19] for a precedent illustrating this heresy). This choice facilitates
the translation between the diagrammatic and algebraic depictions of mul-
tiplication: A diagram drawn on the left of another object corresponds to a
left-action on this latter object. We also find it notationally convenient for
the following section.

Section 3 then introduces the link representations and their quotients,
the standard representations. Various basic, but essential, results are proven
for the latter, roughly following the beautiful work of Graham and Lehrer on
cellular algebras [20] (the standard representations are cell representations in
their formalism). Particular attention is paid to the problematic case β = 0
in which there is a single standard representation upon which the usual
invariant bilinear form vanishes identically.

The hard work begins in Section 4 in which we compute the determi-
nant of an invariant bilinear form on the standard representations. Here,
we follow Westbury [13] in using module restriction to block-diagonalise the
Gram matrices and deduce recursion relations for the diagonalising matrices.
(One can also use idempotents to derive such recursion relations; see [17] for
example.) As mentioned above, the recursion relation that Westbury gives is
incorrect and we discuss in detail the appropriate refinements that have to
be made. The determinant formula then leads to the well-known result con-
cerning the generic semisimplicity of the Temperley-Lieb algebras. Section 5
then uses the proof of the determinant formula to compute the dimension of
the kernel of the Gram matrix and thence the dimensions of the radicals and
irreducible quotients of the standard representations. By utilising pictures
known as Bratteli diagrams, we motivate the conjecture that these radicals
are themselves irreducible (when non-trivial).

Sections 6 and 7 are devoted to proving this conjecture. The first details
what is obtained upon performing the induced module construction on a
standard representation of TLn to obtain a representation of TLn+1. This
result is stated in Westbury, but without proof. We then use these induced

1We thank Fred Goodman for correspondence on this point.
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representations, in the second, to demonstrate the existence of certain homo-
morphisms between standard representations. This relies crucially upon a
computation which shows that a particular element, which we call Fn, of
the centre of TLn, acts in a non-diagonalisable fashion upon appropriately
chosen induced modules. The existence of these homomorphisms is enough
to prove the conjecture that the radicals of the standard modules are irre-
ducible (or trivial). To our knowledge, this irreducibility was first proven
in [17]; our elementary proof appears to be quite different.

The analysis to this point leaves several questions unanswered, one of
which is whether we have determined a complete set of mutually non-
isomorphic irreducible representations. Answering questions like these require
a little more sophistication and so we turn, in Section 8, to the consider-
ation of the principal indecomposable representations. For this we employ,
once again, the induced module technique developed in Section 6 to con-
cretely determine the structure of these representations in terms of that of
the standard representations. We remark that the proofs rely heavily on an
extremely convenient property of the central element Fn (and that this prop-
erty is not shared by the central element that appears in Westbury). After
a brief summary reporting what has been proven, we conclude with two
appendices. The first defines Fn and proves the properties that we require.
The second lists a selection of standard representation-theoretic results that
are needed. The text is liberally peppered throughout with examples chosen
to highlight the theory being developed. We hope that the reader will find
them useful for understanding this beautiful corner of representation theory.

We end this introduction with a list of common symbols and terms.

Glossary of terms and symbols

Mn and Mn,p: link modules beginning of Section 3

Vn,p = Mn,p/Mn,p+1: standard modules Equation (3.3)

Rn,p ⊂ Vn,p: radical of 〈 ·, ·〉n,p on Vn,p Equation (3.10) and
Proposition 3.3

Ln,p = Vn,p/Rn,p: irreducible quotient of the
standard modules

after Proposition 3.3

Pn,p: principal indecomposable module with
quotient Ln,p

beginning of Section 8

M↓ : restriction of M from TLn to TLn−1 Proposition 4.1
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M↑ : induction of M from TLn to TLn+1 beginning of Section 6

basis Sn,p for the induced module Vn,p↑ before Proposition 6.3

〈 ·, ·〉 = 〈 ·, ·〉n,p: bilinear form on Vn,p before Lemma 3.1

(n, p) is critical if q2(n−2p+1) = 1 after the proof of
Corollary 4.2

critical lines, critical strips of the Bratteli
diagram

after Corollary 5.2

dn,p: number of (n, p)-link states before Equation (2.8)

Fn and fn,p: central element of TLn and its
eigenvalues

Appendix A and
Proposition A.2

Gn,p: Gram matrices (〈 ·, ·〉n,p in the basis of
link states)

beginning of Section 4

Jones’ normal form and reverse normal form Proposition 2.3

simple link in a diagram or link state before Equation (2.12) and
Lemma 6.1

admissible link state before Lemma 6.2

a symmetric pair Vn,p and Vn,p′ beginning of Section 7

2. Diagrams and presentations

Let us define an n-diagram algebra, for n a positive integer, as follows.
First, draw two parallel vertical lines and mark n points on each. The 2n
points obtained are then connected pairwise by n links (arcs) which do
not intersect and which lie entirely between the two vertical borders. This
gives what we will call an n-diagram. Second, form the complex vector space
spanned formally by the set of all n-diagrams. Third, endow this vector space
with a multiplication given by concatenating two n-diagrams, replacing each
interior loop by a factor β ∈ C, and identifying (and then removing) the two
interior vertical borders. For example, for n = 3,

(2.1) · = = β .
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This multiplication defines, for each β ∈ C, an associative algebra called the
n-diagram algebra. It is easily checked that this algebra has a unit given by
the diagram

.

We note here for future reference that much of what follows is simplified
algebraically upon making the identification β = q + q−1 with q ∈ C×. Of
course this implies that the resulting theory must be invariant under the
exchange of q with q−1.

The n-diagram algebra is in fact isomorphic to the Temperley-Lieb alge-
bra TLn, as we shall see. The latter algebra is abstractly defined as being
generated by a unit 1 and elements ui, i = 1, 2, . . . , n− 1, satisfying

(2.2) u2i = βui, uiui±1ui = ui and uiuj = ujui if |i− j| > 1.

Indeed, if we make the identifications

(2.3) 1 = and ui = ,

then we can verify explicitly the properties of the unit (which are clear) and
the defining relations

u2i = = β = βui,(2.4a)
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uiui−1ui = = = ui,(2.4b)

and uiuj = = = ujui (|i− j| > 1).(2.4c)

The verification of uiui+1ui = ui is just (2.4b) viewed upside-down. More
formally, note that the Temperley-Lieb algebra TLn has an automorphism
specified by 1 
→ 1 and ui 
→ un−i. This corresponds to reflecting our dia-
grams about a horizontal line. Finally, the map ui 
→ −ui defines an isomor-
phism between the two algebras TLn with parameters β and −β.

It is clear that the identification (2.3) defines a homomorphism from the
algebra TLn, defined abstractly through (2.2), to the n-diagram algebra. Let
Wn be the set of words in the letters ui, 1 � i � n− 1, and let Dn be the
set of n-diagrams. The following result notes that the algebra of n-diagrams
is generated by the diagrams in (2.3).

Lemma 2.1. The map (2.3) from Wn to Dn is surjective.

The proof will be deferred until the end of the section.
This lemma demonstrates that the n-diagram algebra is a quotient of

the abstract Temperley-Lieb algebra — the diagram algebra might satisfy
further independent relations. To show that there are no further relations,
hence that we have the isomorphism of algebras claimed above, we only need
to show that the dimensions of the diagram algebra and the Temperley-Lieb
algebra coincide. For this, let us first consider the “half-diagrams” obtained
from an n-diagram by cutting vertically down the middle. Each half then has
n marked points, but only some of these will still be connected by “links”.
If a half-diagram has p links, then there will be n− 2p points which are not
connected to anything. The latter points will be referred to as defects and
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a half-diagram with n points and p links will be called an (n, p)-link state.
An example with n = 7 and p = 3, hence 1 defect, is given by

.

We will always orient our link states so that the links and defects face to
the right.

An n-diagram can now be cut in half and reassembled into a (2n, n)-link
state by rotating the incorrectly oriented half so that it lies below the other,
and then rejoining the defects of each half as they were joined in the original
n-diagram:

−→ −→ −→ .

As this procedure is obviously reversible, this establishes a bijection between
n-diagrams and (2n, n)-link states.

The set of all (n, p)-link states is in turn in bijection with the increas-
ing walks on Z2 from (0, 0) to (n− p, p) which avoid crossing the diagonal
(m,m). Here, “increasing” means that the walker may only move up or to
the right at each step. This bijection is easy to describe: Reading an (n, p)-
link state from top to bottom, the walker moves up at the k-th step if the
k-th marked point closes a link. Otherwise, the walker moves right. For the
example above with n = 7, p = 3,
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−→ .

The walk will never cross the diagonal because we cannot close a link with-
out first opening it. Conversely, given such an increasing path, we follow it
backwards starting from (n− p, p) and construct the corresponding (n, p)-
link state from bottom to top: Every time we move down, we open a link.
Every time we move left, we close the newest open link, if one exists to be
closed. If one does not, then that marked point becomes a defect. As the
walk is never above the diagonal, there are never more down moves than
left moves remaining, so we are never left with an open link that cannot be
closed. The bijection is now clear.

This proves that the number of (n, p)-link states is equal to the number
of increasing walks on Z2 from (0, 0) to (n− p, p) which avoid crossing the
diagonal. In particular, the dimension of the n-diagram algebra is there-
fore the number of increasing walks on Z2 from (0, 0) to (n, n) which avoid
crossing the diagonal. We will now establish the same result for the abstract
Temperley-Lieb algebra TLn. Here we follow the seminal paper of Jones [5].

First, define a word to be a monomial in the Temperley-Lieb generators,
ui1ui2 · · ·uik for example. A word is said to be reduced if we cannot use
the relations (2.2) to rewrite it with fewer generators. The key insight into
converting a given word into reduced form is contained in the following
result.

Lemma 2.2. In any reduced Temperley-Lieb word ui1ui2 · · ·uik , the maxi-
mal index m = max {ij : j = 1, . . . , k} occurs only once.

Proof. We use induction on the maximal index m of our reduced word, the
case m = 1 being obvious. Suppose then that we have a reduced word in
which um appears twice or more, so our word has the form · · ·umUum · · · ,
in which the maximal index m′ of U is less than m. U must also be reduced
(otherwise our word would not be), so we may assume that its maximal
index appears only once. Now if m′ < m− 1, then um commutes with every
generator appearing in U , so we can bring the two um’s together and use
u2m = βum to reduce our word even further. But, m′ = m− 1 means that
um commutes with every generator in U except um−1, so this generator
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appearing only once in U means that we can sandwich it between the two
um’s and use umum−1um = um. Both possibilities contradict the assumption
that our word is reduced, so we conclude that um can only appear once. �

This simple argument allows one to order reduced words by pushing the
maximal index as far as possible to the right. More specifically, if U is a
reduced word and m the maximal index appearing then we claim that it is
possible to commute the ui so that we have the form

(2.5) U = U ′ (umum−1 · · ·um−�) ,

where U ′ is a reduced word whose maximal index is less than m. If there
were a gap in the sequence of indices following U ′, then the element after
the gap would commute with the generators to the left of the gap (up to
um), so could be relocated to the left of um (and absorbed in U ′). If the
sequence of indices following U ′ did not decrease, then one could use u2i =
βui or uiui−1ui = ui to further reduce the word (contradiction). The claim
is therefore established.

Since U ′ is a shorter reduced word with a smaller maximal index, the
same arguments apply, allowing us to write it as U ′′ times another such uni-
formly decreasing sequence of generators. Induction then leads us to Jones’
normal form for reduced Temperley-Lieb words:

Proposition 2.3 (Jones’ Normal Form). Any reduced Temperley-Lieb
word U ∈ TLn may be written in the form

(2.6) U = (uj1uj1−1 · · ·uk1
) (uj2uj2−1 · · ·uk2

) · · · (ujrujr−1 · · ·ukr
) ,

where 0 < j1 < · · · < jr−1 < jr < n and 0 < k1 < · · · < kr−1 < kr < n. Sim-
ilarly, any reduced word may also be written as

(2.7) U = (uj1uj1+1 · · ·uk1
) (uj2uj2+1 · · ·uk2

) · · · (ujrujr+1 · · ·ukr
) ,

with n > j1 > j2 > · · · > jr > 0 and n > k1 > k2 > · · · > kr > 0.

Proof. The increasing nature of the ji follows from the fact that they are
the maximal indices of the subwords . . . , U ′′, U ′, U . For the ki, note that if
ki � ki+1 for some i, then we could commute the uki

appearing at the end of
its decreasing sequence to the right until it bumped up against the uki+1uki

appearing in the next decreasing sequence. The defining relations (2.2)
again give us a contradiction to our word being reduced. Thus, we must
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have 0 < k1 < · · · < kr−1 < kr < n as well. The proof of the second form is
similar. �
We shall refer to words satisfying (2.6) as elements in Jones’ normal form
and those satisfying (2.7) as being in reverse Jones’ normal form.

The point of this theory is to establish that every monomial in the
Temperley-Lieb generators is (up to factors of β) equal to an ordered reduced
word of the form (2.6), with strictly increasing ji and ki. The dimension
of the algebra TLn is then bounded above by the number of such ordered
reduced words.2 Note that if these ordered reduced words were linearly inde-
pendent, then this bound would become an equality. Our next task is to show
that this number coincides with the number of increasing walks on Z2 from
(0, 0) to (n, n) which avoid crossing the diagonal. Then, we will have shown
that TLn has a quotient (the n-diagram algebra) whose dimension is equal
to our upper bound on the dimension of TLn. It then follows that the bound
is an equality, so the set of ordered reduced words is in fact a basis.

Naturally, this is achieved by constructing a bijection. This is done by
stripping the indices ji and ki from the ordered reduced words (2.6) of TLn
and encoding them as a walk on Z2 as follows:

(uj1uj1−1 · · ·uk1
) (uj2uj2−1 · · ·uk2

) · · · (ujrujr−1 · · ·ukr
)

−→
〈
(0, 0)→ (j1, 0)→ (j1, k1)→ (j2, k1)→ (j2, k2)→ · · ·
→ (jr, kr−1)→ (jr, kr)→ (n, kr)→ (n, n)

〉
.

(The empty word corresponding to the unit 1 in TLn is encoded as 〈(0, 0)→
(n, 0)→ (n, n)〉.) For example, in TL9 we have

(u1) (u4u3u2) (u6u5u4u3) (u8u7) −→ .

2When β = 0, we have the slight modification that every monomial in the
Temperley-Lieb generators is either equal to a uniquely ordered reduced word of the
form (2.6), with strictly increasing ji and ki, or is identically zero. The conclusion
remains valid.
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The walks so obtained cannot cross the diagonal because ji+1 > ji � ki,
and they are increasing because ji < ji+1 and ki < ki+1. Conversely, any
increasing path from (0, 0) to (n, n) is entirely determined by its corners. The
coordinates of these corners may be used to construct a reduced word of the
form (2.6) and it is easy to check that the ji and ki so defined satisfy ji < ji+1

and ki < ki+1. Avoiding crossing the diagonal translates into ji � ki.
This bijection therefore completes the proof that the dimension of the n-

diagram algebra coincides with that of the abstract Temperley-Lieb algebra
TLn (this dimension is obviously finite). As noted above, this is sufficient to
conclude that these algebras are in fact isomorphic. It is not difficult now to
complete this circle of ideas and actually compute the dimensions of these
algebras by counting the increasing paths from (0, 0) to (n, n) which avoid
crossing the diagonal.

In fact, we shall generalise slightly and count the increasing paths from
(0, 0) to (n− p, p) which avoid crossing the diagonal. This more general
computation then gives the number of (n, p)-link states. Let this number
be dn,p. Since an increasing path ending at (n− p, p) must pass through
either (n− p− 1, p) or (n− p, p− 1) (but not both!), we obtain the recursion
relation

(2.8) dn,p = dn−1,p + dn−1,p−1.

With the “boundary values” dn,0 = 1 (the only increasing path which never
goes up is the one which only moves to the right) and d2p−1,p = 0 (the
paths are not allowed to cross the diagonal), this completely determines the
numbers dn,p. Its solution is easily verified to be

(2.9) dn,p =

(
n

p

)
−

(
n

p− 1

)
,

where we understand, as usual, that
(
n
−1

)
= 0. It follows that the n-diagram

algebra and the Temperley-Lieb algebra TLn have dimension

(2.10) dimTLn = d2n,n =

(
2n

n

)
−

(
2n

n− 1

)
=

1

n+ 1

(
2n

n

)
.

This is of course the n-th Catalan number.
To summarise, we have proven the following result in this section.

Theorem 2.4. The abstract Temperley-Lieb algebra TLn and the algebra of
n-diagrams are isomorphic (for given n ∈ Z+ and β ∈ C). The dimensions
of these algebras are given by Equation (2.10).
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We mention that combining the result on dimensions with the “cutting” of
n-diagrams into two (n, p)-link states leads to the curious identity

(2.11) d2n,n =

�n/2�∑
p=0

d2n,p.

This only requires observing that the two link states must have the same
number of links p so that each defect of the first may be joined to a defect
of the second.

We close this section with a proof of Lemma 2.1 that is purely diagram-
matic. An example of a similar construction is given by Kauffman (see Figure
16 and the proof of Theorem 4.3 in [18]). Before starting, we will introduce
some new terms and make two preparatory observations concerning diagram
multiplication. A simple link (at position i) is a link that connects positions
i and i+ 1 on the same side of a diagram and a link connecting positions on
opposite sides of a diagram is called a through-line. Let d be a diagram that
has a simple link on the left at position i− 1 and a through-line connecting
i+ 1 on the left to i+ 1 on the right. Upon multiplying on the left by ui, or
rather by the diagram corresponding to ui, this diagram becomes

(2.12) d = i−1
i

i+1

...

...

⇒ uid =

...

...

i−1
i

i+1

...

...

= i−1
i

i+1

...

...

.

The vertical dots in d indicate links and through-lines that are not explicitly
drawn. Clearly, these remain unchanged upon multiplication by ui. The
result uid is therefore identical to the original d except that the simple link
at position i− 1 on the left has migrated to position i and the through-line
that started on the left at position i+ 1 now starts at i− 1. A simple link
on the left at i− 1 and a through-line starting at i+ 1 may be exchanged
by left-multiplying by ui.

This observation generalises easily. If d also has a simple link at posi-
tion i− 3, then the product ui−2uid would have simple links at i− 2 and
i. Moreover, the through-line would now start at i− 3. Of course, right-
multiplication by ui would result in similar exchanges to simple links and
through-lines on the right side. The conclusion is that the generators ui can
be used to exchange simple links and through-lines, without changing any
other patterns in a given diagram. This is the first preparatory observation.
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For the second, we suppose that d has, on its left side, p consecutive
simple links from positions i to i+ 2p− 1. Left-multiplication of d by (the
diagram representing the word) ui+1ui+3 . . . ui+2p−3 creates an overarching
link from i to i+ 2p− 1, while shifting the remaining p− 1 simple links so
that they fit inside:
(2.13)

d =

...

...

...

i+2p−1

i

i+2

⇒ ui+1ui+3 · · ·ui+2p−3d =

...

...

......
...

i+1

i+3

i+2p−3

=

...

...

...

i+2p−1

i

i+2

.

As in the previous example, the other patterns in d remain unchanged. This
is the second preparatory observation.

Finally, we shall define a nested island to be a pattern of p links joining
2p consecutive points on one side of an n-diagram satisfying two conditions.
First, that the top point i and the bottom i+ 2p− 1 are linked (the island
does not consist of two or more smaller “sub-islands”), and second, that
no point above (less than) i is linked to any point below (greater than)
i+ 2p− 1 (the island is not a sub-island of a greater island). To any n-
diagram d, we may therefore associate another n-diagram d′ in which all the
nested islands of d are replaced by consecutive simple links. We illustrate
this replacement with a diagram d that has four nested islands, one on the
left and three on the right, each being circumscribed for clarity by a dotted
line.

(2.14) d = ⇒ d′ = .

With these preparatory observations and definitions, the following proof of
Lemma 2.1 proceeds in two elementary steps. We will illustrate these steps
for the diagram d after giving the proof.
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Proof of Lemma 2.1. Given a diagram d, the proof constructs a word w in
the ui, with 1 � i � n− 1, such that w is identified with d under (2.3). We
first obtain a word w′ which is identified with d′, the n-diagram associated
to d in which its nested islands are replaced by simple links. Then, this word
w′ is extended to the desired word w by reconstructing the nested islands.
Note that if all links starting from the left side of d cross to the right side,
the diagram is in fact the diagram representing the unit. In this case, the
word w is simply the empty word corresponding to 1 ∈ TLn.

Suppose then that 2p > 0 is the number of points on the left side of
d that are linked pairwise. Clearly, there are also 2p linked points on the
right side and n− 2p � 0 is the number of through-lines in d. The diagram
d′ thus contains p simple links on each of its sides. To construct w′, we
start from the word u1u3 · · ·u2p−1. The corresponding diagram has, on each
of its sides, p consecutive simple links followed by n− 2p through-lines.
Some of these through-lines might not be at the positions of those of d′

(and d), but the first preparatory observation above indicates how to move
them to the correct positions using left- and right-multiplication by the
ui. The uppermost through-line in u1u3 · · ·u2p−1 (that at 2p+ 1) is first
moved, using the observation, to the position of the uppermost through-line
in d′. When this is accomplished, the positions under this through-line are
consecutive simple links followed by the remaining n− 2p− 1 through-lines,
if any. Again, if the positions of these through-lines do not match those of
d′, the observation can be used again. Repeating this process at most n− 2p
times gives a word w′ that corresponds precisely to the diagram d′.

Having constructed a word w′ that corresponds to d′, it remains to con-
vert the simple links of d′ into nested islands as they appear in d. For each
nested island that is not a simple link, we first draw the outermost link.
More precisely, if a nested island lies between positions i and i+ 2j − 1 on
the left (right) side of d, then the word w′ is multiplied from the left (right)
by ui+1ui+3 · · ·ui+2j−3, as the second preliminary observation advises. Once
this has been done for each nested island, the outermost links of all nested
islands have been constructed and we can turn to the interior nested “sub-
islands”. If there are any which are not simple links, then the second obser-
vation can be used again to draw the outermost link of these, and so on.
When there are no nested (sub-)islands left but simple links, the word w
thus obtained is the desired one: It corresponds to d under the identifica-
tion (2.3). �

A word w for the diagram d exhibited in (2.14) may be easily found following
this proof. Since the diagram d has p = 4 links on each side, the proof of
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Lemma 2.1 begins with the word u1u3u5u7. Then, the highest through-line
(at position 9) is moved to the position of the highest through-line in d′ by
left-multiplying by u2u4u6u8 and right-multiplying by u4u6u8. Moving the
second highest, and only other, through-line to the correct position in d′ then
requires right-multiplication by u9. This gives a word w′ that corresponds
to d′:

u1u3u5u7 = ⇒

(2.15)

(u2u4u6u8)(u1u3u5u7)(u4u6u8) = = ⇒

w′ = (u2u4u6u8)(u1u3u5u7)(u4u6u8)(u9) = = = d′.

The second part of the proof now proceeds as follows. There are two nested
islands in d that are not simple links, one on the left from positions 2 to 9
and another on the right from positions 4 to 7. Their outermost links are
first closed by multiplying w′ by u3u5u7 on the left and by u5 on the right.
Now, the resulting diagram differs from d only in that the simple links on
the left at positions 5 and 7 are, in d, replaced by a nested sub-island from
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positions 5 to 8. Left-multiplication by u6 then brings us, finally, to d:

(2.16)

w′ = d′ ⇒ (u3u5u7)w
′(u5) = =

⇒ (u6)(u3u5u7)w
′(u5) = = = d.

The desired word is therefore

w = (u6)(u3u5u7)w
′(u5)(2.17)

= (u6)(u3u5u7)(u2u4u6u8)(u1u3u5u7)(u4u6u8)(u9)(u5)

= d.

We remark that this word w is clearly not in Jones’ normal form.

3. Standard representations

The (n, p)-link states are not just convenient for combinatorial arguments.
They in fact admit a very natural action of the Temperley-Lieb algebra TLn.
More precisely, if we let Mn denote the complex span of the (n, p)-link states
(over all p), then Mn is naturally a left TLn-module under the concatenation
of diagram with link state. We will refer to this module as the link module.



976 D. Ridout and Y. Saint-Aubin

An example should serve to make the action clear:

(3.1) · = = .

Equation (3.7) provides an example in which a loop is closed upon concate-
nation. We note that the number of defects need not be conserved under
the TLn-action. However, this action can only close defects in pairs, so the
number of defects never increases. Equivalently, the number of links never
decreases under the TLn-action.

We can therefore identify TLn-submodulesMn,p ⊆Mn which are spanned
by the (n, p′)-link states with p′ � p. This gives us an obvious filtration

(3.2) 0 ⊂Mn,�n/2� ⊂ · · · ⊂Mn,1 ⊂Mn,0 = Mn,

whose consecutive quotients will be denoted by

(3.3) Vn,p =
Mn,p

Mn,p+1
.

The Vn,p are therefore TLn-modules in which the action is by concatenation
when the number of links (and defects) is conserved and zero otherwise.
We shall refer to them as the standard modules. In the literature, they are
also often called cell modules, following the seminal work [20] upon which
a significant proportion of this section is based. As vector spaces, they are
spanned by the (n, p)-link states (we shall often forget to distinguish an ele-
ment of Mn,p from its coset in Vn,p when it is not crucial), so their dimen-
sions are the dn,p computed in Equation (2.9). For example, Vn,0 is always
one-dimensional, spanned by the link state with no links (all defects). The
Temperley-Lieb generators all act trivially on Vn,0 (they would all close two
defects), except the unit of course, which acts as the identity.

It is natural to ask at this point if the Vn,p are irreducible as TLn-
modules. We will see, eventually, that the answer is generically “yes”. The
story is subtle however and will not be completed until the end of Section 4.
We will approach this irreducibility in a manner familiar to physicists, by
studying the non-degeneracy of an invariant bilinear form. Let us therefore
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recall that we have oriented our link states so that the links and defects point
to the right. This facilitates a left action of the Temperley-Lieb algebra. We
could also introduce the reflections of the link states across a vertical line.
The links and defects would then point to the left, and we would have a
natural right action of TLn on these reflected link states. This suggests that
we might be able to treat reflected link states as linear functionals acting on
the link states, hence that combining a reflected link state with a standard
link state may lead to an interesting bilinear pairing.

We therefore define, on each Vn,p, a form
〈·, ·〉 ≡ 〈·, ·〉

n,p
as follows. If x

and y are two (n, p)-link states, then
〈
x, y

〉
is computed by reflecting x across

a vertical line and identifying its vertical border with that of y. The value〈
x, y

〉
is then non-zero only if every defect of x ends up being connected to

one of y; when this is so,
〈
x, y

〉
= βm where m is the number of closed loops

so obtained. This is then extended bilinearly3 to all of Vn,p. As examples,
we compute that in V4,1,

(3.4)

〈
,

〉
= = β,

〈
,

〉
= = 1

and
〈

,
〉
= = 0.

Note that this bilinear form is symmetric —
〈
x, y

〉
and

〈
y, x

〉
are just reflec-

tions of one another in the pictorial interpretation.
Consider now the reflection of an n-diagram about a vertical line. This

will be another n-diagram, so reflection defines a linear map from TLn to
itself. This obviously preserves the multiplication except that the order will
be reversed — this map is an antiautomorphism of TLn.

4 We will therefore
regard it as an adjoint, denoting it by U 
→ U †. It is clear from Equation (2.3)
that 1† = 1 and u†i = ui. This definition is natural and useful. Indeed, it

3What follows can easily be adapted to the case where one extends sesquilinearly.
We have chosen bilinearity for simplicity.

4We will take this adjoint to be linear as we are considering
〈·, ·〉 as a bilinear

form. If one prefers a sesquilinear form, then the adjoint should be taken to be
antilinear. Note however, that this conflicts with the defining relations (2.2) unless
β is real.
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shows that the bilinear forms we have defined turn out to be invariant with
respect to the TLn-action.

Lemma 3.1. The bilinear form
〈·, ·〉 on Vn,p satisfies

(3.5)
〈
x, Uy

〉
=

〈
U †x, y

〉
for all U ∈ TLn and x, y ∈ Vn,p.

To see this, we merely note that the two sides of (3.5) are identical when
expressed in terms of diagrams and link states.

We introduce a convenient notation x y for the unique n-diagram
which, when cut in half vertically, decomposes into the (n, p)-link state x
and the vertical reflection of the (n, p)-link state y. Extending linearly, we
obtain a map · · from Vn,p × Vn,p into TLn (in fact we obtain such a
map for each p, but we will not bother to distinguish them). The utility of
the bilinear form we have defined stems from the following relation.

Lemma 3.2. If x, y, z ∈ Vn,p, then

(3.6) x y z =
〈
y, z

〉
x.

Proof. Observe first that linearity allows us to assume that x, y and z are
in fact (n, p)-link states. If any of the defects of y are closed by a link in
z, then

〈
y, z

〉
= 0 by definition, so the right-hand side of (3.6) vanishes. As

the defects of x join those of y, this will close two defects of x, leading to
an additional link in x y z. But then, the resulting link state will vanish
in Vn,p due to its definition as a quotient, hence the left-hand side of (3.6)
likewise vanishes.

It remains to check the case in which none of the defects of y are closed
by a link in z. But then it is clear that the left-hand side of (3.6) will be
proportional to x. The proportionality constant is then given by β to the
power of the number of loops in the concatenation of x y and z. Since x
contributes no loops, this constant is just

〈
y, z

〉
as required. �

We illustrate this deceptively simple result with an example in V7,3:
Compare
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(3.7) · = β with
〈

,
〉
= β.

We remark that it is tempting (and sometimes useful) to think of x y as
the combination xy†, where the “adjoint” of the link state y refers likewise
to its vertical reflection. Then, one could “prove” Lemma 3.2 as follows:

(3.8) x y z =
(
xy†

)
z = x

(
y†z

)
=

〈
y, z

〉
x.

However, caution should be exercised with such manipulations. If x and y
belong to Vn,p′ and z is an (n, p)-link state (with p′ �= p), then (3.6) and (3.8)
do not make sense — the bilinear form is no longer defined. Nevertheless,
the product x y z may be non-zero (in Mn) and not even proportional to
x. For example,

(3.9) · = .

We will therefore refrain from trying to define an adjoint of a link state
(what one means is of course a linear functional in the dual vector space).

We can now understand how this bilinear form will help to decide the
irreducibility of the Vn,p. For this, we consider the radical Rn,p of the bilinear
form on Vn,p:

(3.10) Rn,p =
{
x ∈ Vn,p :

〈
x, y

〉
= 0 for all y ∈ Vn,p

}
.

The invariance (Lemma 3.1) of the bilinear form implies that the radical
Rn,p is a submodule of Vn,p.

Proposition 3.3. If
〈·, ·〉 is not identically zero on Vn,p, then Vn,p is cyclic

and indecomposable. Moreover, Vn,p/Rn,p is then irreducible. Equivalently,
Rn,p is the unique maximal proper submodule of Vn,p.
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(We shall discuss the case when
〈·, ·〉 is identically zero shortly.)

Proof. Since
〈·, ·〉 is not identically zero, there exist y, z ∈ Vn,p such that〈

y, z
〉
= 1. Then, Equation (3.6) says that for every x ∈ Vn,p, we may form

x y ∈ TLn to obtain

(3.11) x y z =
〈
y, z

〉
x = x.

Thus, z generates Vn,p, proving that this module is cyclic. Now, any z /∈ Rn,p

has such a partner y, so every such z is a generator of Vn,p. It follows that
every non-zero element of Vn,p/Rn,p generates this quotient, hence that the
quotient is irreducible.

Suppose then that Vn,p can be written as Vn,p = A⊕B. Let z be a
generator of Vn,p and zA ∈ A, zB ∈ B be such that z = zA + zB. If both
zA and zB were in Rn,p, then they would generate a submodule TLnzA ⊕
TLnzB ⊆ Rn,p that includes TLnz and is distinct from Vn,p. So, at least one
of zA or zB is not an element of Rn,p. If it is zA, then zA generates Vn,p,
so Vn,p = TLnzA ⊆ A, giving B = 0. If zB /∈ Rn,p, then A = 0 by the same
argument. This proves that Vn,p is indecomposable. �

We will find it convenient to denote the quotient Vn,p/Rn,p by Ln,p, even
when

〈·, ·〉 vanishes identically. In this latter case, Ln,p is the trivial module
{0}; otherwise, Ln,p is irreducible. For this reason, we shall often refer to
the Ln,p as the irreducibles, understanding that one should exclude any Ln,p

that vanish.
To prove that Vn,p is irreducible, it is therefore enough to show that

the radical Rn,p is zero. Equivalently, we must show that the bilinear form
we have defined on Vn,p is non-degenerate. This will be the strategy of
Section 4. Note however that Rn,p �= {0} only implies that Vn,p is reducible
when

〈·, ·〉 �= 0 (that is, when Rn,p �= Vn,p). In case
〈·, ·〉 = 0, we cannot

decide the irreducibility of Vn,p using Proposition 3.3.
However, when β �= 0,

〈
x, x

〉
= βp �= 0 for all (n, p)-link states x, so the

bilinear form is non-zero. Indeed, if β = 0 but n �= 2p (so there is at least
one defect), then the form is non-zero because we may choose x and y so as
to form a “snake”:
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(3.12)
〈
x, y

〉
= = 1.

However, when β = 0 and there are no defects (n = 2p), the bilinear form
vanishes identically. It is therefore useful to renormalise it, defining

(3.13)
〈
x, y

〉′
= lim

β→0

〈
x, y

〉
β

(x, y ∈ V2p,p),

where the forms appearing within the limit are those of the V2p,p with β �= 0.

Since
〈
x, y

〉
is a polynomial in β with vanishing constant coefficient,

〈
x, y

〉′
is defined — in fact, when x and y are (2p, p)-link states, it is 1 when a
single loop is formed and 0 otherwise. Moreover,

〈·, ·〉′ inherits bilinearity,
symmetry and invariance from

〈·, ·〉. Note that this renormalised bilinear
form is not identically zero because x and y may be chosen so as to obtain

(3.14)
〈
x, y

〉′
= lim

β→0

1

β
= lim

β→0

β

β
= 1.

We cannot immediately apply Proposition 3.3 to the radical of this renor-
malised form because the proof relied crucially upon Lemma 3.2, special to
the form

〈·, ·〉. However, we have the following replacement:
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Lemma 3.4. Let x and y be (2p, p− 1)-link states, so that they have pre-
cisely two defects. Denote by x′ and y′ the respective (2p, p)-link states
formed by closing these defects. Then for β = 0,

(3.15) x y z =
〈
y′, z

〉′
x′, for all z ∈ V2p,p.

This extends linearly to all x, y ∈ V2p,p−1.

Proof. Note first that the defects of y must be closed by a link in z (assuming
by linearity that the latter is a (2p, p)-link state). Thus, x y z will be
proportional to the link state x′ obtained by closing the defects of x. The
constant of proportionality is given by β to the power of the number of loops
formed by y and z. This is 0 (since β = 0) unless there are no such loops,
in which case it is 1. However, this matches the value of

〈
y′, z

〉′
, as closing

the defects of y leads to an additional loop which is dealt with by dividing
by β in (3.13). �

If R′2p,p denotes the radical of the renormalised β = 0 form
〈·, ·〉′, we can

now mimic the proof of Proposition 3.3 to obtain the analogous result.

Proposition 3.5. The form
〈·, ·〉 is identically zero if and only if β = 0

and n = 2p. Then, V2p,p is cyclic, indecomposable and has an irreducible
quotient V2p,p/R

′
2p,p.

It remains only to remark that this quotient is never zero because we have
shown that R′2p,p �= V2p,p (the form

〈·, ·〉′ is never identically zero).
We conclude this section with a study of whether the Vn,p, and their irre-

ducible quotients Ln,p = Vn,p/Rn,p are all mutually distinct as TLn-modules
(up to isomorphism of course). The fact that Vn,p and Vn,p′ involve differ-
ent numbers of links, for p �= p′, can be misleading. For example, V2,1 and
V2,0 are isomorphic one-dimensional TL2-modules, when β = 0 (1 and u1 are
represented by 1 and 0, respectively, on both). Nevertheless, this behaviour
is rather exceptional.

Proposition 3.6. Let N and N′ be submodules of Vn,p and Vn,p′, respec-
tively, where p > p′ and

〈·, ·〉
n,p
�= 0. Then, the only module homomorphism

θ : Vn,p/N→ Vn,p′/N
′ is the zero homomorphism.
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Proof. Let γ be the canonical homomorphism from Vn,p onto Vn,p/N. Choose
y, z ∈ Vn,p such that

〈
y, z

〉
= 1. Then, for all x ∈ Vn,p,

(3.16) x y θ (γ (z)) = θ
(
γ
(
x y z

))
= θ (γ (x)) .

But when p > p′, x y θ (γ (z)) = 0, since θ (γ (z)) has p′ links but left-
multiplying by x y leads to at least p links. Thus, θ (γ (x)) = 0, so θ = 0
as γ is surjective. �

Putting N = N′ = {0} or N = Rn,p and N′ = Rn,p′ in Proposition 3.6, and
using the basic fact that an isomorphism has an inverse, we obtain:

Corollary 3.7. When
〈·, ·〉

n,p
and

〈·, ·〉
n,p′

are non-zero,

Vn,p
∼= Vn,p′ ⇒ p = p′ and Ln,p

∼= Ln,p′ ⇒ p = p′.

As we have seen,
〈·, ·〉

2p,p
vanishes identically when β = 0, so it follows that

V2p,p (L2p,p) could coincide with one of the other V2p,p′ (L2p,p′) in this case.
This is what allows the (β = 0) isomorphism V2,1

∼= V2,0 which we remarked
upon above.

We record a related result for future reference:

Proposition 3.8. Every module homomorphism θ : Vn,p → Vn,p is a mul-
tiple of the identity.

Proof. When
〈·, ·〉

n,p
�= 0, this follows readily by choosing y, z ∈ Vn,p such

that
〈
y, z

〉
= 1. Then, for all x ∈ Vn,p,

(3.17) θ (x) = θ
(
x y z

)
= x y θ (z) =

〈
y, θ (z)

〉
x.

For the remaining case, when
〈·, ·〉

n,p
= 0, we must have n = 2p and β = 0.

However, the renormalised form
〈·, ·〉′ of Equation (3.13) does not vanish

identically, so there exist y′, z ∈ V2p,p such that
〈
y′, z

〉′
= 1. For every x′ ∈

V2p,p, let x ∈ V2p,p−1 be obtained by cutting an outermost link of x′ (say
the one closing at n = 2p for definiteness). Form y ∈ V2p,p−1 from y′ in the
same fashion. Then, Lemma 3.4 gives

(3.18) θ
(
x′
)
= θ

(
x y z

)
= x y θ (z) =

〈
y′, θ (z)

〉′
x′,

completing the proof. �
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4. Gram matrices

We can now turn to a study of the irreducibility of the Vn,p, based on the non-
degeneracy of the invariant bilinear forms

〈·, ·〉
n,p

. Recall that each Vn,p has

a canonical basis given by the (n, p)-link states. With respect to this basis,
the corresponding form is represented by a symmetric dn,p × dn,p matrix
which we shall denote by Gn,p. Such matrices are called Gram matrices. For
example,

G4,0 =
(
1
)
, G4,1 =

⎛
⎝β 1 0
1 β 1
0 1 β

⎞
⎠ and G4,2 =

(
β2 β
β β2

)
,(4.1)

when we adopt the (respective) ordered bases⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ , ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

As the radical Rn,p is represented by the kernel of the Gram matrix Gn,p, we
see that the irreducibility of the Vn,p is equivalent to det (Gn,p) �= 0.5 Our
aim in this section is to compute det (Gn,p) explicitly. The strategy is to
use restriction to derive a recursion relation for det (Gn,p) when the Rn,p all
vanish. This turns out to occur for generic β ∈ C, excluding only a countable
set. Continuity therefore takes care of the outstanding cases.

Proposition 4.1. Consider the inclusion of TLn−1 in TLn (for fixed β)
given by sending the unit to the unit and the ui with i < n− 1 to their coun-
terparts in TLn. Denote the corresponding restriction of Vn,p to a TLn−1-
module by Vn,p↓ . Then, we have an exact sequence of TLn−1-modules,

(4.2) 0 −→ Vn−1,p −→ Vn,p↓ −→ Vn−1,p−1 −→ 0,

meaning that Vn−1,p is a submodule of Vn,p↓ and Vn,p↓ /Vn−1,p ∼= Vn−1,p−1.

Proof. The inclusion Vn−1,p ↪→ Vn,p↓ is defined to extend an (n− 1, p)-link
state to an (n, p)-link state by adding a defect at position n. This is clearly

5We shall defer addressing the exceptional case of V2p,p with β = 0 until the end
of the section.
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an injective homomorphism of TLn−1-modules as the inclusion of TLn−1
in TLn will preserve the defect at n. The quotient Vn,p↓ /Vn−1,p is then a
TLn−1-module with a basis of cosets which are represented by the (n, p)-link
states in which n is part of a link.

There is an obvious vector space isomorphism Ψ from Vn,p↓ /Vn−1,p to
Vn−1,p−1 obtained by cutting the link which closes at n and then removing
the newly-created defect at n. We wish to show that Ψ is in fact an isomor-
phism of TLn−1-modules, thereby completing the proof. So for a given basis
element z of Vn,p↓ /Vn−1,p, let m denote the opening point of the link which
closes at n. Applying any ui (i < n− 1) to z usually then gives another
such basis element in which n is linked to some m′. It is easy to see that
Ψ (uiz) = uiΨ(z) in this case. The only exception occurs if i = m− 1 and
m− 1 is a defect in z. Then, applying um−1 to z leads to n becoming a
defect:

(4.3) = .

In this case, Ψ (um−1z) = Ψ (0) = 0. But, Ψ (z) will have defects at both
m− 1 and m, so applying um−1 will close the defect leading to an extra
link. Thus, um−1Ψ(z) = 0 too and Ψ is a homomorphism. �

Corollary 4.2. When q2(n−2p+1) �= 1 (recall that we write β = q + q−1),
the exact sequence (4.2) splits, so we have

(4.4) Vn,p↓ ∼= Vn−1,p ⊕ Vn−1,p−1 (as TLn−1-modules).

Proof. This is easy to see by using the eigenvalues of the central element
Fn−1 on TLn−1 (see Appendix A). Since Fn−1 is central, left-multiplication
by Fn−1 − λ1 is a homomorphism from any module N to itself, for any
λ ∈ C. Thus, the (generalised) eigenspaces of Fn−1 on N are submodules.
Applying this to N = Vn,p↓ and recalling that Vn−1,p and Vn−1,p−1 are
indecomposable, we see that Fn−1 has at most two eigenvalues: fn−1,p with
eigenspace Vn−1,p and fn−1,p−1 with eigenspace (isomorphic to) Vn−1,p−1.
If these eigenvalues are distinct, both eigenspaces are submodules and (4.2)
splits. It remains to determine when fn−1,p = fn−1,p−1. But, Proposition A.2
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gives

(4.5) fn−1,p−1 − fn−1,p =
(
q − q−1) (qn−2p+1 − q−(n−2p+1)

)
.

If either factor is zero, then q2(n−2p+1) will be 1, contradicting the hypothesis.
�

We introduce a useful definition: Say that the pair (n, p) is critical for
a given q ∈ C× if q2(n−2p+1) = 1. Similarly, any quantity indexed by n and
p will be said to be critical if (n, p) is critical. A rephrasing of Corollary 4.2
is therefore that a non-critical restricted module Vn,p↓ always splits as
Vn−1,p ⊕ Vn−1,p−1.

Suppose now that Vn,p↓ is non-critical so that there exists a splitting
ψ : Vn,p↓ −→ Vn−1,p ⊕ Vn−1,p−1. Then, if we order the canonical basis of
link states of Vn,p so that those of Vn−1,p (which have n as a defect) come
first, ψ may be chosen so that it is represented by a matrix of the form

(4.6) Un,p =

(
id Vn,p
0 id

)
.

Here, the submatrix Vn,p encodes the non-trivial part of the splitting (the
embedding of Vn−1,p−1 in Vn,p↓ ).

At this point, we make an inductive assumption: We suppose that when
q is not a root of unity (so (4.2) always splits), the Rn′,p′ vanish for all
n′ < n and all p′ — this is certainly true for n′ � 2. With this assumption,
the Vn′,p′ are all irreducible and mutually distinct by Proposition 3.3 and
Corollary 3.7.

Lemma 4.3. If the splitting ψ exists, we may define a bilinear form on
Vn−1,p ⊕ Vn−1,p−1 by

(4.7)
〈〈
x+ x′, y + y′

〉〉
=

〈
ψ−1

(
x+ x′

)
, ψ−1

(
y + y′

)〉
n,p
,

for x, y ∈ Vn−1,p and x′, y′ ∈ Vn−1,p−1. This form is symmetric and invari-
ant, hence

(4.8)
〈〈
x+ x′, y + y′

〉〉
=

〈
x, y

〉
n−1,p + αn,p

〈
x′, y′

〉
n−1,p−1,

for some αn,p ∈ C.

Proof. This is a well-known argument: A bilinear form induces a map from a
module V to its dual by v 
→ 〈

v, ·〉. The invariance of the form translates into
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this induced map being an intertwiner. When V is irreducible, so is its dual,
so Schur’s lemma tells us that the induced maps form a one-dimensional
vector space, hence so too do the invariant bilinear forms. In the application
at hand, V is the direct sum of two non-isomorphic irreducible modules,
so there is a two-dimensional space of bilinear forms. Comparing the form
on Vn−1,p with that on the direct sum fixes one of the latter’s degrees of
freedom to be unity. �

In matrix form, this becomes

Gn−1,p ⊕ αn,pGn−1,p−1 =
(
U−1n,p

)T
Gn,pU

−1
n,p

⇒ Gn,p = UT
n,p

(
Gn−1,p 0

0 αn,pGn−1,p−1

)
Un,p.(4.9)

This is the recurrence relation which we shall use to compute det (Gn,p). For
this, it is useful to introduce the familiar notation [m]q for the q-number

(4.10) [m]q =
qm − q−m
q − q−1 ,

with the limiting case for q = ±1 being [m]q = mqm−1. Note that (n, p) is
critical if and only if [n− 2p+ 1]q = 0 or q = ±1.

Proposition 4.4. When [n− 2p+ 1]q �= 0 and p > 0, αn,p is finite and is
given by

(4.11) αn,p =
[n− 2p+ 2]q
[n− 2p+ 1]q

.

Proof. We will prove this first under the assumption that q is not a root of
unity. The general case then follows from continuity.

We begin by writing the Gram matrix in block form. We again choose
to order the canonical basis of link states so that those with n a defect come
first. Thus,

(4.12) Gn,p =

(
G1,1

n,p G1,2
n,p

G2,1
n,p G2,2

n,p

)
,

whereG1,1
n,p is in fact justGn−1,p (removing the defect at n has no effect on the

values taken by the bilinear form). Substituting Equations (4.6) and (4.12)
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into Equation (4.9) now gives two independent (non-trivial) constraints:

G1,2
n,p = Gn−1,pVn,p(4.13a)

and G2,2
n,p = (Vn,p)

T Gn−1,pVn,p + αn,pGn−1,p−1(4.13b)

= (Vn,p)
T G1,2

n,p + αn,pGn−1,p−1,(4.13c)

where the last equality uses (4.13a).
Just as we chose the basis of Vn,p so that the link states with n a defect

came first, we now refine it so that when n is a defect, the link states with
n− 1 a defect come before those with n− 1 part of a link. Similarly, when
n is part of a link, put those link states with n− 1 linked to n before the
rest. Pictorially, the order is:

, , , .

This results in G1,2
n,p, G

2,2
n,p and Vn,p having the (refined) block forms

(4.14)

G1,2
n,p =

(
0 ∗

Gn−2,p−1 ∗
)
, G2,2

n,p =

(
βGn−2,p−1 ∗

∗ ∗
)

and Vn,p =

(
V 1,1
n,p ∗
V 2,1
n,p ∗

)
.

To explain, the top-left block of G1,2
n,p corresponds to the scalar product of

link states of types 1 and 3 (in the above order), which clearly gives zero.
Similarly, the bottom-left block of G1,2

n,p corresponds to the scalar product
of link states of types 2 and 3, and it is easy to see that the value will
not change if we remove n− 1 and n from both (cutting one link in each).
Finally, the top-left block of G2,2

n,p represents the scalar product of two type
3 link states, hence the factor of β.

We substitute the block forms (4.14) and (4.12) (with n→ n− 1) into
Equation (4.13a). The first column then yields two equations:

0 = Gn−2,pV 1,1
n,p +G1,2

n−1,pV
2,1
n,p(4.15a)

and Gn−2,p−1 = G2,1
n−1,pV

1,1
n,p +G2,2

n−1,pV
2,1
n,p .(4.15b)
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Using Equation (4.13a) (again with n→ n− 1) on (4.15a) gives

(4.16) V 1,1
n,p + Vn−1,pV 2,1

n,p = 0,

since Gn−2,p is invertible by assumption (Rn−2,p = {0}). To simplify Equa-
tion (4.15b), we note that G2,1

n−1,p is the transpose of G
1,2
n−1,p and apply (4.12),

(4.13b) (both with n→ n− 1) and then (4.16) to get

(4.17) V 2,1
n,p =

1

αn−1,p
id .

Here we have used the invertibility of Gn−2,p−1.
Finally, we look at the top-left block of Equation (4.13c). Substituting

the block forms (4.14), applying (4.17) and the invertibility of Gn−2,p−1 once
more, we arrive at a recursion relation for the αn,p:

(4.18) αn,p = β − 1

αn−1,p
.

This simple relation allows us to reduce the computation of any αn,p to
that with n smaller. In particular, if n = 2p, we have Gn,p = βGn−1,p−1,
since Vn−1,p is not defined and (n− 1, p− 1)-link states are lifted to Vn,p by
adding a link. This gives the starting point for the recursion, α2p,p = β. It
is easy to check that Equation (4.11) is the unique solution. �

Since det (Un,p) = 1, Equation (4.9) now yields an explicit recursion rela-
tion for the determinants of the Gram matrices:

(4.19a) det (Gn,p) = αdn−1,p−1
n,p det (Gn−1,p) det (Gn−1,p−1) .

Here, dn−1,p−1 is the dimension of Vn−1,p−1 as given in Equation (2.9). The
starting points for this recursion are the results

(4.19b) det (Gn,0) = 1 and det (G2p−1,p) = 1.

The first follows because Vn,0 is spanned by a single link state consist-
ing entirely of defects. The second follows from putting G2p,p = βG2p−1,p−1
into (4.19a).

It is clear from Equations (4.11) and (4.19) that the determinant of
Gn,p can only vanish when q is a root of unity. This gives the following
fundamental result:
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Proposition 4.5. When q is not a root of unity, the determinant of the
Gram matrices of the Vn,p are all non-zero, hence the Vn,p are irreducible
TLn-modules.

Corollary 4.6. When q is not a root of unity, TLn is a semisimple algebra
and the Vn,p, 0 � p � �n/2�, form a complete set of non-isomorphic irre-
ducible modules.

Proof. The Vn,p are irreducible by Proposition 4.5, distinct by Corollary 3.7,
and form a complete set (meaning that there are no other non-isomorphic
irreducibles) because the sum of the squares of their dimensions gives that
of TLn (Equation (2.11)). The result now follows from Proposition B.2. �

We remark that the irreducibility of the Vn,p for all p is not sufficient
to conclude that TLn is semisimple. A counterexample is TL2 with β = 0
for which the left regular representation is reducible but indecomposable,
despite both V2,1 and V2,0 being irreducible (they both have dimension 1).
The issue here is that, as we saw in Section 3, these two standard modules are
in fact isomorphic. The sum of the squares of the dimensions of the distinct
irreducibles is thus 1 < dimTL2 = 2, so we cannot deduce semisimplicity.
For this, it is sufficient to have both the irreducibility and the inequivalence
of the Vn,p.

Let us return now to the recursion relation (4.19) for the det (Gn,p). Its
solution gives us the main result of this section.

Theorem 4.7. For all n, p and all β = q + q−1 ∈ C, the Gram matrix of
Vn,p has determinant

(4.20) det (Gn,p) =

p∏
j=1

(
[n− 2p+ 1 + j]q

[j]q

)dn,p−j

.

Proof. As in the proof of Proposition 4.4, we may first assume that q is
not a root of unity so that the recursion (4.19) is well-defined for all n and
p (q general then follows from continuity). Checking Equation (4.19b) is
easy, and (4.19a) follows from considering the numerators and denominators
separately and applying Equation (2.8) several times. �
Note that Equation (4.20) is manifestly invariant under q ↔ q−1 because
q-numbers are unchanged under this transformation. We remark that it is
not entirely obvious from this formula that det (Gn,p) is actually finite for
all q �= 0, though this is clear from the definition (it is polynomial in β).
Here is the most useful consequence of the determinant formula (4.20):
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Corollary 4.8. If (n, p) is critical, then Rn,p = {0}, so Vn,p is irreducible.

Proof. Recall that (n, p) critical means that q2(n−2p+1) = 1. We let 	 be the
smallest positive integer for which q2� = 1, so that n− 2p+ 1 = m	 for some
positive integer m, and

(4.21) det (Gn,p) =

p∏
j=1

(
[m	+ j]q

[j]q

)dn,p−j

.

The numerator only vanishes when j = m′	 for some positive integerm′ (this
also requires 	 > 1), but then the denominator vanishes likewise. Now note
that

(4.22) [m	]q =
q� − q−�
q − q−1

qm� − q−m�

q� − q−� = [	]q [m]q� ,

so the zero of [m	]q is always first order (because q� = ±1, so [m]q� �= 0 for
m �= 0). Thus, the zeroes in the numerator of (4.21) precisely cancel those
in the denominator, hence det (Gn,p) �= 0. �
This corollary implies the semisimplicity of TLn when β = ±2 (q = ±1)
because all (n, p) are then critical. We similarly obtain the semisimplicity of
the TLn with n odd at β = 0 (q = ±i). Indeed, 	 = 2 divides n− 2p+ 1 in
this case, so the (n, p) with n odd are all critical. The inequivalence of the
Vn,p follows from Corollary 3.7 as n odd means, in particular, that n �= 2p
for any p. Even though the (n, p) are not critical when β = 0 and n is even,
the tools developed up to now allow for the proof that V2p,p, which then
coincides with R2p,p, is irreducible.

Proposition 4.9. When β = 0, the radical R2p,p is irreducible.

Proof. Since R2p,p = V2p,p when β = 0, we must show that R′2p,p = {0} (Prop-
osition 3.5). Let G′2p,p denote the Gram matrix of the renormalised form〈·, ·〉′ defined in Equation (3.13). As noted before Proposition 4.5, G2p,p =
βG2p−1,p−1 and G′2p,p = limβ→0G2p,p/β = G2p−1,p−1|β=0. For β = 0, the val-
ues of q are ±i and [m]q is 0 whenm is even and ±1 when it is odd. Therefore,

(4.23) det
(
G′2p,p

)
= det (G2p−1,p−1)|β=0 =

p−1∏
j=1

(
[j + 2]q
[j]q

)d2p−1,p−1−j
∣∣∣∣∣
q=±i

.

Each factor of this product with j odd is a power of ±1. When j is even, we
use [2m]q = [2]q [m]q2 to see that the factor’s numerator and denominator are
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both polynomials in β with a simple root at β = 0. Their quotient is therefore
non-zero at β = 0. It follows that det

(
G′2p,p

) �= 0, whence the result. �

5. Explorations at roots of unity

The results of Section 4 not only tell us when the radical Rn,p is trivial, but
they also tell us its dimension when it is not. Recall that Equation (2.8)
amounts to a simple recursion relation for the dimensions of the standard
modules:

(5.1) dimVn,p = dimVn−1,p + dimVn−1,p−1.

The analogue for the Rn,p is given as follows. Let q be a root of unity and let
	 be the minimal positive integer satisfying q2� = 1. For given (n, p) then,
set

(5.2) n− 2p+ 1 = k (n, p) 	+ r (n, p) ,

where k (n, p) ∈ N and r (n, p) ∈ {1, . . . , 	− 1, 	}. The criticality of (n, p) is
therefore equivalent to r (n, p) = 	 when q is a root of unity.

Proposition 5.1. The dimensions of the radicals Rn,p satisfy the recursion
relation

(5.3) dimRn,p =

⎧⎪⎨
⎪⎩
0 if r (n, p) = 	,

dimRn−1,p + dimVn−1,p−1 if r (n, p) = 	− 1,

dimRn−1,p + dimRn−1,p−1 otherwise,

with initial conditions dimRn,0 = 0 and dimR2p−1,p = 0.

Proof. The initial conditions are clear as Gn,0 =
(
1
)
for all n and V2p−1,p

is not defined for all p. The recurrence when r (n, p) = 	, which is when
(n, p) is critical, also follows directly from Corollary 4.8. We may therefore
assume that r (n, p) �= 	. Then, q2(n−2p+1) = q2r(n,p) �= 1 by minimality of 	,
so Corollary 4.2 applies. We can therefore make a change of bases to bring
Gn,p to the block diagonal form of Equation (4.9):

(5.4) Gn,p = UT
n,p

(
Gn−1,p 0

0 αn,pGn−1,p−1

)
Un,p.
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We want the dimension of the kernel of Gn,p. But, as Un,p is invertible,
(5.5)

Gn,pv = 0 ⇐⇒
(

Gn−1,pw1

αn,pGn−1,p−1w2

)
= 0, where

(
w1

w2

)
= Un,pv.

Thus when αn,p �= 0, ker(Gn,p) = ker(Gn−1,p)⊕ ker(Gn−1,p−1) as vector spaces,
whereas when αn,p = 0, ker(Gn,p) = ker(Gn−1,p)⊕ Vn−1,p−1 as vector spaces.
The result now follows from Proposition 4.4. �

Corollary 5.2. The dimensions of the irreducible quotients Ln,p = Vn,p/Rn,p

satisfy the recursion relation

(5.6) dimLn,p =

⎧⎪⎨
⎪⎩
dimVn,p if r (n, p) = 	,

dimLn−1,p if r (n, p) = 	− 1,

dimLn−1,p + dimLn−1,p−1 otherwise,

with initial conditions dimLn,0 = 1 and dimL2p−1,p = 0.

We can use Proposition 5.1 and Corollary 5.2 to build up tables of dimen-
sions of radicals and irreducibles. It proves convenient to arrange these tables
so that n increases as we go down and p increases in a south-westerly direc-
tion (staying constant to the south-east). The important quantity n− 2p+ 1
is therefore constant along vertical lines and increasing from left to right.
This corresponds to the standard arrangement of the Bratteli diagram of the
family of Temperley-Lieb algebras. To illustrate this, we present the first few
rows of this diagram in Figure 1. It is useful to mark the critical (n, p) —
these form vertical lines on the diagram which we will refer to as critical
lines. The regions bounded by consecutive critical lines will be referred to
as critical strips.

When we replace the pairs in the Bratteli diagram by some quantity
indexed by n and p, we shall also refer to the result as a Bratteli dia-
gram. In Figure 2, we show the first few rows of the Bratteli diagrams
obtained by replacing (n, p) by dimRn,p and dimLn,p when β = ±√2 (q =
±eiπ/4,±e3πi/4). The features of these tables are similar for other roots of
unity. Notice that the radicals vanish on the critical lines in accordance with
Corollary 4.8.

The feature which is of most interest to us here is that the dimensions
of the non-critical Rn,p appear to coincide with those of the Ln,p′ , where p

′

is obtained from p by reflecting about the critical line immediately to the
right. This suggests that when the radical Rn,p does not vanish, it is in fact
irreducible. Establishing this irreducibility is somewhat difficult and will be
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|
(1, 0)

(2, 1) | (2, 0) |
(3, 1) (3, 0)

(4, 2) | (4, 1) | (4, 0) |
(5, 2) (5, 1) (5, 0)

(6, 3) | (6, 2) | (6, 1) | (6, 0) |
(7, 3) (7, 2) (7, 1) (7, 0)

(8, 4) | (8, 3) | (8, 2) | (8, 1) | (8, 0)
...

...
...

...

Figure 1: An example of the arrangement of pairs called a Bratteli diagram.
The critical lines in this picture correspond to β = 0, hence 	 = 2.

0 1
0 0 | 1 1 |

0 0 2 1
0 1 | 0 2 2 | 1

1 0 0 4 4 1
1 5 | 0 0 | 4 4 | 5 1 |

6 0 0 0 8 14 6 1
6 20 | 0 1 | 0 8 8 | 20 6 | 1

26 0 1 0 0 16 48 26 8 1
26 74 | 1 9 | 0 0 | 16 16 | 74 26 | 9 1 |

100 0 10 0 0 0 32 165 100 44 10 1
100 265 | 10 54 | 0 1 | 0 32 32 | 265 100 | 54 10 | 1

...
...

...
...

...
...

dimRn,p dimLn,p

Figure 2: The Bratteli diagrams for the dimensions of the radicals Rn,p and
the irreducibles Ln,p when β = ±√2, hence 	 = 4.

the focus of Section 7. For now, we content ourselves with demonstrating
this observed coincidence of dimensions.

Proposition 5.3. Let q be a root of unity and (n, p) be non-critical. Then,
dimRn,p is equal to dimLn,p+r(n,p)−� if p+ r (n, p)− 	 � 0 and 0 otherwise.

We remark that the indices (n, p) of R and (n, p+ r (n, p)− 	) of L form a
symmetric pair, a concept introduced in Section 7.
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Proof. This is clear for n = 1 as then, 	 > 2 and the index p+ r(n, p)−
	 = 2− 	 is negative, so that dimRn,p = 0 as needed. So assume that the
proposition is true for n− 1 and all p. We have to consider four cases for the
pairs (n, p), corresponding to whether (n− 1, p) and/or (n− 1, p− 1) lie on
critical lines. The position of the pairs (n− 1, p), (n, p) and (n− 1, p− 1),
relative to the critical lines, is pictured below in each case.

| ... ... ... |
(n−1,p) (n−1,p−1)

| ... (n,p) ... |
(n+1,p+1) (n+1,p)

| ... ... ... |

... ... | ...
(n−1,p) (n−1,p−1)

... (n,p) | ...
(n+1,p+1) (n+1,p)

... ... | ...

Case (1) Case (2)

... | ... ...
(n−1,p) (n−1,p−1)

... | (n,p) ...
(n+1,p+1) (n+1,p)

... | ... ...

... | ... | ...
(n−1,p) (n−1,p−1)

... | (n,p) | ...
(n+1,p+1) (n+1,p)

... | ... | ...

Case (3) Case (4)

1) Both (n− 1, p) and (n− 1, p− 1) are non-critical, so r (n, p) /∈ {1, 	−
1, 	}. Then,

dimRn−1,p = dimLn−1,p+r(n−1,p)−� = dimLn−1,p−1+r(n,p)−�(5.7a)

dimRn−1,p−1 = dimLn−1,p−1+r(n−1,p−1)−� = dimLn−1,p+r(n,p)−�.(5.7b)

Proposition 5.1 now gives dimRn,p as the sum of the left-hand sides.
To compute the sum of the right-hand sides, we note that
r (n, p+ r (n, p)− 	) = −r (n, p) (mod 	), hence Corollary 5.2 gives
dimLn,p+r(n,p)−� for this sum.

2) Only (n− 1, p− 1) is critical. Then, r (n, p) = 	− 1 and (5.7a) is valid,
but instead of (5.7b), we have

(5.7c) dimVn−1,p−1 = dimLn−1,p−1 = dimLn−1,p+r(n,p)−�.

Now apply Proposition 5.1 and Corollary 5.2 to the sum of (5.7a)
and (5.7c).

3) Only (n− 1, p) is critical. Now, r (n, p) = 1, (5.7b) is valid, and we use

(5.7d) dimRn−1,p = 0.

Adding (5.7b) and (5.7d) then gives the result.
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4) Both (n− 1, p) and (n− 1, p− 1) are critical. Thus, r (n, p) = 1 = 	−
1, that is, 	 = 2 (and so β = 0). The result now follows from adding
(5.7c) and (5.7d).

�

We remark that there is one (non-trivial) case in which we already know that
the radical is irreducible. This is the content of Proposition 4.9 which asserts
that R2p,p is irreducible when β = 0. Of course, this does not tell us that
R2p,p is isomorphic to L2p,p−1 (since 	 = 2 when β = 0) as Proposition 5.3
would have us believe.

6. Induced modules

Recall that in Proposition 4.1, we studied the result of restricting the action
on a TLn-module to the action of the subalgebra TLn−1 spanned by the
n-diagrams in which the two n-th points are joined. Restriction has a close
relative which constructs instead a TLn+1-module from a given TLn-module
(subject to the analogous inclusion of TLn in TLn+1). This is, of course, the
induced module construction. We therefore consider the induced modules

(6.1) Vn,p↑ = TLn+1 ⊗TLn
Vn,p.

These are TLn+1-modules in which the action is given by left-multiplication:
a (b⊗ z) = (ab)⊗ z for all a, b ∈ TLn+1 and z ∈ Vn,p. The subtlety of this
definition lies in the subscript on the “⊗” which informs us that the tensor
product is “permeable” to elements of TLn. More precisely, this means that
ab⊗ z = a⊗ bz for all a ∈ TLn+1, b ∈ TLn and z ∈ Vn,p (the elements of
TLn are scalars as far as the tensor product is concerned). Indeed, Vn,p↑
may alternatively be characterised as the quotient of the C-tensor product
TLn+1 ⊗C Vn,p (with the TLn+1-action a (a

′ ⊗C z) = (aa′)⊗C z as before) by
the submodule generated by the elements of the form (ab⊗C z − a⊗C bz).
This characterisation will shortly prove useful.

By Proposition 2.3, any monomial in the TLn+1-generators ui can be
written in reverse Jones’ normal form. In this form, the generator un appears
at most once to the far left and may only be preceded by a string of the
form urur+1 · · ·un−1. We conclude that TLn+1 is spanned by monomials of
the forms ur · · ·un−1unU and U ′, where U and U ′ are monomials in the
TLn-subalgebra. Thus, if D denotes a basis of Vn,p, then Vn,p↑ is spanned
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by the set

(6.2) { 1⊗ d , un ⊗ d , un−1un ⊗ d , . . . , u1 · · ·un−1un ⊗ d : d ∈ D } .

Note that this spanning set is not usually a basis of Vn,p↑ . For example, if
d can be written as un−1d′ for some d′ ∈ Vn,p, then

un−1un ⊗ d = un−1un ⊗ un−1d′ = un−1unun−1 ⊗ d′(6.3)

= un−1 ⊗ d′ = 1⊗ un−1d′ = 1⊗ d.

To obtain a basis, we generalise this computation. As for simple links in an
element of TLn, we will say that a link in a link state d is simple if it joins
neighbouring positions i and i+ 1. We then say that d has a simple link at
i. Obviously, if d = uid

′, where d and d′ are link states, then d will have a
simple link at i. The converse is the following:

Lemma 6.1. If d is an (n, p)-link state with n � 3 which has a simple link
at i, then d can always be expressed as uid

′ with d′ another (n, p)-link state.
When n = 2, such an expression is valid if and only if β �= 0.

Proof. We construct d′ explicitly to be the (n, p)-link state which is identical
to d except that the simple link joining i and i+ 1 is swapped with whatever
appears at i− 1 (or i+ 1). Schematically,

(6.4) d = ⇒ d′ = .

It is clear that d′ satisfies uid′ = d and likewise clear that this construction
requires n � 3. The only remaining possibility then concerns the unique

(2, 1)-link state d = . This satisfies d = β−1u1d when β �= 0, but when

β = 0, u1 acts as the zero operator on V2,1. �

This lemma allows us to reduce the number of elements in the set (6.2)
while preserving its spanning property. But before describing this reduction,
we introduce some more vocabulary. The (n, p)-link state d will be called
r-admissible, 1 � r � n, if d has no simple link at r or below, meaning at any
i with i � r. It follows that all (n, p)-link states are n-admissible. Moreover,
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an element urur+1 · · ·un ⊗ d ∈ Vn,p↑ of (6.2) will be called admissible if d
is r-admissible.

Lemma 6.2. Let n � 3 and 0 � p � �n/2�. Let u ∈ TLn+1 be a word in
the generators and d be an (n, p)-link state. Then, there exists an integer s,
1 � s � n+ 1, and an element e ∈ Vn,p that is either 0 or an s-admissible
(n, p)-link state, such that u⊗ d = usus+1 · · ·un ⊗ e in Vn,p↑ (if s = n+ 1,
then u⊗ d = 1⊗ e).

Proof. We suppose that the word u is written in reverse Jones’ normal
form. If u does not contain un, then u⊗ d = 1⊗ ud and the form sug-
gested is obtained by choosing s = n+ 1 and e = ud. Suppose now that u is
urur+1 · · ·unu′ where u′ is a word of TLn and therefore u⊗ d = urur+1 · · ·un ⊗
u′d. If the element u′d is zero in Vn,p, then again urur+1 · · ·un ⊗ e is of the
desired form with e = 0. If u′d is r-admissible, take e = u′d.

The only remaining case is when u′d is not r-admissible. This means that
there is a simple link at r or below. Let t be the position of the lowest simple
link. Clearly r � t � n− 1 and thus ut ∈ TLn. Because n � 3, Lemma 6.1
ensures the existence of an (n, p)-link state f such that utf = u′d. Then,

urur+1 · · ·un ⊗ u′d = ur · · ·un ⊗ utf
= ur · · ·ut−1utut+1utut+2 · · ·un ⊗ f
= ur · · ·ut−1utut+2 · · ·un ⊗ f
= ut+2 · · ·un ⊗ ur · · ·utf
= ut+2 · · ·un ⊗ ur · · ·ut−1u′d.(6.5)

(The two extreme values of t lead to ur+2 · · ·un ⊗ u′d for t = r and 1⊗
ur · · ·un−2u′d for t = n− 1.) The configurations of u′d and of ur · · ·ut−1u′d
are shown in the following diagrams:

If u′d = , then ur · · ·ut−1u′d = = .

Note that in the lower box of u′d, marked by three dots, all positions are
either defects or linked with positions in the two top boxes, since the lowest
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simple link is at t. (The two top boxes may have defects, links within and
between them and, as just said, links with the bottom box.) The action
of ur · · ·ut−1 is seen to exchange the simple link at t and the middle box.
Since, after this exchange, the first position in the lower box is t+ 2, then the
resulting link state is (t+ 2)-admissible. Clearly this is of the desired form if
we set s = t+ 2 (and then s � n+ 1) and e is taken to be ur · · ·ut−1u′d. �

Let Sn,p be the set consisting of all elements 1⊗ d for any (n, p)-link state
d and of elements urur+1 · · ·un ⊗ d for all 1 � r � n and all r-admissible
(n, p)-link states d. Due to the previous lemma, Sn,p is a spanning set of
Vn,p↑ for n � 3. (One can check that S2,p spans V2,p↑ except when p = 1
and β = 0.) As an example,

(6.6) S3,1 =
{
1⊗ , 1⊗ , u3 ⊗ , u3 ⊗ , u2u3 ⊗

}

and |S3,1| = 5. Our aim is to show that Sn,p is actually a basis of Vn,p↑ .
For this, we first introduce a linear map d 
→ d between the vector spaces
underlying Vn,p and Vn+2,p+1. This is defined on the basis of (n, p)-link states
by adding two points to each basis element and a simple link from n+ 1 to
n+ 2:

(6.7) d = .

We now define
(6.8)

Φ: Vn,p↑ → Vn+2,p+1↓ , Φ(u⊗ d) = ud (u ∈ TLn+1, d ∈ Vn,p).

Our first concern is to check whether Φ is well-defined, that is, whether
the images Φ(u⊗ d) and Φ(v ⊗ e) are equal when u⊗ d = v ⊗ e for u, v ∈
TLn+1 and d, e ∈ Vn,p. From the characterisation of induced modules as
quotients of the C-tensor product, it follows that Φ will be well-defined
if Φ(uu′ ⊗ d) = Φ(u⊗ u′d) for all u ∈ TLn+1, u

′ ∈ TLn and d ∈ Vn,p. But,
this follows immediately from the associativity of the TLn+1-action on
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Vn+2,p+1↓ :

(6.9) Φ(uu′ ⊗ d) = (uu′)d = u(u′d) = u(u′d) = Φ(u⊗ u′d).

We remark that the u′ in (u′d) should be interpreted as the image of u′ ∈ TLn
in TLn+2 under the inclusion which adds two defects at the bottom.

The associativity of the TLn+1-action also makes Φ a homomorphism of
TLn+1-modules (here is where the restriction is necessary):

(6.10) u′Φ(u⊗ d) = u′(ud) = (u′u)d = Φ(u′u⊗ d),

for all u, u′ ∈ TLn+1, d ∈ Vn,p. To prove that it is actually an isomorphism
does not require much more effort.

Proposition 6.3.

(i) For all n � 1, 0 � p � �n/2� and β ∈ C, the set Sn,p is a basis of

Vn,p↑ , except for V2,1↑ at β = 0 which has instead
{
1⊗ , u2 ⊗

, u1u2 ⊗
}
as a basis.

(ii) When (n, p) �= (2, 1) or β �= 0, the TLn+1-modules Vn,p↑ and Vn+2,p+1↓
are isomorphic.

Proof. The basis for V2,1↑ is obtained by direct computation. For the gen-
eral case, we show that the homomorphism Φ is both surjective and injective.
The two statements (i) and (ii) are clear consequences.

Since the (n+ 2, p+ 1)-link states define a basis of Vn+2,p+1↓ , the sur-
jectivity of Φ will follow if every (n+ 2, p+ 1)-link state has a preimage
in Sn,p. Suppose that e is such a link state and note that e has at least
one simple link. To construct u⊗ d ∈ Sn,p such that Φ(u⊗ d) = e, let r
be the position of the lowest simple link in e. Denote by d the (n, p)-
link state obtained from e by deleting this lowest simple link. Since there
are no simple links of e below r, the link d is r-admissible and therefore
urur+1 · · ·un ⊗ d = u⊗ d ∈ Sn,p. (Note that if r = n+ 1, then urur+1 · · ·un
is understood to be 1.) It is now easy to verify that Φ(urur+1 · · ·un ⊗ d) = e:



Standard modules, induction and the Temperley-Lieb algebra 1001

If e = , then d =(6.11)

and Φ(urur+1 · · ·un ⊗ d) = urur+1 · · ·und = = = e.

Therefore, every (n+ 2, p+ 1)-link state has a preimage in Sn,p and Φ is
surjective.

The map Φ sends every element of Sn,p to an (n+ 2, p+ 1)-link state.
Since the latter are linearly independent, the injectivity of Φ will be estab-
lished if distinct elements of Sn,p have distinct images. Suppose then that
w1 = urur+1 · · ·un ⊗ d and w2 = usus+1 · · ·un ⊗ d′ are elements of Sn,p with
the same image. The link state d, being r-admissible, can be represented as
above by two blocks, that marked by two dots being devoid of simple links.
The image Φ(w1) is then represented by the above diagram for e whose
lowest simple link is at r. Similarly, the lowest simple link of Φ(w2) must
be at s. If Φ(w1) = Φ(w2), then r and s must be equal. But then, the two
link states Φ(w1) and Φ(w2) will coincide if and only if the upper boxes
(marked by one dot) of d and d′ coincide and similarly for their lower boxes
(marked by two dots). This forces the original d and e to be equal and thus
w1 = w2. �

For completeness, we mention that as V2,1
∼= V2,0 when β = 0, it follows that

V2,1↑ ∼= V3,1 ⊕ V3,0. However, Proposition 4.1 gives V4,2↓ ∼= V3,1.
Because restricting a module does not change its dimension, the dimen-

sion of Vn,p↑ is that of Vn+2,p+1. We therefore obtain:

Corollary 6.4. The dimension of the induced module Vn,p↑ is

(6.12) dimVn,p↑ =

{
3 if (n, p) = (2, 1) and β = 0,

dn+2,p+1 otherwise.



1002 D. Ridout and Y. Saint-Aubin

Moreover, the structure of induced modules now follows, using the isomor-
phism Φ, from Proposition 4.1 and Corollary 4.2 which describe the structure
of restricted ones.

Corollary 6.5. When (n, p) �= (2, 1) or β �= 0, the sequence

(6.13) 0 −→ Vn+1,p+1 −→ Vn,p↑ −→ Vn+1,p −→ 0

is exact.

Corollary 6.6. When (n, p) is non-critical, the exact sequence (6.13) splits,
so we have (for (n, p) �= (2, 1) or β �= 0)

(6.14) Vn,p↑ ∼= Vn+1,p+1 ⊕ Vn+1,p (as TLn+1-modules).

Whether or not the exact sequence (6.13) splits, a submodule isomorphic
to Vn+1,p+1 is easily identified in Vn,p↑ . In Vn+2,p+1↓ , such a submodule is
spanned by those (n+ 2, p+ 1)-link states which have a defect at position
n+ 2 (see the proof of Proposition 4.1). Their images under Φ−1 have the
form urur+1 · · ·un ⊗ d, with r � n and d an (n, p)-link state with a defect
at n. Then the injection Vn+1,p+1 → Vn,p↑ , call it α, of the exact sequence
(6.13) sends (n+ 1, p+ 1)-link states to elements of Sn,p as follows: If d is
an (n+ 1, p+ 1)-link state, then α(d) = urur+1 · · ·un ⊗ d′, where the lowest
simple link in d is at r and d′ is the (n, p)-link state obtained from d by
removing this simple link and adding a defect at position n.

The exact sequences in Equations (4.2) and (6.13) can be read off the
Bratteli diagram quite easily. For restriction, the TLn−1-modules Vn−1,p and
Vn−1,p−1 appearing in the exact sequence (4.2) for Vn,p↓ correspond to the
entries immediately above, and to the left and right, respectively, of the entry
corresponding to Vn,p. For induction, we must instead look immediately
below, and again to the left and right, to find the entries indicating the
constituents of the exact sequence (6.13). We have learned that these exact
sequences split when the module being restricted or induced is non-critical.
The question of whether the sequences split when the module is critical will
not be resolved until Section 8.

We conclude with an example showing that the induced module Vn,p↑
may be different to the direct sum Vn+1,p+1 ⊕ Vn+1,p and even to the quo-
tient Mn+1,p/Mn+1,p+2. These three TLn+1-modules share the same exact
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sequence (6.13), the latter because Equations (3.2) and (3.3) give

(6.15)

Vn+1,p+1 =
Mn+1,p+1

Mn+1,p+2
⊆ Mn+1,p

Mn+1,p+2

and
Mn+1,p/Mn+1,p+2

Mn+1,p+1/Mn+1,p+2

∼= Mn+1,p

Mn+1,p+1
= Vn+1,p.

For our example, we take q = eiπ/3, so that β = 1 and (n, p) = (2, 0) is crit-
ical. Then, one can check that the central element F3 ∈ TL3, introduced in
Appendix A, is represented on V2,0↑ and M3 = M3,0/M3,2, with respective

(ordered) bases {u2 ⊗ , u1u2 ⊗ ,1⊗ } and { , , }, by

(6.16)

⎛
⎝−1 0 3

0 −1 −3
0 0 −1

⎞
⎠ and

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠ .

Thus, this central element can be diagonalised on M3 (and on V3,1 ⊕ V3,0

by Proposition 3.8), but not on V2,0↑ .

7. The irreducibility of the radicals

The present section carries on the exploration, launched in Section 5, of the
standard modules at roots of unity. The goal here is to prove that the radicals
Rn,p of the standard modules Vn,p are either trivial (meaning Rn,p = {0})
or irreducible. One can actually be more precise: Let q be a root of unity
with 	 the smallest positive integer such that q2� = 1. We shall say that two
pairs (n, p′) and (n, p) with 0 < |p′ − p| < 	 form a symmetric pair if (n, p′)
and (n, p) are non-critical and are located symmetrically on either side of
the (single) critical line between them. The adjective symmetric will also
be used when two objects, for example Vn,p′ and Vn,p, are labelled by a
symmetric pair (n, p′) and (n, p). The relevance of this concept is already
apparent from previous sections. In particular, Proposition 5.3 equates the
dimensions of the symmetric pair (with p′ > p) Rn,p′ and Ln,p. In this section,
we shall prove that the modules Rn,p′ and Ln,p of such a symmetric pair are
isomorphic. We remark that, as noted at the end of Section 4, every (n, p)
is critical when β = ±2 or when β = 0 with n odd. It follows that there are
no symmetric pairs in these cases. However, for all other β and n, such pairs
exist whenever n � 	.

A crucial role will be played in this section by the central element Fn

of TLn whose detailed properties may be found in Appendix A. The first
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part of this section shows that, even though Fn is central, its action is non-
diagonalisable on certain indecomposable modules. The second part then
uses this fact to construct an isomorphism between the symmetric pair Rn,p′

and Ln,p (with p′ > p). The inspiration here comes from the theory of stag-
gered modules in logarithmic conformal field theory, see [21] for example.
Though the irreducibility of the radical is well-known to experts, the only
proof that we are aware of [17] relies upon some rather abstract category-
theoretic analysis.6 The last part describes completely the space of homo-
morphisms between standard modules.

Proposition A.2 states that Fn acts as a multiple of the identity on the
standard modules Vn,p. The next lemma provides a simple example where
this action is non-diagonal. It will turn out to be key for what follows.

Lemma 7.1. Let q be a root of unity other than ±1 and let (n, p) be crit-
ical for this q (so n �= 2p). If zp denotes the (n, p)-link state which has p
simple links at 1, 3, . . . , 2p− 1, then when Fn+1(1⊗ zp) is expanded in the
basis Sn,p of Vn,p↑ , the coefficient of u1u2 · · ·un ⊗ zp = u2p+1u2p+2 . . . un ⊗
zp does not vanish.

Proof. We first study the case p = 0. Since Fn+1 ∈ TLn+1, it can be written
as a sum of words in reverse Jones’ normal form, as in Equation (2.7). For
such a word to act non-trivially on 1⊗ z0, the rightmost uj must be un. So
only words with a single “flight” uiui+1 · · ·un will contribute, and among
these, only u1u2 · · ·un will lead to the term u1u2 · · ·un ⊗ z0 that we are
seeking. We therefore need to compute the coefficient of u1u2 · · ·un in Fn+1.

We first expand the two crossings of the top row of the diagram (A.2)
defining Fn+1. The points marked by dots in the following diagrams need to
be linked if they are to lead to the word u1u2 · · ·un.

(7.1) = − + q−1 − + q .

6Our proof is based on the existence of a non-zero homomorphism θ : Vn,p →
Vn,p′ when the two modules form a symmetric pair with p′ > p. Martin [2] has
proved that ker(θ) and coker(θ) are irreducible. This follows from, but is weaker
than, Theorem 7.2 below.



Standard modules, induction and the Temperley-Lieb algebra 1005

The last term will not contribute to u1u2 · · ·un, so we obtain

(7.2)
◦
= (−2 + βq−1) ,

where the sign “
◦
=” indicates that the equality is restricted to the coefficient

of u1u2 · · ·un. We now expand the second row. Only one term of the crossing
on the right may contribute, as the other term can be seen to close a link
on the right vertical line. But then only one term of the crossing on the left
contributes to u1u2 · · ·un. A similar argument can be repeated for all rows
but the last one and the expansion of all crossings but those of the bottom
row gives

(7.3)
◦
= (−2 + βq−1)(−1)n−1 .

Note that the top points on the left are now linked; those on the bottom
right, marked by dots, still remain to be linked. Expanding the last row, we
finally get that the coefficient of u1u2 · · ·un in Fn+1 is

(7.4) (−1)n−1(−2 + βq−1)(−2 + βq) = (−1)n(β2 − 4).

Therefore, the coefficient of u1u2 · · ·un ⊗ z0 in Fn+1(1⊗ z0) vanishes only
when β = ±2 (q = ±1).

We shall now assume that p � 1 and consider elements in Vn,p↑ of the
form v = 1⊗ v′, where v′ is constrained to be an (n, p)-link state with a
simple link at 1. In other words,

(7.5) v = 1⊗ ,

where the box stands for any (n, p− 1)-link state. We shall also make the
hypothesis that β �= 0 which allows us to use the identity

(7.6) v = β−1u1v
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(the case β = 0 will be deferred until the end of the proof). We now expand
the two crossings on the top right of Fn+1, extracting these crossings from
the diagram representing Fn+1 and using dots to mark the points at which
the subdiagrams we have extracted are to be connected:

Fn+1v

= ×
(
q − − + q−1

)
v

= ×
(
qβ−1 − − + q−1β−1

)
v

(where we have used the identity (7.6) on the first and last terms)

= ×
((

(q + q−1)β−1 − 1
) −

)
v = − v.

(7.7)

We now carry out the expansion of the two crossings on the left:
(7.8)

Fn+1v = ×
(
− q−1 + + − q

)
v.

The first, third and last terms cancel and, by (7.6), the second becomes

(7.9) Fn+1v = ×
(
β−1 v

)
= β−1 u1v = v.

Suppose now that the link state v′ in v = 1⊗ v′ contains several consec-
utive simple links at the top. Then the above computation can be repeated
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for each of them with the result that

(7.10) Fn+1(1⊗ zp) = (1⊗ zp), in Vn,p↑ .

The expansion of the Fn−2p+1 indicated at the bottom of this diagram will
contain a term u2p+1u2p+2 · · ·un only if n > 2p. In that case, we may use the
previous p = 0 computation to conclude that the coefficient of u1u2 · · ·un ⊗
zp in Fn+1(1⊗ zp) is (−1)n(β2 − 4) as before. Again this coefficient does not
vanish under the hypotheses of the lemma.

The case β = 0, corresponding to q = ±i, remains. In the link basis of the
modules Vn,p, the elements of the matrices representing the generators ui are
polynomials in β or, equivalently, in q and q−1. The matrices representing
the ui in the induced modules Vn,p↑ inherit this property if the basis Sn,p
is used. Indeed, the action of ui on an arbitrary member urur+1 · · ·un ⊗ d
of Sn,p is easily computed:

(7.11) ui (ur · · ·un ⊗ d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ur · · ·un ⊗ uid, i < r − 1

ur−1 · · ·un ⊗ d, i = r − 1

βur · · ·un ⊗ d, i = r

ui · · ·un ⊗ ur · · ·ui−2d, r + 1 � i � n.

The right-hand sides are either elements of Sn,p or are equivalent to scalar
multiples of such elements (using Lemma 6.2). The central element Fn,
defined diagrammatically by (A.1) and (A.2), is a linear combination of
words in the generators with weights that are also polynomials in q and
q−1. Therefore, the coefficients of Fn+1(1⊗ zp) in the basis Sn,p of Vn,p↑
are polynomials in q and q−1. Their actual values for a given β can be
obtained by evaluation of these polynomials at the corresponding value of q.
The coefficient of u1u2 · · ·un ⊗ zp in Fn+1(1⊗ zp) when β = 0 is therefore
(−1)n(β2 − 4) = 4(−1)n+1 and is non-zero. �

Equation (6.16) provides a simple example of this off-diagonal action —
there, we considered F3 acting on the indecomposable module V2,0↑ at q =
eiπ/3.

Proposition 3.6 has shown that the only homomorphism Vn,p′ → Vn,p

with p′ > p and 〈·, ·〉n,p and 〈·, ·〉n,p′ �= 0 is the zero homomorphism. The
above properties of the central element Fn allow us to construct a non-zero
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homomorphism Vn,p → Vn,p′ , p
′ > p, when the modules form a symmetric

pair, and thereby reveal the structure of the radical Rn,p.

Theorem 7.2. The radical Rn,p is zero or irreducible and, if the pair Vn,p

and Vn,p′, with p
′ > p, is symmetric, then Rn,p′

∼= Ln,p.

Proof. If q is not a root of unity, these statements have already been proven.
Indeed, the Vn,p are then irreducible (Proposition 4.5) and their radicals
are trivial. The same is true when q = ±1 and when q = ±i with n odd
(Corollary 4.8). The theorem is therefore non-trivial only if q is a root of
unity with either 	 � 3 or 	 = 2 and n even. We will therefore assume these
conditions in what follows.

We first construct a non-zero homomorphism between the two standard
modules Vn+1,p and Vn+1,p+1, assuming that (n, p) is critical. The symmet-
ric pair therefore consists of (n+ 1, p) and (n+ 1, p+ 1) and we note that
fn+1,p and fn+1,p+1 are equal. Let ϕ : Vn,p↑ → Vn,p↑ be the map obtained
from left-multiplication by Fn+1 − fn+1,p1 ∈ TLn+1. Because this element is
central, ϕ is a homomorphism. Moreover, it is non-zero by Lemma 7.1.

Consider now the exact sequence (6.13)

(7.12) 0 −→ Vn+1,p+1
α−→ Vn,p↑ γ−→ Vn+1,p −→ 0

(the homomorphism α was constructed explicitly after Corollary 6.6). Since
ϕ acts as zero on Vn+1,p+1 (Lemma A.2), we have im (α) ⊆ ker (ϕ). Similarly,
γ ◦ ϕ = 0 and therefore im (ϕ) ⊆ ker (γ) = im (α). Now, for any w ∈ Vn+1,p,
we can find v ∈ Vn,p↑ such that γ(v) = w. Note that any other v′ ∈ Vn,p↑
with γ(v′) = w satisfies v − v′ ∈ ker (γ) = im (α) ⊆ ker (ϕ). It follows that
the map w 
→ ϕ(v) is independent of the choice of preimage v. This map,
in turn, is a TLn+1-homomorphism from Vn+1,p into im (α) ⊂ Vn,p↑ since
given any u ∈ TLn+1, we may choose uv as a preimage of uw and uw is
mapped to ϕ(uv) = uϕ(v). Finally, let i : Vn+1,p → Vn+1,p+1 be defined by
w 
→ (

α−1 ◦ ϕ) (v). This is the non-zero TLn+1-homomorphism that we set
out to construct. The conclusion is therefore that dimHomTLn+1

(Vn+1,p,
Vn+1,p+1) � 1, when (n, p) is critical.

Frobenius reciprocity (Proposition B.5) allows us to extend this result
to arbitrary symmetric pairs. Assume again that (n, p) is critical. Then,
the pairs Vn+j,p and Vn+j,p+j are symmetric for 1 � j < 	, where 	 is the
smallest positive integer such that q2� = 1, and any symmetric pair is of this
form for some j and critical (n, p). Suppose now that j ∈ {2, . . . , 	− 1}. We
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will justify each step of the following computation:

HomTLn+j
(Vn+j,p,Vn+j,p+j)

= HomTLn+j
(Vn+j,p ⊕ Vn+j,p+1,Vn+j,p+j)

= HomTLn+j
(Vn+j−1,p↑ ,Vn+j,p+j)

= HomTLn+j−1
(Vn+j−1,p,Vn+j,p+j ↓ )

= HomTLn+j−1
(Vn+j−1,p,Vn+j−1,p+j ⊕ Vn+j−1,p+j−1)

= HomTLn+j−1
(Vn+j−1,p,Vn+j−1,p+j−1).(7.13)

Recall that fn,p takes distinct values between any two adjacent critical lines
and that fn,p �= fn,p′ implies that Hom(Vn,p,Vn,p′) = {0}. The first and last
equalities in (7.13) follow from this observation and the usual properties of
Hom. Since (n, p) is critical and 2 � j < 	, neither (n+ j − 1, p) nor (n+
j, p+ j) can be critical, so Corollary 6.6 explains the second equality and
Corollary 4.2 the fourth. The third equality is Frobenius reciprocity. We
therefore conclude that

(7.14) HomTLn+j
(Vn+j,p,Vn+j,p+j) = HomTLn+1

(Vn+1,p,Vn+1,p+1) �= {0} .

In other words, there exists a non-zero homomorphism Vn,p → Vn,p′ between
an arbitrary symmetric pair with p′ > p.

We are now ready to prove the statement of the theorem. Let f ∈
Hom(Vn,p,Vn,p′) be a non-zero homomorphism between a symmetric pair
with p′ > p. Then, ker (f) is a proper subset of Vn,p and must therefore
be a subset of Rn,p by maximality of the radical. If f were surjective, then
Vn,p/ ker (f) ∼= Vn,p′ which would contradict Proposition 3.6. (Here, we must
temporarily assume that β �= 0 or p′ �= n/2 — see the end of the present
paragraph.) Thus, im (f) is a subset of Rn,p′ , again by maximality. If either
of ker (f) or im (f) is a proper subset of the corresponding radical, then we
would have

(7.15) dimker (f) < dimRn,p or dim im (f) < dimRn,p′

which gives

(7.16) dimVn,p = dimker (f) + dim im (f) < dimRn,p + dimRn,p′ .

But then, the dimension of the irreducible quotient Ln,p = Vn,p/Rn,p would
satisfy

(7.17) dimLn,p = dimVn,p − dimRn,p < dimRn,p′ ,
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contradicting Proposition 5.3. This proves that ker (f) = Rn,p and im (f) =
Rn,p′ . The first isomorphism theorem now says that Ln,p = Vn,p/ ker (f) is
isomorphic to im (f) = Rn,p′ if the pair (n, p) and (n, p′), p′ > p, is sym-
metric. The case β = 0 and 2p′ = n was set aside in this argument, but
is in fact easier because in this case Corollary 4.9 has already established
that R2p′,p′ = V2p′,p′ is irreducible. Since f is non-zero, im (f) = R2p′,p′ (and
dim im (f) = dimRn,p′). The rest of the proof is identical.

This argument proves the irreducibility of every Rn,p′ for which the image
(n, p) of (n, p′) by a reflection with respect to the critical line immediately
to its right is well-defined (meaning p � 0). This test fails for some (n, p′)
on the right of the second-rightmost critical line. For example, Figure 2,
drawn for 	 = 4, shows that (4, 0) and (8, 2) have no reflection with respect
to the critical line on their right. For all pairs (n, p′) without such reflection,
Proposition 5.3 shows that the radicals attached to them are {0}. �

Since the only proper submodule of Vn,p is the radical Rn,p (and when
β = 0, the exceptional case V2p,p is irreducible), the only quotients obtained
from Vn,p are the modules {0}, Vn,p/Rn,p

∼= Ln,p and Vn,p itself. Of course
some of these may coincide. Therefore:

Corollary 7.3. Every quotient of a standard module is indecomposable.

The previous theorem also reveals the structure of the standard modules
in terms of its composition factors.

Corollary 7.4. With exception of the (irreducible) V2p,p when β = 0, the
standard module Vn,p is reducible (but indecomposable) if and only if (n, p)
forms a symmetric pair with (n, p′), where p > p′, and then the sequence

(7.18) 0 −→ Ln,p′ −→ Vn,p −→ Ln,p −→ 0

is exact and non-split. The reducible standard module Vn,p therefore has two
composition factors, Ln,p′ and Ln,p, and its (unique) composition series is
0 ⊂ Ln,p′ ⊂ Vn,p.

Proof. The standard module Vn,p is reducible if and only if it has a non-
trivial submodule. This submodule is then its radical Rn,p which, by Theo-
rem 7.2, is isomorphic to Ln,p′ , the pair (n, p) and (n, p′), with p > p′, being
symmetric. The indecomposability of Vn,p was proved in Proposition 3.3,
so the short exact sequence (7.18) cannot split. The rest of the statement
follows from the definition of composition series (see Appendix B). �
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We remark that the sequence (7.18) is still exact in the exceptional case
β = 0 and n = 2p because we have defined L2p,p to be 0 in this case (see the
discussion after Proposition 3.3).

It is natural to decompose the set of allowed p (0 � p � �n/2�) into
orbits under reflection about a critical line.7 Let (n, p1) lie to the left of the
first critical line of the Bratteli diagram and let p1 > p2 > · · · > pm � 0 be
the indices obtained from p1 by reflecting across the critical lines (so there
is precisely one pi between each pair of consecutive critical lines). The set
{(n, pi) : 1 � i � m} is called the orbit of (n, p1) under these reflections and
every non-critical (n, p) belongs to a unique orbit. (One may complete this
definition by adding that a critical (n, p) is alone in its orbit.) The notation
k(n, p) and r(n, p) introduced in (5.2) allows for recursive expressions for the
pi of a given non-critical orbit. Since, on line n of the Bratteli diagram, the
two pi and pi+1 are separated by a single critical line and lie symmetrically
on each of its side, their labels are related by

(7.19) k(n, pi+1) = k(n, pi) + 1 and r(n, pi+1) = 	− r(n, pi).

Since n− 2p+ 1 = k(n, p)	+ r(n, p), one finds that

(7.20) pi+1 = pi + r(n, pi)− 	 and pi−1 = pi + r(n, pi).

Appendix A has shown that the central element Fn takes distinct eigenvalues
on (distinct) standard modules whose labels fall between two consecutive
critical lines. This observation leads to another definition of non-critical
orbits: Two labels p, p′ belong to the same (non-critical) orbit if and only
if fn,p = fn,p′ . With the relations above, the equivalence between the two
definitions is easily established using q2� = 1:

fn,pi−1
= qn−2pi−1+1 + q−(n−2pi−1+1)

= qk(n,pi−1)�+r(n,pi−1) + q−k(n,pi−1)�−r(n,pi−1)

= q(k(n,pi)−1)�+�−r(n,pi) + q−(k(n,pi)−1)�−�+r(n,pi)

= qk(n,pi)�−r(n,pi) + q−k(n,pi)�+r(n,pi)

= q2k(n,pi)�q−(k(n,pi)�+r(n,pi)) + q−2k(n,pi)�qk(n,pi)�+r(n,pi)

= fn,pi
.(7.21)

7 These orbits were introduced in [12] and play a central role in the construction
of the blocks of TLn.
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Frobenius reciprocity was a key ingredient in the proof of Theorem 7.2.
It allowed us to deduce the existence of non-trivial homomorphisms between
certain standard modules Vn,p from the explicit construction of such a homo-
morphism in the simplest case. This underlines also the usefulness of a cen-
tral element, in the present case Fn, that acts non-diagonalisably. A natural
question which remains is whether these non-trivial homomorphisms are the
only ones. We conclude the section by settling this in the affirmative.

Theorem 7.5. The dimension dimHom(Vn,p,Vn,p′) is 1 if p = p′ or if the
two standard modules form a symmetric pair with p′ > p. Moreover, there is
a single exceptional case: dimHom(V2,1,V2,0) = 1 when β = 0. Otherwise,
dimHom(Vn,p,Vn,p′) = 0.

Proof. We first omit, for β = 0 and n even, the study of Hom(V2p,p,V2p,p′)
and Hom(V2p,p′ ,V2p,p). This omission makes available all results from Sec-
tion 3 that call for the bilinear form

〈·, ·〉 to be non-zero. Then the homo-
morphisms Vn,p → Vn,p′ have been determined by Proposition 3.6, in the
case p > p′, and Proposition 3.8, in the case p = p′. We also know that
Hom(Vn,p,Vn,p′) = {0} when fn,p �= fn,p′ . The outstanding cases are there-
fore:

1) (n, p) and (n, p′) are both critical with p′ > p and fn,p = fn,p′ .

2) (n, p) and (n, p′) form a symmetric pair with p′ > p.

3) (n, p) and (n, p′) are non-critical with p′ − p � 	 and fn,p = fn,p′ .

Case (1) is easily dealt with: If two distinct (n, p) and (n, p′) are criti-
cal, then Vn,p and Vn,p′ are irreducible (Corollary 4.8) and it follows from
Corollary 3.7 that Hom(Vn,p,Vn,p′) = 0. In case (2), we know from Theo-
rem 7.2 that Rn,p′

∼= Ln,p. Schur’s lemma then implies that any two homo-
morphisms from Ln,p to Rn,p′ are equal to one another up to a multiplica-
tive constant. Choose two non-zero homomorphisms f, g ∈ Hom(Vn,p,Vn,p′).
The argument used to prove Theorem 7.2 implies that we must necessarily
have ker (f) = ker (g) = Rn,p and im (f) = im (g) = Rn,p′ . Both f and g then

define homomorphisms f̂ , ĝ : Ln,p → Rn,p′ and so we learn that f̂ = μĝ for
some μ ∈ C. As

(7.22) f(v) =
(
f̂ ◦ π

)
(v) = μ (ĝ ◦ π) (v) = μg(v) for all v ∈ Vn,p,

where π is the projection Vn,p → Ln,p, we conclude that f = μg, hence that
dimHom(Vn,p,Vn,p′) = 1.
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We therefore turn to case (3). Let (n, p′′) be the reflection of (n, p′) in the
critical line immediately to its right, so that Vn,p′ and Vn,p′′ form a symmetric
pair with p′ > p′′ > p. Let f : Vn,p → Vn,p′ be a non-zero homomorphism, so
ker (f) ⊆ Rn,p. But, Rn,p is irreducible and therefore ker (f) is either {0} or
Rn,p. Similarly, im (f) must be either Rn,p′ or Vn,p′ . The first isomorphism
theorem, together with Corollary 3.7, now leads to a contradiction in each
of the four possible combinations. For example:

• If ker (f) = {0} and im (f) = Vn,p′ , then Vn,p
∼= im (f) = Vn,p′ with p �= p′,

contradicting Corollary 3.7.

• If ker (f) = {0} and im (f) = Rn,p′ , then Vn,p
∼= im (f) = Rn,p′

∼= Ln,p′′ .
But, Vn,p being irreducible implies that Ln,p

∼= Ln,p′′ with p �= p′′, again
contradicting Corollary 3.7.

The last two cases ker (f) = Rn,p, im (f) = Vn,p′ and ker (f) = Rn,p, im (f) =
Rn,p′ are similar and are left to the reader. We conclude that Hom(Vn,p,Vn,p′)
= {0} in all these cases.

It only remains to consider the omitted case involving V2p,p = R2p,p at
β = 0. In this case, every (2p, p′) is non-critical (see Figure 1) and shares the
same F2p-eigenvalue: f2p,p′ = 0. V2p,p′ and V2p,p′′ therefore form a symmet-
ric pair if and only if |p′ − p′′| = 1. Corollary 3.7 can be used to conclude
that the L2p,p′ with 0 � p′ � p− 1 are mutually non-isomorphic. Because
L2p,p′

∼= R2p,p′+1, the radicals R2p,p′ with 1 � p′ � p are likewise mutually
non-isomorphic. Finally, the R2p,p′ = L2p,p′−1 are non-zero for 1 � p′ < p,
so the only irreducible modules among the V2p,p′ are therefore V2p,p (by
Proposition 4.9) and V2p,0.

We now look for a non-zero homomorphism f : V2p,p → V2p,p′ with p
′ <

p. If such a homomorphism exists, then ker (f) = {0} and im (f) ∼= V2p,p

(because the latter is irreducible). It follows that either V2p,p
∼= R2p,p′ or

V2p,p
∼= V2p,p′ . The first possibility is excluded by the previous observation

that the radicals R2p,p′ , 1 � p′ � p, are mutually distinct as well as recalling
that R2p,p = V2p,p �= {0} = R2p,0. We are therefore left with the second pos-
sibility, that V2p,p′ is itself irreducible, which can only happen when p′ = 0.
But, dimV2p,0 = 1 only coincides with dimV2p,p when p = 1. So we arrive at
the exceptional case Hom(V2,1,V2,0) ∼= C (the existence of such a non-zero
homomorphism was already established after Corollary 3.7).

Finally, the pair V2p,p−1 and V2p,p is symmetric and the same arguments
that proved (2) above lead to dimHom(V2p,p−1,V2p,p) = 1. The proof that
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dimHom(V2p,p′ ,V2p,p) = 0 for p′ � p− 2 mimics that of (3) with the sim-
plification that now im (f) = V2p,p since V2p,p is irreducible, hence there are
only two cases to consider instead of four. �

8. Principal indecomposable modules

In this section, we describe a concrete construction, for q a root of unity,
of the principal indecomposable modules as submodules of certain induced
modules. These are the indecomposable direct summands of the Temperley-
Lieb algebra when one treats it as a module by letting it act on itself by
left-multiplication (this is just the regular representation). It follows imme-
diately that principal indecomposables are canonical examples of projective
modules. Indeed, they are precisely the indecomposable projective modules.
Moreover, a standard fact about them [22] is that there is a bijective cor-
respondence between principal indecomposables and irreducibles given by
quotienting the former by its (unique) maximal proper submodule (its rad-
ical). We will therefore denote a principal indecomposable module by Pn,p,
understanding that its irreducible quotient is Ln,p.

8 The properties of pro-
jective modules needed for this section are reviewed in Appendix B.

Note that when the algebra is semisimple, indecomposability implies
irreducibility, so

(8.1) Pn,p = Vn,p = Ln,p (TLn semisimple).

We remark that because TLn is semisimple for generic β (and its dimension
is obviously independent of β), it follows from Theorems B.1 and B.3 that

(8.2)
∑
i

dimLi dimPi = dimTLn =

�n/2�∑
p=0

dimVn,p dimVn,p,

where the sum on the left-hand side is over a complete set of pairwise non-
isomorphic irreducibles Li and the corresponding principal indecomposables
Pi. We recall from Corollary 4.6 that the sum on the right-hand side corre-
sponds to a complete set of non-isomorphic irreducibles, when q is not a root
of unity. At this point, we know that the Ln,p are pairwise non-isomorphic,
but we are not assured that they form a complete set when q is a root of

8In the exceptional case, β = 0 and n = 2p, we recall that L2p,p = {0} and the
irreducible quotient of V2p,p is in fact V2p,p = R2p,p

∼= L2p,p−1. There is therefore
no need to define a non-trivial principal indecomposable P2p,p when β = 0.
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unity, excluding L2p,p = {0} from the set when β = 0. This completeness
will be deduced as a corollary of the principal indecomposable analysis.

We will first show how one can concretely construct the principal inde-
composables with the aid of a detailed example. This serves to nicely illus-
trate the salient features of the general discussion (which is obscured some-
what by the necessary induction arguments). So let us take q = eiπ/4 (β =√
2), noting that criticality corresponds to n− 2p+ 1 being a multiple of

	 = 4. It may be helpful to recall that the dimensions of the irreducible
modules for this β and small n were organised in a Bratteli diagram in
Figure 2.

Consider first the rather trivial algebra TL1. Since it is one-dimensional
and spanned by the unit 1, its left regular representation is isomorphic to
its only standard module V1,0. Thus,

(8.3) TL1 = P1,0
∼= V1,0.

Now apply the induced module construction to get TL2 ⊗TL1
TL1 ∼= V1,0↑

as TL2-modules. Since TLn+1 ⊗TLn
TLn is obviously isomorphic to TLn+1

(just send a⊗ b = ab⊗ 1 to ab), we obtain

(8.4) TL2 ∼= V1,0↑ ∼= V2,1 ⊕ V2,0.

Here, we have applied Corollary 6.6, using the fact that (1, 0) is not critical,
because β �= 0. Note that both V2,1 and V2,0 are indecomposable, by Prop-
osition 3.3, and are direct summands of the left regular representation. They
are therefore principal indecomposable modules: P2,1

∼= V2,1 and P2,0
∼= V2,0.

For n = 3, we similarly apply the induced module construction to Equa-
tion (8.4), obtaining

(8.5) TL3 ∼= (TL3 ⊗TL2
V2,1)⊕ (TL3 ⊗TL2

V2,0) ∼= V2,1↑ ⊕ V2,0↑ ,

since tensor product distributes over direct sums. Now, (2, 0) is only critical
for β = ±1, hence Corollary 6.6 applies, giving V2,0↑ ∼= V3,1 ⊕ V3,0. Since
V2,1↑ ∼= V3,1, we conclude that P3,1

∼= V3,1 and P3,0
∼= V3,0. Note that this

implies that TL3 = 2 P3,1 ⊕ P3,0, consistent with Theorem B.3 as dimL3,1 =
2 and dimL3,0 = 1.

We pause to remark that for all n considered thus far, we have demon-
strated the decomposition

(8.6) TLn ∼=
�n/2�⊕
p=0

(dimLn,p) Pn,p.
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We may therefore deduce from Theorem B.3 that the set of Ln,p with 0 �
p � �n/2� constitutes a complete set of pairwise non-isomorphic irreducibles,
at least for n � 3 and β =

√
2.

At some point, criticality must enter the fray. For β =
√
2, this first

occurs for n = 4. Inducing our decomposition of TL3 and analysing as above,
we easily conclude that

(8.7) TL4 ∼= 2 V4,2 ⊕ 2 V4,1 ⊕ V3,0↑ ,

hence that P4,2
∼= V4,2 and P4,1

∼= V4,1. As dimL4,2 = dimL4,1 = 2 and
dimL4,0 = 1 (see Figure 2), Theorem B.3 requires that

(8.8) TL4 ∼= 2 P4,2 ⊕ 2 P4,1 ⊕ P4,0 ⊕ · · · ,

where the “⊕ · · · ” admits that there may be additional unknown princi-
pal indecomposables beyond the P4,p.

9 Comparing gives V3,0↑ ∼= P4,0 ⊕ · · · .
Now, Corollary 6.6 does not help us to simplify V3,0↑ because (3, 0) is crit-
ical. Instead, Corollary 6.5 gives the exact sequence

(8.9) 0 −→ V4,1 −→ V3,0↑ −→ V4,0 −→ 0.

We note that the composition factors of V4,0 and V4,1 are L4,1, L4,0 and L4,0,
and that these are also the composition factors of V3,0↑ by the exactness
of (8.9). If V3,0↑ � P4,0, meaning that there exist additional unknown prin-
cipal indecomposables (the “⊕ · · · ”), then the additional principal indecom-
posables, and hence V3,0↑ , will have quotients, hence composition factors,
which are not irreducibles of the form L4,p. This contradicts our conclusion
that the composition factors of V3,0↑ all have the form L4,p, so it follows
that these additional principal indecomposables do not exist and that we
may identify P4,0 with V3,0↑ . Consequently, the L4,p furnish a complete set
of pairwise non-isomorphic irreducibles.

Continuing, we induce our n = 4 decomposition and argue as above to
get

(8.10) TL5 ∼= 4 P5,2 ⊕ 2 P5,1 ⊕ P4,0↑ ,

9Such additional principal indecomposables would correspond to additional irre-
ducibles. The existence of these would therefore amount to a negative answer to
the question of the completeness of the set of L4,p.
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with P5,2
∼= V5,2 and P5,1

∼= V5,1. As dimL5,2 = dimL5,1 = 4 and dimL5,0 =
1, Theorem B.3 yields the decomposition

(8.11) P4,0↑ ∼= 2 P5,1 ⊕ P5,0 ⊕ · · · ,

where we again allow the possibility of additional unknown principal inde-
composables. We therefore need to analyse the structure of P4,0↑ . For this,
we induce each module of the exact sequence (8.9). Because induction is
right-exact (Proposition B.6), we obtain the exact sequence

(8.12) V4,1↑ ∼= V5,2 ⊕ V5,1 −→ P4,0↑ −→ V4,0↑ ∼= V5,1 ⊕ V5,0 −→ 0

which we have simplified using Corollary 6.6. Note that the central element
F5 has eigenvalue 0 on V5,2 and V5,0, but eigenvalue −2 on V5,1. Any homo-
morphism A→ B will map generalised eigenspaces of A into generalised
eigenspaces of B with the same eigenvalue f of Fn. It follows that P4,0↑
decomposes into projectives as P⊕ P′ (see Proposition B.7) along the gen-
eralised eigenspaces of F5 and that the exact sequence (8.12) is equivalent
to the exactness of

(8.13) V5,1
ι−→ P −→ V5,1 −→ 0 and V5,2

ι′−→ P′ −→ V5,0 −→ 0.

Since P5,1
∼= V5,1 is projective, the first exact sequence splits, hence

P ∼= P5,1 ⊕ (P5,1/ ker ι). Equation (8.11) shows that P4,0↑ must contain two
copies of P5,1 and these can come only from P, since Fn has distinct eigen-
values on P5,1 and P′. This forces ker ι = 0, P ∼= 2 P5,1 and, thus, P′ =
P5,0 ⊕ · · · . Once again, we rule out the existence of additional principal
indecomposables by noting that the composition factors of both V5,0 and
W = V5,2/ ker ι

′ have the form L5,p. The exactness of

(8.14) 0 −→W −→ P′ −→ V5,0 −→ 0

then finishes the job: P′ ∼= P5,0, so P4,0↑ ∼= 2 P5,1 ⊕ P5,0 and the L5,p form
a complete set of irreducibles. It only remains to determine the module W.
This follows quickly from Equation (8.2) by comparing dimensions:

4 dimP5,2 + 4dimP5,1 + dimP5,0 = 5dimV5,2 + 4dimV5,1 + dimV5,0

(8.15a)

⇒ dimP5,0 = dimV5,2 + dimV5,0 ⇒ W = V5,2.(8.15b)

We therefore see that ker ι′ = 0 and so we obtain the non-split exact sequence
0→ V5,2 → P5,0 → V5,0 → 0. This completes our analysis for n = 5.
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One can continue to analyse this example for higher n with few further
difficulties. However, we have seen enough tricks by now to understand the
principal indecomposables in general.

Theorem 8.1. Let q be a root of unity and let 	 be the minimal positive inte-
ger satisfying q2� = 1. Define k (n, p) ∈ N and r (n, p) ∈ {1, . . . , 	− 1, 	} by
n− 2p+ 1 = k (n, p) 	+ r (n, p). Then, the principal indecomposables Pn,p

of TLn are identified as follows:

• If r (n, p) = 	 (so (n, p) is critical), then Pn,p
∼= Vn,p.

• If k (n, p) = 0 (so (n, p) lies to the left of the first critical line) and β �= 0,
then Pn,p

∼= Vn,p.

• If k (n, p) > 0 and r (n, p) �= 	, then Pn,p is the direct summand of the
r (n, p)-fold induced module

Vn−r(n,p),p ↑ · · · ↑︸ ︷︷ ︸
r (n, p) times

consisting of the generalised eigenspace, under the action of Fn, whose
generalised eigenvalue is fn,p = qn−2p+1 + q−(n−2p+1). Furthermore, there
is a non-split exact sequence

(8.16) 0 −→ Vn,p+r(n,p) −→ Pn,p −→ Vn,p −→ 0.

Moreover, {Ln,p : p = 0, 1, . . . , �n/2�} is a complete set of pairwise non-
isomorphic irreducibles, except when n is even and β = 0. In this latter case,
the range must be restricted to p = 0, 1, . . . , n/2− 1.

The proof, which constitutes the remainder of this section, is by induction on
n. As in the 	 = 4 example detailed above, the key is to note that applying
the induced module construction to a projective TLn−1-module results in
a projective TLn-module. The labour mostly concerns keeping track of the
multiplicities with which these projectives appear. Before commencing the
induction arguments, it is convenient to deal with the exceptional cases
β = 0,±2. Indeed, the above statement makes it clear that the case β = 0
and n even is special, since there is now no principal indecomposable P2p,p,
the number of distinct principal indecomposables being then one less.

Proposition 8.2. When either β = ±2 (	 = 1), or n is odd and β = 0
(	 = 2), the principal indecomposables of TLn may be identified as Pn,p

∼=
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Vn,p
∼= Ln,p, for p = 0, 1, . . . , �n/2�. Moreover, the Ln,p form a complete set

of pairwise non-isomorphic irreducibles for 0 � p � �n/2�.
When n is even and β = 0, we have instead Pn,p

∼= Vn−1,p↑ , for p =
0, 1, . . . , n/2− 1. The Ln,p therefore form a complete set of pairwise non-
isomorphic irreducibles for 0 � p � n/2− 1.

Proof. When β = ±2 or n is odd and β = 0, TLn is semisimple (as remarked
after Corollary 4.8), hence Pn,p

∼= Vn,p = Ln,p for all p. So, assume that n is
even and β = 0. Then, 	 = 2 and the semisimplicity of TLn−1 gives

(8.17) TLn−1 ∼=
n/2−1⊕
p=0

(dimLn−1,p)Vn−1,p,

by Theorem B.1, hence

(8.18) TLn ∼=
n/2−1⊕
p=0

(dimLn−1,p)Vn−1,p↑ =

n/2−1⊕
p=0

(dimLn,p)Vn−1,p↑ .

Here, we have used Corollary 5.2, noting that r (n, p) = 1 = 	− 1.
We see that Vn−1,p↑ is a projective TLn-module, for 0 � p � n/2− 1,

hence it may be written as a direct sum of principal indecomposables.
Because of the exact sequence

(8.19) 0 −→ Vn,p+1 −→ Vn−1,p↑ −→ Vn,p −→ 0,

we know that Ln,p is an irreducible quotient of Vn−1,p↑ , hence (at least)
one of these principal indecomposables is Pn,p. Thus, Vn−1,p↑ ∼= Pn,p ⊕ · · · .
Moreover, it follows from this sequence and the fact that the composition
factors of the standard modules all have the form Ln,p′ , with 0 � p′ � n/2−
1, that any other principal indecomposable appearing in this decomposition
has the form Pn,p′ , with 0 � p′ � n/2− 1. But, Theorem B.3 ensures that
the multiplicity of Pn,p in TLn is exactly dimLn,p. We see now that this
is only consistent with (8.18) if Vn−1,p↑ ∼= Pn−1,p. There are therefore no
other principal indecomposables, nor other irreducibles. �

Proof of Theorem 8.1. Because of Proposition 8.2, we can (and will) assume
throughout the proof of Theorem 8.1 that 	 > 2. So recall that when n = 1,
P1,0 = TL1 is the only principal indecomposable and it coincides with V1,0

(and L1,0). This therefore agrees with the statement of the theorem. Clearly
L1,0 is the unique irreducible, up to isomorphism. The proof then proceeds in



1020 D. Ridout and Y. Saint-Aubin

three steps: We first establish that {Ln,p} is a complete set of non-isomorphic
irreducibles, then compute how many copies of the projective Pn,p can be
accounted for by the induction hypothesis, and end with the study of the
structure of the projective modules.

The set {Ln,p} is a complete set of non-isomorphic irreducibles — The mod-
ule TLn can be written, on the one hand, as

TLn =

�(n−1)/2�⊕
p=0

(dimLn−1,p)Pn−1,p↑ ,(8.20a)

by induction over n, and, on the other hand, as

=

�n/2�⊕
p=0

(dimLn,p)Pn,p ⊕ Pnew,(8.20b)

by Theorem B.3. Here, Pnew is a (possibly empty) direct sum of principal
indecomposables that are not of the form Pn,p′ . Our first task is to show
that Pnew = 0. This will follow as a consequence of the following analysis of
the induced modules Pn−1,p↑ appearing in (8.20a). There are three cases to
consider:

(i) If k (n− 1, p) = 0 and r (n− 1, p) < 	, so (n− 1, p) lies to the left of the
first critical line, then the inductive hypothesis gives Pn−1,p ∼= Vn−1,p
and Pn−1,p↑ ∼= Vn,p+1 ⊕ Vn,p, by Corollary 6.6. We therefore identify
Pn,p+1

∼= Vn,p+1, Pn,p
∼= Vn,p and

(8.21) Pn−1,p↑ ∼= Pn,p+1 ⊕ Pn,p.

(Recall that direct summands of projective modules are projective (Prop-
osition B.7).)

(ii) If r (n− 1, p) = 	, so (n− 1, p) is critical, then we again have Pn−1,p ∼=
Vn−1,p, but now Corollary 6.6 does not apply and we are left with the
exact sequence 0→ Vn,p+1 → Pn−1,p↑ → Vn,p → 0 that follows from
Corollary 6.5. However, this tells us that the projective module Pn−1,p↑
has Ln,p as a quotient, hence that

(8.22) Pn−1,p↑ ∼= Pn,p ⊕ Pold.
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Here, Pold is a (possibly empty) direct sum of principal indecomposables
that are of the form Pn,p′ because the composition factors of Pn−1,p↑
are those of Vn,p+1 and Vn,p, hence have the form Ln,p′ for some p′.

(iii) Finally, if k (n− 1, p) > 0 and r (n− 1, p) < 	 (all remaining cases),
then the inductive hypothesis says that the sequence 0→ Vn−1,p+r(n−1,p)
→ Pn−1,p → Vn−1,p → 0 is exact. Applying the induction functor of
Proposition B.6 and Corollary 6.6, we obtain the exact sequence

(8.23)
Vn,p+r(n−1,p)+1 ⊕ Vn,p+r(n−1,p) −→ Pn−1,p↑ −→ Vn,p+1 ⊕ Vn,p −→ 0

which, when projected onto (generalised) eigenspaces of Fn, results in
exact sequences

(8.24)
Vn,p+r(n−1,p)+1 −→ P −→ Vn,p −→ 0

and Vn,p+r(n−1,p) −→ P′ −→ Vn,p+1 −→ 0,

where Pn−1,p↑ ∼= P⊕ P′. The projectives P and P′ then have quotients
Ln,p and Ln,p+1, respectively, so we can write

(8.25) Pn−1,p↑ ∼= Pn,p ⊕ Pn,p+1 ⊕ P′old.

Here, P′old is a (possibly empty) direct sum of principal indecomposables
that are of the form Pn,p′ since, as before, all composition factors of
Pn−1,p↑ are of the form Ln,p′ for some p′.

Substituting these conclusions into (8.20a) and comparing with (8.20b), we
see that all the principal indecomposables of TLn have the form Pn,p. Thus,
Pnew = 0 and the Ln,p with 0 � p � �n/2� constitute a complete set of pair-
wise non-isomorphic irreducibles.

Counting copies of Pn,p — We can now use the above information to com-
plete the proof. The easiest case is, naturally enough, when (n, p) is suf-
ficiently far from the critical lines. However, the tactic in all cases is the
same: We fix p and identify some of the Pn−1,p′ ↑ that have copies of Pn,p

appearing in their decomposition. Then, we compare (8.20a) and (8.20b)
to verify that the copies of Pn,p obtained from these Pn−1,p′ saturate the
multiplicity of Pn,p in the regular representation. This information is then
used to identify Pn,p, at least at the level of an exact sequence.

Case 1 [1 < r (n, p) < 	− 1]: In this case, both (n− 1, p) and (n− 1, p− 1)
are non-critical. We split the analysis into two sub-cases for clarity:
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• If k (n, p) = 0, then (n− 1, p) and (n− 1, p− 1) lie to the left of the first
critical line, so case (i) above applies.10 Equation (8.21) then says that
each copy of Pn−1,p↑ and each copy of Pn−1,p−1↑ contribute exactly one
copy of Pn,p to TLn. From (8.20a), this means that we get dimLn−1,p +
dimLn−1,p−1 copies of Pn,p in total. By Corollary 5.2, this is dimLn,p

copies, which completely accounts for the multiplicity of Pn,p in (8.20b).
This also means that Pold and P′old appearing in (8.22) and (8.25) may
not contain any Pn,p such that 1 < r(n, p) < 	− 1. Finally, case (i) also
gives Pn,p

∼= Vn,p, in agreement with Theorem 8.1.

• When k (n, p) > 0, case (iii) applies and we find that Pn−1,p↑ and
Pn−1,p−1↑ again contribute at least dimLn−1,p + dimLn−1,p−1 = dimLn,p

copies of Pn,p, by Equation (8.25) and its analogue with p→ p− 1. The
projections of the exact sequence (8.23), and its p→ p− 1 analogue, onto
the (generalised) eigenspace of Fn of eigenvalue fn,p are

(8.26)
Vn,p+r(n−1,p)+1

ι−→ P −→ Vn,p −→ 0

and Vn,p−1+r(n−1,p−1)
ι′−→ P′ −→ Vn,p −→ 0,

which shows that the projectives P and P′ each have at least one direct
summand isomorphic to Pn,p. Noting that p+ r (n− 1, p) + 1 = p− 1 +
r (n− 1, p− 1) = p+ r (n, p), we can rewrite these exact sequences in the
form

(8.27)
0 −→ Vn,p+r(n,p)

ker ι
−→ P −→ Vn,p −→ 0

and 0 −→ Vn,p+r(n,p)

ker ι′
−→ P′ −→ Vn,p −→ 0.

Now, if P � Pn,p or P
′ � Pn,p, then we would generate additional copies of

projectives Pn,p′ with Fn-eigenvalue fn,p′ = fn,p. However, all such (n, p′)
will have 1 < r (n, p′) < 	− 1, hence are covered by our analysis (see Equa-
tion (7.21)). Any additional copies of such a Pn,p′ would then contra-
dict Equation (8.20b), hence we conclude that P ∼= Pn,p and P′ ∼= Pn,p.
The exact sequences (8.27) will then prove Theorem 8.1, in the case
1 < r (n, p) < 	− 1, once we show that ker ι = ker ι′ = 0. This will follow

10 Of course, it might happen that p > �(n− 1)/2�, so (n− 1, p) falls outside the
Bratteli diagram. If so, then we have n = 2p and we must formally set dimLn−1,p

to zero as indicated by Corollary 5.2. With this proviso, the argument that follows
remains unchanged.
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from a simple dimension argument after we have settled the remaining
cases.

Case 2 [r (n, p) = 1 or r (n, p) = 	− 1]: When r (n, p) = 1, (n− 1, p) becomes
critical though (n− 1, p− 1) does not (recall that we may assume that
	 > 2). However, this has almost no effect upon the analysis — as with Case
1, we arrive at the exact sequences (8.27) (the only difference is that we use
case (ii) above and that the first sequence has ker ι = 0).11 In particular, all
copies of Pn,p in TLn are accounted for by inducing Pn−1,p and Pn−1,p−1.
However, the additional projectives Pn,p′ , with fn,p′ = fn,p, that would be
generated if P � Pn,p or P

′ � Pn,p, could now have r (n, p′) = 	− 1. To com-
plete the argument as in Case 1, we therefore need to verify that the Pn,p′

with r (n, p′) = 	− 1 are likewise also accounted for by inducing appropriate
modules Pn−1,p′′ .

So, suppose that r (n, p) = 	− 1. Now, (n− 1, p) is non-critical, but
(n− 1, p− 1) is critical (and this makes a difference!). As in the analysis
of Case 1, inducing Pn−1,p leads to an exact sequence

(8.28) 0 −→ Vn,p+r(n,p)

ker ι
−→ P −→ Vn,p −→ 0

(where P is the projection of Pn−1,p↑ onto the Fn-eigenspace of eigenvalue
fn,p) and thereby to the conclusion that Pn−1,p↑ contributes dimLn−1,p
copies of Pn,p to TLn. However, dimLn−1,p = dimLn,p in this case, by Corol-
lary 5.2, so all copies of Pn,p in TLn are accounted for, this time by only
inducing Pn−1,p. The same argument as for Case 1 now identifies Pn,p as
P (and P′) when r (n, p) = 1 or 	− 1. Again, it only remains to show that
ker ι = ker ι′ = 0.

Case 3 [r (n, p) = 	]: When (n, p) is critical, r (n− 1, p) = 	− 1 and r(n−
1, p− 1) = 1. Inducing and projecting as above, we obtain exact sequences
for the summands P of Pn−1,p↑ and P′ of Pn−1,p−1↑ whose Fn-eigenvalue
is fn,p:
(8.29)

Vn,p+�
ι−→ P −→ Vn,p −→ 0 and Vn,p

ι′−→ P′ −→ Vn,p −→ 0.

Now, all of the standard modules appearing in these sequences are critical,
hence irreducible (Corollary 4.8). There are therefore only three possibilities

11 From here on, we will omit explicit consideration of the case k (n, p) = 0. It
is easy to see that this case is recovered from the general case by setting modules
with labels p > �n/2� to zero.
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for P: First, ker ι = Vn,p+�, hence P ∼= Vn,p. Second, ker ι = 0 and P is inde-
composable with exact sequence 0→ Vn,p+� → P→ Vn,p → 0. Third, ker ι =
0 and P decomposes as Vn,p+� ⊕ Vn,p. Each Pn−1,p↑ therefore accounts for
one copy of Pn,p in the first two possibilities (for a total of dimLn−1,p copies),
but one copy of Pn,p and one copy of Pn,p+� in the third (so the total becomes
dimLn−1,p + dimLn−1,p−�). The possibilities for P′ are likewise P′ ∼= Vn,p, P

′

indecomposable with exact sequence 0→ Vn,p → P′ → Vn,p → 0, and P′ ∼=
2 Vn,p, so each Pn−1,p−1↑ contributes one copy of Pn,p in the first two pos-
sibilities (for a total of dimLn−1,p−1 copies), but two copies in the third
(yielding 2 dimLn−1,p−1 copies in all).

The number of copies of Pn,p required by Equation (8.20b) is

dimLn,p = dimVn,p = dimVn−1,p + dimVn−1,p−1 (by Proposition 4.1)

= dimLn−1,p + dimRn−1,p
+ dimLn−1,p−1 + dimRn−1,p−1 (by Proposition 3.3)

= dimLn−1,p + 2 dimLn−1,p−1(8.30)

+ dimLn−1,p−� (by Proposition 5.3).

Considering all the critical (n, p), we see that this multiplicity can only be
attained if the third possibilities for P and P′ occur in each case.12 Then,
contributions are received from inducing Pn−1,p, Pn−1,p−1 and Pn−1,p−�. As
the second possibility above is ruled out, it follows that Pn,p

∼= Vn,p for all
critical (n, p), as required.

The structure of the projective Pn,p — It only remains to prove that ker ι
(and ker ι′) are 0 in the exact sequences (8.27) and (8.28) that we have
derived for the non-critical Pn,p:

(8.31) 0 −→ Vn,p+r(n,p)

ker ι
−→ Pn,p −→ Vn,p −→ 0.

We remark that this equation still holds when (n, p) lies to the left of the
first critical line (k (n, p) = 0) if we understand that the Vn,p′ with p

′ > �n/2�
are 0.

Since we have shown that the Pn,p form a complete set of principal
indecomposables, the constraint (8.2) relating the dimensions of the Pn,p,

12 Again, any module whose label is out of the allowed range 0 � p � �n/2� is
understood to be trivial.
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Vn,p and Ln,p may be written in the form

(8.32)

�n/2�∑
p=0

dimLn,p dimPn,p =

�n/2�∑
p=0

(dimVn,p)
2 .

This constraint is now used to determine the dimensions of the projective
modules Pn,p and, therefore, the dimensions of the kernel of ι and ι′. The
contributions from the critical (n, p) may be cancelled in the constraint
because then Pn,p

∼= Vn,p
∼= Ln,p.

We break down the remaining sum over p into non-critical orbits under
reflection about critical lines (see the discussion after Corollary 7.4). We thus
rewrite the original sum as, first, a sum over non-critical orbits, labelled by
their leftmost element p1, and then as a sum over elements p1 > p2 > · · · >
pm � 0 of the orbit of p1:

(8.33)
∑

n−2p1+1<�

m∑
i=1

dimLn,pi
dimPn,pi

=
∑

n−2p1+1<�

m∑
i=1

(dimVn,pi
)2 .

For the (n, p) contributing to (8.33), the exact sequences (8.31) and the
relations (7.20) immediately imply the bounds

(8.34) dimPn,pi
� dimVn,pi+r(n,pi) + dimVn,pi

= dimVn,pi−1
+ dimVn,pi

,

with saturation attained if and only if ker ι = 0. (All dimensions of modules
indexed by p0 or pm+1 are understood to be zero.) These, in turn, give
the following bound for the contribution from each non-critical orbit to the
left-hand side of (8.33):

m∑
i=1

dimLn,pi
dimPn,pi

(8.35)

�
m∑
i=1

(
dimLn,pi

dimVn,pi
+ dimLn,pi

dimVn,pi−1

)
=

m∑
i=1

(
(dimVn,pi

)2 − dimRn,pi
dimVn,pi

+ dimLn,pi
dimVn,pi−1

)

=

m∑
i=1

(
(dimVn,pi

)2 − dimLn,pi+1
dimVn,pi

+ dimLn,pi
dimVn,pi−1

)

=

m∑
i=1

(dimVn,pi
)2.
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Here, we have used (8.34), then Proposition 3.3 and, finally, Proposition 5.3.
For (8.33) to hold, this inequality must be an equality for all non-critical
orbits, hence the ker ι (and ker ι′) must always vanish. This proves that the
sequence (8.16) is exact for all non-critical Pn,p (to the right of the first
critical line), completing the proof of Theorem 8.1. �

9. Summary of results

We conclude the article with a brief summary outlining what has been proven
and a few ideas concerning what can be done with the results. First, we
have presented the well-known equivalence between the algebraic and dia-
grammatic definitions of the Temperley-Lieb algebra TLn (with parameter
β = q + q−1), deducing as a consequence that its dimension is given by the
n-th Catalan number. We have then discussed the standard TLn-modules
Vn,p, with 0 � p � �n/2�, each of which admits a natural invariant bilin-
ear form, and explained that a study of the irreducibility of the Vn,p may
be reduced, in almost all cases, to the consideration of the non-degeneracy
of this bilinear form. Of course, we have also detailed how to analyse the
exceptional cases when the natural bilinear form is not useful.

The question of whether these standard modules are irreducible or not
turned out to have structural implications for the Temperley-Lieb algebra.
We used restriction from TLn to TLn−1 to derive a recursion relation describ-
ing the kernel of the bilinear form on each Vn,p. This gave a complete answer
to the irreducibility of the Vn,p and led to a criterion for the semisimplic-
ity of TLn. In particular, this recovered the well-known result that the TLn
are all semisimple when q is not a root of unity. While our strategy fol-
lows that of [13] rather closely, we believe that our proof is new. Moreover,
we found that the aforementioned description of the kernel suggested that
the standard modules were either irreducible or had an irreducible maximal
submodule, the radical.

To prove this suggestion, we turned to the induced modules obtained
from the Vn,p by including TLn in TLn+1 in the obvious way. After deriv-
ing the required structural information concerning these induced modules,
we detailed a non-trivial computation involving the action of a little-known
central element Fn ∈ TLn on the induced modules. This then allowed us to
deduce the existence of non-trivial homomorphisms between certain stan-
dard modules. As a consequence, we obtained the desired irreducibility of
the (non-trivial) radicals as well as a complete description of the space of
homomorphisms between any two standard modules. All of these proofs
appear to be new.
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Finally, we used our knowledge of induced modules to systematically
construct the principal indecomposable modules Pn,p for the Temperley-
Lieb algebra. These turn out to be realised as either standard modules or as
submodules, corresponding to a given generalised eigenspace of the central
element Fn, of a multiply-induced standard module. The structures of the
Pn,p followed immediately from the analysis, as did the statement that the
irreducible TLn-modules Ln,p that can be constructed from the Vn,p are, in
fact, exhaustive (up to isomorphism). While the structure of the principal
indecomposables is known (it appeared first in [2]), we are confident that
our straight-forward proof is also new. Certainly, it relies upon a particularly
remarkable property of Fn, namely that it completely distinguishes the non-
critical blocks of TLn, a property which does not seem to be shared by other
better-known central elements.

We include, for convenience, pictorial representations of the structures of
the standard and principal indecomposable modules when q is a root of unity.
These take the form of annotated Loewy diagrams which are popular in, for
example, logarithmic conformal field theory. The Loewy diagrams for the
standard modules have two forms according as to whether (n, p) is critical,
meaning q2(n−2p+1) = 1, or not. Let (n, p) and (n, p′) form a symmetric pair,
in the sense of Section 7, with p > p′. The possible Loewy diagrams for the
Vn,p (0 � p � �n/2�) are then as follows:

Ln,p

Ln,p

Ln,p′

L2p,p−1

Vn,p Vn,p Vn,p

(n, p) critical (n, p) non-critical

(n �= 2p or β �= 0)

(n = 2p and β = 0).

To explain, these diagrams present the (irreducible) composition factors of
the Vn,p as nodes, connected by arrows, that are meant to represent the
action of the algebra. The diagrams on the left and right indicate that Vn,p is
in fact irreducible (and isomorphic to Ln,p and L2p,p−1, respectively) in these
cases. By contrast, the diagram in the middle has its only arrow pointing
towards Ln,p′ , indicating that Vn,p has, in this case, a submodule isomorphic
to Ln,p′ . In fact, it is the maximal submodule — quotienting corresponds to
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removing the node Ln,p′ and the arrow, leaving us with only Ln,p (and no
arrows). In other words, Vn,p/Ln,p′

∼= Ln,p. We remark that for sufficiently
small p, the p′ required to form a symmetric pair would be negative. In
that case, Ln,p′ should be understood to be {0}. The diagram in the middle
should then be taken to degenerate into the diagram on the left.

The Loewy diagrams for the principal indecomposables are only a lit-
tle more complicated. First, we remark that when β = 0 and n is even, p
is restricted to the range 0 � p � n/2− 1; otherwise, the range is 0 � p �
�n/2�. Now, take p′′ > p > p′ so that (n, p′′) and (n, p), as well as (n, p) and
(n, p′), form symmetric pairs. The possible Loewy diagrams for the Pn,p are
then as follows:

Ln,p

Ln,p

Ln,p′′ Ln,p′

Ln,p

L2p+2,p

L2p+2,p−1

L2p+2,p

Pn,p Pn,p Pn,p

(n, p) critical (n, p) non-critical

(n �= 2p+ 2 or β �= 0)

(n = 2p+ 2 and β = 0).

Again, the diagram on the left indicates that the critical principal indecom-
posables are irreducible. To understand the diagram in the middle, note that
there is a submodule isomorphic to Ln,p (the bottom node with arrows only
pointing in). Quotienting by this submodule leads to a module with three
composition factors. It has a submodule isomorphic to Ln,p′′ ⊕ Ln,p′ ,

13 and
quotienting by this submodule results in something isomorphic to Ln,p. The
diagram on the right is interpreted similarly.

13 One can (and should) ask why this submodule is a direct sum. Equivalently,
why is there no arrow from the factor Ln,p′ to the factor Ln,p′′ in the middle dia-
gram? (That there is no arrow in the opposite direction follows directly from (8.16).)
This may be answered by showing that any short exact sequence of the form
0→ Ln,p′′ →M→ Ln,p′ → 0 necessarily splits. To see this, note that projectiv-
ity implies the existence of a homomorphism δ : Pn,p′ →M such that the following
diagram commutes:
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The degeneracy conditions are likewise a little more complicated: When
p is small enough in the middle diagram that p′ would have to be negative,
one must delete the node Ln,p′ and arrows pointing towards or away from
it. The resulting principal indecomposable therefore has three composition
factors. However, when p is large enough that p′′ would have to be greater
than �n/2�, one should delete both Ln,p′′ and the bottom Ln,p, so that Pn,p

has only two composition factors. This means that Pn,p
∼= Vn,p when p is on

the left of the first critical line. It may, of course, happen for n sufficiently
small that there are non-critical p for which both p′ and p′′ fall outside the
allowed range. Then, the middle diagram degenerates into the diagram on
the left. Similarly, the diagram on the right degenerates only when n = 2
and p = 0. In this case, the Loewy diagram for P2,0 has two composition
factors, both isomorphic to L2,0, connected by an arrow.

Finally, we remark that such a complete description of the principal inde-
composables allows one to apply standard tools from homological algebra
to answer more advanced questions regarding the variety of possible inde-
composable structures. We shall not do so here, but will content ourselves
with mentioning that it is now easy to write down projective presentations
and resolutions for standard and irreducible modules and so compute the
extension groups between them. This technology answers, in particular, the
question of whether giving a non-split short exact sequence completely deter-
mines the module in the middle. For example, one can use this to show that
the characterisation we have obtained for the principal indecomposables, in
terms of exact sequences, does in fact identify them up to isomorphism. One
can also use the extension computations to construct injective modules and,
indeed, give a complete classification of the indecomposable modules of the
Temperley-Lieb algebra (something which is not possible for most associa-
tive algebras). These directions are clearly crucial for a sound mathematical
understanding of Temperley-Lieb representation theory as well as necessary
for a complete identification of Temperley-Lieb modules in physical models.
In both cases, the structural results proven here provide a springboard from
which one can profitably tackle advanced questions.

0 Ln,p′′ M Ln,p′ 0.

Pn,p′

δ

Comparing the composition factors of M and Pn,p′ , we see that either δ = 0 or
im (δ) ∼= Ln,p′ . The former contradicts the commutativity of the diagram, so we
conclude that Ln,p′ is a submodule of M, whence M ∼= Ln,p′ ⊕ Ln,p′′ .
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Appendix A. Central elements

The goal of this appendix is to introduce the central element Fn ∈ TLn
which plays a crucial role in Sections 7 and 8. This is not the only important
central element in the theory of the Temperley-Lieb algebra. One should also
mention the well-known central element Cn = (t1 · · · tn−1)n ∈ TLn, where
ti = 1− qui, which is derived from its analogue in the braid group [23, 24],
as well as the central idempotents described by Jones [5] and Wenzl [11].
For our purposes, Fn will suffice (whereas Cn in particular will not). This
appendix uses notation and one result from each of Sections 2 and 3; results
from other sections are also used to provide examples. The element Fn is
first used in Corollary 4.2.

The role of central elements is well-known to physicists, where the quad-
ratic Casimir of a semisimple Lie algebra probably provides the most familiar
example. One use for such central elements is to decompose representations
into their eigenspaces. More precisely, if c is a central element of an algebra A
and M a module over this algebra, then the linear map φc : M→M obtained
by left-multiplying elements of M by c defines a homomorphism of modules:
aφc(m) = acm = cam = φc(am) for all a ∈ A, m ∈M. The eigenspaces of
φc are then submodules of M. However, it might happen that φc is not
diagonalisable on M, in which case the generalised eigenspaces Mλ = {m ∈
M | (φc − λ1)dimMm = 0} are also submodules. In fact, M splits, as an A-
module, into the direct sum of the generalised eigenspaces of φc. This is a
very useful property.

We therefore turn to the central element Fn ∈ TLn and its properties.
The computations which follow, and even the definition of Fn itself, are
diagrammatic. The construction is based upon the recent analysis of a double
row transfer matrix [8]. It also appears briefly in [25] (with β = 0), though
it does not seem to have been recognised as central there. This important
property was made explicit in [26], where its eigenvalues were computed. We
will follow their approach with only minor changes.
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To define Fn in TLn, it is useful to introduce the following shorthand
(recall that β = q + q−1):
(A.1)

= q1/2 − q−1/2 and = q1/2 − q−1/2 .

These crossings are to be interpreted as formal objects which will be used as
building blocks to form (linear combinations of) n-diagrams. In particular,
we define Fn as follows:

(A.2) Fn = .

This looks deceptively simple, but the notation hides a large number of dia-
grams as each crossing of thin lines stands for a sum of two terms. Comput-
ing even F3 explicitly requires considering a linear combination of 26 = 64
3-diagrams, even though dimTL3 = 5. For comparison, we list the first few
explicit forms for Fn and the better known Cn:

F1 = (q2 + q−2)1, C1 = 1,

(A.3a)

F2 = (q3 + q−3)1− (q − q−1)2u1, C2 = 1+ q2(q − q−1)u1,
(A.3b)

F3 = (q4 + q−4)1 C3 = 1+ q3(q2 − q−2)(u1 + u2)

(A.3c)

− (q − q−1)(q2 − q−2)(u1 + u2) − q3(q − q−1)(u1u2 + u2u1).

+ (q − q−1)2(u1u2 + u2u1)

We note that because the number of crossings used to construct Fn is even,
the coefficients of the corresponding linear combination of n-diagrams will
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only contain integral powers of q and q−1. Note further that

(A.4)
†
= q1/2 − q−1/2 = ,

recalling that the adjoint was chosen in Section 3 to be linear, not antilinear.
It follows that Fn is self-adjoint. Finally, it is also true [26] that Fn is invari-
ant under q ↔ q−1 (we remark that Cn does not have this last property).

Proposition A.1. Fn ∈ TLn is central.

Proof. The key insight is that
(A.5a)

= q − − + q−1 = −

and similarly, that

(A.5b) = − .

Thus,

(A.6) = − =

is symmetric under a vertical reflection, hence self-adjoint. It follows that
uiFn must be self-adjoint for all i, whence

(A.7) uiFn = (uiFn)
† = F †nu

†
i = Fnui,

as required. �
The eigenvalue of Cn on the standard module Vn,p is easily shown to be
q2p(n+1−p) (see for example [13]). The corresponding result for Fn is as fol-
lows.
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Proposition A.2. The element Fn acts on Vn,p as the identity times fn,p =
qn−2p+1 + q−(n−2p+1).

Proof. First note that any central element must act as a multiple of the
identity on Vn,p by Proposition 3.8. We may therefore determine this mul-
tiple by computing the action of Fn on any (n, p)-link state (modulo terms
which have more than p links). A convenient choice is the state zp ∈ Vn,p

which has first p simple links, followed by n− 2p defects.
We will break the computation up into two pieces, corresponding to the

action on the p simple links and the action on the n− 2p defects. The first
is easy: Using Equation (A.5) (or rather its adjoint) repeatedly, we obtain

(A.8) = .

This will clearly contribute 1 or β, according as to whether the loop wiggling
down is closed by the action on the defects.

This latter action requires a bit of explanation. First, apply the defini-
tion (A.1) to expand the top-right partial crossing (the loop at the top of
these diagrams stands for the big loop of (A.8)):

(A.9) = q1/2 − q−1/2 .

Consider now the first term on the right-hand side. When we expand the
crossing immediately below that just considered, only one term contributes.
The other leads to a link on the middle vertical border which creates an
extra link in the result (using the adjoint of Equation (A.5a)), so the result
vanishes. This observation propagates down the right side, yielding a factor
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of q1/2 at each step. Thus,

(A.10) q1/2 = q(n−2p)/2 .

Now expand the crossing at the top-left. Because of the big loop at the top,
we again find that only one term contributes — the other corresponds to
closing two defects and hence vanishes. This observation propagates down
the left side, picking up a factor of q1/2 at each step, until we reach the last
crossing for which both terms contribute:
(A.11)

q(n−2p)/2 = qn−2p−1/2 = qn−2p − qn−2p−1 .

The overall contribution from this analysis is therefore a factor of qn−2pβ −
qn−2p−1 = qn−2p+1.

The analysis of the second term on the right-hand side of (A.9) is
almost identical. After analysing the crossings on the right side, the dia-
grams become horizontal reflections of those we have just analysed (this
reflection corresponds to the automorphism ui ↔ un−i) and q is replaced
by q−1. The resulting contribution is therefore q−(n−2p+1). Summing the
contributions from both terms now gives the desired result. �

We conclude by indicating why we consider the central element Fn supe-
rior to the more familiar Cn for the purpose of analysing the indecomposable
structure of TLn-modules. The algebra TLn is semisimple when q is not a root
of unity by Corollary 4.6, so we may as well suppose that there exists a min-
imal positive integer 	 such that q2� = 1. In other words, we have q = eiπk/�

for some k ∈ Z coprime to 	. The eigenvalue of Fn on the standard module
Vn,p is therefore

(A.12) fn,p = 2 cos
πk (n− 2p+ 1)

	
.
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In Section 4, we defined (n, p) to be critical when 	 divides n− 2p+ 1. In
that case, fn,p achieves it maximal or minimal value ±2. More generally, we
defined critical lines that partition the Bratteli diagram of the Temperley-
Lieb algebras in Section 5. The crucial property of Fn is that if (n, p) and
(n, p′) are distinct pairs, both lying in the same strip bounded by two con-
secutive critical lines, then fn,p �= fn,p′ . In other words, the eigenvalue of
Fn completely distinguishes standard modules within such strips. In the
language of Goodman and Wenzl [12], this means that Fn completely char-
acterises the non-critical blocks of the Temperley-Lieb algebra TLn. This
property is not shared by Cn. A simple example is provided at q = eiπ/6 for
TL4. The three modules V4,2, V4,1 and V4,0 lie to the left of the first critical
line. The eigenvalues of C4 on each are 1, e4πi/3 and 1, and fail to distinguish
V4,2 and V4,0. The eigenvalues of F4 are −√3, 0 and

√
3.

Appendix B. Basic results

This appendix reviews certain classical tools of representation theory that
are not commonly seen in a first course on representation theory, say at the
level of [27]. These are Wedderburn’s theorem and its generalisation to non-
semisimple algebras, Frobenius reciprocity, the right-exactness of induction,
the Jordan-Hölder theorem and the basic properties of projective modules.
We state them here without proof. The reader can find proofs of Wedder-
burn’s theorem in [28, 29]. Proofs of Frobenius reciprocity for algebras may
be found in [2, 29]. The right-exactness of tensor products is proven in [30]
and projective modules are covered in [22, 29, 31]. Finally, we note that [6,
App. A] provides a concise introduction to finite-dimensional algebras that
gives proofs of Wedderburn’s theorem and its non-semisimple generalisation,
a proof of the Jordan-Hölder theorem, as well as describing what is needed
on projective modules in order to understand Section 8. All modules in this
summary should be understood to be finite-dimensional left modules.

Let A be a finite-dimensional associative algebra over C. Every element
of A can be seen to act on A by left multiplication. This action makes A
into a left A-module called the regular module. The algebra A is said to be
semisimple if the regular module is completely reducible, that is, if it can be
written as a direct sum of irreducible modules. (In the case of a finite group
G, its group algebra CG is always semisimple [27].) A key consequence of
semisimplicity is the following theorem.
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Theorem B.1 (Wedderburn). Let A be a complex, finite-dimensional,
semisimple, associative algebra. Then, the regular module decomposes as

(B.1) A ∼=
r⊕

i=1

(dimLi)Li,

where the L1, . . . ,Lr form a complete set of non-isomorphic irreducible A-
modules. That is, A decomposes as the direct sum of irreducibles with each
irreducible appearing with multiplicity equal to its dimension.

A useful “converse” to this result which will be invoked in Section 4 is the
following:

Proposition B.2. If the regular representation of a complex, finite-
dimensional, associative algebra A decomposes as in (B.1), where the L1, . . . ,
Lr form a complete set of non-isomorphic irreducible A-modules, then A is
semisimple.

When the algebra A is not semisimple, the decomposition of its reg-
ular module will contain modules that are reducible, but not completely
reducible. An indecomposable module M is one which cannot be written as
the direct sum of two proper non-trivial submodules. Irreducible modules
are examples. When the regular module of an algebra is written as a direct
sum of indecomposable modules, those that appear in the decomposition
are called the principal indecomposable modules of the algebra. Let {Pi} and
{Li} be complete sets of non-isomorphic principal indecomposable modules
of A and non-isomorphic irreducible modules, respectively. Wedderburn’s
theorem does not hold when semisimplicity is relaxed. It is replaced by the
following generalisation:

Theorem B.3. Let A be a complex, finite-dimensional, associative algebra.
The two sets {Pi} and {Li} are put in one-to-one correspondence by associ-
ating a given principal indecomposable with its unique irreducible quotient.
If r is the common cardinality of these sets, then the regular representation
decomposes as

(B.2) A ∼=
r⊕

i=1

(dimLi)Pi.
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One way to characterise the structure of an A-module M is through its
composition series. A filtration is a sequence of submodules of M such that

(B.3) 0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mk = M.

A filtration is said to be a composition series if every quotient Mi/Mi−1,
for 1 � i � k, is irreducible (and non-zero). These quotients are called the
composition factors of M. It is easily shown that every (finite-dimensional)
module has a composition series. Indeed, a module may have several com-
position series. However, the following theorem shows that the composition
factors of M do not depend upon the choice of composition series.

Theorem B.4 (Jordan-Hölder). Let

(B.4)
0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mk = M

and 0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ N� = M

be two composition series of the A-module M. Then, k = 	 and, up to a
permutation of their indices, the composition factors Di = Mi/Mi−1 and
Ej = Nj/Nj−1, for 1 � i, j � k, coincide.

The composition factors of a submodule N ⊂M form a subset of those of
M. The same holds for quotients of M and more general subquotients.

The theorem of reciprocity due to Frobenius is the next result covered
in this appendix. It relates modules constructed from known ones through
the classical constructions of restriction and induction. The first is easy to
describe: When the algebra A contains a subalgebra B, any module M over A
is also a module over B. (The action of an element of B onM is simply that of
this element seen as an element of A.) We will denote this B-module by M↓ .
As vector spaces, M and M↓ are identical and have the same dimension.
The second construction, induction, also uses a pair of algebras B ⊂ A as
before, but the starting module M is now over B. The induced A-module,
which we denote by M↑ , is the tensor product A⊗B M. (Section 6 provides
a more detailed definition and several explicit examples.) Restriction and
induction are “dual” operations in the following sense.

Proposition B.5 (Frobenius reciprocity). Let B ⊂ A be two finite-
dimensional associative algebras over C. Let M be a B-module and N be an
A-module. Then, the following isomorphism between vector spaces of module
homomorphisms holds:

(B.5) HomA(M↑ ,N) ∼= HomB(M,N↓ ).
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The most familiar version of reciprocity corresponds to taking B and A to
be the group algebras CH and CG of a pair of finite groups H ⊂ G. Finally,
we shall need the behaviour of induction with respect to exact sequences.

Proposition B.6. Suppose that

(B.6) 0 −→M1 −→M2 −→M3 −→ 0

is an exact short sequence of B-modules. If B ⊂ A, then there is an exact
sequence involving the induced A-modules Mi↑ = A⊗B Mi:

(B.7) M1↑ −→M2↑ −→M3↑ −→ 0.

Because induction preserves the exactness of short exact sequences except
at the leftmost position, induction is said to be right-exact.

We turn now to projective modules which play a central role in Section 8.
An A-module P is projective if, when there are two other A-modules M and
N and homomorphisms α : P→ N and γ : M→ N with γ surjective, then
there exists a homomorphism δ : P→M such that γ ◦ δ = α. Equivalently,
with the same input, there exists a homomorphism δ : P→M such that the
following diagram, with the bottom row exact, commutes:

P

NM 0.

α
δ

γ

Here are some basic properties of projective modules.

Proposition B.7.

(i) Any direct sum of projective modules is projective.

(ii) Every direct summand of a projective module is projective.

Clearly (ii) implies that every projective module can be written as a sum of
indecomposable projective modules. There are many other ways to charac-
terise projective modules.

Proposition B.8. Let P be a module over an associative algebra. The three
following conditions are equivalent:

(i) P is projective.
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(ii) if M and N are any modules such that the sequence 0→M→ N→
P→ 0 is exact, then this sequence splits.

(iii) P is a direct sum of principal indecomposable modules.

The last statement shows the particular role played by the summands of (B.2):
The principal indecomposables are precisely the indecomposable projective
modules.
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