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Abstract

By exploiting a “mixed” non-symmetric Freudenthal-Rozenfeld—Tits
magic square, two types of coset decompositions are analyzed for the
non-compact special Kéhler symmetric rank-3 coset E7(_os5)/[(Eg(—78) X
U(1))/Zs], occurring in supergravity as the vector multiplets’ scalar man-
ifold in N =2, D =4 exceptional Maxwell-Einstein theory. The first
decomposition exhibits maximal manifest covariance, whereas the sec-
ond (triality-symmetric) one is of Iwasawa type, with maximal SO(8)
covariance. Generalizations to conformal non-compact, real forms of non-
degenerate, simple groups “of type E;” are presented for both classes of
coset parametrizations, and relations to rank-3 simple Euclidean Jordan
algebras and normed trialities over division algebras are also discussed.
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1 Introduction

The role of groups in Physics is at least 3-fold. First, they represent sym-
metries that, by definition, introduce elegance in all the equations which
are manifestly symmetry invariant. If that was all, one may argue that this
would be a poor advantage. But symmetries also arise as fundamental princi-
ples in constructing new theories, like, for example, gauge symmetries for the
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Standard Model of particle physics, conformal symmetry for string theory, or
general covariance for the Einstein theory of relativity. Finally, symmetries,
and then groups, play a key role in solving the equations of motion.

A particular class is represented by the (semi)simple Lie groups (and
corresponding Lie algebras), which, once more, find application in a large
number of mathematical and physical fields. All the finite dimensional com-
plex Lie algebras have been classified by Wilhelm Killing, whose proofs have
been made rigorous by Elie Cartan, who has also extended the classification
to the non-compact, real cases. The well known result is that this classifi-
cation has led to the discovery, beyond the famous classical series, of five
exceptional algebras (of course together with the corresponding real forms):
92, fa, ¢6, e7, and esg.

Despite their sporadicity, the appearance of exceptional Lie groups (and
algebras) in physics is anything but sporadic [1]. The importance of com-
pact exceptional Lie groups in realizing grand unification gauge theories and
consistent string theories is well recognized. Similarly, the relevance of non-
compact real forms for the study of locally supersymmetric theories of grav-
ity is well known. Other examples include sigma models based on quotients
of exceptional Lie groups, which are of interest for string theory and confor-
mal field theory applications as well. It is worth mentioning that the analysis
of quantum criticality in Ising chains and the structure of magnetic mate-
rials such as cobalt niobate has also recently (and strikingly) turned out to
be related to exceptional Lie groups of type E (see, e.g., [2,3], respectively).

Several properties of exceptional groups and algebras can be already
inferred from abstract theoretical considerations. Nevertheless, it is often
important to have explicit concrete realizations of the groups available in
term of matrices, for both numerical or analytical calculations. For example,
one could test conjectures related to confinement in non-Abelian gauge the-
ories (see, e.g., [4]), and, more in general, perform explicit non-perturbative
computations in exceptional lattice GUT theories and in random matrix
theories.

In particular, among all the exceptional groups, there are specific motiva-
tions for physics to be interested in E7 : recently, a strict relation between
cryptography and black hole physics based on E7 (and Fjg) exceptional
supergravity has been discovered [5-8]. However, actual computation of
entangled expectation values requires again an explicit determination of the
Haar measure and of the range of the parameters. Moreover, fascinating
group theoretical structures arise clearly in the description of the Attractor
Mechanism for black holes in the Maxwell-Einstein supergravity [9], such as
the so-called magic exceptional supergravity [10] we are focusing on in the
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Figure 1: Dynkin diagram for e;.

present investigation, which is related to the minimally non-compact real
Eq(_95) form [11] of E7.

Before proceeding further, it is worth recalling some basic facts on the Lie
algebra e7 of E7. Let us start by stating that ey is the unique exceptional
Lie algebra of rank 7, and it is characterized by the Dynkin diagram drawn
in figure 1, in which each dot corresponds to a simple root a;. These are
free generators of the root lattice Ar = >, Zoy;. The space H* = AR @ R is
endowed with a positive definite inner product (-|-). The weight lattice Ay
is the dual of Ar with respect to the hooked product, which means that it
is freely generated over Z by the fundamental weights NecH* i=1,...,7
defined by (o, \) = 67, with:

()
(afa)

(a, ) =2 (1.1)

There is a univocal correspondence between fundamental weights and fun-
damental representations, and all the irreducible finite dimensional repre-
sentations can be generated from the basic ones, which are indicated in
parenthesis in figure 1. Here, we are going to deal with the two lower dimen-
sional, namely the fundamental 56 and the adjoint 133.

The complex algebra e7 is completely characterized by its Dynkin dia-
gram, from which one can reconstruct the adjoint representation, that, being
faithful, is isomorphic to the algebra itself. Since e; is a 133-dimensional
complex algebra, it follows that such a representation is the aforemen-
tioned 133.

The Lie algebra e; exhibits four distinct non-compact, real forms. This
means that there are four inequivalent ways to select a 133-dimensional real
subspace of the 266-dimensional real space underlying the complex algebra
¢7, in such a way that the selected subspace endowed with the inherited Lie
product is itself a (real) Lie algebra. For each simple Lie algebra g there
is a unique simply connected Lie group G (up to isomorphisms), such that
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Table 1: The real forms of Er.

Symbol  Real form Maximal compact subgroup (mcs)

E7(~133) Compact Er(133)
E7(_5) EVI (Spin(l?) X USp(Q))/ZQ
Er_a5) EVII (Eo(—78) x U(1))/Z3

g is the corresponding Lie algebra. The complex Lie group E7(c) contains
a maximal compact subgroup, which is a 133-dimensional real Lie group
(denoted as E7(_133)), whose Lie algebra is then called the compact form
(denoted! as ¢7(—133)), Where in parenthesis the signature of the Killing form
(number of the positive eigenvalues minus number of the negative ones) is
indicated.

The non-compact, real forms are in correspondence with the maximal
compact subalgebras of e7(_133) (i.e., the compact Lie subalgebras that are
not properly contained in a proper subalgebra of e7(_;33) itself). The same
holds at group level. There are four such subalgebras and therefore four
corresponding real forms, which we collect in Table 1 (at Lie group level).
For a recent treatment of E; groups (and algebras), see, e.g., [12].

The plan of the paper is as follows.

As anticipated, we are going to deal with the minimally non-compact real
form of e7 (E7), namely with e7(—25) and its corresponding Lie group E7(_as),
both denoted by EVII (see Table 1). In Section 2, by starting from its gen-
eral construction through the Tits magic square, we study the Lie algebra
e7(—25) itself, and we explicily construct a realization in the fundamental
56 representation embedded in usp(28,28). The matrix elements obtained
with this technique turn out to be strictly related to the invariant totally
symmetric rank-3 so-called d-tensor of the Eg_zg) group, thus allowing for
different expressions, depending on the choice of the basis for the relevant
rank-3 (simple) Euclidean Jordan algebra.

'The Killing form K on a complex Lie algebra is defined by K(X,Y):=
Tr(ad(X)ad(Y)) and is non-degenerate for a simple algebra and on the corresponding
real forms. In particular, for a non-compact form it is negative definite on the maxi-
mal compact subalgebra, namely on the maximal Lie subalgebra, whose exponentiation
generates a compact Lie (sub)group.
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In the present paper, we focus on two remarkable explicit parametrizations
of the symmetric manifold?

Er_ EL_
M = 7(—25) _ 7(—25) (1‘2)
K (E6(778) x U (1)) /Z3

(obtained by suitably exponentiating the corresponding coset Lie algebra),
which can be regarded as the classical vector multiplets’ scalar manifold of
the NV = 2, D = 4 Maxwell-Einstein so-called exceptional magic supergrav-
ity theory, based on the rank-3 Euclidean simple Jordan algebra J3(Q) on
the normed division algebra of the octonions O [10].

The first type of coset parametrization/decomposition, analyzed in Sec-
tion 3, exhibits maximal manifest covariance with respect to the maximal
compact subgroup (mcs) Eg_7g) x U (1) of Ey(_o5) (up to Zs; see (1.2)).
Interestingly, such a coset parametrization, also exhibiting a manifest com-
plex (actually, special Kéhler) structure, can be generalized to encompass a
more general class of Lie groups, which in Section 5 we identify at least as
the conformal non-compact real forms of simple, non-degenerate Lie groups
“of type E7” [14], of which E7_s5) (in its 56 representation) can be con-
sidered as the generic representative. Groups “of type F;” have recently
appeared in Theoretical Physics, in the investigation of single- [15] and
multi-centered [16—20] extremal black hole solutions in supergravity theo-
ries, as well as in the study of matter creation in the Universe [21].

The second coset parametrization, studied in Section 4, relies on the Iwa-
sawa construction, already analyzed for the split form Er7) e.g., in [22].
In this case, the maximal manifest covariance reduces down to an SO(8)
subgroup of FEy7), which will interestingly turn out to be related to the
automorphism group Aut(t (0)) of the normed triality t () over the octo-
nions O (entering the Tits’ construction). The well known SO(8) triality is
manifest in such an approach, as detailed in the group theoretical analysis
of Sections 4.1 and 4.2. As discussed in Section 5, also this construction
of the Iwasawa decomposition can be generalized at least to the conformal
non-compact real forms of simple, non-degenerate Lie groups “of type E7”;
the resulting manifest covariance is then given by an SO (q) x A, subgroup,
which remarkably shares the same Lie algebra as the automorphism group
Aut(t (A)) of the normed triality over the relevant normed division algebra
(see, e.g., [23]) A =R (reals), C (complex numbers), H (quaternions), and
O (octonions).

2For previous studies of exceptional cosets in supergravity, see, e.g., [13].
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Table 2: The “mixed” magic square.

R C H 0
R SO(3) SU®3) USp(6)  Fi_sa)
C  SU(3) SUB)xSU@B) SU®6) Eg_ms
Hs Sp(6,R)  SU(3,3)  SO*(12) Er_as
Os  Fa Ls(2) Er s Esa

24

Final remarks, comments and discussion of further possible developments
are given in the concluding Section 6.

2 The Lie algebra e7(_25) in the 56

In order to construct the Lie algebra e7(_s5), we are going to follow a pro-
cedure similar to the one outlined in Section 7 of Yokota [24], based on the
non-symmetric “mixed” magic square [10,25,26] displayed in Table 2.

The rows and the columns contain the division algebras of the real num-
bers R, the complex numbers C, the quaternions H, and the octonions Q.
Since at the group level we focus on the (minimally) non-compact form
Er7(_25), we need to start from the split form Hg of the quaternions in the
third row. On the other hand, we are also interested in identifying explicitly
its maximal compact subgroup K := Eg_zg) X U(1)/Z3 [24], and therefore
the usual form C of the complex field in the second row is to be considered.

The Tits” formula then yields the Lie algebra £ corresponding to division
algebras in row A and column B as follows [26]:

£ (A,B) = Der (A) @ Der (35 (B)) + (A’ ® 3} (B)) . (2.1)

The symbol & denotes the direct sum of algebras, whereas + stands for
the direct sum of vector spaces. Moreover, Der are the linear derivations,
J3 (B) denotes the rank-3 Jordan algebra on B, and the priming amounts to
considering only traceless elements.

In particular, for the Lie algebra of E;(_s5) the Tits’ formula (2.1) reads:

e7(_25) = L (Hg, 0) = Der(Hg) & Der(33(0)) + (Hy ® 35(0)).  (2.2)
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H'y denotes the imaginary split quaternions, and the following multiplication
rule holds for the units 4, j, k € Hg (cf. e.g. (A.18) of [27]):

ij=k=—ji, jk=—i=—kj, ki=j=—ik, ¢=-1, j2=k*=1.
(2.3)

An inner product can be defined on Hg as:
<h1, h2> = Re(f_llhg), hi,hy € Hg. (24)

Also, notice that if L and R, respectively are the left and right translation
in Hg, then a derivation Dy, p, € Der(Hg) can be constructed from hq,
h2 S HS as:

Dh17h2 = [ththz] + [Rh17Rh2]' (2'5)

The rank-3 octonionic Jordan algebra J3(0) is defined as the algebra of
the 3 x 3 Hermitian matrices of the form:

ai 01 02
J=10] a2 o3 (2.6)
05 03 as

with a; € R, and 0; € O, 1 = 1,2,3. The Jordan product o is thus realized
as the symmetrized matrix multiplication:

. . . A
J1oj2 = 5(]1]2 +j271),  j1,J2 € J3(0). (2.7)
It is then possible to introduce an inner product on the Jordan algebra:

{J1,J2) := Tr(j1 © j2). (2.8)

Furthermore, there is a cubic form, which is defined for any ji, j2, 73 € J3(0)
as [28] (for a recent account, see, e.g., [29,30]):

L 1 L 1 ) L
Det(j1,j2,73) = gTT(h 0 j2 0 j3) — E(TI"(Jl)Tr(Jz 0 j3)
+ Tr(j2)Tr(j1 0 j3) + Tr(j3)Tr(j1 © j2))

+ TG T () TG ). (29
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In turn, this induces an action > of J3(Q) on itself through Det(j1, j2,j3) :=
2Tr ((j1 & j2) o j3), which by definition (2.10) reads:

o o 1o 1. . 1., .
J1 D> jo i=j10 jo — §T1"(]1)J2 — §Tr(32)31 + §Tr(Jl)Tr(Jz)13
1 L
- §T1“(Jl o jo)I3, (2.10)

with I3 the 3 x 3 identity matrix.

An important ingredient entering (2.1) is the Lie product [-,-], which
in the case under consideration extends the multiplication structure also to
Hy ® J5(0); its general explicit expression can be found, e.g., in (2.5) of [12]:

[h1 @ j1, he @ jo] := %<j1,j2>Dh1,h2 = (ha, ha)[Lj,, Lj,]
+ %[hl, ha] ® (j1 0 J2 — %<j1,j2>—73)- (2.11)
It is known (see, e.g., [27,31]) that:
Der (33(0)) ~ fa(—s2); (2.12)
Der (Hg) ~ sl (2,R), (2.13)
and therefore (2.2) can be recast as:
er(—25) = 51(2,R) @ f4 + (Hg ® J5(0)), (2.14)

which implements the maximal non-symmetric embedding (whose compact
form is given, e.g., by Table 15 of [32]; see also [33]):

Eq(_95) D SL(2,R) X Fy(_52);
56 = (4,1) +(2,26);
133 = (3,1) + (1,52) + (3,26). (2.15)

We note in passing that, from the branching (2.15) of 56, this embedding
is relevant for the mazimal truncation of N'= 2, D = 4 magical exceptional
theory (based on rank-3 simple Jordan algebra J3(Q)) to the smallest cubic
N =2, D =4 model, namely the so-called T° model, the truncation con-
dition on the vectors (and their field strengths’ fluxes, namely electric and
magnetic charges) being given by (2,26) = 0.

As the next step, one needs to identify the subalgebra generating the max-
imal compact subgroup K := Eg_7g) X U(1)/Z3 of E7(_s5). By considering
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the manifestly f4(_s52) -covariant decomposition of eg(_7g) from Tits’ formula
(2.1):

es(—78) = £ (C,0) = Der(J3(0)) + (i ® 35(0)), (2.16)
the Lie algebra & of K can be identified as the subalgebra of eg_7g) defined
by picking the only imaginary unit ¢ € Hg which satisfies i> = —1 and com-
puting:

R = ad; ® Der(J3(0)) + (i ® 35(0)) , (2.17)

where ad; € Hg denotes the adjoint action of i, generating the maximal
compact subgroup U(1) of SL(2,R). It is worth remarking that, due to the
following property of the Lie product:

[i ® j1,i @ ja] = —[Ljy, Lj,), 1,72 € J3(0), (2.18)

the multiplication of J5(0) by the imaginary unit ¢ in the last summand
of (2.16) and (2.17) is exactly what is needed to get the compact form of
FEg(—78) instead of the (minimally) non-compact real form Eg(—26), when
exponentiating the algebra.

As anticipated, by this procedure, inspired by the approach of Cacciatori
Piazza and Scotti [12] and exploiting the methods explained in [24], one
can construct the (smallest symplectic) fundamental irrep. Fund = 56 of
E7(_25) reproducing the structure constants of the Adj = 133 irrep. (for
whatever basis one chooses for the algebra).

Such an explicit symplectic realization reads as follows:

— —
ér | O27 | O27 | Oor
— —
o1 o | 0L 1] o
Y; = A — T I=1,...,78 (2.19)
027 | 007 | —¢F | 097
05l o [ 0% ] o
— —

ﬁb? 027 027 027
_
0

Yoo = - : — ; (2.20)
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027 097 204, | iV27€ 4
. 1 07 0 iV2el | o L
= 5 ) a =1, U 5
T2 24y | —iv2Fa.| 0y | Ou
—iv2eT 0 oL 0
(2.21)
027 0o | =244 | V2Ca
1| 0oL 0 |v2el| o
Ya+106:§ -, - , a=1,...,27,
—24, [V2€as| 09 027
V2eT | 0 0L 0
(2.22)

where I, is the n x n identity matrix, O7 is the 27 x 27 null matrix, E)n is
the zero vector in R”, and €4, a =1,...,27, is the canonical basis of R?"
throughout.

The 78 matrices ¢ realize a subalgebra eg(_7g) in its irreducible represen-
tation Fund = 27. An explicit expression can be found, e.g., in Section 2.1
of [12]:

C I=1,...,52
=14 ! AR (2.23)
Crse I=53,...,18,

where, in turn, the matrices C; realize a maximal f4_59) subalgebra in its
Fund = 26 irrep. (see, e.g., [34,35]).

The 27 matrices A, are related to the d-tensor of Eg, as explained in more
detail in Section 2.1.

The first 79 matrices Y7 (2.19) and Y79 (2.20) generate the maximal com-
pact subgroup K of E7_g5) and are anti-Hermitian, whereas the remaining
ones Yy179 (2.21) and Y,1106 (2.22) generate the non-compact symmetric
coset Ey(_g5)/K and they are Hermitian.

By introducing (cf. [12]):

Ig | O
= ( e ) , (2.24)
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the two matrices Y196 and Y133 can be rewritten more explicitly as:

027 ?27 —i\/gf iV27€ 97
1 [ 0 iv2eL | 0
Y106 = 3 ~ ~ - : (2.25)
i %I —iV/27€ 97 027 027
—iv2el 0 0L 0
R -
O27 027 \/%I V27€
—
1 0% 0 Vv2ed 0
Yiss = 5 AT ~ L = _ (2.26)
21 [ V2€yr| O 027
Vv2eL | o oL 0

Together with Y79 (U(1) generator), Yips and Yi33 generate an SL (2,R)
subgroup, corresponding to the one appearing in (2.14) and (2.15).

2.1 The matrices A, and the d-tensor of the 27 of Eg(_rs)

By choosing a basis {js}a=1,..26 of J5(0) normalized as (ja,jp) = 2045, &

completion to a basis for J3(Q) can be obtained by adding jo7 = \/gl 3. The
Ay’s are 27 x 27 symmetric matrices representing, by means of the linear
isomorphism J3(0Q) ~ R?7, j, + &,, the action > of J3(Q) on J3(0) itself.
The components of A,, explicitly computed in [12], satisfy the following
relation [28]:

1 . . ) 3 . 1
(Aa)? = ST ((Ja > jy) 0 ) = 3 Det(ju, jv, i) =: 7 dong,  (2.27)

where doy3 = d(ayp) is the totally symmetric rank-3 invariant d-tensor of the
27 of of Eg(_7g), with a normalization suitable to match Det(jq, jy,js) given
by (2.10) (see below). We point out that the result (2.27) does not depend
on the choice of the basis {j,}. Thus, the expressions of Y, 179 (2.21) and of
Yo+106 (2.22) exhibit the maximal manifest compact [(Eﬁ(,m) x U(1))/Zs]-
covariance. However, whenever the choice of the basis {j,} is exploited in
order to distinguish the identity matrix from the traceless ones, the d,g, of
FEg has a maximal manifestly Fy_s2)-invariance only. This also holds for the
expressions of the Y7 (2.19), which are manifestly Fy_s2)-covariant only, due
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to the splitting (2.23). Notice that the full [(EG(_78) x U(1))/Zs]-covariance
can be recovered simply by picking a generic basis for the Jordan algebra.

A manifestly [SU(6) x SU(2)]-invariant expression of the d-tensor of the
27 of Eg(_7g) has been constructed in [36]. On the other hand, d-tensors for
the non-compact real forms of Eg have been more extensively considered in
the literature, e.g., due to their appearance in the general form of the holo-
morphic prepotential F' of cubic special Kéhler geometry (see, e.g., [37]).
For instance, in [38] the d-tensors of g (split) and Eg_og (minimally
non-compact) real forms have been explicitly constructed, with USp(8) and
USp(6,2) maximal manifest invariance, respectively. By denoting with Gg
the U -duality® group of chiral supergravity theories with 8 supersymme-
tries in D = 6 space-time dimensions, and considering all U-duality groups
G5 of N =2, D =15 supergravity theories with symmetric (vector multi-
plets’) scalar manifold, manifestly [Gg x SO (1, 1)]-invariant expressions of
the Gs-invariant d-tensor have been derived, e.g., in [37,41-45].

A necessary remark on the consistence of normalizations is in order. As
a consequence of the choice (2.35) for the normalization of the matrices Y4

discussed in Section 2.2, the components (Aa)ﬁ ~ = Aqpy are normalized as:
Anp, AP = 567, (2.28)

This is consistent with the normalization of the d-tensor (of Eg(_sg)) given

by the following expression of the Kéahler-invariant ((X 0)2—rescaled) holo-
morphic prepotential function characterizing special Kéhler geometry (see,
e.g., [37,46,47]):

1
f(z):= adamzo‘zﬁﬂ, (2.29)

adopted, e.g., in [48]; in general, a =1,...,ny, where ny denotes the
number of Abelian vector multiplets coupled to the supergravity multiplet.
Indeed, within the notation conventions adopted in [49], one can compute
that (see also [50,51]):

Ao d" = (g +2) 57 (2.30)

3Here U-duality is referred to as the “continuous” symmetries of Cremmer and
Julia [39]. Their discrete versions are the U-duality non-perturbative string theory sym-
metries introduced by Hull and Townsend [40].
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For all the models reported in Table 3 below but the 7% model, ¢ can be
defined as:

q = dimgA, (2.31)

where A denotes the division algebra on which the corresponding rank-3
simple Jordan algebra J3(A) is constructed (¢ =8, 4, 2, 1 for A = O, H, C,
R, respectively). Furthermore, as observed in [52], in general ¢ is related to
the inverse Coxeter number A by the relation:

2
A=——"— ¢=0,1,2,4,8; 2.32
vz 4 (2.32)

1
AN=———, ¢=—-2/3 (T2 model). 2.33
a1 ¢ /3 ( ) (2.33)

The case ¢ = 0 in (2.32) corresponds to the triality symmetric so-called N' =
2 STU model [53], based on J3 = R® T ~ R® R & R; however, since the
corresponding U-duality group G4 is semi-simple, it will not be considered
in the present investigation.

Coming back to the previous reasoning, by plugging ¢ = 8 (corresponding
to the octonionic theory considered above) into (2.30), one achieves the
following result:

q=8:dyp,d" = 1057, (2.34)

which matches (2.28) when taking (2.27) into account, and assuming for the
d-tensor of Fg_rg) the same normalization of the d-tensor of Eg_ag).

2.2 Properties of the matrices Ya

The Y4’s are orthonormalized (with signature (—72, +54)) with respect to
the product:

(V,Y")56 = %TWY’). (2.35)

This normalization guarantees that the period of the maximal torus in the
FEg subgroup equals 47, which is the standard choice for the period of the
spin representations of the orthogonal subgroups [34, 35].

Furthermore, the complete symmetry of the d-tensor implies the matrices
Y4 (A=1,...,133) given by the expressions (2.19)—(2.22) to be symplectic
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with respect to the canonical symplectic form:

028 —1Iog
Q.=
(Izs O )’

namely (in a block-wise notation, and suppressing the index A):

A B A =D
Y = (C D) €sp(56,C) Y +YIQ=0<B' =B
ct=¢C
Actually, it holds that:
Y € usp (28,28).
In order to show this, let us introduce:
Iz 02
H = ,
(028 —1Ias
and recall the infinitesimal condition:
At =—A
Y cu28,28) e HY + Y H=0{ B =C
Dt =-D

Thus, by means of the isomorphism:
sp (2n,R) ~ usp (n,n) =sp (2n,C) Nu(n,n),
it follows that:

A=Al =D;

Y € usp(28,28) < _
b(28,28 {C:BT:B.

1091

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

It should be noted that, when considering n vector fields in presence of
scalar fields, the isomorphism (2.41) has been exploited by Gaillard and
Zumino [54] for the study of the generalization and non-compact nature
of the electric-magnetic symmetry, naturally yielding in D =4 a mani-
festly USp (n, n)-covariant basis of self-dual/anti-self-dual vector 2-form field
strengths, rather than an Sp (2n,R)-covariant one; see also, e.g., the re-

elaboration of such a treatment presented in [47].
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Let us analyze the properties of the matrices Y4 (2.19)-(2.22) (following
the notation of [12]):

(1) Y7 (2.19) with I =1,...,52. According to (2.23), ¢ = Cr. Up to a
change of basis of the Jordan algebra, the matrices C are given in [34]
(including the Mathematica routine used for their computation). As
mentioned before, the Cy’s realize a maximal fy4_s59) subalgebra in
its irreducible representation Fund = 26. In turn, this is embedded
into the algebra eg_7g) (maximal compact subalgebra of 67(,25)) in
its Fund = 27 irrep., through the addition of an extra 27th row and
column of 0’s, according to the maximal and symmetric embedding:
FEg D Fy, 27 = 26 + 1. The symmetry properties are:

Cr=—-CF, Cr=Cr = Yr=-Y] cusp(28,28). (2.43)

(2) Y7 (2.19) with I =53,...,78. According to (2.23), ®; = Cr_s52, as
computed in [35], where the Mathematica routine to generate them
is given, as well. The fact that the C’s are purely imaginary is a
consequence of the presence of the factor ¢ in the last summand of
(2.16); they are defined in terms of the action (2.10) applied to the
traceless part J5 (0) of the Jordan algebra. In turn, such an action
of the Jordan algebra on itself is the one entering the cubic form and
hence in the definition (2.27) of the matrices A,’s, implying that the
Ci_s2 coincide with the first 26 components of A, apart from an
overall 7. The symmetry properties are:

01_52 = C’f_52, C’}—SQ = — 01_52 — Y} = —YIT S usp(28, 28). (2.44)

(3) Y79 (2.20). It generates a U (1) subgroup, corresponding to the com-
pact Cartan of the SL (2,R) factor group, appearing in (2.14) and
(2.15). The symmetry properties are:

Yoo = Yo, Y = =Yg = Yig € usp (28,28) . (2.45)

(4) Y7 with I =80,...,106, i.e., Yoi79 (2.21). The symmetry properties
read as follows:

Aa=AL Al =As= Y] 1g=Yarr, Yarro=-Yly,
Yai79 € usp(28,28). (2.46)

(5) Y7 with I =107,...,133, i.e., Y1106 (2.22). The symmetry properties
read as follows:

YJH()@ = Yoi+106:  Ya+106 = —Yai106 Yat106 € usp(28,28).  (2.47)
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Thus, (2.38) results from (2.43) to (2.47).

As elucidated in the next section, the matrices Y7, I = 80,...,133 given
by (2.21) and (2.22) are the Hermitian generators of the symmetric maximal
non-compact (special Kéhler) Riemannian coset (1.2), which is the classical
vector multiplets’ scalar manifold of the magical N'= 2, D = 4 Maxwell-
Einstein supergravity theory based on J3 (Q) [10]. As given by (2.27), the
27 matrices A, are directly related to the invariant d-tensor of the 27 irrep.
of Eg(_7g); they have been explicitly constructed in [12], to which the reader
is addressed for further detail.

3 Manifestly [(Eg_7s) X U(1))/Zs]-covariant coset
construction

The quotient manifold M (1.2) has rank 3; this means that the maximal
dimension of the intersection between a Cartan subalgebra of E;(_s5) and
the generators of M itself is 3. From the results reported above, the three
generators of a Cartan subalgebra of M can be chosen to be the diagonal
generators of the Jordan algebra J3 (0) itself, namely Yio3, Y132, and Yiss.

The coset M (1.2) is generated by the matrices Y7911, (2.21), and (2.22)
with I =1,...,54. Through the exponential mapping, it can be defined as
follows:

27

M = exp (Z TaY106+a + Z/aY79+a> ; (3.1)
a=1

with zq, Yo, @« = 1,...27, real parameters.

From the commutation relations of the matrices Y’s, which can be easily
computed by means of the Mathematica program provided in [12], it holds
that:

2 2
[Y514a, Yios] = \/;}/106+0m [Y51+a, Yi33] = \/;Ywm. (3.2)

The generators of eg_7g) which are not in f4_59) mix the matrices Y7914
with the Yipg+q. Therefore, in order to make the complex structure of M
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manifest, it is necessary to introduce the following complex linear combina-
tions of the matrices:

1 .
Co = E (Y7910 +1 Yi06+a) (3.3)

_ 1 .
Coa = E (}/79+o¢ —1 Y106+a) .

This hints for the complex linear combinations of the parameters:

2o 1= %(ya +izq), (3.4)
Zo 1= L —ix
o = ﬂ(ya a)a

which allows one to rewrite (3.1) as:

27
M :=exp (Z Zola + ZaCa) . (3.5)

a=1

By introducing the 27-dimensional complex vector:

27
z = Zzaé’a, (3.6)
a=1
and the 28 x 28 matrix:
27
V2 "z, 4, | 2
A= o; (3.7)
2T ‘ 0
Equation (3.5) enjoys the simple form:
Sh(v AT A)
Ch(VAAT A—rcer=—"
0lA ( ) VAA
M = exp 1o )~ (3.8)
Sh(V AAT)
Al | Ch(VATA
i ( )
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This is a Hermitian matrix, of the same form as the finite coset representative
worked out [55] for the split (i.e., maximally non-compact) counterpart

Erer

MN=4= 507 (8) /2

(3.9)

which is the scalar manifold of mazimal N'= 8, D = 4 supergravity, associ-
ated to J3 (Og). On the other hand, as a consequence of (2.38), M also is
an element of USp (28, 28), whereas Mr—g is real.

By using the machinery of special Kdhler geometry (see, e.g., [37,46,47]),
the symplectic sections defining the symplectic frame associated to the coset
parametrization introduced above can be directly read from (3.7)and (3.8):

uf\ (2,%2) ‘ viA (2, Z)

M =: ‘ , (3.10)
v (2,%)

u’A (2,2)

where the symplectic index A =0, 1,...27 (with 0 pertaining to the N’ = 2,
D = 4 graviphoton), and i = @, 28. Thus, the symplectic sections read (see,
e.g., [47,56]; subscript “28” omitted):

o= )} = (Ta*) = (D 1)

— exp <;K> (%YA, XA> : (3.11)
hin = Vii (u—v); = (ajas ha) == (Dol n, M)
= exp (;K> (DaFa, Fy) , (3.12)

where D is the Kéhler-covariant differential operator,

Vo= (L8 My)" = exp <;K> (XM, Fy)" (3.13)
is the symplectic vector of Kahler-covariantly holomorphic sections, and

K:=—In [i (YAFA - XAFA)} (3.14)
is the Kéhler potential determining the corresponding geometry.

As announced, a key feature of (3.7) is that the matrix A, generating
the coset M (1.2)—(3.8), is written in terms of the invariant rank-3 d-tensor
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of the 27 fundamental irrep. of Eg_7g), thus yielding a formalism with
manifest [(Eg_7g) x U(1))/Zs]-covariance, which is the maximal compact
possible symmetry of the framework under consideration. Within such a
parametrization, the complex scalar fields of the corresponding N' = 2 magic
theory, coordinatizing M (1.2), are defined by (3.4), and summarized in
vector notation by (3.6).

Furthermore, attention should be paid not to confuse this symplectic
frame with the so-called “4D/5D special coordinates” symplectic frame
(see, e.g., [49]), in which the holomorphic prepotential function F exists

and it is given by ((X 0)2 times) (2.29). Indeed, as commented below, F
simply does not exist in the symplectic frame under consideration (namely,
2F = XAFy =0 [57]), and the d-tensor of the 27 of FEg(—26) (appearing in
(2.29)) is different from the d-tensor of 27 of Eg(_7g), appearing in the treat-
ment of Section 2 and of the present section; such a difference is evident,
e.g., when considering a manifestly [Gg x SO (1, 1)]-invariant formalism, as
done, e.g., in [38,44].

As mentioned in Section 2, by exploiting the expressions (2.25) and (2.26)
of the non-compact generators of the relevant sl (2, R) subalgebra, the max-
imal manifest [(Eg_7s) x U(1))/Z3]-covariance can be broken down to a
manifest [Fy_s9) X U(1)]-covariance (recall the maximal symmetric embed-
ding (2.14) and (2.15)), in which (3.7) becomes:

26
%2271 - ﬂZzaAa 2
a=1

A= (3.15)

2T .0

We note in passing that Fj_s9) is particularly relevant, because it con-
tains all the compact generators of USp (6,2), which is the maximal (non-
compact) manifest covariance exhibited by the d-tensor of the 27 irrep. of
FEg(_26) constructed in [38]:

~USp(6) x SU (2) =mes[USp(6,2)].
(3.16)

3.1 Remarks

In order to gain more insight on the parametrization under consideration,
it is useful to compare the infinitesimal element of the coset M (1.2), given
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by the 28 x 28 matrix (recall (3.8) and (3.7)):

0A
In M := (ﬁ) , (3.17)

with an analogue expression, given by (6) of [48], which we recall here for
ease of comparison:

03 |t | dPt, | 0
—t 0 0 0
B:= - i (3.18)
daﬁ"/t Oa Oa tOL
05 0 t'P

Following the treatment of [48], B is a real 28 x 28 matrix depending on 27 +
27 = 54 parameters, parametrizing the generators of the maximal symmetric
non-compact pseudo-Riemannian rank-3 coset

vl L7

= 1
M EG(G) x SO (1, 1)’ (3 9)

with signature (—27,427); in this case, the d-tensor appearing in (3.18) is
the one pertaining to the 27 (or 27’) irrep. of the split non-compact real
form Eg(g). On the other hand, by suitably replacing this latter by the d-
tensor pertaining to the 27 (or 27’) irrep. of the minimally non-compact
real form Fg_s6), the matrix B (3.18) can be regarded as parametrizing
the generators of the maximal symmetric non-compact pseudo-Riemannian
rank-3 coset

Mo Er(_95)
" Eg(-26) x SO (1,1)’

(3.20)

with signature (—*3,4!1); this pseudo-Riemannian counterpart of (1.2) can

also be regarded as the classical vector multiplets’ scalar manifold of the
magical octonionic N' = 2 Maxwell-Einstein supergravity theory in D = (4, 0)
dimensions, obtained from its D = (4,1) uplift by timelike Kaluza—Klein
reduction (see, e.g., [58]). Clearly, also other interpretations of B (3.18) are
possible, within the maximal (symmetric) embeddings of (non-compact, real
forms of) Eg x U(1) into (non-compact, real forms of) E7 (see, e.g., [59]),
but they are not relevant for /t\he present investigation. Notice that in the
above expressions (3.19) for M and (3.20) for M the issue of the presence
of finite or discrete factors is not taken into account.
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We will now relate the matrix B (3.18) (which, within the interpretation
(3.20), provides a manifestly [E6(_26) x SO(1,1)]-covariant parametrization

of the generators of the coset M) to the matrix In M (3.17) (which provides

a manifestly [(Eg(_7s) X U(1))/Z3]-covariant parametrization of the gener-
ators of the coset M (1.2)).

(1) We start and move the vectors ¢ and ¢ from the diagonal blocks of B
to the off-diagonal ones. In order to achieve this, a symplectic auto-
morphism generated by the following matrix has to be performed:

Is7 {0 O | O
00| 0 |-1
S=|—0toTH o (3.21)
0 (1] 0710
Thus, it follows that (STQS = Q)
05 | 0” daﬁv/t,y —t
0 0 —t 0
SBS™! = A g (3.22)

dopt" | —ta | 00 | 0,
—1g 0 Og 0

(2) Then, it is necessary to make the following identification between the
27-dimensional vectors ¢, ¢’ of B (3.18) and z, Z defined by (3.4) and
(3.6):

t=—%;

{ v (3.23)

(3) By recalling the normalization of the d-tensor given by (2.27), it thus
follows that B can be transformed into In M (3.17).

It is here worth remarking that an analytical direct exponentiation of the
matrix B (3.8), which would yield an explicit symplectic frame, e.g., for
the manifold (3.19) or (3.20), and which, through the 3-step procedure just
mentioned, would provide a more explicit form of the treatment of Sections 2
and 3, does not seem to be feasible (in [60] the exponentiation of B (3.8) with
t =0 or, equivalently, ¢ = 0 has only been performed). It may be possible
that a direct exponentiation of the matrix B (3.8) could be performed by
exploiting the fundamental identity for the d-tensor of the symmetric coset.
With the above normalization, such an identity can be derived from the



MAGIC COSET DECOMPOSITIONS 1099

treatment given in [61] (at least for Eg):
1
oy @ dpp = doypa 3 + gdypﬁag — 6dyu, T T, (3.24)

where as in the explicit treatment of Sections 2 and 3, Greek indices run over
the fundamental 27 (or 27) irrep., and capital Latin indices run over the
adjoint 78 irrep. of Eg; the T7),5’s denote the realization of the generators
of Eg in its 27 irrep. (see, e.g., [61]), and they are, e.g., proportional to the
o1's (2.23) appearing in the matrices Y7 (2.19). We note that the complete
symmetrization of covariant indices of the identity (3.24) yields the well
known identity:

4 A

== *d(l,pﬁ(ga)

A
d(aﬁlvd Mdulvp) 3

(3.25)
We leave for the future the interesting task of exploiting the identity (3.24)
and/or spectral techniques in order to perform the exponentiation of the
matrix B (3.8), and thus to determine a more explicit expression of the

maximally manifestly covariant symplectic frame introduced in Sections 2
and 3.

4 The Iwasawa decomposition

In this section, we are going to construct, along the lines of [22], another
parametrization for the coset M (1.2), by exploiting the lwasawa decompo-
sition, which in this case turns out to be manifestly SO(8)-covariant, thus
providing a manifestly triality symmetric description of the rank-3 coset
M. Within this treatment, we will denote by B the Lie algebra of the coset
M, namely the complement in e7(_g5) to its maximal compact subalgebra

T = 86(778) & U(l)

As the first step, one needs to determine a maximal non-compact Cartan
subalgebra £3. As observed at the start of Section 3, a possible choice is:

93 1= (Y123, Y132, Y133)r C B, (4.1)
generated by the diagonal elements of J3(Q).

Next, a basis of 54 — 3 = 51 positive roots of P with respect to $Hs (4.1)
is to be determined.

If the adjoint action of 3 on e7_gs) is simultaneously diagonalized, we
expect to be able to find only 102 non-vanishing vectors in R3. This follows
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from the fact that, apart from $)3 itself, $3 commutes with a 28-dimensional
subalgebra & ~ s0(8) of T; this can be easily understood by the following
argument. By denoting with @, the semi-direct sum of algebras, due to
the symmetric nature of the embedding determining the coset M (1.2), the
structure of the Cartan decomposition of e7(_o5) = T B, P reads:

[T3cT BPCT PSP (4.2)

As usual, the last relation implies that P is a representation space for X,
which in general will decompose in irreducible subspaces. In particular, 3
is a representation space for the f4_s9) subalgebra of T. As it is well known,
fa(—52) is the Lie algebra of the group Aut(J3 (0)); in turn the subalgebra of
fa(—52) which keeps the diagonal elements of J3 (O) fixed is precisely so(8),
namely the Lie algebra of the automorphism group Aut(t (0)) of the normed
triality on O (see, e.g., [62]). Therefore, since 3 has been selected exactly
as the subalgebra corresponding to the diagonal elements of J3 (0), it has to
commute with an s0(8) subalgebra of fa(—52); this can indeed be checked by
inspecting the structure of the roots. Followmg [34,35], a Cartan subalgebra
$7 C e7(_25) can be obtained by adding the space $)4 generated by the four
matrices Y, i = 1,6,15,36 (recall (2.19)) to 3. Then, the computation of
the roots with respect to this system exactly yields 28 roots with vanish-
ing components in the subspace $3; these generate the $3-preserving Lie
algebra [34]:

S = <Y17"'}/217}/307"-7}/36>R:50 (8), (43)

whose (Y;);_ 1536 is thus a Cartan subalgebra. Note that in [34,35] a
completion of ( >Z 16,1536 t0 50 (8) # & (4.3) was worked out, but this is
irrelevant for the present investigation.

As a consequence, it holds:

adﬁs |GEB5’J3 =0, (4'4)

so that 31 eigenvalues vanish in R3, and thus only at most 133 — 31 = 102
can be non-vanishing, as expected.

Let us show that actually all the remaining 102 eigenvalues of adg, on
e7(_25) are non-vanishing. First, we can write:

T=69:%7, (4.5)
m - 53 @S ;']3/7
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with dimgT =dimgP’ = 51. Now,
adg, : T ®s P — T @, P (4.7)

Indeed, [P, P] C T (4.2) implies [H3,P'] CT. Let (,)ex be the Cartan—
Killing product; then, its restriction to ¥ has a definite signature, usually
chosen to be negative. The fact that [S, $3] = 0 implies:

(6,193, B ek = —([93,6], B )er =0 = [93,P] € T'. (4.8)

Next, from [T, B] C P (4.2) it follows that [$H3,T'] C P. As the Cartan—
Killing form is strictly positive on 3, and $)3 is Abelian, one obtains:

(93,93, T ek = —([93, 93], T)er = 0= [93,T] C P (4.9)

In this way, one can conclude that the set W of the remaining 102 roots
of e7(_g5) has eigenspaces in T @5 PB’. Thus, each eigenvector has the form
Agi=ta+pa, A=1,...,102, where t4 € T and ps € P’ are both non-
vanishing and uniquely determined by A4. Let us suppose that one of the
roots r4, € W vanishes: r4, = 0. This would imply that adg,(pa,) = 0.
But, in turn, this would also mean pa, € 93 (as 93 is a maximal Cartan
subalgebra in B), which cannot be the case, since $H3 NP = 0.

Keeping in mind that we are considering the roots of e7_g5) relative to
the choice (4.1) of 93, we can thus conclude that all 102 roots in W are
non-vanishing. Let us now fix a choice of 51 positive roots W, so that
W =W, UW._. The corresponding eigenspaces are one-dimensional, and
they are generated by the eigenvectors A;r, i=1,...,51, with eigenvalues
r; € Wy. We can write in a unique way:

)\j_ =p; +t;, (4.10)
implying that:
A= Pi — ti (411)

are eigenvalues of —r; € W_.
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Finally, by renaming h; := Y193, he := Y132 and hs := Yi33, the Iwasawa
decomposition of the coset M (1.2) can be written as:

51
M = exp(z1hy + x2hs + x3h3) exp (Z yl)\j> . (4.12)
i=1

which exhibits a manifest SO(8)-covariance. We anticipate that so (8) is
the Lie algebra of Aut(t (0)) = Spin (8), namely the automorphism group
of the normed triality t (Q) over the division algebra of octonions O (see,

e.g., [62]):
50 (8) = Aut (t (0)) =: i (0); (4.13)

see the discussion in Section 5.

4.1 SO (8)-Triality

Now, we want study the SO(8)-covariance of the Iwasawa parametrization
(4.12) in more detail.

First, as pointed out above, the elements hy, hy, hg of the Cartan sub-
algebra )3 commute with SO(8), and it follows that they are three SO(8)-
singlets. Thus, the 51-dimensional linear space A generated by the positive
roots Wy is invariant under the (adjoint) action of SO(8), and it decomposes
into irreps. of SO(8) as:

Ay =1°+82 +82+82 (4.14)

The manifestly triality-symmetric decomposition (4.14) can be proven by
means of the following general argument. Let us fix an orthonormal basis
Li,..., L7 of R7. Then, the (133 —7) /2 = 63 positive roots of E7(_25) can
be represented as (see, e.g., [63], p. 333):

Lo & L, 1<n<m<6; V2L

+Iy+ Lo+ L+ Ly+ Ls+ Lg+ 2L,
2 )

odd number of — signs. (4.15)

Among these, the (28 —4) /2 = 12 roots:

pr =Ln+L, 1<n<m<4 (4.16)
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are the positive roots of s0(8). i, (4.16) provide a representation of the
algebra s0(8) over the linear space generated by the remaining 51 roots in
the usual way: if, consistent with (4.10), we call A} the 51 complementary
roots, then the linear operators p,, and their corresponding adjoint jii,
are defined by:

where the result is intended to be zero when the vectors on the right-hand
side are not roots.

This procedure allows to identify exactly 9 invariant subspaces of A:

(1) The three spaces respectively generated by Lg + Ls, Lg — L5 and V2L,
are one-dimensional invariant subspaces defining a 13 representation
(sum of 3 SO (8)-singlets).

(2) The two 8-dimensional spaces V5 and Vg, respectively generated by the
basis:

{Ls + Lo}pi; (4.19)
{Le + Ln}n_y; (4.20)
are both representations with weights +L,,, and thus correspond to

two copies of the vector representation 8,.
(3) The two 8-dimensional spaces C'y and C_, respectively generated by

the basis:
iLliLQiLgiL4+L5—L6+\@L7. (4.21)
2 ’ '
L1+ Ly+ Ly+ Ly — Ly + L + V2L (4.22)
2 ’ '

(with an even number of — signs) are both representations with weights
Ehizlofls £l (with an even number of — signs), thus providing two
copies of the chiral spinor representation 8.

(4) The two 8-dimensional spaces Sy and S_, respectively generated by

the basis:
iLliLQiLgiL4+L5+L6+\/§L7. (423)
2 ’ ’
:|:L1:|:L2:|:L3:|:L4—L5—L6+\/§L7' (424)

2
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(with an odd number of — signs) are both representations with weights
% (with an odd number of — signs), thus providing two
copies of the chiral spinor representation 84 (conjugate of 8.).

This implies (4.14), in which the SO(8)-triality is manifest. It is worth
remarking that the appearance of the square for the three 8 irreps. in (4.14)
is a consequence of the complex (in particular, special Kdihler, as mentioned
in previous sections) structure of the coset M (1.2).

4.2 Group theory

In the Iwasawa parametrization of M (1.2) worked out in Section 4, the
resulting maximal manifest covariance group is nothing but the SO (8) group
(uniquely determined in E7(_o5); see Sections 4.2.1 and 4.2.2) preserving the
diagonal elements in the rank-3 simple Jordan algebra Js (0Q). As clearly
evident form the chain (4.26) of embeddings, such an SO (8) is placed as
follows:

S0 (8) C [(SO(10) x U(1)) N Fy_59)] - (4.25)

As given by (4.13), it shares the same algebra so(8) = tri(Q) with the auto-
morphism group Aut(t (Q)) = Spin (8) of the normed triality over the octo-
nions O [62]. Furthermore, it is worth remarking that such an SO (8)
recently appeared as the stabilizer of the BPS generic charge orbit in the
two-centered extremal black hole solutions of N =2, D =4 exceptional
supergravity; see Table 7 [17].

We also note that, at the level of (manifest) covariance, the Iwasawa
parametrization of M (1.2) worked out in Section 4 differs from the Iwa-
sawa parametrization of My—g (3.9) studied in [22], whose manifest maxi-
mal (non-compact) covariance is SL (7, R), with maximal compact subgroup

SO (7).

4.2.1 A first chain of embeddings

The chain of maximal symmetric embeddings relevant for the study of the
maximal manifest covariance of the Iwasawa parametrization (4.12) of the
irreducible Riemannian globally symmetric rank-3 symmetric special Kahler
coset M (1.2) reads as follows (see, e.g., [59]):



MAGIC COSET DECOMPOSITIONS 1105
(1) in the compact case:

Er(_5) D Bg(—18) x U (1)
5 SO (10) x U (1) x U (1)”
5 SO (8) x U(1) x U(1Y" x U(1)": (4.26)

(2) in the relevant (namely, minimally) non-compact case:

Er(_95) D Eg(—26) x SO (1, 1)’
>80 (9,1) x SO (1,1)" x SO (1,1)"
5 S0 (8) x SO(1,1) x SO (1,1)" x SO(1,1)". (4.27)

In the last line of (4.27) the first two SO (1, 1) factors have the physical
meaning of “extra” T-dualities generated by the Kaluza—Klein reduc-
tions, respectively D =5 — D =4,and D =6 — D = 5.

Correspondingly, the adjoint irrep. 133 of E7(_g5) branches as (subscripts
denote U (1)-charges or SO (1, 1)-weights, for (4.26) and (4.27), respectively,
throughout; see, e.g., [32]):

133 =78) + 1o + 27_5 + 27, (4.28)
=100+ 1603+ 16 3+ 4500 + 10,0
41944 +10 5 5+16 54
+ 119 4+10100+ 16",
= 10,00+ 8c0,-31 + 850,31+ 8¢0,43,—1 + 85,0,+3,+1 (4.29)

+10,0,0 + 80,0042 + 8v,0,0,—2 + 280,00 + 10,0,0 (4.30)
+1 o440+ 1 2 2420+1 9 2 2+8, 2 20
+8c—2 4141 +8s-241,-1 (4.31)
+ 1o 40+1io42 o+1yo 4919+ 8, 12420
+8c42,-1,-1+ 8542 1,41 (4.32)

Recalling the treatment Section 4, in line (4.28) one can recognize:

T:=Adj(Es x U (1)) = 78 + 1o; (4.33)
P =279+ 27, (4.34)

where, by the definitions introduced in Section 4, P denotes (the irreducible
decomposition of) the Lie algebra of the coset M (1.2) (as representation
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space of ). Furthermore, 27_5 4 27/, , manifestly shows the complex (spe-
cial Kdhler) structure of M itself, which is then spoiled by the further
subsequent branchings needed for the Iwasawa parametrization (4.12).

Furthermore, the lines (4.29) and (4.30) give the SO (8) x [U (1)]* (or
S0 (8) x [SO (1,1)]?) irreducible branching of the 79 compact generators of
FE7(_25), namely of the generators of its maximal compact subgroup Fg_rg) X
U (1). On the other hand, the lines (4.31) and (4.32) give the SO (8) x
[U@)]* (or SO(8) x[SO(1,1)]*) irreducible branching of the 54
non-compact generators of Er_s5), namely of the generators of M itself.
In particular, recalling the definitions of Section 4:

T :=100,0+ 8c0-31 + 850,31+ 80431+ 85043 +1
+ 10,00 + 80,00,+2 + 84,002 + 10,0,0; (4.35)
& := Adj (SO (8)) = 28¢.,. (4.36)

%' is the Lie algebra of the non-mazimal (and non-symmetric) coset (dimg =
51):

Eg(—18) x U (1)’ Eg(_rs
SOBE) - SO(®)

x U (1), (4.37)

or, in the choice of chain (4.27), of its relevant (i.e., minimally) non-compact
form:

Eg(—26) X SO (1,1)"  Eg(_a)

50(®) =50@) x SO (1,1). (4.38)

Out of the six SO (8)-singlets:

19440, 12242, 12 2 2,140 40, 1424292, 1124212  (4.39)

in lines (4.31) and (4.32), three linear combinations generate $)3, whereas
the remaining linear combinations, orthogonal with respect to the Cartan—
Killing form, together with the manifestly SO (8) -triality-symmetric
branching:

8u,—2,-20+8c 241,41 +8s211,-1
+ 8u,42,42,0 T 8c42,-1,-1 + 8s 421,41 (4.40)

of lines (4.31) and (4.32), generate .
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Analogously, the smallest non-trivial symplectic irrep., namely the fun-
damental 56 of E7(_s5), branches as (see, e.g., [32]):

56 =27, +27 ,+1.3+1_3 (4.41)
=14144+1041, 2+ 1641 11
+1_4_4+10_1 40+ 16'_17_1
+ 1430+ 1-30 (4.42)
=141 440+141,240+141 2 o+ 8y 11,20+ 8¢ 41,41,+1
+8s4+1,41,-1+t 11 4o+ 1142-2+1 14242+ 8 1420
+8c-1,-1,-1 +8s-1,-141 + 14300 + 1-300, (4.43)

It is instructive to analyze the branchings (4.41)—(4.43) more in depth.

From the structure of the matrices Y7 (2.19) and (2.20), I =1,...,79,
the structure of the first branching (4.41) is evident, where the subscripts
denote the charge (weight) with respect to U (1)’ (SO (1,1)). Next, let us
look at the 27 irrep. of Fg; which is realized over the 27-dimensional linear
space of octonionic Hermitian matrices underlying the exceptional Jordan
algebra J3 (0). It decomposes as follows:

a X Y 0 X Y 0 0 0 a 0 0
X b Z|=(x* 0 o|+[0o b Z|+[0 0 0], (449
Y* Z* ¢ Y* 0 0 0 Z* ¢ 00 0

27 16 10 1

where a, b, ¢ are the real numbers and X, Y, Z are the real (in the linear sense)
octonions. As hinted in (4.44), this yields a decomposition 27 = 16 + 10 + 1
of invariant spaces under the maximal symmetric subgroup R := SO(10) x
U(1)” of Eg (we consider, without loss of any generality, the compact chain
(4.26) of embeddings). Indeed, the one-dimensional space 1 is easily seen
to be invariant under R. As the spaces in the decomposition (4.44) are
orthogonal with respect to the trace product (which is preserved by R),
its complement is also R-invariant. On the other hand, the 16-dimensional
subspace defines the largest subalgebra in J3 (Q) complementary to the one-
dimensional space 1. This proves our assertion.

The U(1)"-charges of the spaces in the right-hand side of (4.44) can be
determined by noting that U(1)” € Fy_s). From the treatment of Section
2, the Lie algebra eg(_rg) is obtained by adding the left (or right) action of
J4(0) on J3(0) (where the prime here denotes the matrix tracelessness).
This means that the generator of U(1)” must be realized by a traceless
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matrix Cy(pyr in J 3(0) that by left Jordan-multiplication acts proportionally
to the identity on the three subspaces of the decomposition (4.44). This
implies that:

2v 0 0
CU(I)” = 8 —0"}/ 0 . (445)
-

Writing (4.44) as Va7 = Vig + Vip + V1, we see that:

Cuay o Vie = %Vw, Cuay ©Vio ==V, Cyuy o Vi =29V
(4.46)
By choosing the normalization of the charges in such the way that
exp(zCyy(q)7) has period 2, one then obtains:

27 =167 +10_5 + 14, (447)

1

which matches the convention, e.g., of [32]. Obviously, U(1)” commutes

with U(1)’; therefore (4.42) is obtained.

For the last branching (4.43), the decompositions of 10 and 16 have to
be analyzed. As SO(8) leaves the diagonal matrices of J3(0) invariant, it
follows that under its action the space V1o decomposes as Vig = Vs + Vi 1 +
V1,11 in the following way:

0 0 O 0 0 O 000 0 0 0
0 b Z])=10 0 Z]+10 b 0]+]|0 0 0]. (4.48)
0 Z* ¢ 0z 0 000 0 0 ¢

8, 1 1

In order to determine the U(1)"” charges, we again observe that U(1)” ¢
Fy(_59). Moreover, the U(1)" charge of 114 in (4.42) must be zero and,
therefore, the U(1)"” generator must be realized by a matrix of the form:

0 0 O
CU(I)”’ = 0 "}/ 0 . (449)
0 0 —

By choosing the normalization as before in such a way that the period of
exp(a:CU(l)m) is 27, one can fix 4/ = 2, and the charges turn out to be 0,
2 and -2 for Vg, Vi 1 and Vi r1, respectively. Since Vg is contained in the
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vector representation Vi of SO(10), it has to correspond to the vector rep.
8, of SO(8), so that:

10=8,0+ 1>+ 1_o. (4.50)

The charge operator Cyyyn (4.49) splits Vig into eigenspaces V8+ and Vg~
with eigenvalues 1 and —1, respectively:

0 X Y 0 X 0 0 0 Y
X0 O0)=1X" 0 0)J+(0 0 O (4.51)
Y* 0 0 0 0 O Y* 0 O
16 c s
The weights of 16 are %{61, ...,€es} where the €’s can assume all possible

signs; this means that 16 breaks into the direct sum of the conjugate irre-
ducible spinor representations 8, and 8. of SO(8), with %CU(l)/// measuring
their chirality:

16 =8,_1 +8.1, (4.52)
which allows one to recover (4.43).

4.2.2 A second chain of embeddings

A second chain of maximal and symmetric embeddings, relevant in order
to highlight the relation to the symmetry groups of the rank-3 Euclidean
Jordan algebra J3 (0) and also for a subsequent generalization at least for
all conformal non-compact form of non-degenerate [64] groups of type E; [14]
(see Section 5), reads as follows:

Er(_a5) D Eg(_a6) x SO (1,1)’
D Fy(_s9) x SO (1,1)
> S0 (9) x SO (1,1
> S0 (8) x SO(1,1), (4.53)

where SO (8) in the fourth line of (4.53) coincides with the SO (8) in the
third line of (4.26) and (4.27). Moreover, (4.53) also clarifies (4.25). As
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already mentioned above, it holds that (see, e.g., [29,30,65]):

Er7(—25) = Conf (J3 (0)) = Aut [I (I3 (0))] = Gu; (4.54)
Eﬁ(_%) = Strg (33 (@)) = Gs; (4.55)
Fy_sp) = Aut (33 (©)) = mes [Stro (35 (0))] ; (4.56)

50 (8) (4.57)

where t (0) denotes the normed triality over the octonions O (see, e.g.,
[62]), and (4.13) has been recalled. In (4.53), SO (1,1) has the physical
meaning of “extra” T -duality generated by the Kaluza—Klein reduction
D=5— D=4

Correspondingly, the adjoint irrep. 133 of E7(_s5) branches as (see, e.g.,
[32]):

133 — 78 + 1o + 27_5 + 27,

2604+ 520+ 1o+ 10+ 26 5+ 1.9+ 265

— 19+ 99 + 160 + 169 + 365 + 19
+1 o0+1 9+9 9+16_o
+1i0+140+942+ 1649

— 1o+ 1o+ 80+ 8o+ 8s0+ 80+ 850+ 80+ 28 + 1o
+1o+1 0+1 948, 9+8._2+8; 2
+1o+140+1190+ 8, 19+ 842+ 8 10. (4.58)

Analogously, the symplectic fundamental irrep. 56 of E;(_s5) branches
as (see, e.g., [32]):

56 — 27,1 +27 ;+1,3+1_3
— 147 +2647+1_7+26_7+1,3+1_3
-1 +11+941+1641+1 1 +1 7+9 1 +16 1 +1,3+1 3
— 1+ 10 +107 + 841+ 841+ 8541
+1+1 9 +11+8,1+8,_1+8_1+1;3+1_3. (4.59)

4.2.3 Comments on cartan subalgebras

In the analysis made in Sections 4.2.1 and 4.2.2, the 3-dimensional non-
compact Cartan subalgebra $3 (4.1) of M (1.2) is generated by a suitable
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linear combination of the six SO(8)-singlets (4.39). Thus, $3 is not the Lie
algebra of the group factor

H; =[SO (1,1)]> € Eg_a6) x SO (1,1) (4.60)

commuting with SO (8) in the branching (4.27), because by definition for
the Lie group Hs generated by $3 it holds that (recall definition (3.20)):

Er(_a5) ~
Hs C =M, 4.61
® % Eo(_a26) x SO (1,1) (4.61)
and, by definition:
TAP =0, (4.62)

As stated in the previous treatment, $3 can be extended to a 7 -dimensional
maximal Cartan subalgebra §) of e7_s5) by adding a 4-dimensional maximal
Cartan subalgebra of so (8), which is clearly compact:

7 = H3 D Na, (4.63)

with signature (—|—3, —4) (indeed, as mentioned above, compact generators
are conventionally chosen with negative signature).

On the other hand, the factor Hs =[SO (1,1)]® in (4.60) which com-
mutes with SO (8) in the branching (4.27) can be extended to [SL (2,R)]?,
which with further branchings gives rise to the (not maximal nor symmetric)
embedding:

Eg(—26) 2 [SU (2)]4 x [SL (27R)]37 (4.64)
recently considered in [7] within the quantum-informational interpretation
of N =2, D = 4 exceptional magic supergravity. As done above for §3, the
Lie algebra $3 of Hg can be extended to another 7-dimensional maximal

Cartan subalgebra :?37 of e7(_g5) by adding a 4-dimensional maximal Cartan
subalgebra of so0 (8), which is clearly compact:

97 = 93 © H, (4.65)

once again with signature (+3, —4).
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5 Generalizations to groups of type E;

The results derived until now hold at least for the conformal non-compact
real forms of (non-degenerate [64]) simple groups “of type E;” [14,15,19,
20]. The first axiomatic characterization of groups “of type E7” through
a module (irreducible representation) was given in 1967 by Brown [14]. A
group G “of type E7” is a Lie group endowed with a representation R such
that:

e R is symplectic, i.e., (the subscripts “s” and “a” stand for symmetric
and skew-symmetric throughout):

El'(C[MN] =1¢ RXaR; (51)

Ciarn defines a non-degenerate skew-symmetric bilinear form (sym-
plectic product); given two different charge vectors Q, and Q, in R,
such a bilinear form is defined as:

¢ R admits a unique rank-4 completely symmetric primitive G-invariant
structure, usually named K-tensor:

thus, by contracting the K-tensor with the same charge vector Q in
R, one can construct a rank-4 homogeneous G-invariant polynomial
(whose ¢ is the normalization constant):

q(Q) = Kunpo2" V0P 0%, (5.4)

which corresponds to the evaluation of the rank-4 symmetric invariant
g-structure induced by the K-tensor on four identical modules R:

a(Q) = (9, Qy, Q-, Qw)|Qm:Qy:Qz:QwEQ
=g [KMNPQQQ/[QZJ,VQ,IZDQ{%] 0,=0y=0.-Qu=0Q" (5.5)
A famous example of quartic invariant in G = F; is the Cartan—

Cremmer—Julia invariant* ( [68], p. 274), constructed out of the
fundamental representation R = 56.

4As also mentioned in [66], it should be noted that the quartic form is given incorrectly
by Cartan; the error seems to have been first observed by Freudenthal [67].
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e If a trilinear map 7: R x R x R — R is defined such that:

(T(Qx,Qy,Qz)aQw> :CI(QachvaZqu)a (56)

then it holds that:

<T (Q:c; Qx, Qy) 7T (va va Qy)> = _2 <QI, Qy> q(Qx) Qy) Qy’ Qy) : (57)

This last property makes the group of type E7 amenable to a treatment
in terms of (rank-3) Jordan algebras and related Freudenthal triple
systems.

Remarkably, groups of type F7, appearing in D = 4 supergravity as U-
duality groups, admit a D = 5 uplift to groups of type Eg, as wellasa D = 3
downlift to groups of type Eg. It should also be recalled that split forms of
exceptional Lie groups of type F appear in the exceptional Cremmer—Julia
[39] sequence E1y_p (11—p) of U-duality groups of M-theory compactified
on a D-dimensional torus, in D = 3,4,5. Other sequences, composed by
non-split, non-compact real forms of exceptional groups, are also relevant
to non-maximal supergravity in various dimensions (see, e.g., the treatment
in [61], also for a list of related references).

The connection of groups of type E7 to supergravity can be summarized
by stating that all 2 < A < 8-extended supergravities in D = 4 with sym-
metric scalar manifolds 1% have G4 of type E7 [15,19]. It is intriguing to
notice that the first paper on groups of type Fr was written about a decade
before the discovery of of extended (N = 2) supergravity [69], in which elec-

tromagnetic duality symmetry was observed [70].

In particular, simple U-duality groups of N’ = 2, D = 4 theories with sym-
metric (vector multiplets’) scalar manifolds (listed in Table 3) are conformal
non-compact, real forms of simple non-degenerate groups of type E7, which

are the conformal symmetry group of simple Euclidean Jordan algebras of
rank 3 [25].

Furthermore, the results of Sections 2 and 3 also hold for the relevant
non-compact, real forms of (non-degenerate [64]) semi-simple groups of type
Er [14,15,19,20], appearing in supergravity as semi-simple U- duality group
of the infinite sequence of N' = 2 theories, with scalar manifold given by:

SL(2,R) SO (2,n)
U@1) " 80(2) x SO (n)’

n>1, rank =1+ min(2,n), (5.8)

based on the semi-simple rank-3 Jordan algebra R @& I'1,_1, where I't ;,—1
stands for the Jordan algebra of degree two with a quadratic form of
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Table 3: Vector multiplets’ symmetric scalar manifolds (5.9) (up to possible
finite factors in the stabiliser) of N'=2, D = 4 supergravity models with
simple U-duality groups (alias conformal non-compact real forms of non-
degenerate [64], simple group of type E7 [14,15,19,20]), with related simple
rank-3 Jordan algebra. The relevant symplectic irrep. R of G4 is also
reported. O, H, C, and R, respectively denote the four division algebras
of octonions, quaternions, complex, and real numbers. Note that, with the
exception of the triality symmetric STU model [53], these models are all the
ones for which the treatment of [61] holds (see, e.g., Table 1 therein). The
D =5 uplift of the 7% model based on J3 = R is the pure N =2, D=5
supergravity. Js(H) is related to both 8 and 24 supersymmetries, because
the corresponding supergravity theories are “twin”, namely they share the
very same bosonic sector [72].

3s Ga/H, R "

33(0) E6(E7;(‘j5)U 3 56 8

3 (H) m 32 4

33(C) SU (3) str(Jg (g)) <o 20 2

J3(R) m 14’ 1
SL(2,R)

R(7T? model) 4 -2/3

v()

Lorentzian signature (1,7 — 1), which is nothing but the Clifford algebra
of O(1,n—1) [71].

In other words, at the group level, the results of Sections 2 and 3 pro-
vide a manifestly [mcs (Conf (J3))]-covariant symplectic frame for the special
Kahler geometry of the corresponding symmetric, non-compact, vector mul-
tiplet’s scalar manifold (of Riemannian nature), whose coset structure reads
(up to possible finite factors in the stabilizer; see, e.g., [29,65]; for a com-
prehensive list of manifolds, see, e.g., [73]):

Conf (33)
mcs (Conf (J3))

Mpr—2 = (5.9)

Here Conf(J3) =Aut(M (J3)) stands for the conformal group of Js, which
is nothing but the automorphism group of the Freudenthal triple system
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M [28] constructed on Js itself. The relevant non-compact, real forms of
mes[Conf (J3)] /U (1) (namely, the U-duality symmetries in D = 5) are the
reduced structure algebras of the corresponding (g-parametrized) simple,
rank-3 Euclidean Jordan algebras.

Up to symplectic re-parametrization, for the infinite sequence (5.8) of
N =2 theories with semi-simple U-duality group Conf(J3) = SL (2,R) x
SO (2,n), the results of Sections 2 and 3 match the so-called Calabi- Vesentini
N =2 symplectic frame [57,74] (see also [20] for a recent study), whose
(compact) manifest covariance is the maximal one:

mcs (Conf (J3)) = mes (SL(2,R) x SO (2,n)) =U (1) x SO (2) x SO (n).
(5.10)

All the vector multiplets’ scalar manifolds of the aforementioned N =
2, D = 4 supergravity theories related to cubic Euclidean Jordan algebras
are special Kahler, maximal, non-compact, symmetric cosets with structure
(5.9), and have rank® 3 (except the rank-1 case of T° model). They also
are Einstein spaces, with constant (negative) Ricci scalar curvature R:

where Rz‘} is the special Kahler Ricci tensor, and the real parameter A\ has
been computed in [76] (see also [51]):

2
—3n for: T® model (ny = 1),STU model (ny = 3),

A\ = and J3(A)-models (ny = 3q+ 3);
(n%/ —2ny + 3)
ny

for R@ T’y ,,—1 models (ny =n+12>2).
(5.12)

Similarly, also the results about the Iwasawa decomposition worked out
in Section 4 can be generalized at least to the conformal non-compact real
forms of (non-degenerate [64]) simple groups of type E7 [14,15,19,20], listed
as D = 4 U-duality groups G4’s in Table 3.

®The rank of a manifold is defined as the maximal dimension (in R) of a Riemann-flat,
totally geodesic sub-manifold of the manifold itself (see, e.g., [75], p. 209).
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Indeed, in light of (4.54)—(4.57), the chain of maximal and symmetric
embeddings (4.53) enjoys the following generalization:

Conf (J5 (A)) O Stro (33 (A)) x SO (1,1)
S Aut (33 (A)) x SO (1,1)
580 (g+1) x A, x SO(1,1)
D S0 (q) x Ay x SO (1,1, (5.13)

by recalling the definition introduced just below (2.30), ¢ := dimgpA = 1, 2, 4,
and 8 for A = R, C, H, and O, respectively. We report the symmetry groups
of simple rank-3 Euclidean Jordan algebras in Table 4. Mutatis mutandis
(also with the help of the tables), the treatment and the results of the whole
Section 4 can be extended to all N'=2, D =4 symmetric supergravities
reported in Table 3 (but the 7% model).

The extra factor group A,, which exists only for ¢ =2 and ¢ =4, is
reported in Table 5; in [77], its appearance was observed within the study of
the charge orbits of asymptotically flat 0-(black holes) and 1-(black strings)
branes in minimal magical Maxwell-Einstein supergravity theories in D = 5
space-time dimensions. We note that A, is related to (A?Cem and Gpaint
(Lie groups usually introduced in the treatment of supergravity billiards and
timelike Kaluza—Klein reductions; for recent treatment and set of related ref-
erences, see, e.g., [58]; see also Table 5 therein, also for subtleties concerning
the case ¢ =8 in D = 5,6) as follows [77]:

cent — SO (17 1) x SO (q - 1) X Aq? (514)

D=56:G
D =3,4: Geent = Gpaint = SO (q) X A,. (5.15)

According to [78], A4 can be related to the structure of the Hopf maps,
chiral Weyl spinors and division algebras; we hope to study this intriguing
connection in future investigations, also along the lines of [79].

Extending the considerations made above on SO (8), it can be observed
that SO (¢) x A, shares the same Lie algebra tti (A) of Aut(t (A)), which is
the automorphism group of the normed triality over the division algebra A
(see, e.g., [62]); see Table 6.

Besides this fact, it is intriguing to notice that SO (q) x A, appears in at
least three (apparently unrelated) contexts:

(1) As Geent = Ghpaint In D = 3,4, as given by (5.15) (see, e.g., [58,77]).
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Table 5: The extra commuting group A, (see, e.g., [77]).

=N e 0R
nn
)
—
w

(2) As stabilizer group G,—2 (J3 (A)) of BPS generic charge orbits of 2-
centered extremal black holes in N'=2, D =4 magical models, as
derived in [17], and reported in Table 7.

(3) According to (5.13), as group of maximal manifest covariance of the
Iwasawa decomposition of the (vector multiplets’) scalar manifold of
N =2, D =4 magical models, whose U-duality groups are (some
instances of) conformal non-compact real forms of (non-degenerate
[64]) simple groups of type E7 [14,15,19,20].

6 Conclusion

The present investigation, and in particular the generalizations discussed in
Section 5, pave the way to a number of interesting further developments.
We list a selection of them below.

Starting with the treatment given in Section 3, it should be pointed out
that a more explicit expression of the symplectic frame determined by the
comparison of (3.7) and (3.8) with the general formulae (3.10)-(3.14) of
special Kéhler geometry would be needed also in order to check that the
prepotential F' does not exist in the symplectic frame introduced in Sec-
tions 2 and 3, which can be considered the analogue of the Calabi- Vesentini
one [57,74] for non-degenerate, conformal non-compact, and simple groups
of type Fr.

Furthermore, it would be interesting to extend the maximally manifestly-
covariant symplectic frame and/or the Iwasawa symplectic frame, respec-
tively introduced in Sections 2, 3 and in Section 4, to

e compact groups of type Er;

e other non-compact real forms of groups of type Er (possibly related
to N > 2-extended supergravity theories), also in relation to rank-
3 Jordan algebras on split forms of division algebras (for a recent
treatment of the non-supersymmetric cases of J3(Hs) and J3(Cs), see,

e.g., [30]);
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Table 7: BPS generic charge orbits of 2-centered extremal black holes in
N =2, d = 4 magical models. Conf(Js (A)) denotes the “conformal” group
of 33 (A) (see, e.g., [65]) [17].

__ @)
A Op=2,BPs = Gp—a (33 (A))
E7(725)
o) SO (8)
. SO*(12
[SU (2)?
- SU (3, i2’>)
[U(1)]
R Sp (6, R)

e other classes of supergravities, such as N'=2, D = 4 with homoge-
neous non-symmetric scalar manifolds [37,41].

Furthermore, considering the generalizations of the Iwasawa parametriza-
tion discussed in Section 5, it would be interesting to explore its exten-
sion also to theories related to semi-simple rank-3 Jordan algebras, such as
R & Iy, p (for m =1, recall (5.8)), where Iy, ,, stands for the rank-2 Jor-
dan algebra with a quadratic form of Lorentzian signature (m,n), which is
nothing but the Clifford algebra of O (m,n) [71].

Concerning the generalization to N' > 2-extended supergravities, it would
be interesting to compare the application of the Iwasawa decomposition
under consideration to the case of Qg with the Iwasawa parametrization
of My—s (3.9) studied in [22], whose manifest maximal (non-compact)
covariance is SL (7,R), with mcs SO (7). In this respect, the following
remark made in [17] should be relevant: as it holds for the stabilizer of
On=2,3;(0),tab7,p—=2 (see Table 7), the Lie algebra so (8) of the stabilizer of
the 2-centered orbit [17]

)
:2,J§)7HBPSW:27I - SO (8)

Oy (6.1)
is nothing but the Lie algebra tri (Q) of the automorphism group Aut(t (0))

of the normed triality over O (see Table 6). It is here worth observing that
the Lie algebra so (4, 4) of the stabilizer of the 2-centered orbit [17]

i __ P (6:2)
N:&%_BPS,P:ZI B SO (47 4) |
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enjoys an analogous interpretation as the Lie algebra tri(Qg) of the auto-
morphism group Aut(t (Qg)) of the normed triality over Qg. On the other
hand, a similar interpretation does not seem to hold for the stabilizer of the
2-centered orbit [17]

0 G 6.3
N=8,1BPSp=21I = g (5.3) (6.3)
as well as for the stabilizer of the 2-centered orbit [17]
Er_25)
ON:z,Jg‘?’,nBPS,p:Q,II = SO (7,1) (6.4)

However, it is intriguing to note that the maximal manifest compact covari-
ance SO (7) = mes (SO (7,1)) = mes (SL (7,R)) exhibited by the Iwasawa
parametrization of My—g (3.9) [22] may provide a clue for the stabilizer of
Opr—s, JO nBPS p—2,11 (6.4). We leave to future studies the in-depth investiga-

tion of these fascinating connections, here just briefly outlined.

Finally, we would like to put forward an hint® for a further physical appli-
cation. It should be observed that the Iwasawa coset decomposition can yield
a nilpotent algebra exhibiting the same symmetry of the systems recently
discussed in [80] in the framework of supergravity theories timelike-reduced
down to D = 3* dimensions. Thus, it would be interesting to investigate the
possible Lax pair structures hidden in the Iwasawa formalism, which might
allow for a more explicit integration procedure within the D = 3* nilpotent
orbits formalism of [80]. We hope to report on this intriguing connection in
future studies.
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