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Abstract

Recent work applying higher gauge theory to the superstring has indi-
cated the presence of “higher symmetry”. Infinitesimally, this is realized
by a “Lie 2-superalgebra” extending the Poincaré superalgebra in pre-
cisely the dimensions where the classical supersymmetric string makes
sense: 3, 4, 6 and 10. In the previous paper in this series, we constructed
this Lie 2-superalgebra using the normed division algebras. In this paper,
we use an elegant geometric technique to integrate this Lie 2-superalgebra
to a “Lie 2-supergroup” extending the Poincaré supergroup in the same
dimensions.

Briefly, a “Lie 2-superalgebra” is a two-term chain complex with a
bracket like a Lie superalgebra, but satisfying the Jacobi identity only
up to chain homotopy. Simple examples of Lie 2-superalgebras arise from
3-cocycles on Lie superalgebras, and it is in this way that we constructed
the Lie 2-superalgebra above. Because this 3-cocycle is supported on
a nilpotent subalgebra, our geometric technique applies, and we obtain
a Lie 2-supergroup integrating the Lie 2-superalgebra in the guise of a
smooth 3-cocycle on the Poincaré supergroup.

e-print archive: http://lanl.arXiv.org/abs/1109.3574
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1 Introduction

There is a deep connection between supersymmetry and the normed division
algebras: the real numbers, R, the complex numbers, C, the quaternions,
H, and the octonions, @. This is visible in super-Yang-Mills theory and in
the classical supersymmetric string and 2-brane. Most simply, it is seen in
the dimensions for which these theories make sense. The normed division
algebras have dimension n = 1, 2, 4 and 8, while the classical supersymmet-
ric string and super-Yang—Mills make sense in spacetimes of dimension two
higher than these: n + 2 = 3, 4, 6 and 10. Similarly, the classical supersym-
metric 2-brane makes sense in dimensions three higher: n +3 =4, 5, 7 and
11. Intriguingly, when we take quantum mechanics into account, it is only
in the octonionic dimensions that the supersymmetric string and 2-brane
appear to have a consistent quantization — 10 for the superstring, and 11
for M-theory, which incorporates the 2-brane. In this paper, however, our
concern is entirely with the classical supersymmetric string: we study alge-
braic and geometric ingredients used in the classical Green—Schwarz action
for the superstring. A parallel story for the supersymmetric 2-brane will be
told in a forthcoming paper.

This is the third in a series of papers exploring the relationship between
supersymmetry and division algebras [5, 6], the first two of which were coau-
thored with John Baez. In the first paper [5], we reviewed the known story
of how the division algebras give rise to the supersymmetry of super-Yang—
Mills theory. In the second [6], we showed how the division algebras can be
used to construct “Lie 2-superalgebras” superstring(n + 1, 1), which extend
the Poincaré superalgebra in the superstring dimensions n + 2 = 3, 4, 6 and
10. In this paper, we will describe a geometric method to integrate these
Lie 2-superalgebras to “2-supergroups”.

Roughly, a “2-group” is a mathematical gadget like a group, but where
the group axioms, such as the associative law:

(gh)k = g(hk)

no longer hold. Instead, they are replaced by isomorphisms:
(gh)k = g(hk)

which must satisfy axioms of their own. A “Lie 2-group” is a smooth version
of a 2-group, where every set is actually a smooth manifold and every oper-
ation is smooth, and a “2-supergroup” is analogous, but replaces manifolds
with “supermanifolds”. All these concepts (Lie 2-group, supermanifold, and
2-supergroup) will be defined precisely later on. We assume no familiarity
with either 2-groups or supergeometry.
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Our motives for constructing these 2-supergroups come from both math-
ematics and physics. Physically, as we show in our previous paper [6],
the existence of the superstring in spacetimes of dimension n + 2 =3, 4,
6 and 10 secretly gives rise to a way to extend the Poincaré superalgebra,
siso(n+1,1), to a Lie 2-superalgebra we like to call supetstring(n + 1, 1).
Here, the Poincaré superalgebra is a Lie superalgebra whose even part
consists of the infinitesimal rotations so(n + 1,1) and translations V on
Minkowski spacetime, and whose odd part consists of “supertranslations”
S, or spinors:

siso(n+1,1) =so(n+1,1) x (V& S).

Naturally, we can identify the translations V' with the vectors in Minkowski
spacetime, so V' carries a Minkowski inner product g with signature (n+1,1).
We extend siso(n + 1, 1) to a Lie 2-superalgebra superstring(n + 1, 1) defined
on the 2-term chain complex:

siso(n+1,1) <= R,

equipped with some extra structure.

What is the superstring Lie 2-algebra good for? The answer lies in a
feature of string theory called the “Kalb-Ramond field”, or “B field”. The
B field couples to strings just as the A field in electromagnetism couples
to charged particles. The A field is described locally by a 1-form, so we
can integrate it over a particle’s worldline to get the interaction term in the
Lagrangian for a charged particle. Similarly, the B field is described locally
by a 2-form, which we can integrate over the worldsheet of a string.

Gauge theory has taught us that the A field has a beautiful geometric
meaning: it is a connection on a U(1) bundle over spacetime. What is the
corresponding meaning of the B field? It can be seen as a connection on
a “U(1) gerbe”: a gadget like a U(1) bundle, but suitable for describing
strings instead of point particles. Locally, connections on U(1) gerbes can
be identified with 2-forms. But globally, they cannot. The idea that the
B field is a U(1) gerbe connection is implicit in work going back at least
to the 1986 paper by Gawedzki [27]. More recently, Freed and Witten [25]
showed that the subtle difference between 2-forms and connections on U(1)
gerbes is actually crucial for understanding anomaly cancellation. In fact,
these authors used the language of “Deligne cohomology” rather than gerbes.
Later work made the role of gerbes explicit: see for example Carey et al.
[15], and also Gawedzki and Reis [26].
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More recently still, work on higher gauge theory has revealed that the
B field can be viewed as part of a larger package. Just as gauge theory
uses Lie groups, Lie algebras, and connections on bundles to describe the
parallel transport of point particles, higher gauge theory generalizes all these
concepts to describe parallel transport of extended objects such as strings
and membranes [7,9]. In particular, Sati et al. [45] have developed a theory
of “n-connections” suitable for describing parallel transport of objects with
n-dimensional worldvolumes. In their theory, the Lie algebra of the gauge
group is replaced by a Lie n-algebra — or in the supersymmetric context, a
Lie n-superalgebra. Applying their ideas to superstring(n + 1,1), we get a
2-connection which can be described locally using the following fields:

supetstring(n + 1,1) Connection component
R R-valued 2-form
!

siso(n +1,1) siso(n + 1, 1)-valued 1-form

The siso(n + 1, 1)-valued 1-form consists of three fields which help define the
background geometry on which a superstring propagates: the Levi-Civita
connection A, the vielbein e, and the gravitino . But the R-valued 2-form

is equally important in the description of this background geometry: it is
the B field!

How does superstring(n + 1, 1) come to be, and why in only these curious
dimensions? The answer concerns the cohomology of the Poincaré super-
algebra, siso(n + 1,1). The cohomology theory of Lie algebras, known as
Chevalley—Eilenberg cohomology [1,17], can be generalized in a straightfor-
ward way to Lie superalgebras [38]. As we describe in our previous paper [6],
there is a 3-cocycle on siso(n + 1,1) =so(n+ 1,1) x (V @ 5) that vanishes
unless is eats a vector v € V' and two spinors ¢, ¢ € S

(v, ¥, 9) = g(v, ¥ - ).

Here, g denotes the Minkowski inner product on vectors, and 1 - ¢ denotes
an operation that takes two spinors and gives a vector. It is the spinor—
spinor part of the bracket on siso(n + 1,1).

One can define « in any dimension. In fact, fixing bases for V' and S, the
components of a are well-known to any physicist: they are the entries of the
gamma matrices! However, « is a 3-cocycle in Lie superalgebra cohomology
precisely when the dimension of spacetime is 3, 4, 6 or 10. Moreover,
this fact is exactly what is required to define the classical supersymmetric
string in those dimensions — technically, it is needed for the Green—Schwarz
Lagrangian to have “Siegel symmetry”, which forces the number of bosonic



“ATMP-16-5-A4-HUE” — 2013/4/30 — 17:32 — page 1489 — #5

DIVISION ALGEBRAS AND SUPERSYMMETRY III 1489

and fermionic degrees of freedom to match [29]. This algebraic story has a
beautiful interpretation in terms of division algebras [5, 6,23, 24, 35].

Just as 2-cocycles on a Lie superalgebra describe central extensions to
larger Lie superalgebras, (n + 1)-cocycles give extensions to Lie n-super-
algebras. To understand this, we need to know a bit about L..-algebras
[39,46]. An L..-algebra is a chain complex equipped with a structure like
that of a Lie algebra, but where the laws hold only “up to d of something”.
A Lie n-algebra is an L.-algebra in which only the first n terms are nonzero.
All these ideas also have “super” versions.

In general, an h-valued (n + 1)-cocycle w on g is a linear map:
An—}—lg N h

satisfying a certain equation called a “cocycle condition”. We can use an
h-valued (n + 1)-cocycle w on a Lie superalgebra g to extend g to a Lie
n-superalgebra of the following form:

gel o Lo,
Here, g sits in degree 0 while b sits in degree n — 1. We call Lie n-super-
algebras of this form “slim Lie n-superalgebras”, and denote them by
brane, (g, h). In particular, we can use the 3-cocycle a to extend siso(n +
1,1) to a slim Lie 2-superalgebra of the following form:

siso(n+1,1) <4 R.
This is how we obtain the Lie 2-superalgebra supetstring(n + 1, 1).

We have already mentioned how the 3-cocycle « is required for the classi-
cal Green—Schwarz superstring to have Siegel symmetry in dimensions 3, 4,
6 and 10. Of course, it is only in dimension 10 that one expects the super-
string to have a consistent quantization. This is because in this dimension,
and no others, quantum anomalies cancel. The work of Urs Schreiber et
al. shows that « plays a role in this story too, at least for the heterotic
string [45,12].

So far, we have focused on Lie 2-algebras and generalized connections
valued in them. This connection data is infinitesimal: it tells us how to
parallel transport strings a little bit. Ultimately, we would like to understand
this parallel transport globally, as we do with particles in ordinary gauge
theory.

To achieve this global description, we will need “Lie n-groups” rather than
Lie n-algebras. Naively, one expects a Lie 2-supergroup Superstring(n + 1,1)
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for which the Lie 2-superalgebra supetstring(n + 1,1) is the infinitesimal
approximation. In fact, this is precisely what we will construct.

In order to “integrate” Lie n-algebras to obtain Lie n-groups, we will have
to overcome two obstacles: how does one define a Lie n-group? And, how
does one integrate a Lie n-algebra to a Lie n-group? To answer the former
question, at least for n = 2, we use Baez and Lauda’s definition of Lie 2-
group: it is a categorified Lie group, a “weak 2-category” with one object
with a manifold of weakly associative and weakly invertible morphisms, a
manifold of strictly associative and strictly invertible 2-morphisms, and all
structure maps smooth. While this definition is known to fall short in impor-
tant ways, it has the virtue of being fairly simple. Ultimately, one should use
an alternative definition, like that of Henriques [31] or Schommer-Pries [47],
which weakens the notion of product on a group: rather than an algebraic
operation in which there is a unique product of any two group elements,
“the” product is defined only up to equivalence.

3

So, roughly speaking, a Lie n-group should be a “weak n-category” with
one object, a manifold of weakly invertible morphisms, a manifold of weakly
invertible 2-morphisms, and so on, up to a manifold of strictly invertible
n-morphisms. To make this precise, however, we need to get very precise
about what a “weak n-category” is, which becomes more complicated as n
gets larger. We therefore limit ourselves to the tractable case of n = 2, and
further limit ourselves to what we call a “slim Lie 2-group”.

A “slim Lie 2-group” is what Baez and Lauda call a “special Lie 2-group”:
it is a skeletal bicategory with one object, a Lie group G of morphisms, a
Lie group G x H of 2-morphisms, and the group axioms hold strictly except
for associativity — there is a nontrivial 2-morphism called the “associator”:

a(g1,92,93): (9192)93 = 91(9293).

The associator, in turn, satisfies the “pentagon identity”, which says the
following pentagon commutes:

(9192) (9394)
a(9192.93,94) a(g1,92,9394)
((9192)93)94 91(92(9394))
a(g1,92,93)1g, 14, a(92,93,94)

a(91,9293,94)

91((9293)94)

(91(9293))94
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We shall see that this identity forces a to be a 3-cocycle on the Lie
group G of morphisms. We denote the Lie 2-group of this from by
String, (G, H).

Moreover, we can generalize all of this to obtain Lie 2-supergroups from
3-cocycles on Lie supergroups. In general, we expect that any supergroup
(n + 1)-cocycle f gives rise to a slim n-supergroup, Brane¢(G, H), though
this cannot be made precise without being more definite about n-categories
for higher n.

Nonetheless, the precise examples of Lie 2-groups suggest a strong parallel
to the way Lie algebra (n + 1)-cocycles give rise to Lie n-algebras. And this
parallel suggests a naive scheme to integrate Lie n-algebras. Given a slim Lie
n-superalgebra brane, (g, ), we seek a slim Lie n-supergroup Brane(G, H)
where:

e (G is a Lie supergroup with Lie superalgebra g; i.e., it is a Lie super-
group integrating g,

e [ is an abelian Lie supergroup with Lie superalgebra h; i.e., it is a Lie
supergroup integrating b,

e fisa Lie supergroup (n + 1)-cocycle on G that, in some suitable sense,
integrates the Lie superalgebra (n 4 1)-cocycle w on g.

Admittedly, we only define Branes(G, H) precisely when n = 2, but that
will suffice to handle our example of interest, superstring(n + 1,1).

Unfortunately, this naive scheme fails to work even for well-known exam-
ples of slim Lie 2-algebras, such as the string Lie 2-algebra string(n), whose
definition we recall in Section 3.1.1. In this case, we can:

e integrate so(n) to Spin(n) or SO(n),

e integrate R to R or U(1),

e but there is no hope to integrate w to a nontrivial (n + 1)-cocycle f
on SO(n) or Spin(n), because compact Lie groups admit no nontrivial
smooth cocycles [8,55].

Really, this failure is a symptom of the fact that our definition of Lie n-group
is oversimplified. There are more sophisticated approaches to integrating
the string Lie 2-algbera, like those due to Baez et al. [10] or Schommer-
Pries [47], and a general technique to integrate any Lie n-algebra due to
Henriques [31], which Schreiber [50] has in turn generalized to handle Lie
n-superalgebras and more. All three techniques involve generalizing the
notion of Lie 2-group (or Lie n-group, for Henriques and Schreiber) away
from the world of finite-dimensional manifolds, and the latter three generalize
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the notion of 2-group to one in which products are defined only up to
equivalence.

Given this history, it is remarkable that the naive scheme we outlined for
integration actually works for the Lie n-superalgebra we really care about
— namely, the superstring Lie 2-algbera. Moreover, this is not some weird
quirk unique to this special case, but the result of a beautiful geometric
procedure for integrating Lie algebra cocycles defined on a nilpotent Lie
algebra. Originally invented by Houard [32], we generalize this technique to
the case of nilpotent Lie superalgebras and supergroups.

This paper is organized as follows. In Section 2, we sketch how to con-
struct a Lie n-group from an (n + 1)-cocycle in smooth group cohomology,
and make this precise for n = 2. In Section 3, we define Lie n-superalgebras
as n-term Loo-superalgebras, and show to construct a Lie n-superalgebra
from an (n + 1)-cocycle in Lie superalgebra cohomology. We then give
some examples of Lie 2-superalgebras obtained via 3-cocycles: the string Lie
2-algebra in Section 3.1.1, a new example we call the Heisenberg Lie 2-algebra
in Section 3.1.2, and the supertranslation Lie 2-superalgebra in Section
3.1.3. Finally, in Section 3.1.4, we give our key example, the superstring
Lie 2-superalgebra, superstring(n + 1,1).

We spend the rest of the paper building the machinery to integrate
superstring(n + 1,1). In Section 4, we give some background on the problem
of integrating Lie n-algebras, and introduce a key construction in Section
4.1: a geometric technique, due to Houard [32], to fill out p-simplices in Lie
groups given a (p + 1)-tuple of vertices, provided the Lie group in question
is “exponential”: the exponential map is a diffeomorphism. This immedi-
ately allows us to integrate Lie algebra 3-cocycles to Lie group 3-cocycles
for all nilpotent Lie algebras and their simply-connected Lie groups. In Sec-
tion 4.2, we apply this technique to obtain the Heisenberg Lie 2-group from
the Heisenberg Lie 2-algebra. Then we lay the groundwork to generalize this
construction to Lie 2-superalgebras and 2-supergroups. In Section 5, we give
a brief introduction to supermanifold theory using the “functor of points”
approach we learned from Sachse [44] and Balduzzi et al. [11]. In Section
6, we generalize the results of Section 2 to the super case by showing how
to construct a 2-supergroup from a 3-cocycle in supergroup cohomology. In
Section 7, we generalize the results of Section 4 to the super case, showing
how an even p-cocycle on a nilpotent Lie superalgebra can be integrated to
a smooth p-cocycle on the corresponding supergroup. Finally, in Section
8, we apply this technique to construct the superstring Lie 2-supergroup,
Superstring(n 4+ 1, 1), in the guise of a smooth 3-cocycle on the Poincaré
supergroup.
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2 Lie 2-groups from group cohomology

Roughly speaking, an ‘“‘n-group” is a weak n-groupoid with one object—an
n-category with one object in which all morphisms are weakly invertible,
up to higher-dimensional morphisms. This definition is a rough one because
there are many possible definitions to use for “weak n-category”, but despite
this ambiguity, it can still serve to motivate us.

The richness of weak n-categories, no matter what definition we apply,
makes n-groups a complicated subject. In the midst of this complexity,
we seek to define a class of n-groups that have a simple description, and
which are straightforward to internalize, so that we may easily construct
Lie n-groups and Lie mn-supergroups, as we shall do later in this paper.
The motivating example for this is what Baez and Lauda [8] call a “special
2-group”, which has a concrete description using group cohomology. Since
Baez and Lauda prove that all 2-groups are equivalent to special ones, group
cohomology also serves to classify 2-groups.

So, we will define “slim Lie n-groups” precisely only for n = 2, but sketch a
definition for higher n. This is an Lie n-group which is skeletal (every weakly
isomorphic pair of objects are equal), and almost trivial: all k-morphisms
are the identity for 1 < k < n. Slim Lie n-groups are useful because they
can be completely classified by Lie group cohomology. They are also easy
to “superize”, and their super versions can be completely classified using
Lie supergroup cohomology, as we shall see in Section 6. Finally, we note
that we could equally well-define ’‘slim n-groups”, working in the category
of sets rather than the category of smooth manifolds. Indeed, when n = 2,
this is what Baez and Lauda call a “special 2-group”, though we prefer the
“slim” terminology.

We should stress that the definition of Lie n-group we sketch here (and
make precise for n < 3), while it is good enough for our needs, is known
to be too naive in some important respects. For instance, it does not seem
possible to integrate every Lie n-algebra to a Lie n-group of this type, while
Henriques’s definition of Lie n-group does make this possible [31].

First we need to review the cohomology of Lie groups, as originally defined
by van Est [55], who was working in parallel with the definition of group
cohomology given by Eilenberg and MacLane. Fix a Lie group GG, an abelian
Lie group H, and a smooth action of G on H which respects addition in H.
That is, for any g € G and h,h' € H, we have:

g(h+ 1) = gh+ gh'.



“ATMP-16-5-A4-HUE” — 2013/4/30 — 17:32 — page 1494 — #10

1494 JOHN HUERTA

Then the cohomology of G with coefficients in H is given by the Lie
group cochain complex, C*(G, H). At level p, this consists of the smooth
functions from GP to H:

CP(G H)={f: G* — H}.

We call elements of this set H-valued p-cochains on G. The bound-
ary operator is the same as the one defined by Eilenberg-MacLane. On a
p-cochain f, it is given by the formula:

df (91, 9pr1) = 91.f (92, -, Gpt1)

p
Y (=1 f(g1,- - Gim15 GiGit1s Givas - - Gpi1)
1

+ (_1)p+1f(gla ce agp)‘

The proof that d> = 0 is routine. All the usual terminology applies: a p-
cochain f for which df = 0 is called closed, or a cocycle, a p-cochain f = dg
for some (p — 1)-cochain g is called exact, or a coboundary. A p-cochain
is said to be normalized if it vanishes when any of its entries is 1. Every
cohomology class can be represented by a normalized cocycle. Finally, when
H =R with trivial G action, we omit it when writing the complex C*(G),
and we call real-valued cochains, cocycles, or coboundaries, simply cochains,
cocycles or coboundaries, respectively.

This last choice, that R will be our default coefficient group, may seem
innocuous, but there is another one-dimensional abelian Lie group we might
have chosen: U(1), the group of phases. This would have been an equally
valid choice, and perhaps better for some physical applications, but we have
chosen R because it simplifies our formulas slightly.

We now sketch how to build a slim Lie n-group from an (n + 1)-cocycle.
In essence, given a normalized H-valued (n + 1)-cocycle a on a Lie group
G, we want to construct a Lie n-group Brane,(G, H), which is the smooth,
weak n-groupoid with:

e One object. We can depict this with a dot, or “O-cell”: e
e For each element g € GG, a 1-automorphism of the one object, which
we depict as an arrow, or “l-cell”:

Oi>0, geaq.

Composition corresponds to multiplication in the group:

g g’ g9’
Y — 0 ——> 0 — O — 0 .
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e Trivial k-morphisms for 1 < k < n. If we depict 2-morphisms with 2-
cells, 3-morphisms with 3-cells, then we are saying there is just one of
each of these (the identity) up to level n — 1:

e For each element h € H, an n-automorphism on the identity of the
identity of ...the identity of the 1-morphism ¢, and no n-morphisms
which are not n-automorphisms. For example, when n = 3, we have:

g
S 7mN\\
.19<3>1g., heH.

g

e There are n ways of composing n-morphisms, given by different ways
of sticking n-cells together. For example, when n = 3, we can glue two
3-cells along a 2-cell, which should just correspond to addition in H:

We also can glue two 3-cells along a 1-cell, which should again just be
addition in H:

SN SN

And finally, we can glue two 3-cells at the O-cell, the object o. This is
the only composition of n-morphisms where the attached 1-morphisms
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can be distinct, which distinguishes it from the first two cases. It
should be addition twisted by the action of G:

/

99

For arbitary n, we define all n compositions to be addition in H, except
for gluing at the object, where it is addition twisted by the action.

e For any (n+ 1)-tuple of l-morphisms, an n-automorphism
a(g1,92,---,9n+1) on the identity of the identity of ...the identity
of the 1-morphism g1g2 ... gn+1. We call a the n-associator.

e ¢ satisfies an equation corresponding to the n-dimensional associahe-
dron, which is equivalent to the cocycle condition.

In principle, it should be possible to take a globular definition of n-category,
such as that of Batanin or Trimble, and fill out this sketch to make it a real
definition of an n-group. Doing this here, however, would lead us too far
afield from our goal, for which we only need 2-groups. So let us flesh out this
case. The reader interested in learning more about the various definitions
of n-categories should consult Leinster’s survey [37] or Cheng and Lauda’s
guidebook [16].

2.1 Lie 2-groups

Speaking precisely, a 2-group is a bicategory with one object in which
all 1-morphisms and 2-morphisms are weakly invertible. Rather than plain
2-groups, we are interested in Lie 2-groups, where all the structure in sight is
smooth. So, we really need a bicategory “internal to the category of smooth
manifolds”, or a “smooth bicategory”. To this end, we will give an especially
long and unfamiliar definition of bicategory, isolating each operation and
piece of data so that we can indicate its smoothness. Readers not familiar
with bicategories are encouraged to read the introduction by Leinster [36].

Before we give this definition, let us review the idea of a “bicategory”, so
that its basic simplicity is not obscured in technicalities. A bicategory has
objects:
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morphisms going between objects,

xo*f>oy7

and 2-morphisms going between morphisms:

o
NS

g
Morphisms in a bicategory can be composed just as morphisms in a category:

f g f-g

x%y%z = r—=2.

But there are two ways to compose 2-morphisms — vertically:

f
/1N /O
— 5=V = |eesy
S N
and horizontally:
ff

/ﬂ\ /ﬂ\ TN
AN

Unlike a category, composition of morphisms need not be associative or
have left and right units. The presence of 2-morphisms allows us to weaken
the axioms. Rather than demanding (f-g)-h = f-(g-h), for composable
morphisms f,g and h, the presence of 2-morphisms allows for the weaker
condition that these two expressions are merely isomorphic:

a(f,g,h): (f-g9)-h=f-(g9-h),
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where a(f,g,h) is an 2-isomorphism called the associator. In the same
vein, rather than demanding that:

L f=f=11,

for f: © — y, and identities 1,: z — x and 1,: y — y, the presence of
2-morphisms allows us to weaken these equations to isomorphisms:

(f):le-f=f r(f): f-1,=f

Here, I(f) and r(f) are 2-isomorphisms called the left and right unitors.

Of course, these 2-isomorphisms obey rules of their own. The associator
satisfies its own axiom, called the pentagon identity, which says that this
pentagon commutes:

(fg)(hk)

a(fg,h.k a(f,g,hk)

((fg)h)k f(g(hk))

a(f)guh)'lk 1f'a(gvh7k)

(Fgh))k IR p((ghk)

Finally, the associator and left and right unitors satisfy the triangle iden-
tity, which says the following triangle commutes:

a(f,1,9)

(fDg f(1g)

r(f)-1g 15-U(g)

fg

A word of caution is needed here before we proceed: in this section only,
we are bucking standard mathematical practice by writing the result of
doing first o and then § as a o § rather than o «, as one would do in most
contexts where o denotes composition of functions. This has the effect of
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changing how we read commutative diagrams. For instance, the commuta-
tive triangle:

reads v = a o ( rather than v = G o «.

We shall now give the full definition, not of a bicategory, but of a “smooth
bicategory”. To do this, we use the idea of internalization. Dating back to
Ehresmann [22] in the 1960s, internalization has become a standard tool of
the working category theorist. The idea is based on a familiar one: any
mathematical structure that can be defined using sets, functions, and equa-
tions between functions can often be defined in categories other than Set.
For instance, a group in the category of smooth manifolds is a Lie group.
To perform internalization, we apply this idea to the definition of category
itself. We recall the essentials here to define “smooth categories”. More
generally, one can define a “category in K” for many categories K, though
here we will work exclusively with the example where K is the category of
smooth manifolds. For a readable treatment of internalization, see Borceux’s
handbook [13].

Definition 1. A smooth category C consists of

e a smooth manifold of objects Cy;
e a smooth manifold of morphisms Cj;

together with
e smooth source and target maps s,t: C7 — Cp,
e a smooth identity-assigning map i: Cy — C1,

e a smooth composition map o: C x¢, C1 — C1, where C; X¢, C is
the pullback of the source and target maps:

C1 xcy C1 ={(f,9) € Ct x Cr: t(f) = s(g9)},

and is assumed to be a smooth manifold.

such that the following diagrams commute, expressing the usual category
laws:
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e laws specifying the source and target of identity morphisms:

Co—>0y Cy——>0

PN

Co Co

e laws specifying the source and target of composite morphisms:

Cy x¢, C1 — Cq Cy x¢, Cp —= Cy
pP1 K] D2 t
1 - Co C1 L Co

e the associative law for composition of morphisms:

OXCO].

Cl X 01 XCo Cl Cl Xy Cl
lXCOO o
[¢]
Cl XCo C(1 Cl

e the left and right unit laws for composition of morphisms:

ix1 1x1
CO Xy Cl E— Cl Xy Cl -~ Cl Xy C[)

Ch

The existence of pullbacks in the category of smooth manifolds is a deli-
cate issue. When working with categories internal to some category K, it is
customary to assume K contains all pullbacks, but this is merely a conve-
nience. All the definitions still work as long as the existence of each required
pullback is implicit.
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To define smooth bicategories, we must first define smooth functors and
natural transformations:

Definition 2. Given smooth categories C' and C’, a smooth functor
F: C — (' consists of:

e a smooth map on objects, Fy: Cy — Cp;
e a smooth map on morphisms, Fy: C; — Cf;

such that the following diagrams commute, corresponding to the usual laws
satisfied by a functor:

e preservation of source and target:

) s Co o) Co
F1 Fo Fl FO
c al cr C! v c

1 0 1 0

e preservation of identity morphisms:

Co ! C1

Fo Fl

Co—— Ci

e preservation of composite morphisms:

FixcyF ! /
Cr xc, G C1 xcy O
[} O/
Fy
4 C]

Definition 3. Given smooth categories C' and C’, and smooth functors
F,G: C — (', a smooth natural transformation 6: F = G is a smooth
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map 6: Cy — C] for which the following diagrams commute, expressing the
usual laws satisfied by a natural transformation:

e laws specifying the source and target of the natural transformation:

Co Co

N AN

0 0

C1 —=GCp Cr—= Gy

e the commutative square law:

A(sOxG)

/ !
C]_ Cl XCO Cl
A(Fxt@) o
C! xe, C i c!
1 *Co “1 1

Given a third smooth functor H: C' — C' and a smooth natural transforma-
tion n: G = H, we define the composition 0n: F = H to be the smooth
map:

ING,
O (6xn)

Ci Xc(/) Ci ° Ci .

The identity natural transformation 1p: F' = F on a smooth functor
F: C — (' is defined to be the smooth map:

, P
Co ——=C) —=C ,

where i is the identity-assigning map for C' and F} is the component of F' on
morphisms. Noting that 17 acts as a left and right identity under composi-
tion of natural transformations, we say that a smooth natural transformation
is a smooth natural isomorphism if it has a left and right inverse.

Now we know enough about smooth category theory to bootstrap the
definition of smooth bicategories. We do this in a somewhat nonstandard
way: we make use of the fact that the morphisms and 2-morphisms of a
bicategory form an ordinary category under vertical composition. General-
izing this, the morphisms and 2-morphisms in a smooth bicategory should
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form, by themselves, a smooth category. We can then define horizontal
composition as a smooth functor, and introduce the associator and left and
right unitors as smooth natural transformations between certain functors.
In detail:

Definition 4. A smooth bicategory B consists of

¢ a manifold of objects By;
¢ a manifold of morphisms Bj;
¢ a manifold of 2-morphisms Bo;

equipped with:

e a smooth category structure on MorB, with
— Bj as the smooth manifold of objects;
— B as the smooth manifold of morphisms;
The composition in MorB is called vertical composition and
denoted o.
e smooth source and target maps:

s,t: By — By.
e a smooth identity-assigning map:
i: By — Bj.
e a smooth horizontal composition functor:

-t MorB x g, MorB — MorB.

That is, a pair of smooth maps:

'IBl XBOBl_>Bl

1 By xp, By — Ba,

satisfying the axioms for a functor.
e a smooth natural isomorphism, the associator:

a(f,g;h): (f-g9)-h=f-(g-h).
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e smooth natural isomorphisms, the left and right unitors, which are
both trivial in the bicategories we consider:

f):1-f=f r(f):f-1=F

such that the following diagrams commute, expressing the same laws regard-
ing sources, targets and identities as with a smooth category, and two new
laws expressing the compatibility of the various source and target maps:

e laws specifying the source and target of identity morphisms:

By——=B, By——>B
1 1
Bo Bo

e laws specifying the source and target of the horizontal composite of
1-morphisms:

B, X B, B, B, By X By By B
p1 t P2 s
Bl L BO Bl . BO

e laws expressing the compatibility of source and target maps:

By By By By
t s s t
By By B By

Finally, associator and left and right unitors satisfy some laws of their own—
the following diagrams commute:



“ATMP-16-5-A4-HUE” — 2013/4/30 — 17:32 — page 1505 — #21 EF

DIVISION ALGEBRAS AND SUPERSYMMETRY III 1505

e the pentagon identity for the associator:

(f9)(hk)

a(fg,h.k a(f.g,hk)

a(f,gh.k)

for any four composable morphisms f, g, h and k.
e the triangle identity for the left and right unit laws:

a(f,1,9)

(f1)g f(1g)

r(f)-1g 1s-U(g)

Iy

for any two composable morphisms f and g.

Finally, to talk about Lie 2-groups, we will need to talk about inverses.
We say that the 2-morphisms in a smooth bicategory B have smooth
strict inverses if there exists a smooth map from 2-morphisms to
2-morphisms:

inVQI BQ — B2

that assigns to each 2-morphism « its strict inverse o~

the left and right inverse laws on the nose:

= invy(a), obeying

a_loozzl, aoca t=1.

Of course, if the strict inverse o~ ! exists, it is unique, but same is not true
for “weak inverses”. We say that the morphisms in B have smooth weak

inverses if there exist smooth maps:

invi: By — By, e: By — By, wu:Bj— Bo,
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such that for each morphism f, inv; provides a smooth choice of weak
inverse, f~! =invy(f), and u and e provide smooth choices of 2-isomorphisms
that “weaken” the left and right inverse laws:

e(f): f7Hf=1 ulf):f L

Here we have been careful to use indefinite articles, and with good reason:
unlike their strict counterparts, weak inverses need not be unique!

The definition of smooth bicategory we give above may seem so long that
checking it is utterly intimidating, but we shall see an example in a moment
where this is easy. This will be an example of a Lie 2-group, a smooth
bicategory with one object whose morphisms have smooth weak inverses and
whose 2-morphisms have smooth strict inverses.

Secretly, the pentagon identity is a cocycle condition, as we shall now
see. Given a normalized H-valued 3-cocycle a on a Lie group G, we can
construct a Lie 2-group String, (G, H) with:

e One object, o, regarded as a manifold in the trivial way.
e For each element g € GG, an automorphism of the one object:

Horizontal composition given by multiplication in the group:
2 GExGE— G

Note that source and target maps are necessarily trivial. The identity-
assigning map takes the one object to 1 € G.

e For each h € H, a 2-automorphism of the morphism ¢, and no
2-morphisms between distinct morphisms:

N
. ﬂh e, held.

NS

g

Thus the space of all 2-morphisms is G x H, and the source and target
maps are projection onto the first factor. The identity-assigning map
takes each element of G to 0 € H.
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e Two kinds of composition of 2-morphisms: given a pair of 2-morphisms
on the same morphism, vertical composition is given by addition in H:

N N

That is, vertical composition is just the map:
o=1x+:GxHxH—GxH.

where we have used the fact that the pullback of 2-morphisms over the
one object is trivially:

(Gx H)xe (GXxH)=Gx H x H.

Given a pair of 2-morphisms on different morphisms, horizontal com-
position is addition twisted by the action of G:

SN -
AL

9 g 99’

Or, in terms of a map, this is the multiplication on the semidirect
product, G x H:

2 (Gx H)x (Gx H) - Gx H.
e For any triple of morphisms, a 2-isomorphism, the associator:

a(g1, 92, 93): 919293 — 919293,

given by the 3-cocycle a: G® — H, where by a slight abuse of defini-
tions we think of this 2-isomorphism as living in H rather than G x H,
because the source (and target) are understood to be g1g293.

e The left and right unitors are trivial.

A slim Lie 2-group is one of this form. When H =R, we write simply
String, (G) for the above Lie 2-group. It remains to check that this is, in
fact, a Lie 2-group:
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Proposition 5. String,(G, H) is a Lie 2-group: a smooth bicategory with
one object in which all morphisms have smooth weak inverses and all 2-morphisms
have smooth strict inverses.

In brief, we prove this by showing that the 3-cocycle condition implies
the one nontrivial axiom for this bicategory: the pentagon identity.

Proof. First, let us dispense with the easier items from our definition. For
String, (G, H), it is easy to see that the morphisms and 2-morphism form a
smooth category under vertical composition, that horizontal composition is
a smooth functor, and that the associator defines a natural transformation.
Since the left and right unitors are the identity, the triangle identity just
says a(g1,1,g2) = 1. Or, written additively, a(g1,1,g2) = 0. Because a is
normalized, this is automatic.

To check that String, (G, H) is really a bicategory, it therefore remains to
check the pentagon identity. This says that the following automorphisms of

J1929394 are equal:

a(g1, 92, 9394) © a(g192, 93, 91) = (1g, - a(g2, 93, 94)) © a(g1, 9293, 94)
% (a’(gthagg) ' 194)'

Or, using the definition of vertical composition:

a(g1, 92, 9394) + a(9192, 93, 94) = (1g, - alg2, 93, 94)) + a(g1, 9293, 94)
+ (a(glag2ag3) . 194)‘

Finally, use the definition of the dot operation for 2-morphisms, as the
semidirect product:

a(g1, 92, 9394) + a(9192, 93, 94) = g1a(92, 93, 94)) + a(g1, 9293, 94)
+ a(gl7927g3)‘

This is the 3-cocycle condition — it holds because a is a 3-cocycle.

So, String, (G, H) is a bicategory. It is smooth because everything in
sight is smooth: G, H, the source, target, identity-assigning, and compo-
sition maps, and the associator a: G> — H. And it is a Lie 2-group: the
morphisms in G and 2-morphisms in H all have smooth strict inverses given
by inversion in the Lie groups G and H. ([l

In fact, we can say something a bit stronger about String, (G, H), if we let
a be any normalized H-valued 3-cochain, rather requiring it to be a cocycle.



“ATMP-16-5-A4-HUE” — 2013/4/30 — 17:32 — page 1509 — #25

DIVISION ALGEBRAS AND SUPERSYMMETRY III 1509

In this case, String, (G, H) is a Lie 2-group if and only if a is a 3-cocycle,
because a satisfies the pentagon identity if and only if it is a cocycle.

3 Lie n-superalgebras from Lie superalgebra cohomology

Having sketched the construction of Lie n-groups from smooth group
(n + 1)-cocycles, we now turn to a parallel construction of Lie n-algebras. As
one might expect from experience with ordinary Lie groups and Lie algebras,
Lie n-algebras are much easier than their Lie n-group counterparts, and it
is straightforward to give the definition for all n. It also straightforward to
incorporate the “super” case immediately.

As we touched on in the Introduction, a Lie n-superalgebra is a certain
kind of L..-superalgebra, which is the super version of an L..-algebra. This
last is a chain complex, V:

d d d
R R PR

equipped with a structure like that of a Lie algebra, but where the Jacobi
identity only holds up to chain homotopy, and this chain homotopy satisfies
its own identity up to chain homotopy, and so on. For an L.-superalgebra,
each term in the chain complex has a Zs-grading, and we introduce extra
signs. A Lie n-superalgebra is an L.-superalgebra in which only the first n
terms are nonzero, starting with V4.

In the last section, we sketched how a Lie group (n + 1)-cocycle:
f:G"— H

can be used to construct an especially simple Lie n-group, with 1-morphisms
forming the group G, n-morphisms forming the group G x H, and all
k-morphisms in between trivial. In this section, we shall describe how a
Lie superalgebra (n + 1)-cocycle:

w: A"g— b

can be used to construct an especially simple Lie n-superalgebra, defined on
a chain complex with g in grade 0, § in grade n — 1, and all terms in between
trivial. To make this precise, we had better start with some definitions.

To begin at the beginning, a super vector space is a Zs-graded vector
space V =V @ V; where Vj is called the even part, and V; is called the
odd part. There is a symmetric monoidal category SuperVect which has:
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e Zo-graded vector spaces as objects;

e Grade-preserving linear maps as morphisms;

e A tensor product ® that has the following grading: if V=V ®
and W =Wy® Wi, then (VW)= (Voo Wy @& (Vi@ W) and
VeoW)h=WeW)ae (V1o W);

e A braiding

Byw: VoW —-WeV

defined as follows: v € V and w € W are of grade |v| and |w|, then
ijw(’U Rw) = (—1)‘””1”‘@0 K.

The braiding encodes the “the rule of signs”: in any calculation, when two
odd elements are interchanged, we introduce a minus sign. We can see this
in the axioms of a Lie superalgebra, which resemble those of a Lie algebra
with some extra signs.

Briefly, a Lie superalgebra g is a Lie algebra in the category of super vec-
tor spaces. More concretely, it is a super vector space g = go g1, equipped
with a graded-antisymmetric bracket:

[_7 _]: A2g -9,
which satisfies the Jacobi identity up to signs:
X, [Y. 2] = [[X, Y], 2] + (=)X My, [x, Z]]

for all homogeneous X,Y,Z € g. Note how we have introduced an extra
minus sign upon interchanging X and Y, exactly as the rule of signs says
we should.

It is straightforward to generalize the cohomology of Lie algebras, as
defined by Chevalley—Eilenberg [17, 1], to Lie superalgebras [38]. Suppose g
is a Lie superalgebra and b is a representation of g. That is, b is a super-
vector space equipped with a Lie superalgebra homomorphism p: g — gl(h).
The cohomology of g with coefficients in § is computed using the Lie
superalgebra cochain complex, which consists of graded-antisymmetric
p-linear maps at level p:

CP(g,h) = {w: APg — b}.

We call elements of this set h-valued p-cochains on g. Note that the
CP(g,h) is a super vector space, in which grade-preserving elements are
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even, while grade-reversing elements are odd. When h = R, the trivial rep-
resentation, we typically omit it from the cochain complex and all associated
groups, such as the cohomology groups. Thus, we write C*(g) for C*(g,R).

Next, we define the coboundary operator d: CP(g,h) — CP*1(g,h). Let w
be a homogeneous p-cochain and let X, ..., X, 1 be homogeneous elements
of g. Now define:

dW(X17--'aXp+1)
pt1
_ Z D) (=) Xl e =1 ) p( X w( Xy, ., Xy Xpyn)

+Z 1+j |X||X| i— 1( ) {—1(])

1<J

X w([Xi,Xj],Xl, ce ,XZ', .. .,Xj, .. .Xp+1).

Here, ef(k) is shorthand for the sign one obtains by moving X through
Xi, Xiy1,...,X;. In other words,

ef(k) = (—1)|Xk|(‘Xi‘+|Xi+1H""-HXJ-‘)‘

Following the usual argument for Lie algebras, one can check that:

Proposition 6. The Lie superalgebra coboundary operator d satisfies
d? = 0.

We thus say an h-valued p-cochain w on g is a p-cocycle or closed when
dw =0, and a p-coboundary or exact if there exists an (p — 1)-cochain
0 such that w =df. Every p-coboundary is a p-cocycle, and we say an
p-cocycle is trivial if it is a coboundary. We denote the super vector spaces
of p-cocycles and p-coboundaries by ZP(g, ) and BP(g, h) respectively. The
pth Lie superalgebra cohomology of g with coefficients in §j, denoted
HP(g,b) is defined by

H"(g,b) = Z"(g,h)/B"(g, ).

This super vector space is nonzero if and only if there is a nontrivial
p-cocycle. In what follows, we shall be especially concerned with the even
part of this super vector space, which is nonzero if and only if there is a non-
trivial even p-cocycle. Our motivation for looking for even cocycles is simple:
these parity-preserving maps can regarded as morphisms in the category of
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super vector spaces, which is crucial for the construction in Theorem 8 and
everything following it.

Suppose g is a Lie superalgebra with a representation on a supervector
space h. Then we shall prove that an even h-valued (n + 1)-cocycle w on g
lets us construct an Lie n-superalgebra, called brane, (g, h), of the following
form:

g0l gLy,

Now let us make all of these ideas precise. In what follows, we shall
use super chain complexes, which are chain complexes in the category
SuperVect of Zs-graded vector spaces:

d d d
Vo el 1 b vp

Thus each V), is Zo-graded and d preserves this grading.

There are thus two gradings in play: the Z-grading by degree, and the
Zo-grading on each vector space, which we call the parity. We shall require
a sign convention to establish how these gradings interact. If we consider an
object of odd parity and odd degree, is it in fact even overall? By convention,
we assume that it is. That is, whenever we interchange something of parity
p and degree g with something of parity p’ and degree ¢/, we introduce the
sign (—1)PT9®'+4) We shall call the sum p + ¢ of parity and degree the
overall grade, or when it will not cause confusion, simply the grade. We
denote the overall grade of X by | X]|.

We require a compressed notation for signs. If xy,...,x, are graded,
o € S, a permutation, we define the Koszul sign €(o) = e(o;21,...,2,)
by
T T = €(05T1, 0, Tn)  To(1) - - To(n)

the sign we would introduce in the free graded-commutative algebra gener-
ated by z1,...,z,. Thus, ¢(0) encodes all the sign changes that arise from
permuting graded elements. Now define:

X(0) = (@321, . 20) = sgn(0) - (i1, wn).

Thus, x(o) is the sign we would introduce in the free graded-anticommutative
algebra generated by z1,...,x,.
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Yet we shall only be concerned with particular permutations. If n is
a natural number and 1 < j <n —1 we say that o € S,, is an (j,n — j)-
unshuffle if

o) <o@ < <o) and o(j+1)<o(i+2) < < aln).
Readers familiar with shuffles will recognize unshuffles as their inverses. A
shuffle of two ordered sets (such as a deck of cards) is a permutation of the
ordered union preserving the order of each of the given subsets. An unshuffle
reverses this process. We denote the collection of all (j,n — j) unshuffles by
S(in-j)-

The following definition of an L..-algebra was formulated by Schlessinger
and Stasheff in 1985 [46]:

Definition 7. An Lo.-superalgebra is a graded vector space V equipped
with a system {li|1 <k < oo} of linear maps Ij,: V& — V with deg(l},) =
k — 2, which are totally antisymmetric in the sense that

lk(mg(l),...,xg(k)) = X(U)lk($1,...,xn) (1)

for all 0 € S, and x1,...,x, € V, and, moreover, the following generalized
form of the Jacobi identity holds for 0 < n < oo :

E E X(U)(_l)zo_l)l](ll(xa(l)a s xo‘(i))v To(it1)s -+ 7xa(n)) =0,
Z+]:n+1 UES(i,n—i)
(2)

where the inner summation is taken over all (i, n — 7)-unshuffles with ¢ > 1.

A Lie n-superalgebra is an Ls.-superalgebra where only the first n
terms of the chain complex are nonzero. A slim Lie n-superalgebra is
a Lie n-superalgebra V with only two nonzero terms, Vy and V,_1, and
d = 0. Given an h-valued (n + 1)-cocycle w on a Lie superalgebra g, we can
construct a slim Lie n-superalgebra brane, (g, h) with:

e g in grade 0, h in grade m — 1, and trivial super vector spaces in
between,
e d=0,
o ly: (g h)*®? — g@ b given by:
— the Lie bracket on g ® g,
— the action on g ® b,
— zero on h ® b, as required by grading.
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o lyi1: (g@h)2+) - g@h given by the cocycle w on g®"*+1  and
zero otherwise, as required by grading,
e all other maps I zero, as required by grading.

It remains to prove that this is, in fact, a Lie n-superalgebra. Indeed,
more is true: every slim Lie n-superalgebra is precisely of this form.

Theorem 8. brane,(g,h) is a Lie n-superalgebra. Conversely, every slim
Lie n-superalgebra is of form brane,(g,h) for some Lie superalgebra g, rep-
resentation by, and h-valued (n + 1)-cocycle w on g.

Proof. See the proof of Theorem 17 in our previous paper [6], which is a
straightforward generalization of the proof found in Baez—Crans [3] to the
super case. ]

For the 2-group String,(G, H), we noted that a is cocycle if and only
if a satisfies the pentagon identity. Likewise, the key to the proof of the
above theorem is recognizing that w is a Lie superalgebra cocycle if and
only if the generalized Jacobi identity, Equation 2, holds. By analogy with 2-
groups, when n = 2, we will also write string,,(g, ) for the Lie 2-superalgebra
constructed from the 3-cocycle w, and when b is the trivial representation
R, we omit it. In the next section, we give some examples of these objects.

3.1 Examples of slim Lie n-superalgebras

3.1.1 The string Lie 2-algebra

For n >3, consider the Lie algebra so(n) of infinitesimal rotations of
n-dimensional Fuclidean space. This matrix Lie algebra has Killing form
given by the trace, (X,Y) = tr(XY), and an easy calculation shows that

is a 3-cocycle on so(n). We call j the canonical 3-cocycle on so(n). Using
j, we get a Lie 2-algebra string;(so(n)), which we denote simply by string(n).
We call this the string Lie 2-algebra. First defined by Baez—Crans [3], it
is so-named because it turned out to be intimately related to the string
group, String(n), the topological group obtained from SO(n) by Kkilling
the first and third homotopy groups. For a description of this relation-
ship, as well as the construction of Lie 2-groups which integrate string(n),
see the papers of Baez—Crans—Schreiber—Stevenson [10], Henriques [31] and
Schommer-Pries [47].
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3.1.2 The Heisenberg Lie 2-algebra

As we mentioned earlier, central extensions of Lie algebras are classified
by second cohomology. A famous example of this is the “Heisenberg Lie
algebra”, so named because it mimics the canonical commutation relations
in quantum mechanics. Here we present a Lie 2-algebra generalization: the
“Heisenberg Lie 2-algebra”.

Consider the abelian Lie algebra of translations in position-momentum
space:

R? = span(p, q).

Here, p and ¢ are our names for the standard basis, the usual letters for
momentum and position in physics. Up to rescaling, this Lie algebra has a
single, nontrivial 2-cocycle:

p*A gt € A2(R?),

where p* and ¢* comprise the dual basis. Thus it has a nontrivial central
extension:

0—-R—§H—>R>—0.

This central extension is called the Heisenberg Lie algebra. As a vector
space, ) = R3, and we call the basis vectors p, ¢ and z, where z is central.
When chosen with suitable normalization, they satisfy the relations:

p,ql =2, [p,2]=0, [g2=0.

These are the same as the canonical commutation relations in quantum
mechanics, except that the generator z would usually be a number, —iA.
It is from this parallel that the Heisenberg Lie algebra derives its physical
applications: a representation of ) is exactly a way of choosing linear oper-
ators p, ¢ and z on a Hilbert space that satisfy the canonical commutation
relations.

With Lie 2-algebras, we can repeat the process that yielded the Heisenberg
Lie algebra to obtain a higher structure. Before we needed a 2-cocycle, but
now we need a 3-cocycle. Indeed, letting p*, ¢* and z* be the dual basis of
H*, it is easy to check that v = p* A ¢* A z* is a nontrivial 3-cocycle on $.
Thus there is a Lie 2-algebra string, ($), the Heisenberg Lie 2-algebra,
which we denote by $eisenberg. Later, in Section 4, we will see how to
integrate this Lie 2-algebra to a Lie 2-group.
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We suspect the Heisenberg Lie 2-algebra, like its Lie algebra cousin, is
also important for physics. We also suspect that the pattern continues: the
Heisenberg Lie 2-algebra may admit a “4-cocycle”, and a central extension
to a Lie 3-algebra. However, since we have not defined the cohomology of
Lie n-algebras [43], we do not pursue this here.

3.1.3 The supertranslation Lie 2-superalgebras

This entire project began with the following puzzle: the classical superstring
makes sense only in spacetimes of dimensions n + 2 = 3, 4, 6 and 10, each
of these numbers two higher than the dimensions of the normed division
algebras. From the physics literature [21, 30], we see this is because a certain
spinor identity holds in these spacetime dimensions and no others, namely
the 3-1’s rule:

(¢ -9)yp =0

for all spinors ¢ € S;. Here, the dot denotes an operation that takes two
spinors and and outputs a vector, which in the above identity acts on the
original spinor. In notation more typical of the physics literature, this would
usually be written as:

(@')’Hw)'mw =0,

though it takes a number of different guises. For instance, one equivalent
form is to say that all spinors square to null vectors in these dimensions:

1¥ - ¥l* = 0.
See Huerta [33], Section 2.4 for a full discussion.

We can understand this identity in terms of division algebras, as reviewed
in the first paper of this series [5]. In some sense, this solves the puzzle we
began with, but leaves us with another: what is the meaning of the 3-v¢’s
rule itself? The answer, as we described in our second paper [6], lies in Lie
algebra cohomology: it is a cocycle condition.

To understand this, we need to introduce supersymmetry. In any dimen-
sion, a symmetric bilinear intertwining operator that eats two spinors and
spits out a vector gives rise to a “super-Minkowski spacetime” [20]. The
infinitesimal translation symmetries of this object form a Lie superalgebra,
which we call the “supertranslation algebra”, 7. The cohomology of this
Lie superalgebra is interesting and apparently rather subtle [14, 41, 42]. We
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shall see that its third cohomology is nontrivial in dimensions n + 2 = 3, 4,
6 and 10, thanks to the 3-¢’s rule.

For arbitrary superspacetimes, the cohomology of 7 is not explicitly
known. Techniques to compute it have been described by Brandt [14], who
applied them in dimension 5 and below. Movshev et al. [41,42] showed
how to augment these techniques using computer algebra systems, such as
LiE [19], and fully describe the cohomology in dimensions less than 11 in
this way.

Based on the work of these authors, it seems likely that the 3rd coho-
mology of 7 is nontrivial in sufficiently large dimensions. We conjecture,
however, that dimensions n 4+ 2 are the only ones with Lorentz-invariant
3-cocycles. Exploratory calculations with LiE bare this conjecture out, but
the general answer appears to be unknown.

Let us see how division algebras get into the game by using them to
construct 7 in the relevant dimensions — 3, 4, 6 and 10. Recall that, by
a classic result of Hurwitz [34], there are precisely four normed division
algebras: the real numbers, R, the complex numbers, C, the quaternions, H,
and the octonions . These have dimensions n = 1, 2, 4, and 8, respectively.

Most properties of the division algebras are familiar from working with
complex numbers. Each division algebra K is normed, in the sense that it
is equipped with a norm | - | satisfying:

|ab| = |ab].

Each division algebra also has a conjugation, a linear map *: K — K
satisfying:

(ab)* =b*a*, o™ =a.

We can use this conjugation to write the norm:

la? = aa* = a*a.
Not familiar from complex numbers, however, is nonassociativity. While R,
C, and H are all associative, the octonions, O, are not. However, they come
close. They are alternative: every subalgebra generated by two elements
is associative. Indeed, every normed division algebra is alternative.

We can now systematically use the normed division algebra K of dimen-
sion n to construct the superstranlation algebra 7 for spacetime of dimension
n + 2. Most of this construction is well known [2, 18, 35, 40, 52], although we
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learned it from Manogue and Schray [49, 48]. First, the vector representa-
tion V of Spin(n + 1, 1) is defined to be the set of 2 x 2 Hermitian matrices

over K:
V—{<t+x y ):t,xER,yEK}.
Y t—x

Note that this is a (n+ 2)-dimensional vector space. We define the
Minkowski norm on this space using the determinant:

*

—det(t—i_x Y >:—t2+x2+’y|2.
Y t—x

The minus sign ensures that we have signature (n + 1,1). Thus, the Lorentz

group Spin(n + 1,1), the double-cover of SOg(n+ 1,1), acts on V via

determinant-preserving linear transformations.

While vectors are 2 x 2 matrices over K, spinors are column vectors in
K2. Indeed, the irreducible spinor representations of Spin(n + 1,1) are
both defined on K?:

S, =K% S_=K2

but with slightly different actions of Spin(n + 1,1). We shall avoid specifying
these actions explicitly. For details, see Section 3 of our first paper [5], or
Chapter 2 of Huerta [33].

Finally, for both S and S_, there is a symmetric, bilinear, Spin(n + 1, 1)-
equivariant map:

2 SL®SL— V.

Despite our notation, we suggestively call this map the bracket of spinors.
The form of this map is particularly charismatic on S_, thanks to our use
of K: just multiply the column vector v by the row vector ¢ and take the
Hermitian part of the resulting 2 x 2 matrix:

V- =1 + oyl Y,pe S .

Here, the dagger denotes the conjugate transpose, ¥ = (¢*)T. On S, it is
only slightly more complex, as our choice of action forces us to apply trace
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reversal — for a 2 x 2 matrix A, we define:
A=A—tr(A).

Then we can write:

Vb=t + ot B e Sy,

In either case, the result is a 2 x 2 Hermitian matrix — a vector! The fact
that these maps are Spin(n + 1,1)-equivariant is checked in our previous

paper [5].

Finally, we fuse these two representations of Spin(n + 1, 1) together into a
single object, the supertranslation algebra 7. This is a Lie superalgebra
whose even part consists of vectors and odd part consists of spinors:

The bracket on 7 is defined to vanish unless we bracket a spinor i with
a spinor ¢, in which case the bracket is simply 1 - ¢. Since this opera-
tion is symmetric and spinors are odd, the bracket operation is graded-
antisymmetric overall. Furthermore, the Jacobi identity holds trivially,
thanks to the near triviality of the bracket. Thus 7 is indeed, a Lie
superalgebra.

Moreover, 7 has a nontrivial 3-cocycle, thanks to the 3-1’s rule. We define
a 3-cochain, which eats a vector, A, and two spinors, ¥, ¢, and vanishes
otherwise, as follows:

Oé(A/lbv ¢) - g(A7w : ¢)
Here, g is the Minkowski inner product on V.

Theorem 9. In dimensions 3, 4, 6 and 10, the supertranslation algebra
T has a nontrivial, Lorentz-invariant even 3-cocycle o taking values in the
trivial representation R. Decomposing the graded exterior power A3T into

the direct sum A3T = @ APV @ Sym?S, , we define the 3-cocycle:
p+q=3

a: A3T - R,
as the unique 3-cochain which takes the value:

a(ANPNG) =g(AY-9)
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on the V@ Sym?2S, direct summand of A3T, and vanishes otherwise, for
vectors A € V' and spinors ¥, ¢ € Sy.

Proof. See the proof of Theorem 14 in our previous paper [6]. U

There is thus a Lie 2-superalgebra, the supertranslation Lie 2-
superalgebra, string, (7). There is much more that one can do with the
cocycle o, however. We can use it to extend not just the supertranslations
7 to a Lie 2-superalgebra, but the full Poincaré superalgebra, so(V) x 7.
We turn to this now.

3.1.4 Superstring Lie 2-superalgebras

One of the principal themes of theoretical physics over the last century has
been the search for the underlying symmetries of nature. This began with
special relativity, which could be summarized as the discovery that the laws
of physics are invariant under the action of the Poincaré group:

ISO(V) = Spin(V) x V.

Here, V is the set of vectors in Minkowski spacetime and acts on Minkowski
spacetime by translation, while Spin(V') is the Lorentz group: the double
cover of SOg(V'), the connected component of the group of symmetries of the
Minkowski norm. Much of the progress in physics since special relativity has
been associated with the discovery of additional symmetries, like the U(1) x
SU(2) x SU(3) symmetries of the Standard Model of particle physics [4].

Today, “supersymmetry” could be summarized as the hypothesis that
the laws of physics are invariant under the “Poincaré supergroup”, which is
larger than the Poincaré group:

SISO(V) = Spin(V) x T..

Here, V is again the set of vectors in Minkowski spacetime and Spin(V') is the
Lorentz group, but 7" is the supergroup of translations on Minkowski “super-
spacetime”. Although we have not yet learned enough supergeometry to talk
about T precisely, we have already met its infinitesimal approximation in
the last section: the superstranslation algebra, 7 =V ®& S,.. We think of
the spinor representation Sy as giving extra, supersymmetric translations,
or “supersymmetries”.

In this paper, we show how to further extend the Poincaré supergroup to
include higher symmetries, thanks to the normed division algebras. That
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is, we will show that in dimensions n + 2 = 3, 4, 6 and 10, one can extend
the Poincaré supergroup SISO(n+ 1,1) to a “Lie 2-supergroup” we call
Superstring(n + 1, 1).

We begin this construction in this section by working at the infinitesimal
level. Using the 3-cocycle a, we construct a Lie 2-superalgebra,

superstring(n + 1, 1),
which extends the Poincaré superalgebra in dimension n + 2:
siso(n+1,1) =so(n+1,1) x T

This is possible because « is invariant under the action of the Lorentz
algebra, so(n + 1,1). This is manifestly true, because « is built from equi-
variant maps.

As we shall see, this invariance implies that « is a cocycle, not merely on
the supertranslation algebra, but on the full Poincaré superalgebra, siso(n +
1,1). We can extend « to this larger algebra in a trivial way: define the
unique extension which vanishes unless all of its arguments come from 7.
Doing this, a remains a cocycle, even though the Lie bracket (and thus d)
has changed. Moreover, it remains nontrivial. All of this is contained in the
following proposition:

Proposition 10. Let g and b be Lie superalgebras such that g acts on b,
and let R be a representation of g x . Given any R-valued n-cochain w on
h, we can uniquely extend it to an n-cochain & on g X b that takes the value
of w on b and vanishes on g. When w is even, we have:

(1) @ s closed if and only if w is closed and g-equivariant.
(2) @ is exact if and only if w = d6, for 0 a g-equivariant (n — 1)-cochain
on b.

Proof. See the proof of Proposition 20 in our previous paper [6]. O

Thus we can extend « to a nontrivial cocycle on the Poincaré Lie superal-
gebra, simply by defining « to vanish outside of the supertranslation algebra.
Thanks to Theorem 8, we know that « lets us extend siso(n + 1,1) to a Lie
2-superalgebra:

Theorem 11. In dimensions 3, 4, 6 and 10, there exists a Lie 2-superalgebra
formed by extending the Poincaré superalgebra siso(n + 1,1) by the 3-cocycle
«, which we call we the superstring Lie 2-superalgebra,
superstring(n + 1,1).
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4 Integrating nilpotent Lie n-algebras

Any mathematician worth her salt knows that we can easily construct Lie
algebras as the infinitesimal versions of Lie groups, and that a more chal-
lenging inverse construction exists: we can “integrate” Lie algebras to get
Lie groups. By analogy, we expect that the same is true of Lie n-algebras
and Lie n-groups: that we can construct Lie n-algebras as the infinitesimal
versions of Lie n-groups, and we can “integrate” Lie n-algebras to obtain
Lie n-groups.

In fact, it is easy to see how to obtain slim Lie n-algebras from slim
Lie n-groups. As we saw in Section 3, slim Lie n-algebras are built from
(n + 1)-cocycles in Lie algebra cohomology. Remember, p-cochains on the
Lie algebra g are linear maps:

CP(g,h) = {w: APg — b},

where h is a representation of g, though we shall restrict ourselves to the
trivial representation hh = R in this section.

On the other hand, in Section 2, we saw that slim Lie n-groups are built
from (n + 1)-cocycles in Lie group cohomology, at least for n = 2. Remem-
ber, p-cochains on G are smooth maps:

CP(G H) ={f: G — H},

where H is an abelian group on which G acts by automorphism, though we
shall restrict ourselves to H = R with trivial action in this section.

Thus, to derive a Lie n-algebra from a Lie n-group, just differentiate the
defining Lie group (n + 1)-cocycle at the identity to obtain a Lie algebra
(n + 1)-cocycle. In other words, for every Lie group G with Lie algebra g,
there is a cochain map:

D: C*(G) — C*(g),

given by differentiation. Here, we have omitted reference to the coefficients
H and h because both are assumed to be R. We continue this practice for
the rest of the section.

Going the other way, however, is challenging—integrating a Lie n-algebra
is harder, even when the Lie n-algebra in question is slim. Nonetheless,
this challenge has been met. Building on the earlier work of Getzler [28]
on integrating nilpotent Lie n-algebras, Henriques [31] has shown that any
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Lie n-algebra can be integrated to a “Lie n-group”, which Henriques defines
as a sort of smooth Kan complex in the category of Banach manifolds.
More recently, Schreiber [50] has generalized this integration procedure to
a setting much more general than that of Banach manifolds, including both
supermanifolds and manifolds with infinitesimals. For both Henriques and
Schreiber, the definition of Lie n-group is weaker than the one we sketched
in Section 2 — it weakens the notion of multiplication so that the product
of two group “elements” is only defined up to equivalence. This level of gen-
erality seems essential for the construction to work for every Lie n-algebra.

However, for some Lie n-algebras, we can integrate them using the more
naive idea of Lie n-group we prefer in this paper: a smooth n-category with
one object in which every k-morphism is weakly invertible, for all 1 < k& < n.
We shall see that, for some slim Lie n-algebras, we can integrate the defining
Lie algebra (n + 1)-cocycle to obtain a Lie group (n + 1)-cocycle. In other
words, for certain Lie groups G with Lie algebra g, there is a cochain map:

J: C*(g) — C*(G).
which is a chain homotopy inverse to differentiation.

When is this possible? We can always differentiate Lie group cochains to
obtain Lie algebra cochains, but if we can also integrate Lie algebra cochains
to obtain Lie group cochains, the cohomology of the Lie group and its Lie
algebra will coincide:

H(g) = H*(G).

By a theorem of van Est [55], this happens when all the homology groups
of G, as a topological space, vanish.

Thus, we should look to Lie groups with vanishing homology for our
examples. How bad can things be when the Lie group is not homologically
trivial? To get a sense for this, recall that any semisimple Lie group G is
diffeomorphic to the product of its maximal compact subgroup K and a
contractible space C:

G~ K xC.

When K is a point, G is contractible, and certainly has vanishing homology.
At the other extreme, when C is a point, G is compact. And indeed, in this
case there is no hope of obtaining a nontrivial cochain map from Lie algebra
cochains to Lie group cochains:

[+ C*(g) — C*(G)

because every smooth cocycle on a compact group is trivial [8,55].
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This fact provided an obstacle to early attempts to integrate Lie 2-
algebras. For instance, consider the string Lie 2-algebra string(n) we des-
cribed in Section 3.1.1. Recall that it is the slim Lie 2-algebra string;(so(n)),
where j is the canonical 3-cocycle on so(n), given by combining the Killing
form with the bracket:

One could attempt to integrate string(n) to a slim Lie 2-group
String ;(SO(n)), where [ j is a Lie group 3-cocycle on SO(n) which some-
how integrates j, but because the compact group SO(n) admits no nontrivial
smooth Lie group cocycles, this idea fails.

The real lesson of the string Lie 2-algebra is that, once again, our notion
of Lie 2-group is not general enough. By generalizing the concept of Lie
2-group, various authors, like Baez—Crans—Schreiber—Stevenson [10], Hen-
riques [31] and Schommer-Pries [47], were successful in integrating string(n).

Nonetheless, there is a large class of Lie n-algebras for which our Lie
n-groups are general enough. In particular, when G is an “exponential” Lie
group, the story is completely different. A Lie group or Lie algebra is called
exponential if the exponential map

exp: g — G

is a diffeomorphism. For instance, all simply connected nilpotent Lie groups
are exponential, although the reverse is not true. Certainly, all exponential
Lie groups have vanishing homology, because g is contractible. We caution
the reader that some authors use the term “exponential” merely to indicate
that the exponential map is surjective.

When G is an exponential Lie group with Lie algebra g, we can use a
geometric technique developed by Houard [32] to construct a cochain map:

[:C*(g) = C*(G).

The basic idea behind this construction is simple, a natural outgrowth of a
familiar concept from the cohomology of Lie algebras. Because a Lie algebra
p-cochain is a linear map:

w: APg — R,

using left translation, we can view w as defining a p-form on the Lie group
G. So, we can integrate this p-form over p-simplices in G. Thus we can
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define a smooth function:
fw: GP = R,

by viewing the integral of w as a function of the vertices of a p-simplex:

fw(g1,gz,...,gp)=/ w.

[1,91,91925--,9192-p]

For the right-hand side to truly be a function of the p-tuple (g1, 92,...,9p),
we will need a standard way to “fill out” the p-simplex [1,¢1,9192,...,
9192 - - gp), based only on its vertices. It is here that the fact that G is
exponential is key: in an exponential group, we can use the exponential
map to define a unique path from the identity 1 to any group element. We
think of this path as giving a 1-simplex, [1, g], and we can extend this idea
to higher-dimensional p-simplices.

Therefore, when G is exponential, we can construct [. Using this cochain
map, it is possible to integrate the slim Lie n-algebra brane,(g) to the slim
Lie n-group Brane;,(G).

We proceed as follows. In Section 4.1, we construct [ and show that, along
with D, it gives a homotopy equivalence between the complexes C*(g) and
C*(G). In Section 4.2, we use [ to integrate the Heisenberg Lie 2-algebra of
Section 3.1.2. Later, in Section 7, we shall see that this construction can be
“superized”, and integrate Lie n-superalgebras to n-supergroups. Finally,
so that the reader can see concrete calculations with [, in Appendix A we
work out explicit formulas for the Lie group p-cochains one obtains from
integrating Lie algebra p-cochains, for p =0, 1, 2 and 3.

4.1 Integrating Lie algebra cochains

In what follows, we shall see that for an exponential Lie group G, we can
construct simplices in G that get along with the action of G on itself. Since
we can treat any p-cochain w on g as a left-invariant p-form on G, we can
integrate w over a p-simplex in S in G. Regarding |, gw as a function of the
vertices of S, we will see that it defines a Lie group p-cochain. The fact
that this is a cochain map is purely geometric: it follows automatically from
Stokes’ theorem.

Let us begin by replacing the cohomology of g with the cohomology of
left-invariant differential forms on G. Recall that the cohomology of the Lie
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algebra g is given by the Lie algebra cochain complex, C*(g), which at level
p consists of p-linear maps from g to R:

CP(g) = {w: APg — R}.

We already defined this for Lie superalgebras in Section 3. In that section,
we saw that the coboundary map d on this complex is usually defined by
a rather lengthy formula, but here we shall substitute an equivalent, more
geometric definition. Since we can think of the Lie algebra g as the tangent
space T1G, we can think of a p-cochain on g as giving a p-form on this
tangent space. Using left translation on the group, we can translate this
p-form over G to define a p-form on all of G. This p-form is left-invariant,
and it is easy to see that any left-invariant p-form on G arises in this way.

So, in fact, we could just as well define
C?(g) = {left-invariant p-forms on G} .

It is well-known that the de Rham differential of a left-invariant p-form w
is again left-invariant, and remarkably, the formula for dw; involves only
the Lie bracket on g. This formula is Chevalley and Eilenberg’s original
definition of d [17], the one we gave in Section 3, albeit adapted for Lie
superalgebras. In this section, we may forget about this messy formula, and
use the de Rham differential instead.

The cohomology of the Lie group G is given by the Lie group cochain
complex, C*(G), which at level p is given by the set of smooth functions
from GP to R:

CP(G) = {f: GP — R},

We have already discussed this in Section 2. The coboundary map d on this
complex is usually defined by a complicated formula we gave in that section,
but we can give it a more geometric description just as we did in the case
of Lie algebras.

Since we are going to construct a cochain map by integrating p-forms
over p-simplices, it would be best to view Lie group cohomology in terms of
simplices now. To this end, let us define a combinatorial p-simplex in the
group G to be an (p + 1)-tuple of elements of G, which we call the vertices
in this context. Of course, G acts on the set of combinatorial p-simplices by
left multiplication of the vertices.

Now, we would like to think of Lie group p-cochains as “smooth, homo-
geneous, R-valued cochains” on the free abelian group on combinatorial
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p-simplices. Of course, we need to say what this means. We say an R-

valued p-cochain F' is homogeneous if it is invariant under the left action
of (G, and that it is smooth if the corresponding map

F:GPP1 SR
is smooth. Now if
C%(G) = {smooth homogeneous p-cochains} .

denotes the abelian group of all smooth, homogeneous p-cochains, there
is a standard way to make C},(G) into a cochain complex. Just take the
coboundary operator to be:

dF = F o0,

where 0 is the usual boundary operator on p-chains. It is automatic that
d? = 0.

In fact, this cochain complex is isomorphic to the original one, which we
distinguish as the inhomogeneous cochains:

CP(@) = {f: G" — R}.
To see this, note that any inhomogeneous cochain:
f:GP =R
gives rise to a unique, smooth, homogeneous p-cochain F', by defining;:
F(go,--,9p) = f(90 91,91 ' 92,- -+ 9p 1 19p)

for each combinatorial p-simplex (go,...,gp). Conversely, every smooth,
homogeneous p-cochain F' gives a unique inhomogeneous p-cochain f: GP —
R, by defining:

g1, 90) = F(1,91,9192, - -, 9192 - - - Gp)-

Finally, note that these isomorphisms commute with the coboundary opera-
tors on C}(G) and C7(G). Henceforth, we will write C*(G) to mean either
complex.
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These simplicial notions will permit us to define a cochain map from the
Lie algebra complex to the Lie group complex:

C*(g) — C*(@G).

For w € CP(g), the idea is to define an element [w € CP(G) by integrating
the left-invariant p-form w over a p-simplex S in the group G. In other
words, the value which [w assigns to S is defined to be:

(r)(s) = [

This is nice because Stokes’ theorem will tell us it is a cochain map:

(J dw)(S) = /de - /85w — d(f w)(S)

The only hard part is defining p-simplices in G in such a way that [w is
actually a smooth, homogeneous p-cochain. It is here that the fact that G
is exponential is key.

Note that, up until this point, we have only discussed combinatorial
p-simplices, which have no relationship to the Lie group structure of G —
they are just (p + 1)-tuples of vertices. We now wish to “fill out” the combi-
natorial simplices. That is, we want to create a rule that to any (p + 1)-tuple
(90, -- -, gp) of vertices in G assigns a filled p-simplex in G, which we denote

[90,- - 9p]-

In order to prove that [w is smooth, we need smoothness conditions for
this rule, and in order to prove [ w is homogeneous, we shall require the left-
translate of a p-simplex to again be a p-simplex. In other words,
we need:

g[g()a' . '7gp] = [9907- . '7ggp]'

We make this precise as follows.

Definition 12. Let AP denote {(zo,...,7,) € RPTL: Y x; = 1,2; > 0}, the
standard p-simplex in RPT!. Given a collection of smooth maps

op: AP x GPTL - G,

for each p > 0, we say this collection defines a left-invariant notion of
simplices in G if it satisfies:
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(1) The vertex property. For any (p + 1)-tuple, the restriction
Pp: AP x {(907" . 7gp)} -G
sends the vertices of AP to go,...,gp, in that order. We denote this
restriction by
[.gOa e 7gp]'
We call this map a p-simplex, and regard it as a map from A? to G.
(2) Left-invariance. For any p-simplex [go,...,gp] and any g € G, we
have:
9[907 e 7gp] = [9907 e 799])]'
(3) The face property. For any p-simplex
(90, gp]: AP = G
the restriction to a face of AP is a (p — 1)-simplex.
Note that the second condition just says that the map
pp: AP x GPT1 — @
is equivariant with respect to the left action of GG, where we take G to act
trivially on AP.
On any group equipped with a left-invariant notion of simplex, we have
the following result:
Proposition 13. Let G be a Lie group equipped with a left-invariant notion
of simplices, and let g be its Lie algebra. Then there is a cochain map from
the Lie algebra cochain complex to the Lie group cochain complex
[+ C*(g) — C*(G)
given by integration — that is, if w is a left-invariant p-form on G, and S
is a p-simplex in G, then define:
(o)) = [ w
S
—@
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Proof. Let w € CP(g). We have already noted that Stokes’ theorem

/dw:/w
S oS

implies that this map is a cochain map. We only need to check that [ w really
lands in CP(G). That is, that it is smooth and homogeneous. Because G
acts trivially on the coefficient group R, homogeneity means that ([ w)(S)
is invariant of the left action of G on S.

Indeed, note that we can pull the smooth, left-invariant p-form w back
along

op: AP x GPT1 — G.

The result, pjw, is a smooth p-form on AP x GPT1 still invariant under the
action of G. Integrating out the dependence on AP, we see this results in a
smooth, invariant map:

Jw: GPTL SR,

which is precisely what we wanted to prove. O

We would now like to show that any exponential Lie group G' comes with
a left-invariant notion of simplices. Our essential tool for this is our ability
to use the exponential map to connect any element of G to the identity by a
uniquely-defined path. If h = exp(X) € G is such an element, we can then
define the “based” 1-simplex [1,h] to be swept out by the path exp(tX),
left translate this to define the general 1-simplex [g, gh| as that swept out
by the path gexp(tX), and proceed to define higher-dimensional simplices
with the help of the exponential map and induction, using what we call the
apex-base construction: given a definition of (p — 1)-simplex, we define
the p-simplex

[17917 e 7gp]

by using the exponential map to sweep out a path from 1, the apex, to each
point of the already defined (p — 1)-simplex, the base:

(915, 9p]-

Having done this, we can then use left translation to define the general
p-simplex:

[90)917 e 7gp] = 90[1790_1917 cee )g[)_lgp]'
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In fact, this construction also covers the 1-simplex case. All we need to kick
off our induction is to define O-simplices to be points in G.

To make all this precise, we must use it to define smooth maps
0p: AP x GP — G,

for each p > 0. To overcome some analytic technicalities in constructing ¢,
we will also need to fix a smooth increasing function:

0:10,1] — [0,1]

which is 0 on a neighborhood of 0, and then monotonically increases to 1
at 1. We shall call £ the smoothing factor. We shall see latter that our
choice of smoothing factor is immaterial: ¢, depends on ¢, but integrals over
simplices do not.

Let us begin by defining O-simplices as points. That is, we define
wo: A”x G — G
as the obvious projection.
Now, assume that we have defined (p — 1)-simplices, so we have:
p-1: AP X GP — G.
Using this, we wish to define:
wp: AP x Grtt - G
But since we want this to be G-equivariant, we might as well define it for
based p-simplices: a simplex whose first vertex is 1. So first, we will give
a map:
fp: AP X GP — @
which we think of as giving us the based p-simplex
1,91,...,9)

for any p-tuple. We do this using the apex-base construction. First, the
map ¢p—1: AP71 x GP — G can be extended to a map

fpi [0,1] x AP7L x GP — G
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by defining f, to be ¢p_1 on {1} x AP~1 x GP to be 1 on {0} x AP~ x GP,
and using the exponential map to interpolate in between. Since [0, 1] x AP
is a kind of generalized prism, we take the liberty of calling {0} x AP the O
face, and {1} x AP the 1 face.

Here, the requirement for smoothness complicates things slightly, because
we shall actually need f, to be 1 on a neighborhood of the 0 face. So, to
be precise, for (t,x,91,...,9p) € [0,1] x AP~ x GP| we have that ¢, 1(z,
90, - - -, 9p) is a point of G, say exp(X). Define:

Ip(t, 2, 90,...,9p) = exp(£(t)X).

where £ is the smoothing factor we mention above: a smooth increasing
function which is 0 on a neighborhood of 0, and then monotonically increases
to 1 at 1. This guarantees f, will be 1 on a neighborhood of the 0 face, and
will match ¢,_1 on the 1 face.

Since f, is smooth and is constant on a neighborhood of the 0 face of the
prism, [0,1] x AP~ we can quotient by this face and obtain a smooth map:

fri AP X GP — G.
For definiteness, we can use the smooth quotient map defined by:

@ [0,1] x AP7L — AP
(t,z) — (1 —t,tx)

which we note sends the 0 face to the Oth vertex of AP, and sends the
vertices of AP~! to the remaining vertices of AP, in order. Finally, to define
the nonbased p-simplices, we extend by the left action of G—for any g € G
and any (z,g1,...,09p) € AP x GP, set:

p(, 0,991, - - - 99p) = 9fp(T, 91, -+, Gp)-

This defines
op: AP x Grtt - Gl

It just remains to check that:

Proposition 14. This defines a left-invariant notion of simplices on G,
which we call the standard left-invariant notion of simplices with
smoothing factor £.
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Proof. By construction, the ¢, are all smooth and G-equivariant, so we
only need to check the vertex property and the face property. We do this
inductively.

For 0-simplices, the vertex property is trivial. Assume it holds for (p — 1)-
simplices. In particular, the map

(915, 9p): APl L @G

sends the vertices of AP~ to gy,..., gy, in that order. By construction, the
based p-simplex

1,91,...,9p]: AP = G

sends the Oth vertex to 1 and the rest of the vertices to g1,. .., gy, since the
(p — 1)-simplex [g1,. .., gp] has the vertex property and is defined to be the
base of this p-simplex in the apex-base construction. By G-equivariance,
this extends to all p-simplices.

For 0-simplices, the face property holds vacuously, and for 1-simplices
it is the same as the vertex property. Now take p > 2, and assume the
face property holds for all k-simplices with k£ < p. By G-equivariance, the
face property will hold for all p-simplices as long as it holds for all based
p-simplices, for instance:

[1vgla"'7gp]'

By the apex-base construction, the (p — 1)-simplex [g1,...,gp] is the Oth
face of [1, g1, ..., gp], since it was chosen as the base. For any other face, say
the ith face, the apex-base construction gives the (p — 1)-simplex

[1791,---,§i,---,gp]:Ap_1—>G

with 1 as apex, and the (p — 2)-simplex [g1,...,di,...,gp] as base. Thus,
the face property holds for the p-simplex [1, g1,. .., gp]- O

While the existence of any left-invariant notion of simplices in G suffices
to integrate Lie algebra cochains, we have found an almost overwhelming
wealth of these notions — one for each smoothing factor ¢. In fact, for
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the moment we will indicate the dependence of the standard notion of left-
invariant simplices on ¢ with a superscript:

gaf,: AP x GPT - @,

Of course, the dependence of cpf, on ¢ passes to the individual simplices, so
we give them a superscript as well:

[gg,...,gp]z: AP — G,
Fortunately, however, the cochain map:
[+ C*(g) — C*(G)

is independent of £. That is, if £’ is another smoothing factor, we have:

/ w= / w,
U
[gO"“’gP]Z [QO,“-,QP]Z

for any left-invariant p-form w.

We shall prove this not by comparing the integrals for two smoothing
factors, but rather computing the integral in a way that is manifestly inde-
pendent of smoothing factor. We do this by showing that the role of the
smoothing factor is basically to allow us to smoothly quotient the p-dimensional
cube [0, 1]? down to the standard p-simplex AP. Had we parameterized our
p-simplices with cubes to begin with, we would have had no need for a
smoothing factor. As a trade off, however, our proof that integration gives a
cochain map would have required more care when analyzing the boundary.

Now we get to work. Rather than parameterizing the p-simplex on the
domain AP:

[gOa.gl:"' >gp]£: AP — G7

we shall show how to parameterize it on the p-dimensional cube:

<g(]agl’ oo 7gp>: [Oa ]-]p - Ga

That is, these two functions have the same images — a p-simplex in G with
vertices go, ..., gp € G, they induce the same orientations on their images,
and both traverse the image precisely once. So, as we shall prove, the integral
over either simplex is the same. However, as we shall also see, the latter
parameterization does not depend on the smoothing factor /.
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How do we discover the parameterization (go,...,gp)? We just repeat
the apex-base construction, but we avoid quotienting to down to AP! Begin
by defining the 0O-simplices to map the 0-dimensional cube to the indicated
vertex:

(90): {0} = G

Define a 1-simplex by using the exponential map to sweep out a path from
9o to g1:

<90791>3 [07 1] - G7
by defining;:
(90,91)(t1) = goexp(t1X1), t1 €[0,1].

where gy 'g1 = exp(X1). Now, define a 2-simplex using the exponential map
to sweep out paths from gg to the 1-simplex (g1, g2). That is, define:

(90, 91,92): [0,1]> = G,
to be given by:
(90,91, 92)(t1,t2) = goexp(t1Z(X1,12X2)),

where go_lgl = exp(X1), gl_lgg = exp(X2), and Z denotes the Baker—
Campbell-Hausdorff series:

1
9192 = exp(Z(X1, X2)) = exp(X1 + Xz + §[X1,X2] +o)
Continuing in this manner, with a bit of work one can see that the p-simplex:

<907917927 o 7gp—1ugp>: [07 1]p - G

is given by the horrendous formula:

<go, e ,gp>(t1, e ,tp)
= 40 exp(tlZ(Xl, tQZ(XQ’ e ,tp_1Z(Xp_1, thp) e ))),
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where go_lgl = exp(X1), gl_lgg =exp(Xa), ..., g;jlgp = exp(X,). While
horrendous, this formula is at least independent of the smoothing factor /,
and this forms the basis of the following proposition:

Proposition 15. Let G be an exponential Lie group with Lie algebra g, let
£ be a smoothing factor, and equip G with the standard left-invariant notion
of simplices with smoothing factor £. For any p-simplex

[go,...,gp]e: AP — @G,
depending on ¢ and parameterized on the domain AP, there is a p-simplex:
<gOa" . 7gp>: [07 1]]7 - G

given by the formula:

<go, e ,gp>(t1, ey tp)
=490 exp(tlZ(Xl, tQZ(XQ, e ,tp,lZ(Xp,l, thp) e ))),

where galgl = exp(Xy), gfng =exp(Xa), ..., gpillgp =exp(X,). Then
(90,--.,9p) is independent of €, parameterized on the domain [0,1]P, and
has the same image and orientation as [go, . . . ,gp]é. Furthermore, for any

p-form w on G, the integral of w is the same over either simplex:

w = w.
‘/[\907"'7917][ ‘/<\907"'vgp>

Sketch of proof. Equality of images and orientations follows from the apex-
base construction, and equality of the integrals follows from reparameteri-
zation invariance — specifically the change of variables formula for multiple
integrals, for which the monotonicity of £ becomes crucial. O

Corollary 16. Let G be an exponential Lie group with Lie algebra g, let ¢
be a smoothing factor, and equip G with the standard left-invariant notion
of simplices with smoothing factor £. Let

[:C*g) = C*(G)

be the cochain map from Lie algebra cochains to Lie group cochains given
by integration over simplices. Then the cochain map [ is independent of the
smoothing factor £.
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Proof. Recall that if w is a left-invariant p-form on G, and [go, ..., g, is a
p-simplex in G, the cochain map [ is defined by:

(fw)(go,...,gp>=/ y

[907"'7917}@

By the previous proposition, this integral is equal to

Joo e
(905---9p)

where (go,...,gp): [0,1]P — G is given as above, and is independent of .
Thus, [ is also independent of /. O

Having proven that the cochain map [ is independent of smoothing fac-
tor, we will now allow the smoothing factor to recede into the background.
Henceforth, we abuse terminology somewhat and speak of the standard left-
invariant notion of simplices to mean the standard notion with some implicit
choice of smoothing factor.

The hard work of integrating Lie algebra cochains is now done. We would
now like to go the other way, and show how to get a Lie algebra cochain
from a Lie group cochain. This direction is much easier: in essence, we
differentiate the Lie group cochain at the identity, and antisymmetrize the
result. To do this, we make use of the fact that any element of the Lie algebra
can be viewed as a directional derivative at the identity. The following result,
due to van Est (c.f. [55], Formula 46) just says this map defines a cochain
map:

Proposition 17. Let G be a Lie group with Lie algebra g. Then there is a
cochain map from the Lie group cochain complex to the Lie algebra cochain
complex:

D: C*(G) — C*(g)

given by differentiation—that is, if F' is a homogeneous p-cochain on G, and
X1,...,Xp € g, then we can define:

1
DF(Xh ey Xp) = 7| Z Sgn(J)X;(l) cee Xg(p)F(Lglagnga ..., 9192 .. -gp)a

" o€eSy

where by Xg we indicate that the operator X; differentiates only the jth
variable, g;.
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Proof. See Houard [32], p. 224, Lemma 1. O

Having now defined cochain maps
[:C*g) = C*(G)
and
D: C*(G) — C*(g),

the obvious next question is whether or not this defines a homotopy equiv-
alence of cochain complexes. Indeed, as proved by Houard, they do:

Theorem 18. Let G be a Lie group equipped with a left-invariant notion of
simplices, and g its Lie algebra. The cochain map

DJ:C*(g) — C*(g),
1s the identity, whereas the cochain map
[ D: C*(G) — C*(G)
s cochain-homotopic to the identity. Therefore the Lie algebra cochain com-

plex C*(g) and the Lie group cochain complex C*(G) are homotopy equiva-
lent and thus have isomorphic cohomology.

Proof. See Houard [32], p. 234, Proposition 2. g

4.2 The Heisenberg Lie 2-group

In Section 3.1.2, we met the Heisenberg Lie algebra, $ = span(p, q, z). This
is the three-dimensional Lie algebra where the generators p, ¢ and z satisfy
relations which mimic the canonical commutation relations from quantum
mechanics:

[p,ql =2, [p,2]=0, [qg,2]=0.

As one can see from the above relations, ) is 2-step nilpotent: brackets of
brackets are zero.
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We then met the Lie 2-algebra generalization, the Heisenberg Lie
2-algebra:

Heisenberg = string. (),

built by extending $ with the 3-cocycle v = p* A ¢* A z*, where p*, ¢*, and
z* is the basis dual to p, ¢ and z.

It is easy to construct a Lie group H with Lie algebra $. Just take the
group of 3 x 3 upper triangular matrices with units down the diagonal:

1 a b
H = 01 c]:a,bceR
0 01
This is an exponential Lie group:
exp: 5] — H
1 a b
ap+cq+bz — 0 1 ¢
0 01

So we can apply Proposition 14 to construct the standard left-invariant
notion of simplices in H, and Proposition 13 to integrate the Lie algebra
3-cocycle v to a Lie group 3-cocycle [~. We therefore get a Lie 2-group, the
Heisenberg Lie 2-group:

Heisenberg = String; . (H).

5 Supergeometry and supergroups

We would now like to generalize our work from Lie algebras and Lie groups
to Lie superalgebras and supergroups. Of course, this means that we need a
way to talk about Lie supergroups, their underlying supermanifolds, and the
maps between supermanifolds. This task is made easier because we do not
need the full machinery of supermanifold theory. Because our supergroups
will be exponential, we only need to work with supermanifolds that are
diffeomorphic to super vector spaces. Nonetheless, let us begin with a sketch
of supermanifold theory from the perspective that suits us best, which could
loosely be called the “functor of points” approach.

The rough geometric picture one should have of a supermanifold M is that
of an ordinary manifold with infinitesimal “superfuzz”, or “superdirections”,
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around each point. At the infinitesimal level, an ordinary manifold is merely
a vector space—its tangent space at a point. In contrast, the tangent space
to M has a Zs-grading: tangent vectors which point along the underlying
manifold of M are taken to be even, while tangent vectors which point along
the superdirections are taken to be odd.

At least infinitesimally, then, all supermanifolds look like super vector
spaces,

RPI4 .= RP RY,

where RP is even and R? is odd. And indeed, just as ordinary manifolds are
locally modeled on ordinary vector spaces, R™, supermanifolds are locally
modeled on super vector spaces, RPI4. However, before we sketch how this
works, let us introduce our main tool: the so-called “functor of points”.

The basis for the functor of points is the Yoneda Lemma, a very general
and fundamental fact from category theory:

Yoneda Lemma. Let C be a category. The functor

C — Fun(C°P,Set)
x +—  Hom(—,z)

is a full and faithful embedding of C' into the category Fun(C°P, Set) of con-
travariant functors from C to Set. This embedding is called the Yoneda
embedding.

The upshot of this lemma is that, without losing any information, we can
replace an object x by a functor Hom(—, z), and a morphism f: z — y by
a natural transformation

Hom(—, f): Hom(—, z) = Hom(—, y)

of functors. Each component of this natural transformation is the “obvious”
thing: for an object z, the function

Hom(z, f): Hom(z, ) — Hom(z, y)
just takes the morphism ¢g: z — x to the morphism fg: z — y.

On a more intuitive level, the functor of points tells us how to reconstruct
a “space” x € C by probing it with every other space z € C — that is,
by looking at all the ways in which z maps into x, which forms the set
Hom(z,z). The true power of the functor of points, however, arises when
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we can reconstruct x without having to probe it will every z, but with 2
from a manageable subcategory of C. And while it deviates slightly from the
spirit of the Yoneda Lemma, we can shrink this subcategory still further if
we allow Hom(z, z) to have more structure than that of a mere set. In fact,
when M is a supermanifold, we will consider probes z for which Hom(z, M)
is an ordinary manifold.

For what z is Hom(z, M) a manifold? One clue is that when M is an
ordinary manifold, there is a manifold of ways to map a point into M:

M = Hom(R?, M),

but the space of maps from any higher-dimensional manifold to M is gen-
erally not a finite-dimensional manifold in its own right. Similarly, when M
is a supermanifold, there is an ordinary manifold of ways to map a point
into M:

Moo = Hom(R A1),

One should think of this as the ordinary manifold one gets from M by
forgetting about the superdirections. But thanks to the superdirections, we
now we have more ways of obtaining a manifold of maps to M: there is an
ordinary manifold of ways to map a point with ¢ superdirections into M:

Mgoj, = Hom (R, M.
So, for every supermanifold M, we get a functor:

Hom(—,M): SuperPoints®® — Man
ROlg —  Hom(R%, M)

where SuperPoints is the category consisting of supermanifolds of the form
R and smooth maps between them. Of course, we have not yet said what
this category is precisely, but one should think of R%? as a supermanifold
whose underlying manifold consists of one point, with ¢ infinitesimal superdi-
rections — a“superpoint”. Because this lets us probe the superdirections of
M, this functor has enough information to completely reconstruct M. We
will go further, however, and sketch how to define M as a certain kind of
functor from SuperPoints? to Man.

This approach goes back to Schwarz [51] and Voronov [54], who used it
to formalize the idea of “anticommuting coordinates” used in the physics
literature. Since Schwarz, a number of other authors have developed the
functor of points approach to supermanifolds, most recently Sachse [44] and
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Balduzzi et al. [11]. We will follow Sachse, who defines supermanifolds
entirely in terms of their functors of points, rather than using sheaves.

5.1 Supermanifolds

5.1.1 Super vector spaces as supermanifolds

Let us now dive into supermathematics. Our main need is to define smooth
maps between super vector spaces, but we will sketch the full definition of
supermanifolds and the smooth maps between them. Just as an ordinary
manifold is a space that is locally modeled on a vector space, a superman-
ifold is locally modeled on a super vector space. Since we will define a
supermanifold M as a functor

M : SuperPoints®® — Man,

we first need to say how to think of the simplest kind of supermanifold, a
super vector space V, as such a functor:

V': SuperPoints®® — Man.

But first we owe the reader a definition of the category of superpoints.

Recall from Section 3 that a super vector space is a Zy-graded vector
space V =V, @ V; where Vj is called the even part, and V; is called the
odd part. There is a symmetric monoidal category SuperVect which has:

e Zo-graded vector spaces as objects;

e Grade-preserving linear maps as morphisms;

e A tensor product ® that has the following grading: if V=V ®
and W=Wy@ Wi, then (VW)= (Vo W) & (Vi ® W) and
(VoW =Vie W) e (VieW);

e A braiding

Byw: VoW —-WeV
defined as follows: v € V and w € W are of grade |v| and |w|, then
Byw(v®@w) = (=Dl @ v,
The braiding encodes the “the rule of signs”: in any calculation, when two

odd elements are interchanged, we introduce a minus sign. We write RPI?
for the super vector space with even part RP and odd part RY.
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We define a supercommutative superalgebra to be a commutative
algebra A in the category SuperVect. More concretely, it is a real, associative
algebra A with unit which is Zo-graded:

A=Ay @ Ay,
and is graded-commutative. That is:
ab = (—1)llpq,

for all homogeneous elements a,b € A, as required by the rule of signs. We
define a homomorphism of superalgebras f: A — B to be an algebra
homomorphism that respects the grading. So, there is a category SuperAlg
with supercommutative superalgebras as objects, and homomorphisms of
superalgebras as morphisms. Henceforth, we will assume all our superalge-
bras to be supercommutative unless otherwise indicated.

A particularly important example of a supercommutative superalgebra is
a Grassmann algebra: a finite-dimensional exterior algebra

A = AR",
equipped with the grading:
Ag=ANR"&A°R"@---, A =AR"GSAN°R*"@--- .

Let us write GrAlg for the category with Grassmann algebras as objects and
homomorphisms of superalgebras as morphisms.

In fact, the Grassmann algebras are essential for our approach to super-
manifold theory, because:

GrAlg = SuperPoints®?

so rather than thinking of a supermanifold M as a contravariant functor from
SuperPoints to Man, we can view a supermanifold as a covariant functor:

M : GrAlg — Man

To see why this is sensible, recall that a smooth map between ordinary
manifolds

p: M — N



“ATMP-16-5-A4-HUE” — 2013/4/30 — 17:32 — page 1544 — #60

1544 JOHN HUERTA

is the same as a homomorphism between their algebras of smooth functions
which goes the other way:

p*: C®(N) — C(M)

By analogy, we expect something similar to hold for supermanifolds. In
particular, a smooth map from a superpoint:

o: R — pf

ought to be to the same as a homomorphism of their “superalgebras of
smooth functions” which points the other way:

@*: C®°(M) — C=(RY9).

But since R is a purely odd super vector space, we define its algebra of
smooth functions to be A(R?)*. Intuitively, this is because R is a super-
manifold with ¢ “odd, anticommuting coordinates”, given by the standard
projections:

0',...,07: RY — R,

so a “smooth function” f on R should have a “power series expansion”
that looks like:

11 <t <-<ip

where the coefficients f;i,. s, are real. Such f is precisely an element of
A(R?)*, so we define

Hom(R%%, M) = Hom(C™(M), A(R?)*).
In this way, rather than thinking of M as a functor:

Hom(—, M): SuperPoints®® — Man
ROlg —  Hom(R%9, M)

where Hom is in the category of supermanifolds (though we have not defined
this), we think of M as a functor:

Hom(C*(M),—): GrAlg — Man
A +— Hom(C*®(M),A)

where Hom is in the category of superalgebras (which we have defined,
though we have not defined C*>°(M)).
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Since we have just given a slew of definitions, let us bring the discussion
back down to earth with a concise summary:

e Every supermanifold is a functor:
M : GrAlg — Man,

though not every such functor is a supermanifold.
e Every smooth map of supermanifolds is a natural transformation:

p: M — N,

though not every such natural transformation is a smooth map of
supermanifolds.

Next, let us introduce some concise notation:

e Let us write My for the value of M on the Grassmann algebra A, and
call this the A-points of M.

e Let us write My: M4 — Mp for the smooth map induced by a homo-
morphism f: A — B.

e Finally, we write p4: M4 — N4 for the smooth map which the natural
transformation ¢ gives between the A-points. We call ¢4 a compo-
nent of the natural transformation ¢.

With this background, we can now build up the theory of supermanifolds
in perfect analogy to the theory of manifolds. First, we need to say how to
think of our model spaces, the super vector spaces, as supermanifolds.

Indeed, given a finite-dimensional super vector space V', define the super-
manifold associated to V', or just the supermanifold V to be the
functor:

V: GrAlg — Man

which takes:

e cach Grassmann algebra A to the vector space:
VAZ(A(X)V)O:A()@VO oAV

regarded as a manifold in the usual way;
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e each homomorphism f: A — B of Grassmann algebras to the linear
map Vy: V4 — Vp that is the identity on V' and f on A:

Vi=({f®1)o: (A® V) — (B&V)o.
This map, being linear, is also smooth.

We take this definition because, roughly speaking, the set of A-points is
the set of homomorphisms of superalgebras, Hom(C*°(V'), A). By analogy
with the ordinary manifold case, we expect that any such homomorphism is
determined by its restriction to the “dense subalgebra” of polynomials:

Hom(C*(V), A) = Hom(Sym(V™), A),

though here we are being very rough, because we have not assumed any
topology on our superalgebras, so the term “dense subalgebra” is not mean-
ingful. Since Sym(V*) is the free supercommutative superalgebra on V*, a
homomorphism out of it is the same as a linear map of super vector spaces:

Hom(Sym(V™), A) = Hom(V*, A),

where the first Hom is in SuperAlg and the second Hom is in SuperVect.
Finally, because V is finite-dimensional and linear maps of super vector
spaces preserve grading, this last Hom is just:

Hom(V* A) 2 Vo ® Ay & V1 ® A;.

which, up to a change of order in the factors, is how we defined V4. This
last set is a manifold in an obvious way: it is an ordinary, finite-dimensional,
real vector space. In fact, it is just the even part of the super vector space

ARV:
Va = (A &® V)o,
as we have noted in our definition.

Further, V4 = Ag® Vo ® A1 ® V7 is more than a mere vector space—it
is an Ap-module. Moreover, given any linear map of super vector spaces:

L.V -Ww
we get an Ag-module map between the A-points in a natural way:

Ly=(1®L)y: (A V))— (A® W),.
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Indeed, L induces a natural transformation between the supermanifold V'
and the supermanifold W. That is, given any homomorphism f: A — B of
Grassmann algebras, the following square commutes:

Va LA, Wy

g |

We therefore have a functor
SuperVect — Fun(GrAlg, Man)

which takes super vector spaces to their associated supermanifolds, and
linear transformations to natural transformations between supermanifolds.
For future reference, we note this fact in a proposition:

Proposition 19. There is a faithful functor:
SuperVect — Fun(GrAlg, Man)

that takes a super vector space V' to the supermanifold V' whose A-points
are:

Va=(A®V)o,
and takes a linear map of super vector spaces:
L.V -W
to the natural transformation whose components are:
La=(1®L)y: (A V)y— (A W),.

In the above, A is a Grassmann algebra and the tensor product takes place
in SuperVect.

Proof. It is easy to check that this defines a functor. Faithfulness follows
from a more general result in Sachse [44]; cf. Proposition 3.1. O

While this functor is faithful, it is far from full; in particular, it misses all of
the “smooth maps” between super vector spaces which do not come from a
linear map. We define these additional maps now.
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Infinitesimally, all smooth maps should be like a linear map L: V — W,
so given two finite-dimensional super vector spaces V and W, we define a
smooth map between super vector spaces:

p: V=W,

to be a natural transformation between the supermanifolds V and W such
that the derivative

(pa)e: TpV4 — T¢A(x)WA

is Ag-linear at each A-point x € V4, where the Ag-module structure on each
tangent space comes from the canonical identification of a vector space with
its tangent space:

T,V = Vy, Tgp(x)WA = Wy.

Note that each component ¢p4: V4 — W4 is smooth in the ordinary sense,
by virtue of living in the category of smooth manifolds. We say that a
smooth map ¢a: V4 — W4 whose derivative is Ag-linear at each point is
Agp-smooth for short.

Finally, note that there is a supermanifold:
1: GrAlg — Man,

which takes each Grassmann algebra to the one-point manifold. We call
this the one-point supermanifold, and note that it is the supermanifold
associated to the super vector space R%?. The one-point supermanifold is
the terminal object in the category of supermanifolds, whose definition we
now describe.

5.1.2 Supermanifolds in general

The last section treated the special kind of a supermanifold of greatest inter-
est to us: the supermanifold associated to a super vector space.

Nonetheless, we now sketch how to define a general supermanifold, M.
Since M will be locally isomorphic to a super vector space V, it helps to
have local pieces of V' to play the same role that open subsets of R" play
for ordinary manifolds. So, fix a super vector space V, and let U C V{) be
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open. The superdomain over U is the functor:
U: GrAlg — Man
that takes each Grassmann algebra A to the following open subset of Vjy:
Un =V (U)

where €4: A — R is the projection of the Grassmann algebra A that kills
all nilpotent elements. We say that I/ is a superdomain in V', and write
Ucv.

IfUd CV and U’ C W are two superdomains in super vector spaces V and
W, a smooth map of superdomains is a natural transformation:

o: U — U

such that for each Grassmann algebra A, the component on A-points is
smooth:

wa:Ua — U 4.
and the derivative:
(pa)s: Tldn — Ty (U 2

is Ap-linear at each A-point z € Uy, where the Ag-module structure on
each tangent space comes from the canonical identification with the ambient
vector spaces:

T:Us = Vy, TQP(QU)UA = Wy

Again, we say that a smooth map pa: Us — U’ 4 whose derivative is Ap-
linear at each point is Ag-smooth for short.

At long last, a supermanifold is a functor
M : GrAlg — Man

equipped with an atlas
(Uai, pa: U — M),

where each U, is a superdomain, each ¢, is a natural transformation, and
one can define transition functions that are smooth maps of superdomains.
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Finally, a smooth map of supermanifolds is a natural transformation:
v: M — N

which induces smooth maps between the superdomains in the atlases. Equiv-
alently, each component

wAa: Ma— Ny
is Ap-smooth: it is smooth and its derivative
(pa)s: TeMa — Ty, ()Na

is Ap-linear at each A-point x € M 4, where the Ag-module structure on each
tangent space comes from the superdomains in the atlases. Thus, there is a
category SuperMan of supermanifolds. See Sachse [44] for more details.

5.2 Supergroups from nilpotent Lie superalgebras

We now describe a procedure to integrate a nilpotent Lie superalgebra to
a Lie supergroup. This is a partial generalization of Lie’s Third Theorem,
which describes how any Lie algebra can be integrated to a Lie group. In
fact, the full theorem generalizes to Lie supergroups [53], but we do not need
it here.

Recall from Section 3 that a Lie superalgebra g is a Lie algebra in the
category of super vector spaces. More concretely, it is a super vector space
g = go @ g1, equipped with a graded-antisymmetric bracket:

[_7 _]: AQQ — g,
which satisfies the Jacobi identity up to signs:
X[V, 2)) = (X, Y], 2] + (=) My, [x, Z)).

for all homogeneous X,Y,Z € g. A Lie superalgebra n is called k-step
nilpotent if any k nested brackets vanish, and it is called nilpotent if it is
k-step nilpotent for some k. Nilpotent Lie superalgebras can be integrated to
a unique supergroup N defined on the same underlying super vector space n.

A Lie supergroup, or supergroup, is a group object in the category of
supermanifolds. That is, it is a supermanifold G equipped with the following
maps of supermanifolds:
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e multiplication, m: G x G — G;
e inverse, inv: G — G;
e identity, id: 1 — G, where 1 is the one-point supermanifold;

such that the following diagrams commute, encoding the usual group axioms:

e the associative law:

GxGxG

T
\/

e the right and left unit laws:

IxG Yoo g

~ol

G
e the right and left inverse laws:

Gx GG x @ GxG 2L G x @
A m A m

/ N\ / N\
G G G G

\ % \ %

1 1

where A: G — G x G is the diagonal map. In addition, a supergroup is
abelian if the following diagram commutes:

GxG—=GxG

N

G

where 7: G X G — G x G is the twist map. Using A-points, it is defined
to be:

TA(ﬂf,y) = (yvx)v
for (z,y) € Ga x Ga.
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Examples of supergroups arise easily from Lie groups. We can regard
any ordinary manifold as a supermanifold, and so any Lie group G is also a
supergroup. In this way, any classical Lie group, such as SO(n), SU(n) and
Sp(n), becomes a supergroup.

To obtain more interesting examples, we will integrate a nilpotent Lie
superalgebra, n to a supergroup N. For any Grassmann algebra A, the
bracket

[—,—]: A>n—n
induces an Ag-linear map between the A-points:
[—, —]A: A2nA — N4y,

where A?n 4 denotes the exterior square of the Ag-module ny. Thus [—, —]4
is antisymmetric, and it easy to check that it makes n4 into a Lie algebra
which is also nilpotent.

On each such Ag-module n4, we can thus define a Lie group N4 where the
multplication is given by the Baker—Campbell-Hausdorff formula, inversion
by negation, and the identity is 0. Because we want to write the group N4
multiplicatively, we write exp4: ng — N4 for the identity map, and then
define the multiplication, inverse and identity:

ma: Na X Ng— Ny, invg: Ng— Ny, idg: 14 — Ny,
as follows:

ma(expa(X), expy (V) = exp 4 (X) expy (V)

1
:epr(X+Y+§[X,Y]A+---)

inva(expa (X)) = expa(X) ™' = expy(—X),

ida(1) =1 = expy(0),

for any A-points X,Y € ny, where the first 1 in the last equation refers to
the single element of 14. But it is clear that all of these maps are natural
in A. Furthermore, they are all Ag-smooth, because as polynomials with
coeflicients in Ag, they are smooth with derivatives that are Agp-linear. They
thus define smooth maps of supermanifolds:

m: NxN—N, inv: N— N, id:1— N,

where N is the supermanifold n. And because each of the N4 is a group, N
is a supergroup. We have thus proved:
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Proposition 20. Let n be a nilpotent Lie superalgebra. Then there is a
supergroup N defined on the supermanifold n, obtained by integrating the
nilpotent Lie algebra ng with the Baker—Campbell-Hausdorff formula for all
Grassmann algebras A. More precisely, we define the maps:

m: NXxN—-N, inv: N—- N, id:1— N,
by defining them on A-points as follows:

ma(expa(X),expy(Y)) = expy(Z(X,Y)),
inv4(exps (X)) = expy(—X),

ida(1) = exp(0),
where
exp:n— N

is the identity map of supermanifolds, and:
1
Z(X,)Y) :X+Y+§[X,Y]A+"'

denotes the Baker—Campbell-Hausdorff series on na, which terminates
because ny4 s nilpotent.

Experience with ordinary Lie theory suggests that, in general, there will be
more than one supergroup which has Lie superalgebra n. To distinguish the
one above, we call NV the exponential supergroup of n.

5.3 The Poincaré supergroup

We can use the result of the last section to construct our favorite supergroup:
the Poincaré supergroup, SISO(n + 1,1), the supergroup of symmetries of
“Minkowski superspacetime”. First, we construct superspacetime, using a
familiar trick: just as we can identify the group of spacetime translations
with spacetime itself, we can identify the supergroup of supertranslations,
T, with superspacetime itself. So let us build 7', and define superspacetime
to be T'.
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We have already met the Lie superalgebra of T, at least for the spe-
cial dimensions where superstring theory makes sense. In Section 3.1.3, we
constructed the supertranslation algebra 7 for spacetimes of dimension
n+ 2 =3, 4, 6 and 10. This is the Lie superalgebra whose even part consists
of vectors, 7y = V, whose odd part consists of spinors, 77 = Sy, and whose
Lie bracket vanishes except for the Spin(n + 1, 1)-equivariant map:

- Sym2S, — V.

Thanks to the near triviality of the bracket, 7 is nilpotent. Thus we can use
Proposition 20 to construct the exponential supergroup 7' of 7. We think
of this as the supergroup of translations on “superspacetime”. In fact, we
define Minkowski superspacetime to be the supergroup 7.

As we noted in the last section, we can think of the Lorentz group
Spin(n 4+ 1,1) as a supergroup in a trivial way. Note that Spin(n + 1,1)
acts on 7 and hence T by automorphism, so we can define the Poincaré
supergroup, SISO(n + 1, 1), to be the semidirect product:

SISO(n +1,1) = Spin(n + 1,1) x T

6 Lie 2-supergroups from supergroup cohomology

We saw in Section 2 that 3-cocycles in Lie group cohomology allow us to
construct Lie 2-groups. We now generalize this to supergroups. The most
significant barrier is that we now work internally to the category of super-
manifolds instead of the much more familiar category of smooth manifolds.
Our task is to show that this change of categories does not present a problem.
The main obstacle is that the category of supermanifolds is not a concrete
category: morphisms are determined not by their value on the underlying
set of a supermanifold, but by their value on A-points for all Grassmann
algebras A.

The most common approach is to define morphisms without reference
to elements, and to define equations between morphisms using commuta-
tive diagrams. This is how we gave the definition of smooth bicategory,
except that we found it convenient to state the pentagon and triangle iden-
tities using elements. As an alternative to commutative diagrams, for super-
manifolds, one can use A-points to define morphisms and specify equations
between them. This tends to make equations look friendlier, because they
look like equations between functions. We shall use this approach.
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First, let us define the cohomology of a supergroup G with coeflicients
in an abelian supergroup H, on which G acts by automorphism. This
means that we have a morphism of supermanifolds:

a:Gx H— H,

which, for any Grassmann algebra A, induces an action of the group G4 on
the abelian group H4:

A GA X HA HHA.
For this action to be by automorphism, we require:

aa(g)(h+ ') = aalg)(h) + aalg) (),

for all A-points g € G4 and h,h' € Hga.

We define supergroup cohomology using the supergroup cochain com-
plex, C*(G, H), which at level p just consists of the set of maps from GP to
H as supermanifolds:

CP(G H) = {f: GP — HY.

Addition on H makes CP(G, H) into an abelian group for all p. The differ-
ential is given by the usual formula, but using A-points:

dfa(gr, - 9pr1) = g1fa(g2, -, Gpt1)
p
+ Z(_l)lfA(gla oy GiGit 15 5 Gpt1)
i—1
+ (_1)p+1fA(gl) .. 79p)7

where g1,...,9p+1 € G4 and the action of g; is given by a4. Noting that
fa, aa, multiplication and + are all:

e natural in A;
e Ap-smooth: smooth with derivatives that are Ag-linear;

we see that df is:

e natural in A;
e Ap-smooth: smooth with a derivative which is Ag-linear;
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so it indeed defines a map of supermanifolds:
df: GP™ — H.
Furthermore, it is immediate that:
d’fa=0
for all A, and thus
df =0.

So C*(G, H) is truly a cochain complex. Its cohomology H®(G, H) is the
supergroup cohomology of G with coefficients in H. Of course, if
df =0, f is called a cocycle, and f is normalized if

falgis---,9p) =0

for any Grassmann algebra A, whenever one of the A-points g1,...,gp is 1.
When H = R, we omit reference to it, and write C*(G,R) as C*(G).

A super bicategory B has

e a supermanifold of objects By;
e a supermanifold of morphisms Bjy;
e a supermanifold of 2-morphisms By;

equipped with maps of supermanifolds as described in Definition 4: source,
target, identity-assigning, horizontal composition, vertical composition,
associator and left and right unitors all maps of supermanifolds, and sat-
isfying the same axioms as a smooth bicategory. The associator satisfies
the pentagon identity, which we state in terms of A-points: the following
pentagon commutes:

(fg)(hk)

a(fg,h.k a(f,g,hk)

((Fg)h)k fg(hk))

a(f»gvh)'lk lf'(l(g,h,k)

(F(gh))k hgnd)
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for any “composable quadruple of morphisms”:
(f,g9,h, k) € (B1 xB, B1 xB, B1 XB, B1)a.

Similarly, the associator and left and right unitors satisfy the triangle iden-
tity, which we state in terms of A-points: the following triangle commutes:

a(f,1,9)

(f1)g f(1g)

r(f)-1g 1y-U(g)

fg

for any “composable pair of morphisms”:

(f,9) € (B1 xB, B1)a.

We can similarly speak of super categories, smooth functors between
super categories, and smooth natural isomorphisms between smooth
functors, simply by taking the appropriate definition from Section 2 and
replacing every manifold in sight with a supermanifold.

Finally, to talk about 2-supergroups, we will need to talk about inverses.
Again, we can do this in exactly the same way as in the smooth case, but
replacing points with A-points. We say that the 2-morphisms in a super
bicategory B have smooth strict inverses if there exists a smooth map
from 2-morphisms to 2-morphisms:

inVQZ 32 — BQ

such that inve assigns each 2-morphism to its strict inverse. Stated in terms
of A-points, this means:
aloa= 1, aoca t=1.

for all & € (B32)a. Likewise, we say that the morphisms in B have smooth
weak inverses if there exist smooth maps:

invi: By — By, e: By — By, wu:Bj— Bo,

such that inv; provides a smooth choice of weak inverse and u and e provide
smooth choices of 2-isomorphisms that “weaken” the left and right inverse
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laws. In terms of A-points:
e(f): fHf=1 wf): =L
for each f € (B1)a.

A 2-supergroup is a super bicategory with one object (more precisely,
the one-point supermanifold), whose morphisms have smooth weak inverses
and whose 2-morphisms have smooth strict inverses. As we did with Lie
2-groups, we can construct examples of 2-supergroups from cocycles: given
a normalized H-valued 3-cocycle a on GG, we can construct a 2-supergroup
String, (G, H) in the same way we constructed the Lie 2-group String, (G, H)
when G and H were Lie groups, by just deleting every reference to elements
of G or H:

e The supermanifold of objects is the one-point supermanifold, 1.
e The supermanifold of morphisms is the supergroup G, with composi-
tion given by the multiplication:

< GE@xGE—G.

The source and target maps are the unique maps to the one-point
supermanifold. The identity-assigning map is the identity-assigning
map for G:

d: 1 —dG.

e The supermanifold of 2-morphisms is G x H. The source and target
maps are both the projection map to G. The identity assigning map
comes from the identity-assigning map for H:

1xid: Gx1—Gx H.
e Vertical composition of 2-morphisms is given by addition in H:
1x+:GxHxH—GxH,

where we have used the fact that the pullback of 2-morphisms over
morphisms is trivially:

(GxH)x1 (GxH)2GxHx H.

Horizontal composition, -, given by the multiplication on the semidirect
product:

2w (Gx H)x (Gx H) — G x H.
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e The left and right unitors are trivial.
e The associator is given by the 3-cocycle a: G® — H, where the source
(and target) is understood to come from multiplication on G.

A slim 2-supergroup is one of this form. It remains to check that it is,
indeed, a 2-supergroup.

Proposition 21. String,(G, H) is a 2-supergroup: a super bicategory with
one object where all morphisms have smooth weak inverses and all
2-morphisms have smooth strict inverses.

Proof. This proof is a duplicate of the proof of Proposition 5, but with
A-points instead of elements. O

7 Integrating nilpotent Lie n-superalgebras

We now generalize our technique for integrating cocycles from nilpotent Lie
algebras to nilpotent Lie superalgebras. Those familiar with supermanifold
theory may find it surprising that this is possible — the theory of differential
forms is very different for supermanifolds than for manifolds, and integrating
differential forms on a manifold was crucial to our method in Section 4.1.
But we can sidestep this issue on a supergroup N by considering A-points
for any Grassmann algebra A. Then N4 is a manifold, so the usual theory
of differential forms applies.

Here is how we will proceed. Fixing a nilpotent Lie superalgebra n with
exponential supergroup N, we can use Proposition 19 turn any even Lie
superalgebra cochain w on n into a Lie algebra cochain wy on n4. We then
use the techniques in Section 4.1 to turn wy into a Lie group cochain [wy
on Ny4. Checking that [wa is natural in A and Ag-smooth, this defines a
supergroup cochain [w on N.

As we saw in Proposition 19, any map of super vector spaces becomes
an Ag-linear map on A-points. We have already touched on the way this
interacts with symmetry: for a Lie superalgebra g, the graded-antisymmetric
bracket

[ —]: A’g — g
becomes an honest antisymmetric bracket on A-points:
[~ —]a: A%ga — ga.

More generally, we have:
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Lemma 22. Graded-symmetric maps of super vector spaces:
f:SymPV — W
induce symmetric maps on A-points:
fa: SymPVy — Wa,
defined by:
falarvi, ..., apvp) = ap---arf(vr,...,vp),

where SymPVy is the symmetric power of V4 as an Ag-module and a; € A,
v;i €V are of matching parity. Similarly, graded-antisymmetric maps of
super vector spaces:

f: APV W
induce antisymmetric maps on A-points:
far APVy — Wy,
defined by:
falarvi, ..., apvp) = ap---arf(vr,...,vp),

where APV is the exterior power V4 as an Ag-module and a; € A, v; € V
are of matching parity.

Proof. This is straightforward and we leave it to the reader. O

Recall from Section 3 that the cohomology of our nilpotent Lie superal-
gebra n is computed from the complex of linear maps:

CP(n) = {w: APn — R, linear}.

Each level of this complex is a super vector space, where the parity preserv-
ing maps are even and the parity reversing maps are odd. Only the even
cochains, however, are honest morphisms of super vector spaces to which we
can apply the above proposition. For this reason, we will now restrict our
attention to the subcomplex of even cochains:

CH(n) = {w: APn — R, linear, parity-preserving} .

Now we need to show that even Lie superalgebra cochains w on n give rise
to Lie algebra cochains w4 on the A-points ng. In fact, this works for
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any Lie superalgebra, but there is one twist: because ny4 is an Ap-module,
w: APn — R gives rise to an Ap-linear map:

wa: APny — Ao,

using the fact that R4 = Ap. So, we need to say how to do Lie algebra
cohomology with coefficients in Ag. It is just a straightforward generalization
of cohomology with coefficients in R.

Indeed, any Lie superalgebra g induces a Lie algebra structure on g4
where the bracket is Ap-bilinear. We say that g4 is an Ag-Lie algebra.
Given any Ap-Lie algebra g4, we define its cohomology with the Ag-Lie
algebra cochain complex, which at level p consists of antisymmetric Ap-
multilinear maps:

CP(ga) = {w: APgs — Ao} .

We define d on this complex in exactly the same way we define d for R-
valued Lie algebra cochains. This makes C*(g4) into a cochain complex,
and the cohomology of an Ag-Lie algebra with coefficients in Ag is
the cohomology of this complex.

Proposition 23. Let g be a Lie superalgebra, and let g4 be the Ag-Lie
algebra of its A-points. Then there is a cochain map:

Co(g) — C*(ga)
given by taking the even p-cochain w
w: APg— R
to the induced Ag-linear map w4 :
wa: APga — Ao,

where APg denotes the pth exterior power of g4 as an Ag-module.
Proof. We need to show:

d(ws) = (dw) 4.

Since these are both linear maps on AP*1(g4), it suffices to check that they
agree on generators, which are of the form:

a1 X1 NasXo A--- A CLp+1Xp+1
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for a; € A and X; € g of matching parity. By definition:

(dw)a(a1 X1 N agXo A« A apr1Xpr1)
=apr10ap- - a1dw(Xi AXo Ao AN Xpp1).

On the other hand, to compute d(wy4), we need to apply the formula for
d to obtain the intimidating expression:

d(wa)(ar1X1,...,ap11Xpy1) = Z(_l)i+ij([aiXia a; Xila,a1Xq,. ..,

i<j
—_— —_—
CLiXZ', e ,(Iij ceey ap+1Xp+1)
= Z(_l)i+jap+1 el arajaiw (X, X,
1<j

X, Ko X X ).

If we reorder the each of the coefficients apy1---a;---a;---ara;a; to appq---
asay at the cost of introducing still more signs, we can factor all of the a;s
out of the summation to obtain:

i1 azar (=) (1) NN ) el 7 ()
1<j
X w([X,-,Xj],Xl,... ,Xi,...,Xj,...,Xp+1)
= Qapt+1-° - a2a1dw(X1 ANXog Ao+ A Xp+1).
Note that the first two lines are a single quantity, the product of ay41---ax

and a large summation. The last line is (dw)a(a1 X1 A -+ A apr1Xpt1),
as desired. O

This proposition says that from any even Lie superalgebra cocycle on n
we obtain a Lie algebra cocycle on n 4, albeit now valued in Ag. Since N4 is
an exponential Lie group with Lie algebra n4, we can apply the techniques
we developed in Section 4.1 to integrate w4 to a group cocycle, [wa, on N4.

First, however, we must pause to give some preliminary definitions con-
cerning calculus on N4, which is diffeomorphic to the Ag-module n4. Recall
from Section 5.1 that a map

p: VoW

between two Ag-modules said to be Ag-smooth if it is smooth in the ordi-
nary sense and its derivative

it TV — Ty W
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is Ag-linear at each point x € V. Here, the Ag-module structure on each
tangent space comes from the canonical identification with the ambient vec-
tor space:

T,V 2V, Tw(x)W =W.

It is clear that the identity is Ag-smooth and the composite of any two
Ap-smooth maps is Ap-smooth. A vector field X on V is Ag-smooth if
X f is an Ag-smooth function for all f: V — Ag that are Ag-smooth. An
Agp-valued differential p-form w on V' is Ag-smooth if w(Xy,...,X,) is an
Ap-smooth function for all Ap-smooth vector fields X1, ..., X,

Now, we return to integrating w. As a first step, because ng = T1 N4, we
can view wy as an Ap-valued p-form on T3 N4. Using left translation, we
can extend this to a left-invariant Ag-valued p-form on N4. Indeed, we can
do this for any Ag-valued p-cochain on n4:

CP(na) = {left-invariant Ap-valued p-forms on N4} .

Note that any left-invariant Ag-valued form on N4 is automatically Ap-
smooth: multiplication on N4 is given by the Ag-smooth operation induced
from multiplication on N, and so left translation on N4 is Ag-smooth. We
can differentiate and integrate Agp-valued p-forms in just the same way as we
would real-valued p-forms, and the de Rham differential d of left-invariant
p-forms coincides with the usual differential of Lie algebra p-cochains.

As before, we need a notion of simplices in V. Since N is a supermanifold,
the vertices of a simplex should not be points of IV, but rather A-points for
arbitrary Grassmann algebras A. This means that for any (p + 1)-tuple of
A-points, we want to get a p-simplex:

[no, M1, ..., np|: AP — Ny,

where, once again, AP is the standard p-simplex in RPT!, and this map is
required to be smooth. But this only defines a p-simplex in N4. To really
get our hands on a p-simplex in N, we need it to depend functorially on
the choice of Grassmann algebra A we use to probe N. Soif f: A — B is
a homomorphism between Grassmann algebras and Ny: No — Np is the
induced map between A-points and B-points, we require:

Ny o[ng,ni,...,np] = [N¢(no), Ne(n1),...,Ny(ny)]
Thus given a collection of maps:

(ep)a: AP x (NA)P* — Ny
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for all A and p > 0, we say this collection defines a left-invariant notion
of simplices in N if

e cach (¢p)a is smooth, and for each x € AP, the restriction:

(pp)a: {a} x NETH — Ny

is Ag-smooth;

e it defines a left-invariant notion of simplices in N4 for each A, as in
Definition 12;

e the following diagram commutes for all homomorphisms f: A — B:

A x NEH L

lxN]’ZJrll le

AP x N]’;rl — Np
Sf’p)B

We can use a left-invariant notion of simplices to define a cochain map
[:C®*(n) = C*(N):
Proposition 24. Let n be a nilpotent Lie superalgebra, and let N be the

exponential supergroup which integrates n. If N is equipped with a left-
mwvariant notion of simplices, then there is a cochain map:

[+ Cg(n) — C*(N)

which sends the even Lie superalgebra p-cochain w to the supergroup
p-cochain [w, given on A-points by:

(/w)A(nl,...,np):/ wa
[1,n1,n1n2,...,n1n2...np]

formni,...,ny, € Ng.

Proof. First, we must check that [wa: N — Ay is natural in A and Ao-
smooth, and hence defines a map of supermanifolds:

fw: NP - R.

Smoothness is clear, so we check naturality and the Ag-linearity of the
derivative.
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To check naturality, let f: A — B be a homomorphism, and Ny: Ny —
Np be the induced map from A-points to B-points. We wish to show the
following square commutes:

Nﬁng

o s

p%
Np Ton By

For A-points n,...,n, € N, we have:

fo/ wa 2/ Jowa.
[1,n1,n1n2,...,n1N2...np] [1,n1,n1n2,...,n1...np)

Since wa: APny — Ag is natural itself, we have:

fowa(X1,..., Xp) =wpng(X1),...,np(Xp)),

forall Xi,..., X, € ny. Now, under the identification ny = 77N 4, the linear
map:

nging —np

is the derivative of the map Ny: Ny — Npg, so we get the pullback of wy
along Ny:

wp(np(X1),....np(Xp)) = wp((Np)e(X1), ..o, (Np)«(Xp))
= Njwp(X1,..., X)),

Finally:
fo / wa = / Niws
[1,n1,n1n2,...,n1N2...1p] [1,n1,n1n2,...,n1n2...0p)
Nyo[l,n1,n1n2,...,n1n2...np]
[1,Nf(n1),Ng(n1)Ng(n2),...,Nf(n1)Nyg (n2)...Ng(np)]
where in the last step we have used the fact that [1,n1,n1n2,...,n1...1n)

is a left-invariant simplex in N, as well as the fact that Ny is a group
homomorphism. But this says exactly that [ w4 is natural in A.
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Next, we check that [w4 has a derivative that is Ag-linear. Briefly, this
holds because the derivative of (pp)a: AP x N ZH — N4 is Ap-linear on each
factor of N4. The Ap-linearity of the derivative of [wy4 then follows from
the elementary analytic fact that integration with respect to one variable
and differentiation with respect to another commute with each other, at
least when the integration is performed over a compact set. For a complete
calculation, see the proof of Proposition 10.2 in Huerta [33].

Thus, [w: N — Ap, being natural in A and Ap-smooth, defines a map
of supermanifolds [w: NP — R. We therefore have a map:

[+ Cg(n) — C*(N).

It remains check that it is a cochain map. Indeed, [w4 is the composite of
the cochain maps for each A:

W wa — [wa,
and it follows that [ is a cochain map. O

Finally, we shall prove that there is a left-invariant notion of simplices
with which we can equip N. For a fixed Grassmann algebra A, the Lie
group Ny is exponential. We shall show that if we take:

((pp)A: Ap X NZ—H —>NA

to be the standard notion of left-invariant simplices in Proposition 14, then
this defines a left-invariant notion of simplices in N. The key is to note that

each stage of the inductive definition of (¢,)4 we get maps that are natural
in A.

Proposition 25. Let N be the exponential supergroup of the nilpotent Lie
superalgebra n. Fiz a smoothing factor £: [0,1] — [0,1]. For each Grass-
mann algebra A and p > 0, define:

((pp)A: Ap X NZ—H —>NA

to be the standard left-invariant notion of simplices with smoothing factor £.
Then this defines a left-invariant notion of simplices in N.

Proof. Fix Grassmann algebras A and B and a homomorphism f: A — B.
We proceed by induction on p. For p = 0, the maps:

((PO)AI AO X NA—>NA,
(po)p: A’ x Np — Np,
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are the obvious projections. The fact that:

AOxNAmNA

1><Nfl le

AO X NBHNB
(v0)B

commutes is then automatic.
For arbitrary p, suppose that the following square commutes:

Apil « NZ(SDP—I)ANA

lXN}Ji \LNf

APLx NP > N
Blop-1) B

and that (p,_1)4 and (pp—1)p are Ag- and Bp-smooth. In other words, the
above square says that for any p-tuple of A-points, we have:

Nf o) [nl,.. . ,np] = [Nf(nl),...,Nf(np)].

We construct (¢p)a and (¢p)p from (¢p—1)a and (pp—1)pB, respectively,
using the apex-base construction. That is, given the (p — 1)-simplex [nq, ...,
np| given by (¢p—1)a for the A-points nq,...,n, € Ny, we define the based
p-simplex:

[1,n1,...,np]

in N4 by using the exponential map expy to sweep out a path from the
apex 1 to each point of the base [n1,...,n,|. Similarly, we define the based
p-simplex:

[LNf(nl)v ce 7Nf(np)]

in Np by using the exponential map expp to sweep out a path from the
apex 1 to each point of the base [N¢(n1),..., N¢(np)]. From the naturality
of exp, we will establish that:

Nyo[l,ny,...,npl =[1,N¢(n1),...,N¢(np)l.

To verify this claim, let

expy(X) = [n1,...,np](z), for some x € AP~?
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be a point of the base in N4. By the inductive hypothesis, N¢(exp4(X)) =
expg(ns(X)) is the corresponding point of the base in Np. We wish to
see that points of the path exp,(¢(t)X) connecting 1 to exp,(X) in Ny
correspond via Ny to points on the path expg(¢(t)ng(X)) connecting 1 to
expg(ny(X)) in Np. But this is automatic, because:

Ny(exp4(€(t)X) = expp(ng(£(t) X)) = expp(£(t)ns (X)),

where in the last step we use the fact that ny: ny — np is linear. Thus, it
is true that:

Nyol[l,ny,...,np] =[1,N¢(n1),...,N¢(np)l,

for based p-simplices.

Using left translation, we can show that:
Ny olng,ni,...,np] = [N¢(no), Ne(n1),..., Ne(npy)].
for all p-simplices. In other words, the following diagram commutes:

AP x N£+1 (¥p)a NA

1><N}’+1\L le

+1
APXNg @)NB

Because each step in the apex-base construction preserves Ag- or By-smooth-
ness, we note that (pp)4 and (pp)p are Ag- and By-smooth, respectively.
The result now follows for all p by induction. O

8 Superstring Lie 2-supergroups

We are now ready to unveil the Lie 2-supergroup that integrates our favorite
Lie 2-superalgebra, supetstring(n + 1,1). Remember, this is the Lie 2-super-
algebra which occurs only in the dimensions for which string theory makes
sense: n+ 2 =3, 4, 6 and 10. It is not nilpotent, since the Poincaré super-
algebra siso(n + 1,1) in degree 0 of supervstring(n + 1,1) is not nilpotent.
Nonetheless, we are equipped to integrate it using only the tools we have
built to perform this task for nilpotent Lie n-superalgebras.
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The road to this result has been a long one, and there is yet some ground
to cover before we are finished. So, let us take stock of our progress before
we move ahead:

e In spacetime dimensions n 4+ 2 = 3, 4, 6 and 10, we used division alge-
bras to construct a 3-cocycle o on the supertranslation algebra:

T=VeaS
which is nonzero only when it eats a vector and two spinors:

a(A, 9, 0) = (¥, Ag).

e Because « is invariant under the action of so(n+ 1,1), it can be
extended to a 3-cocycle on the Poincaré superalgebra:

siso(n+1,1) =so(n+1,1) x 7.

The extension is just defined to vanish outside of 7', and we call it «
as well.

e Therefore, in spacetime dimensions n + 2, we get a Lie 2-superalgebra
superstring(n + 1, 1) by extending siso(n + 1,1) by the 3-cocycle a.

In the last section, we built the technology necessary to integrate Lie
superalgebra cocycles to supergroup cocycles, provided the Lie superalge-
bra in question is nilpotent. This allows us to integrate nilpotent Lie
n-superalgebras to n-supergroups. But superstring(n 4+ 1,1) is not nilpo-
tent, so we cannot use this directly here.

However, the cocycle « is supported on a nilpotent subalgebra: the super-
translation algebra, 7. This saves the day: we can integrate a as a cocycle
on 7. This gives us a cocycle [« supertranslation supergroup, 7. We will
then be able to extend this cocycle to the Poincaré supergroup, thanks to
its invariance under Lorentz transformations.

The following proposition helps us to accomplish this, but takes its most
beautiful form when we work with “homogeneous supergroup cochains”,
which we have not actually defined. Rest assured — they are exactly what
you expect. If G is a supergroup that acts on the abelian supergroup
M by automorphism, a homogeneous M-valued p-cochain on G is a
smooth map:

F:GPY S M
such that, for any Grassmann algebra A and A-points ¢, go,...,gp € Ga:

Fx(990,991,---,99p) = 9Fa(91, ..., 9p)-
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We can define the supergroup cohomology of G using homogeneous or inho-
mogeneous cochains, just as was the case with Lie group cohomology.

Proposition 26. Let G and H be Lie supergroups such that G acts on H,
and let M be an abelian supergroup on which G x H acts by automorphism.
Given a homogeneous M -valued p-cochain F on H:

F: HPYY = M,
we can extend it to a map of supermanifolds:
F:(Gx HPY — M

by pulling back along the projection (G x H)PT' — HPYL  In terms of
A-points

(907 h0)7 ey (gpv hp) € GA X HA>

this means F is defined by:

Fa((go,ho),---,(gpshp)) = Falho,..., hp),

Then F is a homogeneous p-cochain on G x H if and only if F is
G-equivariant, and in this case dF = dF'.

Proof. We work over A-points, G4 x H 4. Denoting the action of g € G4 on
h € Hy by h9, recall that multiplication in the semidirect product G4 x H»x
is given by:

(91, h1)(g2, h2) = (9192, hah3}).
Now suppose F' is homogeneous. By definition of homogeneity, we have:

FA((Q, h)(g(]a hO)v cey (gv h)(gp’ hp)) = (ga h)FA((QOa hO)’ ceey (gim hp))

Multiplying out each pair on the left and using the definition of F on both
sides, we get:

Fa(hRS, ..., hh3) = (g,h)Falho,. .., hy).
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Writing (g, h) as (1, h)(g, 1), and pulling h out on the left-hand side, we now
obtain:

(1,h)Fa(hd, ..., h%) = (1,h)(g, ) Fa(ho, - ., ).

Cancelling (1, h) from both sides, this last equation just says that F4 is G a-
equivariant. The converse follows from reversing this calculation. Since this
holds for any Grassmann algebra A, we conclude that Fis homogeneous if
and only if F' is G-equivariant.

When F is G-equivariant, it is easy to see that dF is also, and that
dF = dF', so we are done. O

Now, at long last, we are ready to integrate a.. In the following proposition,
T denotes the supertranslation group, the exponential supergroup of the
supertranslation algebra 7.

Proposition 27. In dimensionsn+ 2 =3, 4, 6 and 10, the Lie supergroup
3-cocycle [ o on the supertranslation group T is invariant under the action
of Spin(n +1,1).

This is an immediate consequence of the following:

Proposition 28. Let H be the exponential supergroup of a nilpotent Lie
superalgebra §y. Assume H is equipped with its standard left-invariant notion
of simplices, and let G be a Lie supergroup that acts on H by automorphism.
If w e C{(b) is an even Lie superalgebra p-cochain which is invariant under
the induced action of G on b, then [w € CP(H) is a Lie supergroup p-
cochain, which is invariant under the action of G on H.

Proof. Fixing a Grassmann algebra A, we must prove that

-----

for all A-points g € G4 and hg, h1,...,h, € Hy. We shall see this follows
from the fact that the p-simplices in H are themselves G-equivariant, in the
sense that:

(18, B, ... hg] = [ho, ha, ... ).
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Assuming this for the moment, let us check that our result follows. Indeed,
applying the above equation, we get:

wa = / wA
~/[hg,hg h3) [ho,h1,....hpl9

[ s

[
[h07h17--~7hp]

where the final step uses Ad(g)*wa = wa, which is just the G-invariance of w.

It therefore remains to prove the equation [k, h{, ..., hj] = [ho, h1, ...
hpl? actually holds. Note that this is the same as saying that the map

)

(pp)a: AP x HZH — Hy
is G 4-equivariant. We check it by induction on p.
For p = 0, the map:
(po)a: AY x Hy — Hy

is just the projection, and G 4-equivariance is obvious. So fix some p > 0
and suppose that (p,—1)4 is G a-equivariant. We now construct (¢p)4 from
(pp—1)a using the apex-base construction, and show that equivariance is
preserved.

So, given the (p —1)-simplex [h1,...,hy] given by (¢p—1)a for the
A-points hi,..., h, € Hy, we define the based p-simplex:

[17h17 . -7hp]
in H4 by using the exponential map to sweep out a path from the apex 1
to each point of the base [h1,...,hy]. In a similar way, we define the based
p-simplex:

[1,h51],...,h]90]

By hypothesis, [h{,...,hJ] = [h1,...,hp]?, and since the exponential map
exp: ha — Hy is itself G g-equivariant, it follows for based p-simplices that:

(1,09, B9 = [1,ha, ... )9,
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The result now follows for all p-simplices by left translation. This completes
the proof. O

Because « is Spin(n + 1, 1)-invariant, it follows from Propostion 28 that
in dimensions 3, 4, 6 and 10, the cocycle [« on the supertranslations can
be extended to a 3-cocycle on the full Poincaré supergroup:

SISO(n+1,1) = Spin(n+1,1) x T,

By a slight abuse of notation, we continue to denote this extension by [ a.
As an immediate consequence, we have:

Theorem 29. In dimensionsn + 2 =3, 4, 6 and 10, there exists a slim Lie
2-supergroup formed by extending the Poincaré supergroup SISO(n + 1,1) by
the 3-cocycle [ «, which we call we the superstring Lie 2-supergroup,
Superstring(n + 1,1).
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Appendix A Explicitly integrating 0-, 1-, 2- and 3-cochains

In this appendix, in order to get a feel for the integration procedure given in
Proposition 13, we shall explicitly calculate some Lie group cochains from
Lie algebra cochains. The resulting formulas are polynomials on the Lie
group, at least in the nilpotent case. It is important to note, however, that
we did not need these explicit formulas anywhere in this paper. It was
enough to understand that they exist, and have the properties described in
Section 4.1. We nonetheless suspect that explicit formulas will prove useful
in future work, so we collect some here.

To facilitate this calculation, we shall also have to explicitly construct
some low-dimensional left-invariant simplices. For 0-cochains and 1-cochains,
we will find the task very easy — we only need our Lie group G to be expo-
nential. On the other hand, for 2- and 3-cochains, the construction gets much
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harder. This complexity shows just how powerful the abstract approach of

Section 4.1 actually is — imagine having to prove Proposition 13 through
an explicit integration such as those we present here!

So, for 2- and 3-cochains, we simplify the problem by assuming our Lie
algebra g to be 2-step nilpotent: all brackets of brackets are zero. This
allows us to use a simplified form of the Baker-Campbell-Hausdorff formula:

exp(X)exp(Y) = exp <X +Y + %[X, Y]>
and the Zassenhaus formula:
exp(X +Y) = exp(X) exp(Y) exp <—;[X, Y]>
— exp(X) exp (Y _ %[X, Y]) . (3)

Partially, this nilpotentcy assumption just makes our calculations tenable,
but secretly it is because our main application for these ideas is to 2-step
nilpotent Lie superalgebras.

0-cochains

Let w be a Lie algebra 0-cochain: that is, a real number. Then [w =w
is a Lie group 0-cochain. We can view it as the integral of w over the
O-simplex [1].

1-cochains

Let w be a Lie algebra 1-cochain: that is, a linear map
w:g— R,

which we extend to a 1-form on G by left translation. We define a Lie group
1-cochain [w by integrating w over 1-simplices in G. In particular,

fW(g):/[1 ]W-
»g

Since G is exponential, it has a standard left-invariant notion of 1-simplex,
given by exponentiation. So, if g =exp(X), then the 1-simplex [1,g] is
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given by
[1,9](t) = exp(tX), 0<t<1.

We denote this map by ¢ for brevity. So:

Noting that the derivative of ¢ is
$(t) = exp(tX)X

we have

1 1
Jw(g) = /0 w(exp(tX)X)dt = /0 w(X)dt = w(X),

where we have used the left invariance of w. In summary,

Jw(g) = w(X),
for g = exp(X).

As a check on this, note that because we have proved [ is a cochain map,
[ w should be a cocycle whenever w is. So let us verify this. Assume dw = 0.
That is, for all X and Y € g, we have:

dw(X,Y)=—-w([X,Y]) =0.
So the cocycle condition merely says that w must vanish on brackets.

Now compute the coboundary of [w. As a function of a single group
element, [w is an inhomogeneous Lie group 2-cochain. Hence, we must
use the coboundary formula from Section 2, which we recall here for con-
venience: when f: GP — R is an inhomogeneous Lie group p-cochain, its
coboundary is:

df(g1s-- - Gp+1)

p
=3 (1) f(g1,- - 91, 9iGi41: Giv2s - - > Gp41)

1=

1
+(DP (g1, gp)-
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In the case of [w, this becomes simply:
d[w(g,h) = [w(h) = [w(gh)+ [w(g).

Finally, check that this coboundary is zero when w is a cocycle, and hence
that [w is a cocycle whenever w is. If g = exp(X) and h = exp(Y'), we have

1
gh = exp(X)exp(Y) = exp <X +Y + §[X7Y] + .- >
by the Baker-Campbell-Hausdorff formula, and thus:
1
dfw(g,h) =w(l)—w <X+Y+ XY +> +w(X)=0

where we have used w’s linearity along with the cocycle condition that w
must vanish on brackets.

2-cochains

As we have just seen, 0-cochains and 1-cochains are easily integrated on
any exponential Lie group, and the result is always a polynomial Lie group
cochain. Unfortunately, even for 2-cochains, the integration is much more
complicated, and no longer polynomial unless g is nilpotent. So, at this
point, we will simplify matters by assuming g to be 2-step nilpotent. To
hint at this with our notation, we will now call our Lie algebra n and the
corresponding simply-connected Lie group N.

Let w be a Lie algebra 2-cochain: that is, a left-invariant 2-form. We
define a Lie group 2-cochain [w by integrating w over 2-simplices in N.
In particular:

Jw(g,h) = / w.
(1,9,9h]

Now suppose g =exp(X) and h =exp(Y). Recall we that obtain the
2-simplex [1, g, gh| using the apex-base construction: we connect each point
of the base [g, gh] = g[1,h] to 1 by the exponential map. Since [1,h|(t) =
exp(tY), the base is parameterized by

[g,gh](t) = gexp(tY) = exp <X +tY + %[X, Y]>
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by the Baker—Campbell-Hausdorff formula. Now let us construct [1, g, gh]
by first constructing a map from the square

v:[0,1] x [0,1] = N

given by

ots.0) =ewp (s (X 407 4§11} ).

At this stage in our general construction, since this map is 1 on the {0} x
[0, 1] edge of the square, we would typically quotient the square out by this
edge to obtain a map from the standard 2-simplex. However in practice,
we do not need to do this. Since the integral f[l,g’gh] w is invariant under
reparameterization, we might as well parameterize our 2-simplex [1, g, gh]
with ¢ and integrate over the square to obtain:

- [ [ 5)

Our task has essentially been reduced to computing the partial derivatives
of ¢. Thanks to the left invariance of w, we may as well left translate these
partials back to 1 once we have them, since:

(22 90N _ (199 199
ds’ Ot Y 95 ot )

Let us begin with g—f. Since the exponent of ¢(s,t) = exp(s(X +tY +
51X,Y])) is linear in s, this is simply:

ii(s 1) = (s, 1) (X —I—tY%[X, Y}) .

This is a tangent vector at ¢(s,t). We can left translate it back to 1 to
obtain:

_10¢p t
128 — X +tY-[X,Y]).

The partial with respect to t is slightly harder, because the exponent is
not linear in ¢. To compute this, we need the Zassenhaus formula, Formula
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3, to separate the terms linear in ¢ from those that are not. Applying this,
we obtain

s s
o(s,t) = exp(sX)exp (stY + g[X, Y] - ?t[X, Y]> .

Differentiating this with respect to ¢t and left translating the result to 1,
we get:

Oy 5 — 52

~1

— =sY X,Y].
SO at S + 2 [ ? ]

Substituting these partial derivatives into the integral, our problem becomes:

8—82

fw(g,h):/ol/olw(X+ty+;[x,y],sY+ [X,Y]) ds dt.

It is now easy enough, using w’s bilinearity and antisymmetry, to bring all
the polynomial coeflicients out and integrate them, obtaining an expression
which is the sum of three terms:

(g, h) = 50(X, V) + 5w(X,[X, V]) = Sl [X, V)

Nevertheless, we would like to do this calculation explicitly. In essence,
we use w'’s bilinearity and antisymmetry to our advantage, to write these
coefficients as integrals of various determinants. To wit, the coefficient of
w(X,Y) is the integral of the determinant

1
0

which we obtain from reading off the coefficients of X and Y in the integrand:

t
=S
s )

8—82

t
w<X+tY+2[X,Y],SY+ [X,Y]).

So the coefficient of w(X,Y) is fol fol sdsdt = 1. We can use this idea to
obtain the other two coefficients as well — the coefficient of w(X, [X,Y]) is
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the integral of the determinant

8—82

_ R

t
5—s
0 2

which is 5, and the coefficient of w(Y, [X,Y]) is the integral of the deter-
minant

t
s

i

2
—S
2

s—g2

. . 1
which is —3i5-

As a final check on this calculation, let us again show that when w is
a cocycle, so is [w. We know this must be true by Proposition 13, of
course, but when checking it explicitly the cocycle condition seems almost
miraculous. Since this final computation is a bit of a workout, we tuck it into
the proof of the following proposition. It is only a check, and understanding
the calculation is not necessary in light of Proposition 13.

Proposition 30. Let N be a simply-connected Lie group whose Lie algebra
n is 2-step nilpotent. If w is a Lie algebra 2-cocycle on n, then the Lie group
2-cochain on N defined by

1 1
fw(g’ h) = §W(X7 Y) + EW(X - Y7 [X> Y]))
where g = exp(X) and h = exp(Y), is also a cocycle.

Proof. As already noted, this fact is immediate from Proposition 13, but
we want to ignore this and check it explicitly. To do this, we repeatedly
use the Baker—Campbell-Hausdorff formula, the assumption that n is 2-step
nilpotent, and the cocycle condition on w. This latter condition reads:

dw(X7 Y7 Z) = —OJ([X, Y]a Z) + w([Xa Z]v Y) - w([Yv Z]7 X) = 0.
Note how this resembles the Jacobi identity. We prefer to write it as follows:
w(Xa [Yv Z]) - w([Xv Y]a Z) + w(Y7 [Xv Z])
To begin, the coboundary of the inhomogeneous Lie group 3-cochain [ w
is given by:

dfw(gvh) k) = fw(h’ k) - fw(gh7 k) + fLU(g, hk) - fw(gvh)'
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Let us assume that
g=exp(X), h=exp(Y), k=exp(2),

so that
1 1
gh:exp<X—|—Y—|-2[X,Y]>, hk:exp<Y+Z+2[Y,Z]>.

Now we repeatedly insert the expression for our Lie group 2-cochain, so the
coboundary of [w becomes:

d[w(g,h, k) = %w(Y, 7)+ %w(Y _ 7. 2) - %w <X e %[X, Y],Z)

1 1
- 5w <X+Y+2[X,Y]—Z,[X+Y,Z]>

1 1
+ 5w <X,Y+Z+2[Y,Z]>

1 1
+ 5w (X—Y—Z—Q[Y,Z],[X,YJrZ])

1 1
—Hw(X,Y) - Sw(X -~V [X,Y]),

Note that the cocycle condition combined with nilpotency implies that
any term in which w eats two brackets vanishes. In general,

w([X, Y], [2,W]) = w([[X, Y], Z], W) + w(Z, [[X, Y], W]) = 0,

thanks to the fact that brackets of brackets vanish. So, in the expression for
d [ w, we can simplify the fourth term:

w(X+Y+%[X,Y} - Z,[X +Y,Z])

WX +Y — Z[X+Y.2])+ %w([X,Y], X +Y,2])
WX +Y — Z,[X +Y,2)).

Similarly for the sixth term:

w(X—Y—Z—%[Y,Z],[X,Y+Z]) =wX-Y -Z[X,Y + Z]).
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This leaves us with:

dfw(g,h,k)

1 1 1 1
= 5W(Y, Z)+ ﬁw(Y—Z, Y, Z]) — ¥ <X+Y+ 2[X,Y],Z>
1 1 1
- Ew(X+Y—Z,[X+}/,Z])+§w <X,Y+Z+2[Y,Z]>
1 1 1
+ H@(X =Y = Z[X,Y + 7)) - Sw(X,Y) - Sw(X -V, [X,Y]),

Expanding this using bilinearity, we obtain, after many cancellations:

d[(g,h, k) =~ (X, Y], 2) = (XY, 2) — (¥, [X, 2)
+ %w(X, v, 2)) - %w(Y, X, 7)) — 1—12w(Z, X, Y)).

We combine the two terms with coefficient 1/4 using the cocycle condition:
—w([X,Y], Z) + w(X,[Y, Z]) = w([Y, X], Z) + w(X, [V, Z]) = w(Y, [X, Z]).

Similarly, for the first and fourth terms with coefficient 1/12, we apply the
cocycle condition to get:

w(X, [V, 2) +w(Z,[X,Y]) = w(Y, X, Z)).

So, substituting these in, we finally obtain:

dJwlg b k) = (¥, X, 2) = S50V, [X, 2]) - (¥, X, 2)

1
- EW(Y, [Xv Z]) =0,

as desired. O

As a corollary, note that we could equally well have said:

Corollary 31. Let N be a simply-connected Lie group whose Lie algebra n
is 2-step nilpotent. If w is a Lie algebra 2-cocycle on n, then the Lie group
2-cochain on N defined by

8—82

[w(g, h) :/Ol/olw <X+tY+;[X,Y], sY + [X,Y]> ds dt,

where g = exp(X) and h = exp(Y), is also a cocycle.
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Proof. By our calculation in this section,

[w(g h) = %W(X, Y)+ %w(X CYL X, YD),

so the result is immediate. O

3-cochains

Let w be a 3-cochain on the Lie algebra: that is, a left-invariant 3-form.
Judging by our experience in the last section, the complexity of integrating
w to a Lie group 3-cochain may be quite high. Indeed, we shall ultimately
avoid writing down [w, except as an integral. Nonetheless, we can make
this integral quite explicit.

We define the Lie group 3-cochain [w to be the integral of w over a
3-simplex in N. In particular:

Jw(g,h, k) = / w.
[1,9,9h,ghk]

Now assume that g = exp(X), h =exp(Y) and k =exp(Z). Recall that
we obtain the 3-simplex [1, g, gh, ghk] using the apex-base construction: we
connect each point of the base [g, gh, ghk] = g[1, h, hk] to 1 by the exponen-
tial map. In the last section, we saw that [1, h, hk|(t,u) = exp(t(Y + uZ +
51Y, Z])), so the base is parameterized by

lg, gh, ghk](t,u) = gexp (t (Y +uZ + %[Y, Z]))

t 1
= exp <X +tY +tuZ + ?u[Y,Z] + 2[X,tY+tuZ]> ,

by the Baker-Campbell-Hausdorff formula. Now let us construct [1, g, gh,
ghk] by first constructing a map from the cube
©:10,1] x [0,1] x [0,1] = N

given by

t 1
(s, t,u) = exp <s (X—{—tY—I—tuZ—i— EU[Y, Z) + 2[X7tY—i—tuZ]>>

¢ t t
= exp (sX + stY + stuZ + %[X,Y] + %[Y, Z) + SQU[X,Z]> .
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At this stage in our general construction, since this map is 1 on the {0} x
[0,1] x [0, 1] face of the cube and on the lines {s} x {0} x [0, 1] of constant
s on the [0,1] x {0} x [0,1] face of the cube, we could quotient the cube
out by these sets to obtain a map from the standard 3-simplex. But in
practice, we do not need to do this. Since the integral f[17g7gh7ghk] w is invari-
ant under reparameterization, we might as well parameterize our 3-simplex
[1, g, gh, ghk] with ¢ and integrate over the cube to obtain:

1 1 1 6(,0 8@ a(p
fw(g,h,k:)—/o /0 /O “’(as’at’au> ds dt du.

Once again, our task has essentially reduced to computing the partial deriva-
tives of ¢, and once again, thanks to the left invariance of ¢, we may as well
left translate these partials back to 1 once we have them, since:

(02 9p 09N _ [ a0p 10p _10p
ds’ ot ou Y 9sY a0? ou)

Let us begin with g—f. Since the exponent of (s, t,u) is linear in s, this
is simply:

) ¢ t t
D2 (s,t,u) = (s, t,u) (X +HY +tuZ + (X Y]+ EU[Y, 7] + ?“[X, Z]) .
YSs

This is a tangent vector at ¢(s,t,u). We can left translate it back to 1 to
obtain:

G, t t t
e P X Y +tuZ 4 S[X, Y]+ Y, 2]+ X, 2]
ps 2 2 2

The partial with respect to t is slightly harder, because the exponent is
not linear in ¢. To compute this, we again need the Zassenhaus formula,
Formula 3, to separate the terms linear in ¢ from those that are not. Apply-
ing this, we obtain

t t
o(s,t,u) = exp(sX)exp (stY + stuZ + %[X, Y]+ %[Y, Z)

t 1
+ %[X, Z] - i[SX’ stY + stuZ]> .
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Differentiating this with respect to ¢t and left translating the result to 1,
we get:

) 1
go_la—f = sY + suZ + g[x, Y]+ %[Y, Z) + %[X, 7] - 5[sX,sY + suZ)

which we can simplify by combining like terms:

2 U—S2U,

5] s— s su s
_1£ [X7Y]+?[Y7Z]+

T =38Y + suZ +

X, Z).

Finally, the partial with respect to u requires that we separate out the
terms linear in u, again using the Zassenhaus formula:

t
o(s,t,u) = exp <SX + stY + %[X, Y])

1

t t
X exp (stuZ+ %[Y, Z)+ %[X, Z) - 5

[sX + stY, stuZ]> .

Differentiating this with respect to u and left translating the result to 1,
we get:

dp st st 1

-1

— =stZ+ =Y, Z|+ —|X,Z] — =[sX Y, stZ
SD 8“ St +2[7 ]+2[ Y } 2[8 +St 78t ]?

which we can again simplify by combining like terms:

) t — s22 t — st
o1 sz P Ny g
ou 2

X, Z).

Substituting these partial derivatives into the integral, our problem
becomes:

1 1 1 t tu
fw(g,h,k):/ / / w<X+tY+tuZ+2[X,Y]+2[Y,Z]
0 0 0

2

t —
+5“[X,Z],3Y+suz+5 i [X,Y]Jr%[Y,Z]
_ g2 t — 2t2
smosu 28 YIx,2),stz + 2220 23 Y, Z]
t — st
i 25 [X,Z]> ds dt du.

This integral is bad enough. Further evaluating this integral is quite a chore
(the answer involves 17 nonzero terms!), so we stop here. We would only
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like to give a hint as to how the evaluation could be done. As in the last
section, thanks to w’s trilinearity and antisymmetry, the coefficients of the
terms in [ w(g, h, k) are integrals of various determinants. For instance, the
coefficient of w(X,Y, Z) is the integral of the 3 x 3 determinant

1 t tu
0 s su|= 3275,
0 0 st

which we obtain from reading off the coefficients of X, Y and Z in the
integrand. So the coefficient of w(X,Y,Z) in [w(g,h, k) is fol fol fol st ds
dt du = %. The other terms may be computed similarly.

Just as we shall not attempt to evaluate the integral for [w(g,h,k), we
also do not attempt to demonstrate that it gives a Lie group cocycle when
w is a Lie algebra cocycle. After all, Proposition 13 does this for us, so we
immediately obtain:

Proposition 32. Let N be a simply connected Lie group whose Lie algebra
n is 2-step nilpotent. If w is a Lie algebra 3-cocycle on n, then the Lie group
3-cochain on N given by

11 opl ; u
fw(g,h,k):/ / / w<X+tY+tuZ+2[X,Y]+2[Y,Z]
0 Jo JO

tu s — 82 su

+ 5 (X, Z],sY + suZ + (X, Y]+ 5 Y, Z]
2 242
- t— 52
+W[X,Z],st2+%[}/,2]
t — s%t
42 2‘9 [X,Z]> ds dt du,

where g = exp(X), h = exp(Y) and k = exp(Z), is also a cocycle.
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