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Abstract

In this paper, we investigate quotients of Calabi–Yau manifolds Y
embedded in Fano varieties X, which are products of two del Pezzo sur-
faces — with respect to groups G that act freely on Y . In particular,
we revisit some known examples and we obtain some new Calabi–Yau
varieties with small Hodge numbers. The groups G are subgroups of the
automorphism groups of X, which is described in terms of the automor-
phism group of the two del Pezzo surfaces.
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1 Introduction

In [13, 14] Tian and Yau discover a new Calabi–Yau manifold with Euler
characteristic equal to −6. Let us briefly explain their seminal example. To
begin with, they consider the product X of two cubic Fermat surfaces in
P

3
C
. Next, they pick a smooth hyperplane section Y in X, which is invariant

with respect to a group G isomorphic to the cyclic group of order 3. By
adjunction and by Lefschetz’s Hyperplane Theorem, Y turns out to be a
smooth Calabi–Yau threefold, i.e., a smooth compact Kähler threefold with
trivial canonical bundle and no holomorphic p-forms for p = 1, 2. The Euler
characteristic of Y is −18 and the two significant Hodge numbers h1,1(Y )
and h1,2(Y ) are 14 and 23, respectively. To reduce to Euler characteristic
and the Hodge numbers, Tian and Yau take the quotient of Y with respect
to G that turns out to act freely on it. The quotient manifold Y/G is a
Calabi–Yau variety with Hodge numbers h1,1 = 6 and h1,2 = 9.

In recent years, physicists have focused on Calabi–Yau manifolds with
small Hodge numbers; see, for instance, [2–4, 6, 9]. In fact, imagine to
plot the distribution of Calabi–Yau varieties on a diagram with variables the
Euler characteristic χ(Y ) (on the horizontal axis) and the height h(Y ) :=
h11(Y ) + h12(Y ) (on the vertical axis). Fix a pair (χ0, h0) of positive inte-
gers such that χ0 is even and −2h0 ≤ χ0 ≤ 2h0. For h0 ≤ 30, it turns out
that there are still a lot of missing examples of Calabi–Yau varieties with
Euler characteristic χ0 and height h0. The example in [13] is even more sig-
nificant because the Euler characteristic is −6. In general, special attention
is given to those Calabi–Yau manifolds that have Euler characteristic 6 in
absolute value since they correspond to three-generation families (see, for
instance, [3]).

Remarkably, the example in [13] can be generalized in the following way.
The two cubic Fermat surfaces are examples of degree 3 del Pezzo surfaces,
i.e., smooth surfaces with ample anticanonical divisor which can be obtained
as the blow-up of P

2
C

at six points in general position. A first generalization
in this direction was given by Braun, Candelas and Davies in [3]. In that
paper, they discover a new Calabi–Yau manifold with Euler characteristic
−6 and small Hodge numbers. They replace the two Fermat surfaces in P

3
C

by two del Pezzo surfaces of degree 6 and come up with a group of order 12
that acts freely on a suitable hyperplane section of the product.

In this paper, we generalize the examples mentioned above even further
and we put them in a more general context. Indeed, let us consider two suit-
able smooth del Pezzo surfaces S1 and S2. The product X is a smooth Fano
four-fold, i.e., −KX is ample. In X, we pick a smooth threefold Y , which
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is in |−KX |. As pointed out by the example in the Introduction in [11] this
requires some work: in fact, for some choice of the two del Pezzo surfaces
it is not even possible. Moreover, we pick a finite group G in Aut(S1 × S2)
that acts freely on Y so that the quotient variety is a Calabi–Yau mani-
fold. Since the Euler characteristic χ(Y ) is negative, it is easy to verify that
the height of Y/G is less than the height of Y for any non-trivial group G.
Within this setup, we obtain the two examples mentioned above; further,
we find new Calabi–Yau manifolds with small Hodge numbers. The smooth-
ness and the free action of G on a suitable Y are proved as follows. We pick
a group G that has only finitely many fixed points on X. We decompose
the representation of G on H0(X,−KX) as a direct sum ⊕Vi of irreducible
subrepresentation. We consider a subspace W such that for every g ∈ G and
every s ∈ W , g∗(s) = λgs for some λg ∈ C

∗, i.e., for every g ∈ G, W is an
eigenspace for g∗. We pick a section s ∈ W , if there are some, so that the cor-
responding zero locus does not intersect the fixed locus of G. Next, we look
at the base points of the subsystem W ≤ H0(X,−KX). In case there are
some, we take a generic section and prove that the base points are smooth.
This is done by direct computation with MAPLE. A Bertini-type argument
yields the existence of a smooth threefold Y in X on which G acts freely.

In Section 5, we present the examples we obtain case by case. Except for
the last subsection of that section, all the examples have height less than 20.
Unfortunately, we do not obtain any new three-generation manifolds, i.e.,
a manifold with |χ(Y )| = 6. Moreover, in Section 8, you may find all the
examples of quotients of Calabi–Yau threefolds Y embedded in S1 × S2 by
groups, which are of maximal order. In other words, we take the quotient
by a group H ≤ Aut(S1 × S2) such that the restriction to Y yields a free
action and H can not have order greater than the groups used. Finally, we
investigate the height of the quotient variety. In several cases, we are able
to say that the height for the quotient threefold is the least possible within
this framework.

The following picture represents the tip of the distribution of the Calabi–
Yau manifold with respect to the Hodge numbers. The diagonal axis are
h1,1(Y ) and h1,2(Y ), whereas the horizontal and the vertical axis are χ(Y )
and h(Y ), respectively. We plot only the known manifolds with height less
or equal than 31. The solid dots correspond to quotients found in this
paper. The blue rings represent the ones known until now (with respect
to the data collected in [2–4, 6]). The black rings are quotients by groups
whose order is maximal. From the picture below, we can summarize our
results as follows. The dots (3, 5), (2, 7) and (5, 13) represent NEW Calabi–
Yau threefolds. There exists a Calabi–Yau manifold corresponding to the
pair (1, 5) with non-abelian fundamental group; see [4]. Our example in
Section 5.1, has abelian fundamental group isomorphic to the product of
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Figure 1: The tip of the distribution of Calabi-Yau threefold.

the cyclic group of order two and that of order eight. Moreover, we come up
with a Calabi–Yau manifold with Hodge numbers (2, 11) (cf. (5.3)), which
are the same as those described in [4]. Finally, we construct other varieties
with greater height (see Section 5.6) but they correspond to existing dots
in the picture below. In all the cases where other Calabi–Yau manifolds
already exist, it would be interesting to know whether our examples are
isomorphic to those or not.

In some cases, it is not possible to consider non-trivial quotients with
our method. In fact, we prove, for instance, that there does not exist a
Calabi–Yau variety, which is the quotient by a group of order seven of a
smooth anticanonical section Y in a product of two del Pezzo surfaces of
degree 2. This type of results is collected in Section 6. To prove them, we
use the following theorem that is proved in Section 7. For this purpose,
we first use some Mori theorem of Fano four-folds, which are products of
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two Fano varieties. Second, we also recall that for low degree del Pezzo
surfaces are toric varieties. Thus, we apply a theorem due to Demazure
(later generalized by D. Cox in [5]) on the structure of the automorphism
group of toric varieties. More specifically, the following holds (see Section 7).

Theorem. Let S1 and S2 be two del Pezzo surfaces. Then

• If S1 �= S2, Aut(S1 × S2) = Aut(S1) × Aut(S2);
• If S1 = S2 �= P

1 × P
1, Aut(S×2) = Aut(S)×2

� Z2;
• If S1 = S2 = P

1 × P
1, Aut((P1)×4) = Aut(P1)×4

� S4, where S4 is the
symmetric group with 24 elements.

2 Preliminaries

We say that a complex surface S is a del Pezzo surface if it is projec-
tive, smooth, simply connected and the anticanonical divisor −KS is ample.
Examples of del Pezzo surfaces are blow-ups of the projective plane in a
finite set Δ of 0 ≤ n < 9 points in general position and P

1 × P
1. As proved

in [7], this list is exhaustive. We often write dPd to mean a del Pezzo surface
that is obtained by blowing up 9 − d points of P

2 that are in general posi-
tion. Let S = BlΔ P

2. We can identify H0(S,−KS) with the vector space
of the homogeneous polynomials of degree 3 with variables {x0, x1, x2} such
that f(P ) = 0 for all P ∈ Δ. It is easy to show that h0(S,−KS) = d + 1 if
S = dPd. Moreover, if k = 9 − d then

−KS = 3π∗H −
k∑

i=1

Ei,

where H is the hyperplane divisor on the projective plane and the Ei’s
are the exceptional divisors. Thus, K2

S = 9 − k = d. For d ≥ 3, we have
that −KS is very ample. For d = 2 the anticanonical system |−KS | gives
a 2 : 1 map of S in P

2 branched along a smooth quartic. For d = 1, the
anticanonical model of S is a finite cover of degree 2 of a quadratic cone Q
ramified over a curve B in the linear system |OQ(3)|.

Suppose that Y is a Calabi–Yau threefold and that G is a group that acts
freely on Y . Then it is well known that the quotient Y/G has a canonical
complex structure such that the projection on the quotient is holomorphic.
Furthermore, the quotient map is a local isomorphism.

Theorem 2.1. If the action of G is free then Y/G is also a Calabi–Yau
threefold. Moreover, the quotient is projective.
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Proof. Take g ∈ G \ {Id}. The manifold Y is a Calabi–Yau threefold, so

h1,0(Y ) = h2,0(Y ) = 0, h3,0(Y ) = 1.

There exists ω ∈ H3,0(Y ) such that ωP �≡ 0 for all P ∈ Y (this is equivalent
to KY ≡ 0). We want to show that g∗ω = ω. The maps

g∗ : Hp,0(Y ) −→ Hp,0(Y )

are zero for p = 1, 2, whereas for p = 0, g∗ is the identity. We apply the
Holomorphic Lefschetz Fixed Point formula, which in this case reads as
follows:

0 = 1 − 0 + 0 − Tr(g∗ : H3,0(Y ) −→ H3,0(Y )).

Since h3,0(Y ) = 1 (Y is a Calabi–Yau manifold), we get g∗ = Id for p = 3
and for all g ∈ G. Thus, the action of G on H3,0(Y ) is trivial. We have the
following isomorphism [1, p. 198]:

Hp,q(Y/G) 
 Hp,q(Y )G;

hence H3,0(Y/G) 
 H3,0(Y )G = H3,0(Y ) and there exists a holomorphic 3-
form ω̃ on Y/G such that π∗ω̃ = ω and, as π is a local isomorphism, ω̃P �= 0
for all P ∈ Y/G. This is equivalent to KY/G ≡ 0. Finally, using hp,0(Y/G) =
hp,0(Y )G one has h1,0(Y/G) = h2,0(Y/G) = 0 and this concludes the proof.
As for the projectivity of Y/G; see, for example, [10], p. 127. �

We will adopt the following framework. We will take two del Pezzo sur-
faces S1 and S2, their product X = S1 × S2, which is a Fano fourfold, and
a smooth element Y of |−KX |.

First of all, we will define a number M(S1, S2) that bounds the maximum
order of a finite group acting freely on Y and that only depends on the
degree of S1 and S2.

Definition 2.2. Let M(S1, S2) to be the positive greatest common divisor
of χ(Y )/2 and χ(−ι∗KX)), where ι : Y → X is the embedding of Y in X.

Note that if Y ⊂ S1 × S2 is a Calabi–Yau threefold and G is a finite group
that acts freely on Y , then |G| divides M(S1, S2).
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With the definition of M(S1, S2) in mind, we will search for a group G
with the following properties:

(a) G is a subgroup of Aut(S1 × S2);
(b) |G| = M(S1, S2).

Note that if Fix(G) ⊂ X contains a curve L, by the Nakai–Moishezon cri-
terion of ampleness, −KX · L > 0, and since Y = −KX , we will have some
fixed points on Y . Hence it is necessary to choose groups whose action on
X has at most a finite number of fixed points.

Finally, Let m(S1, S2, Y ) be

max{|G| | g(Y ) = Y ∀g ∈ G and satisfies (a), (b) and dim Fix(G) = 0} .

We anticipate that there are cases in which M(S1, S2) > 1, but the only
group with these requests is the trivial group (that is m(S1, S2, Y ) = 1 for
all Y ).

3 Necessary conditions

Assume that S1 and S2 are smooth projective surfaces and Y is a Calabi–Yau
threefold embedded in X = S1 × S2. Then the following result holds:

Theorem 3.1. The Euler characteristic of Y is

−2K2
S1

K2
S2

.

Proof. By the exact sequence of vector bundles

0 → TY → TX → NY/X → 0

and, as Y is a Calabi–Yau manifold (which implies c1(Y ) = 0), we have:

(1 + c2(Y ) + c3(Y )) · (1 + c1(NY/X))

= ι∗(1 + c1(X) + c2(X) + c3(X) + c4(X))

and, in particular,

c1(NY/X) = ι∗c1(X), c2(Y ) = ι∗c2(X) and

c3(Y ) = ι∗c3(X) − c2(Y )c1(NY/X).
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Using the fact that X is a product of surfaces we have

c1(X) = c1(S1) + c1(S2), c2(X) = c2(S1) + c2(S2) + c1(S1)c1(S2)

and

c3(X) = c2(S1)c1(S2) + c2(S2)c1(S1).

Hence, by the identification H6(Y, Z) 
 Z, we have

c3(Y ) = ι∗(c3(X) − c2(X)c1(X)) = c3(X)c1(X) − c2(X)c1(X)2

= c2(S1)c1(S2)2 + c2(S2)c1(S1)2 − c2(S1)c2
1(S2) − c2(S2)c1(S1)2

− 2c1(S1)2c1(S2)2

= −2c1(S1)2c1(S2)2 = −2K2
S1

K2
S2

.

�

Now, assume Y is a smooth ample divisor in X. Thus, the following
isomorphisms hold:

H2(Y, Z) 
 H2(X, Z) 
 H2(S1, Z) ⊕ H2(S2, Z).

For any divisor class, D ∈ H2(Y/G, Z) denote by D1 and D2 divisors
classes such that π∗(D) = D1 + D2, where π is the projection of Y onto
the quotient. Finally, we denote by Ki the divisor classes such that KX =
K1 + K2. Then the following holds.

Theorem 3.2. Let G be a group that acts freely on Y . Then for any D ∈
H2(Y/G, Z) and D1, D2 as above, we have

χ(D) = −D1D2(D1K2 + D2K1)
2|G| − χ(OS1)K2D2 + χ(OS2)K1D1

|G| .

Proof. We recall that the Riemann–Roch formula for the Calabi–Yau three-
fold Y/G is

χ(D) =
D3

6
+

c2(Y/G)D
12

.
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The action of G is free, hence

|G|D3 = π∗(D)3 and |G|c2(Y/G)D = c2(Y )π∗(D).

This yields

π∗(D)3 = (D1 + D2)3(c1(S1) + c1(S2))

= 3D2
1D2c1(S2) + 3D1D

2
2c1(S1) = −3D1D2(D1K2 + D2K1).

In a similar way, we obtain

c2(Y )π∗(D) = −(χ(S1) + K2
1 )K2D2 − (χ(S2) + K2

2 )K1D1.

Merging these results and using the Nöther formula,1 we complete the
proof. �

We focus our attention on a particular divisor on the quotient: a divisor D
such that π∗D = −ι∗KX . Such a divisor always exists because the canonical
divisor is G-invariant for any group of automorphisms G. We can specialize
the previous formula for nD obtaining

χ(nD) = n3 K2
1K2

2

|G| + n
χ(OS1)K

2
2 + χ(OS2)K

2
1

|G| =
χ(−nι∗KX)

|G| .

Hence, |G| has to divide χ(−nι∗KX) for all2 n. We can obtain a similar
condition using Theorem 3.1: the Euler characteristic of the quotient Y/G
of Y by a finite group G that acts freely is the Euler characteristic of Y
divided by the order of the group. Moreover, it is known that a Calabi–Yau
threefold has even Euler number so we obtain that |G| must divide χ(Y )/2.
This gives a motivation to Definition 2.2.

The following table gives the values of M(S1, S2) for every distinct values
of degrees of S1 and S2, with S1 and S2 del Pezzo surfaces — distinguishing

1χ(OS) =
K2

S+χ(S)

12
.

2One could easily check that

|G| divides χ(−nι∗KX) ∀n ∈ Z ⇐⇒ |G| divides χ(−ι∗KX).
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the case dP8 and P
1 × P

1.

M(S1, S2) P
2

P
1 × P

1 dP8 dP7 dP6 dP5 dP4 dP3 dP2 dP1

P
2 9 1 1 1 3 1 1 3 1 1

P
1 × P

1 1 16 16 1 2 1 4 1 2 1
dP8 1 16 16 1 2 1 4 1 2 1
dP7 1 1 1 7 1 1 1 1 1 1
dP6 3 2 2 1 12 1 2 9 4 1
dP5 1 1 1 1 1 5 1 1 1 1
dP4 1 4 4 1 2 1 8 1 2 1
dP3 3 1 1 1 9 1 1 3 1 1
dP2 1 2 2 1 4 1 2 1 4 1
dP1 1 1 1 1 1 1 1 1 1 1

For example, if X = dP2 × dP5 (M(dP2, dP5) = 1) it is not possible to
find a pair (Y, G) with Y embedded in X and Id �= G ≤ Aut(Y ) that acts
freely on Y . If we choose X = dP5 × dP5 (M(dP5, dP5) = 5) a pair (Y, Z5)
with Z5 without fixed points might exist.

The self-intersection of −KS , where S is a del Pezzo surface, is positive
and is equal to its degree and this, using Theorem 3.1, means that χ(Y ) <
0 regardless of the choice of which surfaces we are using. Therefore, by
recalling that the action of G is free, we have that the height h := h1,1 + h1,2

of Y and that of Y/G satisfy the following inequality:

h(Y/G) = h1,1(Y/G) + h1,2(Y/G) = 2h1,1(Y/G) − χ(Y )
2|G|

= 2h1,1(Y )G +
|χ(Y )|
2|G|

< 2h1,1(Y ) +
|χ(Y )|

2
= h(Y ).

By finding a group whose order is maximal — and such that the dimension
h1,1(Y )G of the invariant part of H1,1(Y ) is the smallest possible — we
obtain the least possible height for the quotient.

In the following sections, we give some examples (both known and new)
and some results of non-existence.

4 Known examples

With the following examples, we revisit some known examples in the frame-
work presented. The first one is due to Braun, Candelas and Davies and
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can be found in [3]. The second one is due to Tian and Yau and is presented
in [13,14].

4.1 dP6 × dP6 with maximal order 12

There is a unique del Pezzo surface of degree 6 and this surface can be
obtained as the complete intersection of two global sections of OP2×P2(1, 1).
Explicitly, we can take S to be the surface in P

2 × P
2 given by the equations:

f = x10x20 − x11x21 and g = x10x20 − x12x22,

where xij is the jth coordinate on the ith copy of P
2. In this way, S is the

surface obtained by blowing up the points P0 = (1 : 0 : 0), P1 = (0 : 1 : 0)
and P2 = (0 : 0 : 1) of P

2 and the exceptional divisors Ei are given by

E0 := V (x11, x12, x20), E1 := V (x10, x12, x21) and E2 := V (x10, x11, x22).

We define S1 = S2 = S and embed X = S × S in (P2)4 using xi0, xi1 and xi2

as projective coordinates of the ith P
2 for i = 1, 2, 3, 4. Let P be the point

P := ((x10, x11, x12), (x20, x21, x22), (x30, x31, x32), (x40, x41, x42)).

Consider the automorphism of X defined by

g3(P ) = ((x12 : x10 : x11), (x22 : x20 : x21), (x31 : x32 : x30), (x41 : x42 : x40))

g4(x1, x2, x3, x4) = (x4, x3, x1, x2).

It is easy to check that g3
3 = g4

4 = Id and g4g3 = g3g
2
4; hence

G = 〈g3, g4〉 
 Z4 � Z3 :=: Dic3,

which is called the dicyclic group of order 12. The set of the fixed points
Fix of G is given by the union of

Fix(g3) =
{
(Q1, Q2) | Q1, Q2 ∈ {(1 : a : a2) × (1 : a2 : a) | a3 = 1

}}

and

Fix(g2
4) = {(T × T × Q × Q | T, Q ∈ {(1 : ±1 : ±1)}} ,

we have a finite number of fixed points.
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We are looking for a global section s of OX(−KX) that is G-invariant
and whose zero-locus V (s) is smooth and does not intersect Fix. We have
an exact sequence

0 → 〈f, g〉 ↪→ H0(P2 × P
2,O(1, 1)) � H0(X,−KX) → 0

with the surjection given by the inclusion ι : X → P
2 × P

2. Hence, we have
a surjection

H0((P2)4,O(1, 1, 1, 1)) � H0(X,−KX)

with kernel given by

〈f1, g1〉 · H0((P2)4,O(0, 0, 1, 1)) + 〈f2, g2〉 · H0((P2)4,O(1, 1, 0, 0)).

The representation of Dic3 in H0(X,−KX) 
 C
49 has an invariant space

H0(X,−KX)G of dimension 5. By direct inspection, we have checked that
the generic invariant section s does not intersect Fix and is smooth. Then
Y = V (s) is a Calabi–Yau threefold with a free action of Dic3.

If we call R the representation of Dic3 in H2(Y, C) 
 H2(X, C) given by
gi �→ g∗i ∈ GL(H2(X, C)) 
 GL(H2(S, C) ⊕ H2(S, C)) 
 GL(C8), we have

R(g3) � A3 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

R(g4) � A4 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 −1 −1 −1 0 0 0 0
−1 0 −1 −1 0 0 0 0
−1 −1 0 −1 0 0 0 0
1 1 1 2 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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where we used the base

{H1, E10, E11, E12, H2, E20, E21, E22} ,

where π∗
i (Ej) = Eij and π∗

i (π
∗H) = Hi. Hence, dim H2(Y, C)G = 1, so we

have h1,1(Y/G) = 1. By Theorem 3.1, we know that χ(Y ) = −72 and then
χ(Y/G) = −6 because the action is free. In conclusion, you find below the
Hodge diamond of Y/G

1

0 0

0 1 0

1 4 4 1,

0 1 0

0 0

1

where h(Y/G) = 5. Note that, because h1,1(Y/G) = 1, this example achieves
the minimum of the height for the quotient Y/G, where G is isomorphic to
the Dic3 and Y is as above. It is interesting to note that taking

g′3(P ) = ((x12 : x10 : x11), (x22 : x20 : x21), (x32 : x30 : x31), (x42 : x40 : x41))

the group G′ spanned by g4 and g′3 is cyclic of order 12 and a generator
is g′3g4 := g12. Following the same argument as the previous case, it can
be shown that exist a Calabi–Yau Y such that G′ acts on Y freely. The
quotient Y/G′ is hence again a Calabi–Yau and has the same Hodge diamond
as Y/G. However, these two manifolds are not even diffeomorphic because
Π1(Y/G) 
 G 
 Dic3 �
 Z12 
 G′ 
 Π1(Y/G′).

4.2 dP3 × dP3 with maximal order 3

Suppose S1 and S2 del Pezzo surfaces of degree 3. Then −KSi is very
ample and gives an embedding in P

3. The surface obtained is a cubic (is
called anticanonical model of Si) and all smooth cubic surfaces in P

3 can be
obtained in this way.
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Set f1 := x3
0 + x3

1 + x3
2 + x3

3 and f2 := y3
0 + y3

1 + y3
2 + y3

3 and consider the
Fermat surfaces Si := V (fi). Denote, as usual, X = S1 × S2 ⊂ P

3 × P
3 and

consider the automorphism given by

ϕ(x, y) = ((x1 : x2 : x0 : ωx3), (y1 : y2 : y0 : ω2y3)),

where ω �= 1 is a fixed root of z3 − 1. The group G = 〈ϕ〉 is cyclic of order
3; hence we have

Fix(ϕ) = Fix(G) =
{
((1 : ω2 : ω : c), (1 : ω : ω2 : d)) | d3 = c3 = −3

}
.

There is an isomorphism

H0(P3 × P
3,O(1, 1)) 
 H0(X,−KX),

so we have to study the polynomial of bidegree (1, 1). The action of Z3 on
X gives a representation of Z3 in H0(X,−KX) and a basis for the invariant
space is {G0, G1, G2, G3, G4, G5}, where

G0 = ωx3y0 + ω2x3y1 + x3y2, G1 = ω2x0y3 + ωx1y3 + x2y3,

G2 = x0y1 + x1y2 + x2y0, G3 = x0y2 + x1y0 + x2y1,

G4 = x0y0 + x1y1 + x2y2 and G5 = x3y3.

By direct computation, one can check that the generic section s does not
intersect Fix(Z3); hence the action of G restricted to V (s) is free. For
example, taking s to be G4 + G5 = x0y0 + x1y1 + x2y2 + x3y3 gives a section
whose zero locus Y is smooth and Y ∩ Fix(Z3) is empty.

Assume ϕ ∈ Aut(S1) × Aut(S2) with o(ϕ) = 3. By the Lefschetz fixed-
point theorem, one can show that

h1,1(Y )G = 2 +
2
3
(χ(Fix(π1 ◦ ϕ)) + χ(Fix(π2 ◦ ϕ))),

where πi : X → Si is the projection onto the ith factor of the product X. In
fact, by Lefschet’s Hyperplane Theorem, the group H1,1(Y ) is isomorphic to
H2(X). The dimension of the space of invariants with respect to G is equal
to the traces of the homomorphisms induced on the second cohomology
group of X = S1 × S2 by the elements of G. By linear algebra and the
Künneth formula, the traces on the cohomology groups of the product X is
the sum of the traces on the cohomology on the factors H2(Si) for i = 1, 2.
These traces can be computed via the Lefschetz fixed-point Theorem. In
this case, we obtain h1,1(Y/G) = 6. The same number could be obtained by
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studying the invariant space of H2(X, C) with respect to the representation
of Z3 given by

ϕ �→ ϕ∗ �
[
A1 0
0 A2

]

where A1 and A2 are respectively
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0
−1 −1 −1 0 −1 −1 −2
0 0 0 0 −1 −1 −1
0 −1 0 0 0 −1 −1
0 0 −1 0 0 −1 −1
−1 0 0 0 0 −1 −1
1 1 1 0 1 2 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 −1 −1 0 −1
0 0 0 0 0 1 0
−1 −1 −1 −1 −1 0 −2
−1 0 0 0 −1 0 −1
0 −1 0 0 −1 0 −1
0 0 −1 0 −1 0 −1
1 1 1 1 2 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By Theorem 3.1, we have χ(Y/Z3) = −18/3 = −6; so the Hodge diamond
of the quotient is the following one:

1

0 0

0 6 0

1 9 9 1

0 6 0

0 0

1

In particular, the height is h(Y/Z3) = 15.

As shown in [7], up to isomorphism of P
3, there are three possible pairs

(f, G) where f is a homogeneous polinomial of degree 3 and G is a group
fixing f of order 3. One can show that Fix(f) is either one of the following:
three points or six points, or one line. Thus, the least value that can be
assumed by χ(Fix (G)) is 3 if we exclude the case with one line of fixed points.
Hence, the example presented here achieves the minimum for h(Y/G).

5 New examples

We present some new examples.
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5.1 (P1 × P
1) × (P1 × P

1) with maximal order 16

Take S1 = S2 = P
1 × P

1 and define X to be S1 × S2. We begin to search for
a group H ≤ (Aut(P1))4 � S4 = Aut(X) such that |H| = 8 and |Fix(H)| <
∞. Moreover, we want a section s that is an eigenvector for the action of
H on H0(X,−KX) and does not intersect Fix(H). After that, we try to
extend H to a group of order 16 with the same properties.

Let g ∈ (Aut(P1))4 � S4 be an element of finite order. Without loss of
generality, we can take g of the form

g̃ ◦ σ :=
((

1 0
0 a1

)
,

(
1 0
0 a2

)
,

(
1 0
0 a3

)
,

(
1 0
0 a4

))
◦ σ,

where σ ∈ S4 and ai ∈ C
∗ for i = 1, 2, 3, 4.

If the order o(g) of g is 2, we can choose σ ∈ {Id, (12), (12)(34)}. An easy
check shows that

((x : y), (x : a2y), (1 : 0), (1 : 0))

is a line of fixed points if σ = (12) or σ = (12)(34); so we must take σ = Id.
The only possible case is aj = −1, for which

g = g2 :=
((

1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
1 0
0 −1

))

and

Fix(g2) = {(P1, P2, P3, P4) | Pi ∈ {(1 : 0), (0 : 1)}} .

If o(g) = 4, we can take σ ∈ {Id, (12), (12)(34), (1234)}. The automor-
phism σ cannot be a permutation of order 4. In fact, in this case g2

would have a fixed line, as previously showed. Then, we have Fix(g) ⊂
Fix(g2) = Fix(g2). Suppose σ = Id or σ = (12) and consider an eigenvector
s ∈ H0(X,−KX) = OX(2, 2, 2, 2)(X). The condition o(g) = 4 is then equiv-
alent to a4

j = 1 for σ = Id and a2
1a

2
2 = a4

3 = a4
4 = 1 for σ = (12). Necessarily

g satisfies g2 = g2 and this implies respectively a2
j = −1 and a1a2 = a2

3 =
a2

4 = −1. One can see that for all P ∈ Fix(g2) there exists a unique element
ei of the usual basis of OX(2, 2, 2, 2)(X) such that ei(P ) �= 0. For example,
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we have

x2
1x

2
2x

2
3x

2
4|(1:0)4 = 1 and x2

1x
2
2x

2
3y

2
4|((1:0)3,(0:1)) = 1.

Then s has to be an element of the eigenspace of both x2
1x

2
2x

2
3x

2
4 and x2

1x
2
2

x2
3y

2
4, but these have different eigenvalues (1 and a2

4 = −1 respectively) so
s = 0. Suppose that σ = (12)(34). The conditions o(g) = 4 and g2 = g2

show that g has to be of the form

((
1 0
0 a1

)
,

(
1 0
0 −a−1

1

)
,

(
1 0
0 −a3

)
,

(
1 0
0 −a−1

3

))
◦ (12)(34)

for some a3, a4 ∈ C
∗.

Finally, take g to be an automorphism of order 8. Then σ has to be
a permutation of order3 4. For example, pick σ = (1324) (that gives the
following conditions on the ai’s: a1a2a3a4 = −1) and let a1 = a2 = a3 =
−a4 = 1. A basis for H0(X,−KX) is given by {e1, . . . , e11}, where

e1 = x2
1x2y2y

2
3x4y4 + x1y1x

2
2x3y3y

2
4 − x1y1y

2
2x

2
3x4y4 + y2

1x2y2x3y3x
2
4,

e2 = x2
1x2y2x3y3y

2
4 − x1y1x

2
2y

2
3x4y4 + x1y1y

2
2x3y3x

2
4 + y2

1x2y2x
2
3x4y4,

e3 = x2
1y

2
2x

2
3y

2
4 + x2

1y
2
2y

2
3x

2
4 + y2

1x
2
2x

2
3y

2
4 + y2

1x
2
2y

2
3x

2
4,

e4 = −x2
1y

2
2x3y3x4y4 + x1y1x2y2x

2
3y

2
4 − x1y1x2y2y

2
3x

2
4 + y2

1x
2
2x3y3x4y4,

e5 = x2
1x

2
2x

2
3y

2
4 + x2

1x
2
2y

2
3x

2
4 + x2

1y
2
2x

2
3x

2
4 + y2

1x
2
2x

2
3x

2
4,

e6 = x2
1x2y2x

2
3x4y4 + x2

1x2y2x3y3x
2
4 − x1y1x

2
2x

2
3x4y4 + x1y1x

2
2x3y3x

2
4,

e7 = x2
1x

2
2x

2
3x

2
4,

e8 = y2
1y

2
2y

2
3y

2
4,

e9 = x2
1y

2
2y

2
3y

2
4 + y2

1x
2
2y

2
3y

2
4 + y2

1y
2
2x

2
3y

2
4 + y2

1y
2
2y

2
3x

2
4,

e10 = x2
1x

2
2y

2
3y

2
4 + y2

1y
2
2x

2
3x

2
4,

e11 = x1y1y
2
2x3y3y

2
4 − x1y1y

2
2y

2
3x4y4 + y2

1x2y2x3y3y
2
4 + y2

1x2y2y
2
3x4y4.

Now, we try to extend the group H. Define h to be the involution of (P1)4

such that

(xi : yi) �−→ (yi : xi).

3By this result, one can show that an element of order 16 cannot exist in (Aut(P1))4 �

S4 with the request we made. In fact, if such g existed, g2 would have order 8 and
g2 = (A1, A2, A3, A4) ◦ σ2 with σ2 permutation of order 4. This is not possible for an
element of S4.



“ATMP-16-3-A4-BIN” — 2013/2/1 — 19:35 — page 905 — #19
�

�

�

�

�

�

�

�

CALABI–YAU THREEFOLDS 905

An easy check shows that gh = hg and that the following hold:

Fix(h) = {((1 : ±1), (1 : ±1), (1 : ±1), (1 : ±1))}

and

Fix(g4h) = {((1 : ±i), (1 : ±i), (1 : ±i), (1 : ±i))} .

For every k �= 0, 4 we have (gkh)2 = g2kh2 = g2k so Fix(gkh) ⊂ Fix(g4) =
Fix(g2). This means that, defining G to be the group generated by g and h,
Fix(G) is a finite set composed of 48 points and G 
 Z8 × Z2.

If we take

s =
11∑

i=1

Ciei

and impose both s(P ) = 1, for all P ∈ Fix(g) and h∗(s) = s, we have the
following conditions on the Ci’s:

C3 = C5 = C7 = C8 = C9 = C10 = 1, C1 = C2, C11 = C6, C4 = 0.

By evaluating at the other fixed points, we obtain four different non-
identically zero linear combinations of the Ci’s; so the generic invariant
section does not intersect Fix(G). For example, the section obtained by
taking C1 = 1 and C6 = 2 fulfils all our requests. Moreover, it is smooth, so
there exists a group of order 16 = M(P1 × P

1, P1 × P
1) that acts freely on a

Calabi–Yau threefold embedded in (P1)4.

The representation of G on H2(Y, C) is given by

g �→ g∗ �

⎡

⎢
⎢
⎣

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ and h �→ h∗ �

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

so both h and g4 are trivial on H2(Y, C) = H2(P1, C)⊕4.

This action has then a unique fixed class in H2(Y, C) (the sum of the four
P

1’s). By Theorem 3.1, we have χ(Y/G) = −128/16 = −8, so the Hodge
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diamond of the quotient Y/G is the following one:

1

0 0

0 1 0

1 5 5 1

0 1 0

0 0

1

In particular, the height is 6 and it is the least possible for a quotient of a
Calabi–Yau in (P1)4 because h1,1(Y/G) = 1 and |G| is maximal.

5.2 dP4 × dP4 with maximal order 8

As proved, for instance, in [7], every del Pezzo surface of degree 4 can be
obtained as a complete intersection of two quadrics of P

4. Moreover, one
can choose the equations to be of the form

f = x2
0 + x2

1 + x2
2 + x2

3 + x2
4 and g = a0x

2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4,

where ai �= aj ∈ C for i �= j. We choose

g = x2
0 − ix2

1 − x2
2 + ix2

3

and S1 
 S2 
 S = V (f, g) ⊂ P
4. Let r be the automorphism, which sends

(x, y) to the point

((x0 : x1 : −x2 : x3 : −x4), (y0 : y1 : −y2 : y3 : −y4)) .

Denote by t the automorphism, which sends (x, y) to

((y0 : y1 : −y2 : −y3 : y4), (x0 : x1 : x2 : x3 : x4)) .

Consider the groups H = 〈r, t2〉 
 Z2 × Z2 and G = 〈r, t〉 
 Z4 × Z2.
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By adjunction −KS1×S2 := −KX 
 OX(5, 5) ⊗OX(−4,−4) = OX(1, 1).
The morphism ι : S × S −→ P

4 × P
4 induces an isomorphism

ι∗ : H0(P4 × P
4,O(1, 1)) −→ H0(S × S,OX(1, 1));

so we can use

{xiyj}0≤i,j≤4

as a basis of the space of sections of the anticanonical bundle. It is easy to
see that the vector space V spanned by

{x0y0, x1y0, x0y1, x1y1, x2y2, x3y3, x4y4}

is such that for all h ∈ H and for all s ∈ V , h∗(s) = λs for some λ ∈ C
∗.

By taking the generic section s ∈ V and imposing r∗s = t∗s = s (so that
for every automorphism g of G, V is an eigenspace with respect to g∗), we
obtain

s = A1x0y0 + A3y0x1 + A3x0y1 + A4x1y1 + A7x4y4,

where Ai ∈ C. Let a and b be fixed roots of 2z2 + 1 + i and 2z2 + 1 − i,
respectively. Then

Fix(r) = {(P, Q) |P, Q ∈ {(1 : ±a : 0 : ±b : 0)}} ,

Fix(t2) = {(P, Q) |P, Q ∈ {(±a : ±b : 0 : 0 : 1)}}

and

Fix(rt2) = {(P, Q) |P, Q ∈ {(±b : 1 : ±a : 0 : 0)}} .

To look for the fixed points of G it suffices to know the fixed points of r, t2

and rt2. In fact, the following holds:

Fix(t3) = Fix(t) ⊆ Fix(t2) = Fix((rt)2) ⊇ Fix(rt) = Fix(rt3).

An easy check shows that for generic values of A1, A3, A4 and A7, the section
s does not intersect Fix(G).

We can check directly that the section corresponding to A1 = 1, A3 =
−2, A4 = 3 and A7 = 1 is smooth and doesn’t intersect Fix(G); so there
exists a Calabi–Yau threefold Y embedded in S1 × S2 with Z4 × Z2 acting
freely on Y .
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We do not have an explicit description of a basis for Pic(Y ) = Pic(S1) ⊕
Pic(S2) 
 Z

12, but we can use the Lefschetz Fixed Point formula to get the
traces we need to compute h1,1(Y )G. For example, note that r = r1 × r2

with ri ∈ Aut(Si); so the trace of r∗ : H2(S1 × S2, C) → H2(S1 × S2, C) is
equal to the sum of the traces of

r∗i : H2(Si, C) → H2(Si, C).

By recalling that

16 = χ(Fix(r)) = χ(Fix(r1 × r2)) = χ(Fix(ri))2

and by Lefschetz Fixed Point formula, we have

Tr(r∗) = Tr(r∗1) + Tr(r∗2) = χ(Fix(r∗1)) − 2 + χ(Fix(r∗2)) − 2 = 2(4 − 2) = 4.

With the same method we obtain Tr((t∗)2) = Tr(r∗(t∗)2) = 4. We can write
t as (t1 × t2) ◦ σ, where σ is the the permutation of the two copies of S.
Hence, t∗ will swap H2(S1) and H2(S2) in the sum H2(S1) ⊕ H2(S2) and
this means that its trace is zero. In the same way, we obtain Tr((t∗)3) =
Tr(r∗t∗) = Tr(r∗(t∗)3) = 0. Merging these results and recalling that χ(Y ) =
−32, we obtain

h1,1(Y/G) =
12 + 4 + 4 + 4 + 0 + 0 + 0 + 0

8
= 3 and h1,2(Y/G) = 5,

so the quotient has the following Hodge diamond:

1

0 0

0 3 0

1 5 5 1

0 3 0

0 0

1

In particular, the height is 8.
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5.3 P
2 × P

2 with maximal order 9

Let (x0 : x1 : x2) and (y0 : y1 : y2) be the projective coordinates on the two
copies of P

2 and set a = e2πi/3. Consider the automorphism of P
2 × P

2 := X
defined by

g := (x0 : ax1 : a2x2) × (y0 : ay1 : a2y2) := g1 × g2

and

h := (x1 : x2 : x0) × (y1 : y2 : y0) := h1 × h2.

It is easy to show that the group G generated by g and h is isomorphic to
Z3 × Z3.

Moreover, it is easy to see that

Fix(G) = (Fix(g1) × Fix(g2)) ∪ (Fix(h1) × Fix(h2))

∪ (Fix(g1h1) × Fix(g2h2)) ∪ (Fix(g2
1h1) × Fix(g2

2h2)),

where

Fix(gi) = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)} ,

Fix(hi) =
{
(1 : 1 : 1), (1 : a : a2), (1 : a2 : a)

}
,

Fix(gihi) =
{
(1 : 1 : a2), (1 : a2 : 1), (a2 : 1 : 1)

}
,

Fix(g2
i hi) = {(1 : 1 : a), (1 : a : 1), (a : 1 : 1)} .

Consider the following global sections of OP2(3) = −KP2 :

ei,0 = x3
0 + a2ix3

1 + aix3
2, ei,1 = x2

0x1 + a2ix2
1x2 + aix0x

2
2,

ei,2 = x0x
2
1 + a2ix1x

2
2 + aix2

0x2, e0 = x0x1x2.

Then g∗(ei,j) = ajei,j , h∗(ei,j) = aiei,j , g∗(e0) = h∗(e0) = e0; hence

{e0, ei,j}0≤i,j≤2

is a basis of H0(P2,OP2(3)) composed of eigenvectors of both g∗ and h∗.
Since

H0(X,−KX) 
 H0(P2,−KP2) ⊗ H0(P2,−KP2),
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a basis for the space of invariant sections is given by

{ei1,j1 ⊗ ei2,j2}i1+i2≡30,j1+j2≡30 ∪ {e0 ⊗ e0,0, e0,0 ⊗ e0, e0 ⊗ e0} .

By the direct computation, we can show that the generic invariant section
does not intersect Fix(G). Moreover, the system |H0(X,−KX)G| is base-
point free. By Bertini’s Theorem, the generic section is smooth. Hence,
there exists a Calabi–Yau threefold Y embedded in P

2 × P
2 equipped with

a free action of G.

The space H2(X, Z) is free of rank two and is generated by π∗
1H and π∗

2H
where 〈H〉 = H2(P2, Z). Every automorphism of P

2 fixes H, so H2(X, C)G =
H2(X, C). This implies that the following is the Hodge diamond of Y/G:

1

0 0

0 2 0

1 11 11 1

0 2 0

0 0

1.

Its height is 13. An element g ∈ Aut(P2 × P
2) = (Aut(P2) × Aut(P2)) � Z2

of order 3 has to be of the form g = g1 × g2 with gi ∈ Aut(P2). This means
that H2(X, Z)〈g〉 = H2(X, Z) and thus the minimum for h(Y/G) is achieved
by this example.

5.4 dP5 × dP5 with maximal order 5

Fix P1 = (1 : 0 : 0), P2 := (0 : 1 : 0), P3 := (0 : 0 : 1) and P4 := (1 : 1 : 1) in
P

2. Let S be the unique del Pezzo surface of degree 5. It is well known
that the automorphism group of S is isomorphic to the symmetric group of
order 120. The sections of OS(−KS) are the cubics through the points Pi

for i = 1, 2, 3, 4. Hence, a basis of H0(dP5,−KdP5) can be taken to be

y1 := x2
0x1 − x0x1x2 y2 := x2

0x2 − x0x1x2,

y3 := x2
1x0 − x0x1x2 y4 := x2

1x2 − x0x1x2,

y5 := x2
2x0 − x0x1x2 y6 := x2

2x1 − x0x1x2,
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where x0, x1, x2 is a system of homogeneous coordinates on P
2. Consider

the following transformation T on the projective plane, namely:

(x0 : x1 : x2) �→ (x0(x0 − x2) : x0(x0 − x1) : (x0 − x1)(x0 − x2)).

It is easy to check that T acts as automorphism of S and its action on
H0(S,−KS) is determined by

y1 �→ y1, y2 �→ y1 + y5 − y2,
y3 �→ y2, y4 �→ y2 + y3 − y1,

y5 �→ −y6 + y5 − y2, y6 �→ −y4 − y1 + y3.

It is easy to see that the order of T is five thus G := 〈T 〉 is isomorphic to
Z5. Let us now consider the action of G diagonally on X = S × S. We will
use x0, x1, x2 and z0, z1, z2 as projective coordinates on the two P

2’s we blow
up to obtain the two copies of S. There is an action of G on H0(X,−KX).
Let ω be a primitive fifth root of unity. The space of invariants under this
action is generated by the following polynomials, namely:

f1g1 = x0x1(x0 − x2)z0z1(z0 − z2),

f1g2 = x0x1(x0 − x2)z2(z1 − z2)(z0 − z1),

f2g1 = x2(x1 − x2)(x0 − x1)z0z1(z0 − z2),

f2g2 = x2(x1 − x2)(x0 − x1)z2(z1 − z2)(z0 − z1),
h1k4, h2k3, h3k2, h4k1,

where we set:

h1 = (1 + ω2)y1 + (ω3 − ω2)y2 + (−2 − ω − ω2 − ω3)y3

+ y4 + ω2y5 − ωy6,

h2 = −(ω + ω2 + ω3)y1 + (1 + 2ω + ω2 + ω3)y2

+ (ω3 − 1)y3 + y4 − (1 + ω + ω2 + ω3)y5 − ω2y6,

h3 = (1 + ω)y1 + (−2ω − 1 − ω2 − ω3)y2 + (ω2 − 1)y3 + y4

+ ωy5 − ω3y6,

h4 = y1 + (ω2 − 1)y2 + (ω3 − 1)y3 + (1 + ω2 + ω)y4 − (ω + ω2)y5

− (ω2 + ω3)y6

and ki = hi(z0, z1, z2). It is easy to check that hi are eigenvectors with
eigenvalue ωi with respect to the action of T on H0(S,−KS).
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Let

s := A1f1g1 + A2f1g2 + A3f2g1 + A4f2g2 + A5h1k4 + A6h2k3

+ A7h3k2 + A8h4k1, (5.1)

where Ai are complex numbers not all of which are zero. For any choice of
the Ai’s, we get a section in H0(X,−KX) that is invariant with respect to
G.

The transformation T acts with fixed points on X. They are given by

(1 : 1/(1 + ρ) : 1 − ρ),

where ρ satisfies the degree 2 equation ρ2 + ρ − 1 = 0 and thus there are
four fixed points on X. Note that, by the Lefschetz formula this is the least
number of fixed points one could obtain. By a suitable choice of the Ai’s, we
restrict to the locus Σ such that the sections s in (5.1) do not pass through
the fixed points above. It is easy to see that Σ is not empty. For s ∈ Σ the
set of zeroes Y = V (s) is thus invariant with respect to the free action of G
on it.

Now, we look for base points of the system above. First, we look for
solutions on P

2 × P
2 of the equations

f1g1 = f1g2 = f2g1 = f2g2 = h1k4 = h2k3 = h3k2 = h4k1 = 0.

Next, we recall that S is obtained from P
2 by blowing up the points Pi.

After some computation, we show that there are 20 base points.

For each of the base points, we checked if they are smooth or not for the
generic section. This is true if we restrict to an dense open set Ω of P

7,
where {Ai}i=1..8 are interpreted as a homogeneous system of coordinates.
For example, let us take the point

(((1 : 1 : 1), (1 : 1)), (1 + ω2 + ω3 : 1 : ω2 + ω3)),

that is the point whose projection on S1 is the point (1 : 1) on the exceptional
divisor associated to (1 : 1 : 1) and whose projection on S2 is (1 + ω2 + ω3 :
1 : ω2 + ω3). We first make the substitution x0 = w0 + w1, x1 = w1, x2 =
w1 + w2, so the point (1 : 1 : 1) is mapped to the point (0 : 1 : 0). Next,
we work in the local chart where the second coordinate is non-zero. Let
((u, v), (l : m)) be the coordinate on blow-up. Since m �= 1, we can consider
affine coordinates v, l and, by the equation of the blow-up, u = vl. Thus, we
evaluate all the polynomials f1g1, f1g2, f2g1, f2g2, h1k4, h2k3, h3k2, h1k4 at
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w0 = vl, w1 = 1, w2 = v. We divide by v and then take the derivatives with
respect to v, l, z0, z1, z2. These must be evaluated at l = 1, v = 0 and z0 =
1 + ω2 + ω3, z1 = 1, z2 = ω2 + ω3. Doing so yields conditions on the Ai’s.
These conditions define the equations of a closed set, the complement of
which is the non-empty open set Ω. The intersection of Ω and Σ yield an
open set which contains sections s which are invariant with respect to G,
do not pass through fixed points and such that (s = 0) is smooth at the
base points. By Bertini’s Theorem a generic element of Ω ∩ Σ is smooth.
This yields a Calabi–Yau manifold Y/G with Euler characteristic −10. As
in Section 5.1 we compute h1,1(Y/G) using the Lefschetz formula and we
obtain h1,1(Y/G) = 2. Then h2,1(Y/G) = 7 and the Hodge diamond is the
following one:

1

0 0

0 2 0

1 7 7 1

0 2 0

0 0

1

Note that Y/G realize the minimum for the height.

5.5 P
1 × P

1 × dP4 with maximal order 4

Let us consider again the del Pezzo surface S2 of degree 4 embedded in
P

4 used in Section 5.2. If we denote with g1 and h1 the automorphism of
S1 = P

1 × P
1 such that

g1((x10 : x11), (x20 : x21)) = ((x10 : −x11), (x20 : −x21))

and

h1((x10 : x11), (x20 : x21)) = ((x11 : x10), (x21 : x20)),

we obtain the relation g2
1 = h2

1 = g1h1g
−1
1 h−1

1 = Id that is 〈g1, h1〉 
 Z2 ⊕ Z2.
The same holds for the automorphism g2 and h2 of S2 such that

g2((y0 : y1 : y2 : y3 : y4)) = (y0 : y1 : −y2 : y3 : −y4)
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and

h2((y0 : y1 : y2 : y3 : y4)) = (y0 : y1 : −y2 : −y3 : y4).

Denote by g = g1 × g2 and h = h1 × h2; hence we have G := 〈g, h〉 

Z2 ⊕ Z2.

We recall (see Section 5.2) that if a and b are fixed roots of 2z2 + 1 + i
and 2z2 + 1 − i then

Fix(g2) = {(1 : ±a : 0 : ±b : 0)} ,

Fix(h2) = {(±a : ±b : 0 : 0 : 1)}

and

Fix(g2h2) = {(±b : 1 : ±a : 0 : 0)} .

It is easy to see that |Fix(α)| = 4 for each α ∈ 〈g1, h1〉 \ {Id} and, conse-
quently, that |Fix(G)| = 48.

Analogously to the previous cases, we can conclude that there exists a
smooth Calabi–Yau threefold Y ⊂ X and a group G 
 Z2 ⊕ Z2 acting freely
on it. The quotient has the following Hodge diamond:

1

0 0

0 5 0

1 13 13 1

0 5 0

0 0

1.

Hence, the height of the quotient is 18.

5.6 Other similar examples

For brevity we don’t treat explicitly some examples. These are some three-
folds in P

2 × dP6, P
2 × dP3, (P1 × P

1) × dP6 and dP6 × dP4. The threefolds
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in P
2 × dP6 and in P

2 × dP3 admit a free action of Z3 (in both cases M(S1,
S2) = 3). The quotients have Hodge diamonds respectively:

1

0 0

0 3 0

1 21 21 1 and

0 3 0

0 0

1

1

0 0

0 4 0

1 13 13 1

0 4 0

0 0

1

These are threefolds with minimal height. The threefolds in (P1 × P
1) × dP6

and in dP4 × dP6 admit a free action of Z2 (again this hits the maximum
because M(S1, S2) = 2 for these two cases). The Hodge diamonds are

1

0 0

0 5 0

1 29 29 1 and

0 5 0

0 0

1

1

0 0

0 7 0

1 19 19 1.

0 7 0

0 0

1

6 Results of non-existence

In this section, we present some results of non-existence. In particular, we
show that there are cases for which M(S1, S2) > 1 but a group G that fulfils
our requests doesn’t exist.

6.1 dP8 × S, with S ∈ {
P

1 × P
1, dP8, dP6, dP4, dP2

}

We will show that in these cases m(S1, S2, Y ) = 1 for all Y . The key points
are Corollary 6.2 and some structural results on Aut(dP8).
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Lemma 6.1. If S is a del Pezzo surface and g ∈ Aut(S) is such that o(g) =
p is prime, then g has a fixed point.

Proof. Every del Pezzo surface S is a rational surface. Suppose that the
fixed locus of g is empty. Recall that p is prime. Let G := 〈g〉 be the group
generated by g. Then Fix(G) is empty. In fact, for every n �≡p 0 there exists
m such that nm ≡p 1; this implies

Fix(gn) ⊂ Fix((gn)m) = Fix(g).

Therefore, R := S/G is a smooth surface and R is rational. In particular,
Π1(R) = {Id}. However, this is not possible because S is simply connected,
so Π1(R) 
 G �
 {Id}. Hence, g must have at least one fixed point. �

Corollary 6.2. For every finite subgroup G of Aut(S), |Fix(G)| > 0.

By [7], every automorphism of a del Pezzo surface S of degree 8 comes
from an automorphism of P

2 that fixes the point R such that S = Bl{R} P
2.

Suppose S �= dP8. Then, we search for a group G ≤ Aut(dP8) × Aut(S). We
are interested in the cases S ∈ {P

1 × P
1, dP6, dP4, dP2

}
for which M(dP8, S)

is, respectively, 16, 2, 4 and 2. It is then enough to show that there are not
groups of order 2 whose action is free on Y . Let g = (g1, g2) be an involution.
By Corollary 6.2 there exists a fixed point P of g2. The automorphism g1

comes from an involution of P
2; hence it has a line L of fixed points, therefore

L × {P} is a line of fixed points for g.

If S = dP8, then Aut(dP×2
8 ) = Aut(dP8)×2

� Z2. Let G = 〈g〉 where g =
(g1, g2). Using the same result as above, we will have a surface of fixed
points. Then, it suffices to analyze the case g = (g1, g2) ◦ τ , where τ is the
involution that switches the two copies of dP8. Then, by changing projective
coordinates, we can assume that

(g1, g2) =

⎛

⎝

⎡

⎣
a 0 0
0 b 0
0 0 1

⎤

⎦ ,

⎡

⎣
a−1 0 0
0 b−1 0
0 0 1

⎤

⎦

⎞

⎠

for some a, b ∈ C
∗. It is easy to see that ((ax : by : 0), (x : y : 0)) is a line of

fixed points.

In conclusion, we have shown that m(dP8, S, Y ) = 1 for a del Pezzo surface
S (here we have checked all the cases for which M(dP8, S) �= 1) and for all
Y Calabi–Yau embedded in dP8 × S.
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6.2 dP7 × dP7 with estimated maximal order 7

There is only one del Pezzo surface S of degree 7. It is given as the blow-up
of P

2 in P0 = (1 : 0 : 0) and P1 = (0 : 1 : 0). We will show that there does
not exist a section s of −KS×S such that g∗s = cs for some c ∈ C

∗ and
g ∈ Aut(S × S) of order 7, which does not intersect the fixed locus of 〈g〉.

By [7], every automorphism of a del Pezzo surface of degree 7 comes from
an element of PGL(3) fixing the set {P0, P1}. Thus, we have

Aut(S) 

〈⎡

⎣
1 0 b
0 a c
0 0 d

⎤

⎦ ,

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

〉

.

Recall that Aut(S × S) = Aut(S)×2
� Z2. Since we need g of order 7, we

have to choose an element of the form g = (g1, g2), where gi ∈ Aut(S) and

gi =

⎡

⎣
1 0 bi

0 ai ci

0 0 di

⎤

⎦ .

After a change of projective coordinates that fixes the points P0 and P1,
we may assume bi = ci = 0 so that gi is in diagonal form. The condition
o(g) = 7 gives a7

i = d7
i = 1. Since we need a finite number of fixed points,

we must impose ai �= 1 �= di and ai �= di.

In conclusion, we can take g of the form
⎛

⎝

⎡

⎣
1 0 0
0 λm1 0
0 0 λn1

⎤

⎦×
⎡

⎣
1 0 0
0 λm2 0
0 0 λn2

⎤

⎦

⎞

⎠ ,

where λ = e2πi/7 and 0 �= ni, mi and ni �= mi.

The fixed points of gi as an automorphism of P
2 are P0, P1 and P2, whereas

the fixed points of gi as an automorphism of S are

{(P0, Q), (P1, Q), P2 |Q ∈ {(1 : 0), (0 : 1)}} .

Here, for example, with ((0 : 1 : 0), (1 : 0)) we mean the point (1 : 0) on the
exceptional divisor E1 = π−1(P1), where we use the standard local descrip-
tion of S in a neighbourhood of E1 as the surface of C

2 × P
1 such that

um = vl with {((0, 0), (l : m))} = E1. Hence, in total, G := 〈g〉 has 25 fixed
points.
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We blow up P
2 in P0 and P1. Then, the following isomorphism holds:

H0(S,−K2) 
 〈x3
2, x

2
0x1, x

2
0x2, x0x

2
1, x0x

2
2, x

2
1x2, x1x

2
2, x0x1x2〉.

The correspondence is given by taking the strict transform of a polynomial
see as a global section of OP2×P2(3, 3). We call ei the elements of the base
on the first del Pezzo surface and fi the elements of the base on the second
one so that, by the Künneth formula, we obtain

H0(S × S,−KS×S) 
 〈ei ⊗ fj〉.

Suppose that s is an eigenvector of H0(S × S,−KS×S) and that s(P ) �= 0
for all P fixed points of G. Then, for example,

s(((1 : 0 : 0), (1 : 0)), ((1 : 0 : 0), (1 : 0))) �= 0

if and only if s belongs to the eigenspace of x2
0x1y

2
0y1 and

s(((1 : 0 : 0), (1 : 0)), ((1 : 0 : 0), (0 : 1))) �= 0

if and only if s is in the eigenspace of x2
0x1y

2
0y2. However, these two eigenvec-

tors have corresponding eigenvalues λm1+m2 and λm1+n2 and these numbers
are different if and only if m2 �= n2, which it is true by hypothesis. This
means that s must be zero and we have a contradiction.

Albeit M(dP7, dP7) = 7, this shows that an automorphism of S × S with
finite order cannot act freely on a smooth section of −KS×S .

6.3 dP6 × dP3 with estimated maximal order 9

In this case, recall that M(dP3, dP6) = 9. Nonetheless, the maximum order
of G to have a free action on a Calabi–Yau threefold Y embedded in X is
3. We will also give an example for which m(dP6, dP3, Y ) = 3.

Suppose that G ≤ Aut(dP6) × Aut(dP3) has order 9. Then either G 
 Z9

or G 
 Z3 × Z3. First, we will show that if G 
 Z9 then G must have a
fixed curve and so it cannot satisfy our assumption on G. Next, we will
deal with the case G 
 Z3 × Z3. We will first find all the groups whose fixed
locus is finite. Essentially, this will be done by projecting G on Aut(dP6)
and Aut(dP3), so that the projections G1 and G2 satisfy G1 
 G2 
 G 

Z3 × Z3. There is only one useful choice for G2 = 〈g2, h2〉, whereas there
are infinitely many possibilities for G1, which are parameterized by (C∗)2.
Once we fix G1 := 〈u, v〉, we will consider all the possible G′s such that the
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projection of G on Aut(dP3) and Aut(dP6) are G1 and G2, respectively.
This will be done by choosing all the possible pairs (g1, h1), not necessarily
equal to (u, v), that generate G1. We thus consider the group G := 〈g, h〉,
where g = g1 × g2 and h = h1 × h2. For every case, we have checked that
all the sections of H0(X,−KX) that are eigenvectors of both g∗ and h∗ are
zero on a fixed point of the group G (we will show an explicit calculation
for one of the cases).

Suppose that G 
 Z9 and consider its projection G1 on Aut(dP3). Nec-
essarily, G1 
 G. On the contrary, if G = 〈g1 × g2〉 with g3

1 = Id, G would
have infinitely many fixed points. Hence, G1 has to be a group isomorphic
to Z9 in Aut(dP3). If S is a smooth cubic surface in P

3 and if g1 ∈ Aut(S)
has order 9 then, by [7], there exist a projective automorphism of P

3 such
that

(S, g1) =

⎛

⎜
⎜
⎝V (x3

0 + x2
2x0 + x2

1x2 + x2
0x1),

⎡

⎢
⎢
⎣

1 0 0 0
0 a4 0 0
0 0 a 0
0 0 0 a7

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

where a satisfies a3 �= 1 = a9. On the other hand, we have

g3
1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 a3 0 0
0 0 a3 0
0 0 0 a3

⎤

⎥
⎥
⎦ .

Hence, Fix(〈g1〉) contains a curve C. This means that, by Corollary 6.2, we
have a fixed curve in Fix(G), which contradicts our assumptions.

Suppose, now, that G 
 Z3 × Z3 ≤ Aut(dP6) × Aut(dP3) and consider
the projection G2 on Aut(dP3) so that G2 
 G. Fix two generators g2, h2

of G2 and consider dP3 = V (f) ⊂ P
3. By [7], if V (f) is a smooth cubic and

G̃ 
 Z3 × Z3 ≤ Aut(V (f)), we can change coordinates to obtain f =
∑

y3
i .

In this case Aut(V (f)) 
 Z
3
3 � S4, where each Z3 acts as multiplication

of a variable by ak (we write the elements in Z
3
3 as (1, ak1 , ak2 , ak3)) and

S4 = Sym(0, 1, 2, 3) is generated by the permutation of the variables. By
requiring |Fix(G2)| < ∞ we obtain G2 ≤ Z

3
3. There is only one group iso-

morphic to G2 in Z
3
3 that has a finite number of fixed points on V (f) and

it is 〈g2, h2〉 where g2 = (1, 1, a, a2) and h2 = (1, a, a2, a2). We call V
(2)
i,j the

maximal subspace of H0(dP3,−KdP3) such that g∗2(s) = ais and h∗
2(s) = ajs

for every s ∈ V
(2)
i,j . This vector space is the intersection of the eigenspaces

Λai of g2 and Λ′
aj

of h2 relative to aj . The following table summarizes the



“ATMP-16-3-A4-BIN” — 2013/2/1 — 19:35 — page 920 — #34
�

�

�

�

�

�

�

�

920 GILBERTO BINI AND FILIPPO F. FAVALE

situation providing generators for these spaces.

g2\h2 Λ′
1 Λ′

a Λ′
a2

Λ1 x0

Λa x1

Λa2 x2 x3

Now, consider the projection G1 of G on Aut(dP6) = (S3 × Z2) � (C∗)2.
Any element of order 3 can be written in the form diag(1, b, c) ◦ (123)k for
some fixed b, c ∈ C

∗ and k = 0, 1, 2. Easy arguments show that G1 cannot
satisfy G1 ≤ (C∗)2 (if it happens, one has |Fix(G1)| = ∞) and that G1 has
exactly two non-trivial elements in (C∗)2. These are diag(1, a, a2) and its
inverse. Moreover, these two elements commute with every element of the
form (1, b, c) ◦ (123)k, thus every subgroup of Aut(dP6) isomorphic to Z3 ×
Z3 and with a finite number of fixed points can be written in the form 〈u, v〉
where

u = diag(1 : a : a2) and v = diag(1 : b : c) ◦ (123)

for some fixed b, c ∈ C
∗. We define d to be a fixed third root of bc. Set

F0 = x10x20,

F1 = x10x21 +
1
b
x11x22 +

1
c
x12x20,

F2 = x10x22 +
1
c
x11x20 +

b

c
x12x20,

F3 = x10x21 +
a2

b
x11x22 +

a

c
x12x20,

F4 = x10x22 +
a2

c
x11x20 +

ab

c
x12x20,

F5 = x10x21 +
a

b
x11x22 +

a2

c
x12x20,

F6 = x10x22 +
a

c
x11x20 +

a2b

c
x12x20.

Then Fj is an eigenvector of both u and v and the corresponding eigen-
values are the ones in the following table:

u\v Λ1 Λa Λa2

Λ1 F0 F2 F1

Λa F4 F3

Λa2 F6 F5
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This shows that {Fj} form a base for H0(dP6,−KdP6). The following are
the fixed points of the elements of G1 and G2:

Element Fixed points (k = 0, 1, 2)
((1 : 0 : 0), (0 : 1 : 0)), ((1 : 0 : 0), (0 : 0 : 1)),

u, u2 ((0 : 1 : 0), (1 : 0 : 0)), ((0 : 1 : 0), (0 : 0 : 1)),
((0 : 0 : 1), (1 : 0 : 0)), ((0 : 0 : 1), (0 : 1 : 0))

v, v2 ((1 : dak : (dak)2

b , (1 : 1
dak : b

(dak)2
)

uv, u2v2 ((1 : dak : (dak)2

ba , (1 : 1
dak : ba

(dak)2
)

u2v, uv2 ((1 : dak : (dak)2

ba2 , (1 : 1
dak : ba2

(dak)2
)

Element Fixed points (k = 0, 1, 2)

g2, g
2
2 (1 : −ak : 0 : 0)

h2, h
2
2 (0 : 0 : 1 : −ak)

g2h2, g
2
2h

2
2 (1 : 0 : −ak : 0), (0 : 1 : 0 : −ak)

g2h
2
2, g

2
2h2 (1 : 0 : 0 : −ak), (0 : 1 : −ak : 0)

Suppose g1 = u. Let h1 be any element of G1 such that G1 = 〈g1, h1〉 and
denote Q1 = ((1 : 0 : 0), (0 : 1 : 0)) and Q2 = ((1 : 0 : 0), (0 : 0 : 1)). Then

P1 := ((1 : 0 : 0), (0 : 1 : 0), (1 : −1 : 0 : 0))

and

P2 := ((1 : 0 : 0), (0 : 0 : 1), (1 : −1 : 0 : 0))

are fixed points of g = g1 × g2. Suppose that

s =
∑

i,j

ai,jFiyj

is a section such that g∗(s) = ak1s and that s(Pj) �= 0. Then

s(P1) =
∑

i=2,4,6

(ai,0 − ai,1)Fi(Q1) �= 0
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and

s(P2) =
∑

i=1,3,5

(ai,0 − ai,1)Fi(Q2) �= 0.

This means that at least one between xiFj with i = 0, 1 and j = 2, 4, 6
has a non-zero coefficient and the same is true for xiFj with i = 0, 1 and
j = 1, 3, 5. But, if i = 0, 1, g∗(xiFj) = a2xiFj if j = 2, 4, 6 and g∗(xiFj) =
axiFj if j = 1, 3, 5. Then each eigenvector of g is zero if evaluated in P1 or
in P2.

The same result is true for every other case: we have checked that, for
every b, c ∈ (C∗), for every choice of g1, h1 generators of G1 = 〈u, v〉, every
section of H0(X,−KX) that is an eigenvector of both g and h where g =
g1 × g2 and h = h1 × h2 is zero on at least one fixed point of G = 〈g, h〉. In
conclusion, the restriction of the action of a group G ≤ Aut(dP6) × Aut(dP3)
of order 9 to a Calabi–Yau threefold Y ⊂ dP6 × dP3 cannot be free. Hence
m(dP6, dP3, Y ) < M(S1, S2) = 9 for every Y .

We have obtained m(dP6, dP3, Y ) ≤ 3 for all Y . We now give an exam-
ple such that m(dP6, dP3, Y ) = 3. Take dP3 to be the Fermat surface in
P

3. Call g1 the automorphism of dP6 such that xi,j �→ xi,j+1 and g2 the
authomorphism

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω2

⎤

⎥
⎥
⎦

of dP3. Note that the minimum for the number of fixed points for an auto-
morphism of order 3 in Aut(dP6) × Aut(dP3) is achieved by g = g1 × g2.
The dimension of H0(X,−KX)G, where G = 〈g〉, is 10. It can be shown
that the base locus for |H0(X,−KX)G| has only nine points and that these
are

((1 : ωi : ω2i), (1 : ω2i : ωi), (0 : 0 : −ωj : 1))

with 0 ≤ i, j ≤ 2. By direct inspection, the generic invariant section s is
smooth at these points and does not intersect the fixed locus, so, by Bertini’s
theorem, there exists a Calabi–Yau Y embedded in dP6 × dP3 and a group
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G 
 Z3 acting freely on Y . The Hodge diamond for Y/G is

1

0 0

0 5 0

1 11 11 1

0 5 0

0 0

1

and it is height is 16, that is the minimum for the height.

7 On the relation between Aut(S1) × Aut(S2) and
Aut(S1 × S2)

Let X be a projective complex manifold. We will denote by NE(X) the
cone of effective curves of X. An extremal subcone V of NE(X) is a closed
convex cone such that for every v, w ∈ NE(X) if v + w ∈ V then v, w ∈ V .
An extremal ray is an extremal subcone of dimension 1. For every D divisor
on X a subcone V ⊂ NE(X) is said to be D-negative if for every v ∈ V
one has v · D < 0. The Contraction Theorem says that for every extremal
KX -negative subcone V of NE(X) the contraction cV of V is well defined,
that is to say, a morphism cV : X → W with connected fibres such that W
is a normal variety. Moreover, a curve in X is contracted if and only if is
numerically equivalent to a curve in V and the Picard number ρ(W ) is equal
to ρ(X) − dim(〈V 〉). For a morphism f we recall that NE(f) is given by
the intersection NE(X) ∩ ker(f∗), where f∗ is the map induced by f on the
vector space spanned by NE(X).

If φ ∈ Aut(S1 × S2) we will write φ(x, y) = (φ1(x, y), φ2(x, y)) where φi =
πi ◦ φ where πi is the projection of S1 × S2 on Si.

Lemma 7.1. Let S1 and S2 be two del Pezzo surfaces and let φ ∈ Aut(S1 ×
S2) Let πi be the projection from S1 × S2 onto the ith factor Si for i = 1, 2.
If φ∗(NE(πi)) = NE(πi), then φ(x, y) = (φ1(x), φ2(y)) where φi ∈ Aut(Si).
If φ∗ switches the cones NE(π1) and NE(π2), then S1 = S2 and φ(x, y) =
(φ1(y), φ2(x)) with φ1 ∈ Bihol(S2, S1) and φ2 ∈ Bihol(S1, S2).
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Proof. Assume φ∗(NE(πi)) = NE(πi). Fix x1, x2 ∈ S1 and take two distinct
irreducible curves C1 and C2 on S1 whose intersection is non-empty and
such that xi ∈ Ci. We have

φ(Ci × y) = Di × yi

because the image of Ci × y is a curve that is numerically equivalent to a
curve in NE(π2). But C1 × y and C2 × y are two curves with non-empty
intersection so their images have non-empty intersection. In particular y1 =
y2 and this implies that φ2(x, y) = φ2(y). The same argument works with
the first component (φ1(x, y) = φ1(x)) and with φ−1 meaning that φi is an
automorphism of Si.

With the same method, if φ∗ switches the two cones, one has

φ(x, y) = (φ1(y), φ2(x))

and that φi are biholomorphism thus S1 = S2. �
Lemma 7.2. Let S1 and S2 be two del Pezzo surfaces such that ρ(S1), ρ(S2)
≥ 3. If ρ(S1) �= ρ(S2) then

Aut(S1 × S2) = Aut(S1) × Aut(S2).

The same holds if ρ(S1) = (S2) and S1 �= S2. Instead, if S1 = S2 one has

Aut(S1 × S2) = (Aut(S1) × Aut(S2)) � Z2.

Proof. Call X the product S1 × S2. Then X is a Fano fourfold and

NE(X) = NE(X) ∩ NE(π1,∗) + NE(X) ∩ NE(π2,∗).

In particular, every extremal ray of X is generated by a curve of the type
P1 × E2 or E1 × P2, where Ei is a (−1)-curve on Si. Observe that the image
V ′ of an extremal subcone V by an automorphism φ is again an extremal
subcone. In fact, if v + w ∈ V ′ for some v, w ∈ NE(X) then φ−1∗ (v) and
φ−1∗ (w) are effective curves such that φ−1∗ (v) + φ−1∗ (w) = φ−1∗ (v + w) ∈ V .
But if V is extremal both φ−1∗ (v) and φ−1∗ (w) are in V . This implies that
v and w are in V ′, so V ′ also is extremal. This implies that φ induces a
permutation of the extremal rays of X.

Suppose that there exists an extremal curve E × P1 such that φ∗(E1 ×
P2) = P1 × E2. Then φ∗ maps the extremal ray V := [E1 × P2] to the
extremal ray V ′ := [P1 × E2]. The contractions cV and cV ′ associated to
the extremal subcones V and V ′ are respectively p1 × Id and Id×p2, where
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pi : Si → Ŝi are the blow up with exceptional divisor Ei. Observe that Ŝi is
smooth and that the fibres of cV and cV ′ have dimension 0 or 1 and are con-
nected. By construction a curve C is contracted by cV if and only φ∗C is con-
tracted by cV ′ . These two facts imply that the map f : Ŝ1 × S2 → S1 × Ŝ2

such that f(P ) = (cV ′ ◦ φ)(c−1
V (P )) is well defined.

S1 × S2

�cV

��

φ �� S1 × S2

cV ′
��

Ŝ1 × S2 f
�� S1 × Ŝ2

Let us see that the map f is injective. Call Qi the point of Ŝi such that
p−1

i (Qi) = Ei. If f(Q1 × R1) = f(Q1 × R2) with R1 �= R2 then, to calculate
the image of Q1 × Ri we obtain first two disjoint curves in S1 × S2 of the
form E1 × Ri. Then these two are sent to two disjoint curves of the form
Ti × E2 by φ and, at last, contracted to the same point by cV ′ . This implies
that the fibre of this point with respect to cV ′ contains two disjoint curves
and, being connected, has to be at least of dimension 2. However, we have
seen that every fibre has dimension at most 1, so necessarily R1 = R2. By
construction f is also surjective and so it is a bijective map.

The map f is a morphism because it is everywhere well defined and it is
holomorphic outside Q1 × S2 that has codimension 2 in Ŝ1 × S2. Hence, by
Hartogs’ theorem, it is holomorphic on Ŝ1 × S2. This is enough to conclude
that f is an isomorphism. This implies

χ(Ŝ1 × S2) = χ(S1 × Ŝ2);

but χ(Ŝi) = χ(Si) − 1 because b1(Ŝi) = b1(S1) − 1 and hence, by the multi-
plicativity of χ, we have

(χ(S1) − 1)χ(S2) = χ(S1)(χ(S2) − 1)

and χ(S1) = χ(S2). However, this contradicts the hypothesis ρ(S1) �= ρ(S2);
hence the image of E × P1 by φ∗ has to be of the same type. This implies
that φ∗ NE(πj) = NE(πj) and this is sufficient to conclude that φ can be
written as a product of two automorphisms by Lemma 7.1.

Suppose, now, that ρ(S1) = ρ(S2) ≥ 3. Fix a blow-up model for Si. Then
the (−1)-curves on Si are either Eij , and are contracted to points by the
model, or are sent to curves (lines, conics (ρ(Si) ≥ 5) and cubics (ρ(Si) ≥ 7)).
If, for all j, the image of E1j × P belongs to [Q × E] for some (−1)-curve
E that depends on j, then the same holds true for the other exceptional



“ATMP-16-3-A4-BIN” — 2013/2/1 — 19:35 — page 926 — #40
�

�

�

�

�

�

�

�

926 GILBERTO BINI AND FILIPPO F. FAVALE

curves of the same type: φ(E1 × P ) ∈ [Q × E] for some E depending on
E1. Thus, saying that there exist two exceptional curves Ei × P such that
φ(E1 × P ) ∈ [Q × E] and φ(E1 × P ) ∈ [E′ × Q] is equivalent to requiring
that there are two indices (for examples j = 1 and j = 2) such that

φ(E11 × P ) ∈ [Q × E2] and φ(E12 × P ) ∈ [E1 × Q].

Suppose, then, that this could happen. Then, as in the previous case, we
can construct a commutative diagram

S1 × S2

�cV

��

φ �� S1 × S2

cV ′
��

S̃1 × S2 f
�� Ŝ1 × Ŝ2

where cV = r × Id and cV ′ = p1 × p2 where r : S1 → S̃1 is the contraction
of two E11 = r−1(R1) and E12 = r−1(R2), whereas p1 and p2 are the blow-
up with exceptional divisor respectively E1 and E2. Note that the cone
V spanned by E11 × P and E12 × P is an extremal subcone because for
a � 0, L := O((aH − E11 − E12) × S2) is a nef line bundle such that V =
NE(S1 × S2) ∩ L⊥. This implies that its image V ′ is extremal. Again, the
construction of f make sense because cV ′ contracts a curve if and only if cV

contracts its preimage and because all the fibres of cV are connected and
have at most dimension one.

Assume f(R1 × Q1) = f(R1 × Q2). The fibres E11 × Qi are mapped to
two disjoint curves of the form Q̃i × E2 and then contracted to the same
point. Then the fibre S of this point has dimension at least 2 (exactly 2 by
construction) and contains Q̃i × E2. Recall that −KX|S

:= D′ is ample so
it intersects Q̃i × E2. D′ is then an effective curve that is contracted to a
point by cV ′ so its preimage D intersects E11 × Qi and is contracted by cV .
Hence, Q1 = Q2. In a similar way we dealt with the other cases and prove
that f is injective. By construction, f is also surjective and hence bijective.

Again f is a map that is holomorphic outside two disjoint smooth sub-
variety of S̃1 × S2 whose codimension is 2. Thus, by Hartogs’ theorem, f
is everywhere holomorphic. Then f is an isomorphism but checking the
equality of the Euler numbers one obtain

2 + ρ(S2) = 2 + ρ(S1) = χ(S1) = χ(S2) + 1 = 3 + ρ(S2)

and then again a contradiction. Hence, the two types of extremal rays cannot
be mixed by φ. There are two cases: the first corresponding to the case for
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which ∀φ ∈ Aut(S), φ∗ NE(πi) = NE(πi) and the second where there exists
φ ∈ Aut(X) that switches the two cones. By Lemma 7.1, in the first case
Aut(S1 × S2) = Aut(S1) × Aut(S2) and S1 �= S2 whereas, in the second, we
have S1 = S2 and Aut(S1 × S2) = Aut(S1)×2

� Z2. �

Lemma 7.3. Let S1 and S2 be two del Pezzo surfaces with ρ(S1) ≤ 2 and
ρ(S2) ≥ 3. Then Aut(S1 × S2) = Aut(S1) × Aut(S2).

Proof. There are three cases: ρ(S1) = 1 with S1 = P
2 and ρ(S1) = 2 with

S1 = P
1 × P

1 or S1 = dP8.

If S1 = P
2 and φ ∈ Aut(X), fix a point s ∈ S and consider the map

obtained as composition of the inclusion P
2 
 P

2 × {s} ⊂ P
2 × S2, φ and

the projection on S. The resulting map βs cannot be a dominant morphism
because, in this case, P

2 would have divisors with negative self-intersection.4

Moreover its image cannot have dimension greater than 0; in fact, every
surjective map P

2 → C induces a surjective map P
2 → P

1 but this cannot
exist. Hence βs(P2) is a point, or equivalently, β doesn’t depend on P .
Hence

φ(P, s) = (α(P, s), β(s))

and the same holds true for φ−1 so β ∈ Aut(S2) and, by a composition with
Id×β−1, we can restrict to the case β = Id. Consider now for a fixed s ∈ S2

the morphism αs : P
2 → P

2. As before, its image cannot have dimension
1. If dim(αs(P2)) = 0 then φ(P2 × {s}) ⊂ Pt × S2, and because φ is an
automorphism, we would obtain an isomorphism between P

2 and a del Pezzo
surface of Picard number strictly greater than 1, which is impossible. Hence
αs is a dominant map. Suppose αs(P ) = αs(Q). Then

φ(P, s) = (αs(P ), s) = (αs(Q), s) = φ(Q, s)

but φ is injective so P = Q and αs is also injective. This shows that αs is an
automorphism for every s and in particular we have a map f : s ∈ S2 �→ αs ∈
PGL(3) = SL(3)/Z3. Then f lifts to a map from S2 to SL(3) that is affine
and then f does not depend on s. So Aut(P2 × S2) = Aut(P2) × Aut(S2).

If S1 = P
1 × P

1 then the extremal rays of X = S1 × S2 are of the form
[(P1 × P2) × E], [(P1 × P

1) × Q] or [(P1 × P2) × Q] where E is a (−1)-curve

4The pullback D of a (−1)-line E for example.
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on S2. In particular ((P1 × P2) × E) · (KX) = −1 whereas

((P1 × P
1) × Q) · KX = ((P1 × P2) × Q) · KX = −2.

In particular, because extremal rays are permuted by every automorphism
and because the intersection numbers are preserved, we have φ∗(NE(πi)) =
NE(πi) and then Aut(S1 × S2) = Aut(S1) × Aut(S2).

If S1 = dP8 and ρ(S2) ≥ 3 then the extremal rays are of the form [E ×
P2], [(H − E) × P2] and [P1 × E2] where E is the only (−1)-curve on S1 and
E2 is a (−1)-curve on S2. In particular, −KX · ((H − E) × P2) = 2 whereas
for all the other extremal curves the intersection with −KX is 1; hence
φ∗ fixes this extremal ray. Assume that φ∗([E × P2]) = ([P1 × Ei]). Then,
denoting V = R

+[E × P2] and V ′ = R
+[P1 × Ei], we obtain the following

commutative diagram:

dP8 × S2

�cV

��

φ �� dP8 × S2

cV ′
��

P
2 × S2 f

�� dP8 × Ŝ2

where f is again an isomorphism. This gives χ(S2) = 4 but ρ(S2) ≥ 3 so we
have a contradiction (4 = χ(S2) ≥ 5). Thus NE(Si) = φ∗(NE(Si)) and then
Aut(S1 × S2) = Aut(S1) × Aut(S2). �
Lemma 7.4. Let S1 and S2 be two del Pezzo surfaces such that ρ(S1), ρ(S2)
≤ 3. Then:

• If S1 �= S2, Aut(S1 × S2) = Aut(S1) × Aut(S2);
• If S1 = S2 �= P

1 × P
1, Aut(S1 × S2) = (Aut(S1) × Aut(S2)) � Z2;

• If S1 = S2 = P
1 × P

1, Aut(S1 × S2) = (Aut(P1)×4) � S4.

Proof. If ρ(Si) ≤ 3, Si is a smooth toric variety. For a complete simplicial
toric variety the sequence

1 → Aut0(X) → Aut(X) → Aut(N, Δ)
ΠSΔi

→ 1

is exact by a result of Cox (see [5]). We will see that this extension is a split
extension in all our cases and hence Aut(X) can be seen as a semidirect
product of Aut0(X) and Aut(N,Δ)

ΠSΔi
. The proof will be completed analysing

the structure of these two groups.

We call ΔSi ⊂Z
2 =:Ni the fan of Si and denote with ΔSi(1) = {e0, . . . , eri}

the set of the rays of the fan. The following table summarizes the rays of
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the fans we need.

S e1 e2 e3 e4 e5 e6

P
2 [1,0] [0,1] [−1,−1]

P
1 × P

1 [1,0] [0,1] [−1, 0] [0,−1]
dP8 [1,0] [0,1] [−1,0] [−1,−1]
dP7 [1,0] [0,1] [−1,0] [0,−1] [−1,−1]
dP6 [1,0] [0,1] [−1,0] [0,−1] [−1,−1] [1,1]

If Δ ⊂ Z
4 = N is the fan of X, then Δ(1) = (ΔS1 × {[0, 0]}) ∪ ({[0, 0]} ×

ΔS2). Aut(N, Δ) will denote the group of the automorphisms of the lattice
N that fixes the fan Δ. By direct computation, we show that

• If S1 �= S2, Aut(N, Δ) = Aut(N1, ΔS1) × Aut(N2, ΔS2);
• If S1 = S2 �= P

1 × P
1, Aut(N, Δ) = (Aut(N1, ΔS1) × Aut(N2, ΔS2)) �

Z2;
• If S1 = S2 = P

1 × P
1, Aut(N, Δ) = S4 � Z

4
2.

It is possible to associate a divisor Di to each ei ∈ Δ(1) and we say than
ei ∼ ej iff Di and Dj are linearly equivalent. Call {Δi} the partition of Δ(1)
obtained by taking the quotient with respect to ∼. Call SΔi the permutation
group over Δi. It is easy to see that this partition does not mix rays coming
from different factors of the product so we can write S1

Δi
or S2

Δi
to mean

a permutation group that acts on the first or on the second factor. Call H
the quotient of Aut(N, Δ) with respect to ΠSΔi = ΠS1

Δi
× ΠS2

Δi
. Then

• If S1 �= S2, H =
Aut(N1, ΔS1)

ΠS1
Δi

× Aut(N2, ΔS2)
ΠS2

Δi

;

• If S1 = S2 �= P
1 × P

1, H =

(
Aut(N1, ΔS1)

ΠS1
Δi

× Aut(N2, ΔS2)
ΠS2

Δi

)

� Z2;

• If S1 = S2 = P
1 × P

1, H =
S4 � Z4

2

Z
4
2


 S4.

Here a small summary of these groups.

S Aut(NS , ΔS)
∏

SΔi Aut(NS , ΔS)/
∏

SΔi

P
2 Sym(e1, e2, e3) Sym(e1, e2, e3) Id

P
1 × P

1 〈(13), (1234)〉 〈(13), (24)〉 Z2

dP8 〈(24)〉 〈(24)〉 Id
dP7 〈(12)(34)〉 Id Z2

dP6 Sym(e1, e2, e5) × 〈− Id〉 Id S3 × Z2
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To see that the sequence splits, consider, for example, the case X = dP8 ×
dP7 for which H = Id×Z2 = 〈σ〉. This group is generated by the automor-
phism of the fan of dP7 that switches the rays associated to the two excep-
tional divisors of dP7, thus a section of Aut(X) → H is given by σ �→ A
where A is an automorphism of P

2 that switches the two points that are
blown up to obtain dP7. All the other cases can be described in a similar way.

Aut0(X) is the connected component of the identity in Aut(X) and now
we will show that Aut0(X) = Aut0(S1) × Aut0(S2). By a result of Cox (see
again [5])

Aut0(X) 
 Autg(S)
HomZ(Pic(X), C∗)

where Autg(S) is the group of the automorphisms of the homogeneous coor-
dinate ring S of X, regarded as graded C-algebra. This group is spanned
by (C∗)|Δ(1)| = (C∗)|ΔS1

(1)|+|ΔS2
(1)| and by the elements ym(λ) where λ ∈

C and m ∈ R(N, Δ) (the elements of R(N, Δ) are the roots of Aut(X)).
We show that each ym(λ) can be written in a unique way as the prod-
uct of fi ∈ Autg(Ri) where Ri is the coordinate ring of Si. This shows
that Autg(S) 
 Autg(R1) × Autg(R2). The group HomZ(Pic(X), C∗) splits
as HomZ(Pic(S1), C∗) × HomZ(Pic(S2), C∗) because Pic(X) = Pic(S1) ⊕ Pic
(S2). Then, the quotient can be viewed as a product of the quotient giving

Aut0(X) = Aut0(S1) × Aut0(S2).

The claim follows from the combination of the facts above. For example,
consider again the case X = dP8 × dP7. Since Aut(dP8) is connected, we
have Aut0(X) = Aut(dP8) × K, where

K 

〈⎡

⎣
1 0 ∗
0 ∗ ∗
0 0 ∗

⎤

⎦

〉

.

Since H = Id×Z2, we obtain

Aut(X) 
 (Aut(dP8) × K) � (Id×Z2)

= Aut(dP8) × (K � Z2) = Aut(dP8) × Aut(dP7).

�

Combining all these results, we obtain
Theorem 7.5. Let S1 and S2 be two del Pezzo surfaces. Then

• If S1 �= S2, Aut(S1 × S2) = Aut(S1) × Aut(S2);
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• If S1 = S2 �= P
1 × P

1, Aut(S×2) = Aut(S)×2
� Z2;

• If S1 = S2 = P
1 × P

1, Aut((P1)×4) = Aut(P1)×4
� S4.

8 List of the threefolds obtained

In the previous sections we constructed examples of quotients of Calabi–Yau
threefolds Y embedded in S1 × S2 by groups that are of maximal order in
the sense that a group H ≤ Aut(S1 × S2) such that the restriction to Y gives
a free action, cannot have greater order than the ones used. If Y is a Calabi–
Yau threefold and G is a group acting freely on Y the same holds true each
H ≤ G. Moreover Y/H → Y/G is an étale covering. In the following table
we summarize all the quotients analysed and all the étale coverings obtained
by taking quotient with respect to subgroups. Also the known examples are
shown. The column m(|G|)/M represents the ratio of the maximal order of
the existing group action freely on Y and the estimated (M = M(S1, S2)).
In the column Π1(Y/G) the fundamental group of the quotient is written.
When for two isomorphic subgroups H1 and H2 of G, we obtain h11(Y/H1) =
h11(Y/H2) and h12(Y/H1) = h12(Y/H2) we represent them in the table in
one row indicating that multiple subgroups give the same result by their
number between round brackets. For example, taking S1 = S2 = P

2 and
G 
 Z3 ⊕ Z3 there are 4 subgroups of order 3 and each of them gives a
manifold with Hodge numbers (2, 29). In the table, this is summarized by
writing Z3(4) in the column of Π1(Y/H). In the last column, a “Y ” means
that the height obtained for the quotient threefold is the least possible, a
“N” means the opposite and a “?” means that we do not know if this is the
case or not. The pairs (S1, S2) for which M(S1, S2) = 1 are omitted.

S1 S2 max(|G|)/M |G| Π1(Y/H) h11 h12 h min?

P
2

P
2 9/9

9 Z3 ⊕ Z3 2 11 13 Y
3 Z3(4) 2 29 31 N
1 {Id} 2 83 85 N

P
2 dP6 3/3 3 Z3 3 21 24 Y

1 {Id} 5 59 64 N

P
2 dP3 3/3 3 Z3 4 13 17 Y

1 {Id} 8 35 43 N

P
1 × P

1
P

1 × P
1 16/16

16 Z8 ⊕ Z2 1 5 6 Y
8 Z4 ⊕ Z2 2 10 12 N
8 Z8(2) 1 9 10 N
4 Z2 ⊕ Z2 4 20 24 N
4 Z4(2) 2 18 20 N
2 Z2(3) 4 36 40 N
1 {Id} 4 68 72 N
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S1 S2 max(|G|)/M |G| Π1(Y/H) h11 h12 h min?

P
1 × P

1 dP6 2/2 2 Z2 5 29 34 Y
1 {Id} 6 54 60 N

dP6 dP6 12/12

12 Z12 1 4 5 Y
6 Z6 2 8 10 N
4 Z4 3 12 15 N
3 Z3 4 16 20 N
2 Z2 6 24 30 N
1 {Id} 8 44 52 N

dP6 dP6 12/12

12 Dic3 1 4 5 Y
6 Z6 2 8 10 N
4 Z4(3) 3 12 15 N
3 Z3 4 16 20 N
2 Z2 6 24 30 N
1 {Id} 8 44 52 N

dP6 dP4 2/2 2 Z2 7 19 26 ?
1 {Id} 10 34 44 N

dP6 dP3 3/9 3 Z3 5 11 16 Y
1 {Id} 11 29 40 N

dP5 dP5 5/5 5 Z5 2 7 9 Y
1 {Id} 10 35 45 N

dP4 dP4 8/8

8 Z4 ⊕ Z2 3 5 8 ?
4 Z2 ⊕ Z2 6 10 16 N
4 Z4(2) 4 8 12 N
2 Z2(3) 8 16 24 N
1 {Id} 12 28 40 N

dP3 dP3 3/3 3 Z3 6 9 15 Y
1 {Id} 14 23 37 N

P
1 × P

1 dP4 4/4
4 Z2 ⊕ Z2 5 13 18 ?
2 Z2(3) 6 22 28 N
1 {Id} 8 40 48 N
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