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Abstract

We study seven-brane SU(5) GUT models of string phenomenology
which can be consistently analyzed in a purely local framework. The
requirement that gravity can decouple constrains the form of four-
dimensional physics as well as the geometry of spacetime. We rule out
a large family of candidate UV completions of such models and derive
a priori constraints on the local singularities of compact elliptic Calabi—
Yau four-folds. These constraints are strong enough to obstruct a wide
class of brane constructions from UV completion in string theory. It is
demonstrated that consistent local models always have exotic Yukawa
coupling structures, and hidden sectors or interesting non-perturbative
superpotentials which merit further investigation.
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1 Introduction

Recently, local brane models of string phenomenology have attracted signif-
icant attention. A promising and broad class of such models is that of local
F-theory GUTs [2,3,10]. These scenarios provide a natural arena for super-
symmetric grand unification, and lead to interesting phenomenologically
viable constructions of dark matter, flavor, and neutrino physics [7,16,17,19].
In this setup, our four-dimensional world is realized as the non-compact
directions of a stack of seven-branes which wrap a compact four-cycle S
inside the ambient six-dimensional geometry X of the compactification.
Closed strings propagating in X give rise to gravitons, while open strings
stuck to S produce the gauge bosons of the standard model. Matter in the
theory arises when a pair of seven-branes S and S’ intersect in X along
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some Riemann surface 3, a so-called matter curve. There the quantization
of open string modes starting on S and ending on S’ produces light matter
localized on ¥ which at low energies appear as quarks, leptons, neutrinos,
and Higgses. Finally, the superpotential of these theories is controlled by the
triple intersection points of seven-branes in X. At these points three matter
curves meet and an open string disk diagram with boundary at the point of
intersection contributes a Yukawa coupling to the superpotential. The basic
feature of these models which makes them simpler than say, heterotic string
phenomenology is that in the limit where the backreaction of seven-branes
is ignored it is relatively straightforward to construct the standard model
particle spectrum and interactions by simply prescribing geometrically the
desired seven-brane intersections. By contrast in compactifications of het-
erotic strings on Calabi—Yau three-folds it is often a difficult task to detect
whether the resulting low-energy physics in four dimensions has anything to
do with reality. Of course, the flipside to this discussion is that a heterotic
compactification provides a UV complete theory including gravity, while in
the case of local brane models, UV completion inside a compact three-fold
taking into account backreaction of seven-branes as well as coupling to the
closed string sector is an involved geometry problem.

Thus, if we want to maintain the virtues of local brane models while
avoiding their vices we are motivated to study situations where the limit
of zero-brane backreaction is likely to be a good starting approximation to
the open string physics localized on the standard model seven-brane. A
simple way to achieve this is to demand that the brane models of interest
have a decoupling limit where all interactions with gravity can be made
parametrically small. When such a limit exists one can reasonably hope
that issues of gravitational physics and moduli stabilization can be deferred
to a later stage of analysis without spoiling the particle physics features
engineered in a local model. Further, there are suggestive hints from nature
that a decoupling limit may be relevant for particle physics. Indeed one can
take the hugeness of the Planck scale, Mp ~ 10'? GeV, as quantitative proof
that for most practical purposes of particle physics gravity does not play an
essential role. Going further, one might argue that the asymptotic freedom
of the gauge coupling in a GUT model is evidence that the open string
sector responsible for the standard model should be UV complete on its own,
without necessarily coupling to gravity. Whether or not one is convinced by
these arguments suggesting the necessity of a gravitational decoupling limit
in nature, models where gravity decouples certainly yield the simplest class
of quasi-realistic string compactifications including branes. What is more,
these models are sufficiently rich that they can, in principle, accommodate
even the most baroque features of the standard model. Indeed, it is precisely
in this limit that the phenomenological successes of Heckman, Vafa, and
collaborators have been achieved.
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Figure 1: The internal geometry of F-theory brane models and their various
string sectors.

The technical power of the existence of a decoupling limit is that it implies
a dramatic simplification of the brane geometry in figure 1. To under-
stand this one must first appreciate that the four-dimensional GUT models
of interest are described by three continuous parameters, the Planck scale
Mp, the GUT coupling «, and the GUT scale Mgut, each of which has
a geometric interpretation in figure 1. The Planck scale is determined by
dimensional reduction of the 10-dimensional Einstein—Hilbert action, so in
10-dimensional Planck units:

Mg ~ Vol(X). (1.1)

Meanwhile the four-dimensional GUT coupling descends from the reduction
of the Yang-Mills action on the seven-brane worldvolume:

é ~ Vol(S). (1.2)

Finally, the GUT scale is set by whatever mechanism Higgses the GUT
group down to the usual SU(3) x SU(2) x U(1) of the standard model. As
part of our assumption of the existence of a decoupling limit, we will take as
given that the physics responsible for the spontaneous breaking of the GUT
group is adequately described by the gauge theory on the standard model
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seven-brane. In this case the GUT scale is set by dimensional analysis:
Mgut ~ Vol(S) ™14, (1.3)

If we want gravity to decouple in four dimensions, we want to be able to
take a limit where Mp — oo, while the gauge theory parameters a and
Mgyt remain fixed. Examining (1.1) to (1.3) we see that geometrically
this means that there should exist a limit where Vol(X) — oo while Vol(5)
remains fixed. This is a powerful geometric assumption, and investigating
its consequences in detail forms the subject of this paper.

Although some work in the vein of global completions of F-theory GUT's
with decoupling limits has already been carried out [1,5,11,24,25], a com-
plete and consistent picture has not yet emerged. We will focus primarily on
the physical consequences of this limit which hold independent of a choice
of compactification X. To the extent that we do discuss global properties
of X, we are interested mainly in learning what kinds of compactifications
we are dealing with, and what information the existence of a decoupling
limit implies about the properties of spacetime. For the first part of this
paper we give a brief review of the relevant geometry and study the sim-
plest class of examples where the six-dimensional compactification manifold
X is a Fano three-fold. As will hopefully be clear by the end of Section 3,
such examples are completely ruled out. We then move on in Section 4 to
study what happens when the assumption of Fanoness is removed. As we
will see there, simple tadpole arguments together with the insight gained
in Section 3 are enough to obstruct any semi-realistic model with GUT
group SU(5) and a simple decoupling limit from a UV completion in string
theory. In fact, the constraints on colliding seven-branes described in Sec-
tion 4.1 are independent of the existence of a decoupling limit and represent
a priori restrictions on the local singularities of any compact elliptically
fibered Calabi—-Yau four-fold. When these constraints are combined with
the decoupling limit hypothesis a surprising amount information about the
general features of any local SU(5) F-theory GUT can be exposed. With
this in mind, in Section 4.1 we discuss the implications of our work for the
recently engineered local F-theory GUTs in [2,3,7,16,17,19]. Building on
previous work [3,11], we then finish in Section 4.2 by classifying all possible
brane worldvolumes on which gravity can, in principle, decouple and begin
to explore models with more exotic decoupling limits. We conclude that the
geometry of these exotic decoupling limits almost certainly plays a role in
the local physics.

The intuitive idea of our arguments is to study the local gravitational
backreaction of seven-branes on the geometry of the compactification. From
the point of view of general relativity a seven-brane is a rather subtle object.
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Because they have only two transverse dimensions, a seven-brane behaves
like an isolated point mass in a three-dimensional spacetime. For such a
system, Einstein’s equations imply that the effect of the point mass is so
strong as to change the asymptotic shape of space into a cone with a deficit
angle depending on the mass of the point. So too it is with seven-branes. In
the supergravity approximation, an isolated, decompactified D7 produces a
conical deficit angle of {5 in the transverse dimensions, or said differently, a
localized positive contribution to the Ricci curvature of X. Thus we see that
there is conceptually a certain tension between, on the one hand, the desire
to decouple gravity and deal only with the gauge theory supported on our
seven-brane, and on the other hand, the fact that seven-branes produce a
quite severe local gravitational backreaction. This problem becomes parti-
cularly acute for a stack of seven-branes which support an SU (n)-type gauge
symmetry. As we will see in Section 3, locally positive Ricci curvature acts
as an obstruction to taking a decoupling limit. In Section 4 we then demon-
strate that lowering the local Ricci curvature sufficiently as to permit a sim-
ple decoupling limit essentially requires us to put an orientifold plane directly
on top of our seven-brane and spoils the fact that the gauge group is SU (n).

2 Geometric preliminaries

In this introductory section we review the relevant background material for
the kind of geometrical problem we will be considering. As usual supersym-
metry singles out complex algebraic geometry as the relevant framework.
Thus, for example, in the following the words curve, surface, and three-fold
refer to complex manifolds of complex dimension one, two, and three, respec-
tively. For additional background material the reader is referred to [14].

2.1 Geometry of spacetime

We are studying four-dimensional N' = 1, type IIB compactifications on a
three-fold X where the axio-dilaton varies throughout spacetime. The fact
that the string coupling is non-constant means that these compactifications
are in general non-perturbative. Such models are conveniently described in
the language of F-theory [34]. By viewing the axio-dilaton as the complex
structure modulus of an elliptic curve, we can form a complex four-fold Y
which is an elliptic fibration over X. By construction, the fibration Y admits
a section which is simply the compact part of spacetime X C Y. The locus in
X over which the elliptic fibration degenerates determines the positions of
various stacks of seven-branes in X. The condition that the seven-brane
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tadpoles cancel while preserving four-dimensional A/ =1 supersymmetry
implies that the fibered four-fold Y is Calabi—Yau. A very useful mathe-
matical construction for describing such compactifications is to present Y
as a Weierstrass model. To do this we first recall that an elliptic curve can
be defined by a cubic equation in P?. Using local coordinates (z,7) on a
patch of P2, we can always put this equation in the Weierstrass form:

Yy =2+ fr +g, (2.1)

where in the above f and g are numbers characterizing the shape of the
torus. The curve described by (2.1) is non-singular provided that it has a
non-vanishing discriminant A given by

A =4f% 4 27¢% (2.2)

Now that we have a handle on a single elliptic curve, to form an elliptic
fibration over X all we need to do is to let the coordinates z,y vary holo-
morphically over X. More precisely, we now take x, y to be local coordinates
on suitable line bundles over X. Homogeneity of (2.1) tells us that if y is
a coordinate on a line bundle 3£, then x must be a coordinate on the line
bundle 2£. To determine what £ actually is all we need to do is require that
the four-fold Y is Calabi—Yau. This means that there should be a never-zero
holomorphic four-form wy on Y and since Y is a fibration we can write wy as

wy = dewX, (23)
Yy

where in the above wy is a holomorphic three-form on X and hence trans-
forms over X in the canonical line bundle Kx. Since wy transforms triv-
ially, it follows that £ = —Kx and hence in (2.1) and (2.2), f, g, and A
are fixed holomorphic sections of —4Kx, —6Kx, and —12K x, respectively.
Conversely, one can view the Weierstrass presentation of Y as a recipe for
constructing elliptic Calabi—Yaus. Given a three-fold X satisfying certain
assumptions which we review below, one picks sections f and g of —4Kx
and —6K x and defines Y as the solution to (2.1).

As we have already mentioned above, one useful feature of the F-theory
description is that the elliptic structure of Y encodes the places in spacetime
where seven-branes are located. To understand this all we need to recall is
that an ordinary perturbative seven-brane is a magnetic source for the I1IB
axion. Thus as one circles a seven-brane the complexified string coupling 7
undergoes a monodromy 7 — 7+ 1. In the F-theory description, 7 is the
modulus of the elliptic fibers of Y and the fact that 7 has monodromy around
seven-branes means that the associated elliptic fiber is singular exactly at
the seven-brane. This story can be generalized [4]; in F-theory suitable
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Table 1: Seven-brane gauge groups indexed by the vanishing order of f, g,
and A. The notation > means that the corresponding section vanishes to
order greater than or equal that indicated.

GI‘Ollp None An—l A1 A2 Dn+4 Dn+4 E@ E7 Es

A 0 n 3 4 n+6 nt6 8 9 10
f >0 0 1 >2 2 >2 >3 3 >4
g > 0 >2 2 >3 3 4 >5 5

monodromies of the elliptic modulus can be prescribed to engineer seven-
brane gauge groups of A, D, and most notably E type. For computational
purposes, it is more useful to translate the monodromies of 7 into vanishing
orders of the sections f, g, A defining the Weierstrass model (2.1). We
already know that the locus where the elliptic fibration degenerates is exactly
defined by the vanishing of the discriminant A. The precise gauge group
can then be deduced by further studying the vanishing orders of the defining
sections as described in table 1.

One universal feature of these F-theory compactifications is that the cor-
responding elliptic Calabi—Yaus are singular whenever there is non-abelian
gauge symmetry on some seven-brane somewhere in spacetime. Geometri-
cally, the case of a single (p, q) seven-brane, an Ay fiber in the notation of
table 1, is distinguished by the fact that the four-fold near such a brane is
non-singular even though the elliptic fiber degenerates. The fact that non-
abelian gauge symmetries are described by singular Calabi—Yaus points to
another important fact: the non-abelian gauge symmetry on any given seven-
brane is bounded above in rank. Technically, the way this comes about is
that in order to make sense of the physics on a singular Calabi—Yau, one is
forced to resolve the singularity. If the singularity is too large, i.e., if a seven-
brane has a gauge group of too high rank, then the resolution will fail to
be Calabi—Yau and hence the original singular Calabi—Yau will break super-
symmetry [30]. One can obtain an estimate of the actual rank of the biggest
possible singularity as well a gain some intuitive feeling for its meaning by
working locally in the supergravity limit. Then each seven-brane contributes
a conical deficit angle of {5 so certainly at most one could have 24 D7-branes
on top of each other before the local deficit angle exceeds 27. In fact the
actually bound is smaller; on any given brane the discriminant can at most
vanish to order 10 so the largest possible simple factor of the total seven-
brane gauge group is Fg. This relatively small upper bound on the size of a
stack seven-branes in any theory with gravity should be contrasted with geo-
metrically engineered brane theories where backreaction can be completely
ignored i.e., when one considers F-theory on a local non-compact Calabi—Yau
four-fold with no intention of embedding it in a compact geometry where
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the metric is a dynamical field. Then there is no bound on the number of
branes and it is easy to construct seven-brane gauge theories with arbitrary
ADFE gauge group.

Although the F-theory four-fold provides a convenient picture for simul-
taneously encoding both seven-branes positions and the internal geometry
of spacetime, for the purposes of investigating the geometric properties of
of brane models with decoupling limits it is easier to work directly with
the three-fold X. The simple reason for this is that the decoupling limit
can be phrased easily in terms of the Kéahler geometry of the three-fold
X, and while the four-fold Y is Calabi—Yau the elliptic directions have no
dynamical metric degrees of freedom hence no useful Kéahler structure. Thus
before turning to an analysis of decoupling limits in Section 3.1 we will first
gain some intuition about what sorts of three-folds X solve the equations of
motion for F-theory. To begin with, we should emphasize the basic fact that
for three-folds which include seven-branes the geometries in question are no
longer Ricci flat. To understand what behavior to expect for the Ricci cur-
vature of X, it is again helpful to think in the perturbative IIB limit. As we
have already mentioned, D7-branes produce conical deficit angles which are
positive contributions to Ricci curvature. Meanwhile orientifold planes pro-
duce negative Ricci curvature of X localized at their worldvolume. Since the
orientifold planes only occupy a sum of surfaces in X we can then conclude
that X should have non-negative Ricci curvature away from the surfaces
occupied by the orientifold planes. Now we dial up the string coupling to
transition from IIB to F-theory. This smooths the singular contributions
to the Ricci curvature of X and in general since we lack a quantitative
knowledge of the effective action for the gravitational degrees of freedom in
F-theory, we cannot make any assertions about the pointwise behavior of
the curvature. Nevertheless, we can control local curvature averages in the
form of the first Chern class of X. A simple way to see this is to examine the
seven-brane tadpole equations that follow from the Weierstrass model. The
discriminant A is a sum of surfaces S; defining the compact part of various
seven-brane worldvolumes:

A= Zn,&, (2.4)

where the n; in (2.4) are determined from the gauge group on each seven-
brane via table 1. We know from the Calabi—Yau condition that A is a
section of —12Kx, and topologically —Kx represents the first Chern class
of X, ¢1(X). Now let C' in X be any complex curve. We have

. 1
/CRlcm(X) =1 (X)C = T zi:niSiC (2.5)
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The right-hand side of (2.5) is an intersection of complex manifolds and
hence is non-negative provided that C' is not contained in any of the seven-
brane worldvolumes S;. Thus in analogy with the IIB case we find that
c1(X) > 0 away from the seven-brane worldvolumes. One can also turn this
condition around, curves in X for which ¢;(X)C < 0 are always contained
inside some seven-brane in X. In this way ¢1(X) controls the number of
seven-brane moduli with negativity of the first Chern class along some curves
obstructing any hypothetical seven-brane deformation where these curves
exit the branes.

In fact, one can make a sharper statement about the relation between
seven-brane moduli and negativity of ¢1(X). To begin with, suppose for
purposes of illustration that we were interested in the six-dimensional gauge
theories obtained by compactification of F-theory on Calabi—Yau three-folds.
Then X is a complex surface and seven-branes wrap complex curves inside
X. The argument following (2.5) then implies that any curve C' where
c1(X)C < 0 is always wrapped by some seven-brane. But now the sections
f and g entering the definition of the Weierstrass model are also topologically
represented by positive powers of ¢;(X). Hence the line of reasoning which
led us to conclude that a seven-brane wraps C' also implies that both f and
g vanish on C. Examining table 1 we conclude that C' actually supports
a non-abelian seven-brane. Turning this argument around we see that if
¢1(X) is negative on any curve, the model is obstructed from Higgsing the
total seven-brane gauge group to an abelian group. Now let us upgrade this
argument to the more interesting case of F-theory on a Calabi-Yau four-
fold elliptically fibered over a three-fold X. The same logic now implies
that any curve C' on which ¢1(X) is negative carries an enhanced singularity
larger than a single U(1). Thus either C' is contained in a non-abelian brane
or C is matter curve located at the intersection of two branes where the
degeneration type of the elliptic fibration enhances.

Beyond the basic requirement of having ¢;1(X) positive away from some
loci of branes, another technical requirement we will put on X is that the
vanishing loci of f, g, A should always fit into table 1 so that we can make
sense of the theory in terms of usual gauge theories instead of say some
unknown exotic stringy physics. The class of three-folds X which satisfy
these requirements form a rather large and varied set of geometries, and a
complete classification of such X is not known. A significant complication
is that we are explicitly interested in non-abelian gauge seven-branes and
therefore singular Calabi—Yaus. There is however one family of three-folds
which can always be the base of an F-theory four-fold. These are three-folds
with ¢1(X) positive everywhere, the so-called Fano three-folds. Roughly
speaking, positive first Chern class means that the bundles —nKx for n > 0
which entered in the definition of the Weierstrass model have a large number
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of sections. It follows that Fanos are compactifications with a large number
of seven-brane moduli suffering from none of the interesting obstructions
outlined in the previous paragraph. In the sense that these moduli must
eventually be stabilized in any complete model Fanos might be a bad starting
point. Nevertheless, since Fano three-folds form a completely classified set of
simple geometries we will use them as interesting examples in the following.

2.2 Introduction to Fano three-folds

Since Fano three-folds may be unfamiliar to some readers, in this section
we spend some time enumerating their various special properties. For fur-
ther information the reader is referred to [31]. Fano three-folds are three-
dimensional algebraic varieties which admit Kéhler metrics with strictly pos-
itive Ricci curvature. They are the three-dimensional analog of the famous
del Pezzo surfaces. The positivity of the curvature is an extremely strong
topological condition on manifold. Geometrically, the positive curvature
forces geodesics to bend toward themselves in such a way that the mani-
fold closes up quickly before anything too drastic has occurred. Since we
are working with algebraic varieties, it is more convenient to phrase the
positivity of the curvature in terms of the first Chern class of X. Fano
three-folds are then characterized by the fact that c¢;(X) intersects posi-
tively with every curve in X. Yau’s theorem [37] guarantees that we can
pass from a representative of ¢;(X) to a positive curvature metric in any
Kahler class so little information is lost by working at the level of cohomol-
ogy. Further constraints on the geometry of X can be obtained by applying
Kodaira vanishing and Serre duality:

Ri(X)=h"(Kx)=0, i>0, (2.6)

where in (2.6) the final result follows because Kx, being represented by the
negative class —c;(X), possesses a metric with strictly negative curvature.
Thus we immediately learn that the Hodge diamond of a Fano three-fold X
takes the rather restricted form:

h3(X) 1
h32(X)  h*3(X) 0 0
RN X)  R22(X)  RYA(X) 0 AYYX) 0
ROX)  RPY(X)  AMA(X)  K%(X) = 0 KPN(X)  RPN(X) 0
R2O(X)  hMY(X)  RO2(X) 0  AM(X) 0
REOX) (X)) 0 0
hO’O(X) 1

(2.7)
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In particular, we see that the number of equivalence classes of divisors in
X, hb1(X), together with the remaining Hodge number of X, h%!(X), are
topological invariants of X. In fact, the Hodge diamond structure (2.7)
must hold more generally for any X which forms the base of an elliptically
fibered Calabi-Yau four-fold Y of full SU(4) holonomy. Indeed if X had a
non-trivial holomorphic form then this form would pullback to the four-fold
contradicting the fact that h*°(Y") vanishes for i < 4.

Perhaps the most surprising feature of Fano three-folds is that unlike
Calabi—Yau three-folds there are very few of them. One can at least partially
understand this fact by thinking about the situation for complex surfaces.
Suppose D is a del Pezzo surface, that is a two-dimensional complex variety
which admits a Kahler metric with strictly positive Ricci curvature. Then
applying Kodaira vanishing as in (2.6) shows that the topological Euler
characteristic of D, XTOP(D), and the holomorphic Euler characteristic of
D, x ., (D), are given by

X1op(D) = 2+ WMD), Xy (D) = 1. (2.8)
Now apply the index theorem:
Xua (D) = 15 (€1(D)? + X1, (D)) - (2.9)
Combined with (2.8) this yields
c1(D)? + hbY(D) = 10. (2.10)

And since both terms on the left-hand side of (2.10) are positive, we learn
that the cohomological possibilities for D are very limited. Of course, as
is well known there are exactly 10 del Pezzo surfaces given by P! x P!,
P2, or P? blown up at no more that eight points in general position. The
classification of smooth Fano three-folds is significantly more complicated.
Nevertheless, a complete classification was obtained by Mori and Mukai in
the 1980s [28,29], and as with del Pezzo surfaces the allowed values for
h11(X) are very limited. There are exactly 105 possibilities for X with the
number of each allowed h'!(X) listed below:

RPYX) 1 [ 23 4]5]6]7[8[9[10]>11

# 171363113 |3|1(1]|1(1] 1] O

Clearly in order to admit any kind of decoupling limit X must have at
least two independent scales Vol(X) and Vol(S) so h'}(X) > 1. Since the
possibilities for X are so few, this constraint is in fact fairly non-trivial,
ruling out a reasonable fraction of candidate three-folds.
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Although the complete classification of Fano three-folds is rather involved,
the key ideas are simple to explain and relevant to the geometry in the rest
of the paper. As a warm up, let us first recall the classification of del
Pezzo surfaces D. This is achieved by studying the Kéahler cone. Beyond its
dimension, the interesting feature of any Kéhler cone is its boundary, which
describes possible degenerations of the del Pezzo where the metric fails to be
positive. The basic structure theorem for del Pezzos is that the faces on the
boundary of Kéhler cone, where a single cohomology class of curves shrinks
to zero volume, always correspond to shrinking a P! inside the del Pezzo. It
is now a short step to see that, aside from the trivial case of D = P! x P!,
these faces describe the elementary algebraic operation of a blowdown, and
further that a blowdown of a del Pezzo remains del Pezzo. Turning this
idea around we find that to classify del Pezzo surfaces it suffices to find del
Pezzos with a single Kahler class, and then study their blowups. Since the
only del Pezzo surface with h':'(D) = 1 is P? one then obtains all del Pezzos
by blowing up P2.

To upgrade this approach to the classification of Fano three-folds one
needs first to understand the boundary of the Kéhler cone of such three-
folds. This was achieved by Mori [27] who classified all degenerations of Fano
three-folds where the class of a single surface S shrinks to zero volume. The
del Pezzo surface P! x P! is now replaced by three-folds which are either
fibrations of del Pezzo surfaces over P!, or P! fibrations over del Pezzo
surfaces.!  Meanwhile the operation of blowing down a P! inside a del
Pezzo is replaced by contractions of surfaces of four possible types:

e S is P2 which shrinks to a point. This case includes the familiar con-
struction of blowing up a three-fold at a point.

e S is P! x P! which shrinks to a point. The two P! directions on the
surface are always cohomologically equal in X.

e S is a singular cone which shrinks to a point. This cone is defined in
projective coordinates in P? by the equation z? + y? + 22 = 0.

e S is a P! fibration over a smooth curve C' which shrinks to the curve
C by collapsing the P! fibers.

To complete the classification of Fano three-folds following the example of del
Pezzo surfaces, one next classifies simple cases where h%!(X) =1 or 2 and
hence the Kahler cone has little interesting boundary structure. Finally, one
then studies how to produce new Fanos from these simpler ones by blowing
them up along points and curves creating the surfaces S appearing on the
above list.

!These are algebraic fibrations, so degenerations of the fibers generically occur.
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The principle fact that the reader should take away from this discussion is
that on Fano three-folds, classifying the basic allowed Kéhler degenerations
where a single surface S shrinks is a completely understood problem. As
we will discuss in the next section the gravitational decoupling limit that
we want to take is essentially a Kéhler degeneration so understanding this
list together with a bit about Mori’s method will take us a long way toward
ruling out Fano three-folds as candidate UV completions of local F-theory
GUTs.

3 Decoupling limits and Fano three-folds

Now we turn to a more detailed study of the decoupling limit. It is useful to
divorce two conceptually distinct issues. The first is the study of complex
surfaces S C X on which it is in principle possible to wrap a seven-brane of
any type and take a decoupling limit. The second is an analysis of an actual
gauge theory on such a surface S. As we will see in this section only the
former is actually relevant for ruling out Fano three-folds as candidate com-
pactifications. Thus throughout the remainder of this section the reader will
find almost no mention of any properties of gauge theories, only a geometric
analysis of decoupling limits.

3.1 Decoupling limit geometry

To setup the problem we will first introduce a convenient geometric picture
for thinking about the decoupling limit. As we have already discussed in the
introduction, a necessary condition for decoupling gravity on a seven-brane
wrapped on S is that we can take a limit where the Planck mass becomes
large while the gauge theory parameters stay fixed. Using the estimates
given in (1.1) to (1.3) this means that we can take a limit where Vol(X)
becomes parametrically large while Vol(S) remains fixed. It is mathemat-
ically convenient to rewrite this requirement as follows. First we use our
estimates to deduce that

Meur <V01(5)3/4 )

Mp Vol(X )12 (3:-1)

Hence for fixed gauge coupling constant «;, the existence of a decoupling limit
Vol(5)3/4
Vol(X)1/2
more formally, the existence of a decoupling limit implies that we have a

means that the ratio can be made parametrically small. Slightly
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one-parameter family of Kéhler classes w(t) with the property that

2\3/4
i Use@ (3.2
o ([ wt)
Written in this form it obvious that the decoupling condition is insensitive
to the overall normalization of the K&hler class. Given any path w(¢) in the
Kaéhler cone satisfying (3.2), we can obtain another such path by multiplying
w(t) by any positive real function f(¢). Physically the decoupling limit is
a process where the volume of X becomes very large with the size of the
surface S fixed. However mathematically this is inconvenient because in
the limit we are forced to deal with a non-compact three-fold. We will
thus find it more useful to analyze the geometry of the decoupling limit by
renormalizing w(#) such that a finite non-zero limiting class w exists.? The
decoupling condition (3.2) then implies that .S has zero volume as measured
by the limit class w:

w?- 5 =0. (3.3)

Geometrically, the reason that a finite limit class w is useful is that w
lies on the boundary of the Kéahler cone of X so this rescaled version of
the decoupling limit is now simply a Kéhler degeneration of X, and can be
analyzed using familiar techniques of algebraic geometry. In particular, we
can make sense of the limit of X itself as some compact complex manifold
by simply defining w to be a Kéhler class on the limit. Notice that it is key
for this construction that we are studying a relative Kahler degeneration
where the volume of X becomes large while the volume of the surface S is
fixed. This is not the most general kind of limit in Kéhler moduli space.
For example in the context of mirror symmetry of type Il strings on Calabi-
Yau three-folds one might be interested in the mirror of a large complex
structure limit which would correspond to taking the Ké&hler class toward
infinity with no fixed reference volumes. In this case nothing can be gained
by renormalizing the Kahler class.

Qualitatively speaking, there are now two possibilities depending on
whether w? is or is not equal to zero. When w?® vanishes, the limit of X
has zero three-dimensional volume and so X itself has also collapsed to a
surface or a curve. Geometrically, this means that at least one dimension
of S spans a dimension of X so that when .S shrinks X is also forced to
shrink. The simplest examples of this type are when asymptotically, as we

2Strictly speaking, to ensure the existence of a limit one may have to pass from the
one-parameter family w(t) to a sequence of classes w; and then finally to a subsequence
with a limit. This small subtlety together with additional details about this construction
are explained more fully in Appendix A.
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approach the decoupling limit, X looks like a fibration of S over a curve C.
More generally X may not be a fibration, but it still admits a holomorphic
map to surface or a curve with the brane worldvolume S collapsed by this
map. One can most likely study these models by investigating F-theory on
elliptically fibered Calabi—Yau surfaces or curves, and then fibering these
over curves or surfaces, respectively. To understand this, let us stick for the
moment with the case where X degenerates to a curve. A typical surface,
F', collapsed by this degeneration will then have trivial normal bundle in X.
The adjunction formula then implies that

Kr = Kx|r+ Np/x = Kx|F. (3.4)

So the canonical bundle of F' is simply the canonical bundle of X restricted to
F'. It follows that if we restrict the Weierstrass model of Y to F', we obtain an
elliptically fibered Calabi—Yau three-fold. The full Calabi—Yau four-fold Y is
then obtained by fibering these three-folds over the curve C' which is in fact a
P!, A similar story holds for the case when the decoupling limit is such that
X degenerates to a surface. The Weierstrass model restricted to a typical
fiber then gives an elliptic K3 with the full Calabi—Yau four-fold constructed
by fibering these K3’s over a complex surface D with h'9(D) = h2°(D) = 0.
Strictly speaking, the most general class of models with w® =0 are not
simply fibrations; the gluing of the lower dimensional Calabi—Yau’s together
may involve interesting subtleties at special fibers of the decoupling map.
Nevertheless, the main point of this analysis should be clear: models with
w3 = 0 are geometrically degenerate in that they are glued together out of
lower dimensional Calabi—Yau’s. Thus although there is nothing physically
wrong with these constructions, for the remainder of the paper we will focus
on the more interesting decoupling limits where w3 # 0. In this case the
limit of X also looks three dimensional and one learns the least amount
of global information about the Calabi—Yau four-fold. Geometrically, these
are certainly the most robust examples to study and they include all local
models discussed in the literature to date [3,5,6,11,24].

The decoupling limits of interest are thus Kéhler degenerations of the
three-fold X where the compact part of our SU(5) brane worldvolume S
collapses while leaving the bulk size of X at finite volume.? In this case
we can draw the conclusion that .S must be a rigid cycle which admits no
holomorphic normal deformations in X. The reason for this is simply that on
the Kéhler manifold X the volume of the holomorphic cycle S depends only
on the cohomology class of S in X. In particular any normal deformation
of S, being cohomologous to S itself, has the same volume as S. Thus if S

3As discussed in Appendix A this means mathematically that the decoupling limit is
described by a birational transformation of the three-fold.
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Figure 2: A non-rigid cycle S whose collapse would lead to the collapse of
the three-dimensional striated region.

were non-rigid, collapsing S would require collapsing the three-dimensional
region spanned by S and its normal deformations and hence would collapse
the three-fold X itself. Physically, the spectrum of holomorphic normal
deformations of S in X is realized in the effective four-dimensional GUT
theory supported on the seven-brane as adjoint scalar fields. The fact that
the cycle S must be rigid then tells us the interesting fact that there are
no such four-dimensional adjoints. From the point of view of GUT models
this is rather intriguing; the traditional mechanism for Higgsing the GUT
group to the gauge group of the standard model relies precisely on giving
an adjoint Higgs a suitable expectation value. What we are then learning is
that in F-theory GUTs with decoupling limits this mechanism is unavailable
and hence we must utilize a mechanism such as brane flux or Wilson lines
intrinsic to the higher-dimensional nature of the GUT theory [3].

Actually, there are two important subtleties in the discussion of the spec-
trum of the theory on the seven-brane. On a flat seven-brane, the bosonic
fields in the eight-dimensional N' = 1 gauge theory are an eight-dimensional
gauge field, A, as well as an adjoint complex scalar, ¢, whose expectation
values parameterize normal motions of brane. To preserve supersymme-
try when we compactify this theory on the Kéhler surface S the theory
must then be topologically twisted along the compact dimensions. Curi-
ously, once the surface S is specified, there is a unique supersymmetric twist
available and after the twist ¢ now transforms as a holomorphic two-form
on S while A, retains its spin [2]. Now we reduce to the effective four-
dimensional action and we see that there are two distinct sources of adjoint
chiral superfields in the theory. The first from the reduction of ¢ yields
h%0(S) multiplets, while the second from the reduction of A4,, yields h*?(S)
such multiplets. What distinguishes these two classes of adjoints in the effec-
tive four-dimensional theory is their couplings i.e., the way that they enter
the superpotential. Holomorphy of the superpotential then protects this dis-
tinction at least till the supersymmetry breaking scale where we expect all
allowed operators to be generated by quantum corrections. We will discuss
this further in Section 4. However for now we can state a basic fact that
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in the absence of adjoints associated to the ¢ field, the adjoints descending
from the vector do not have a sufficient superpotential to Higgs the SU(5)
GUT group [3].

The second subtlety in this discussion is now manifest from the previ-
ous paragraph: the twist of the seven-brane gauge theory does not appear
sensitive to the normal bundle of S in X. Thus in fact the claim that
the holomorphic normal deformations of .S are realized as four-dimensional
chiral adjoints is strictly speaking not true. As we have just discussed, the
spectrum of four-dimensional adjoints capable of Higgsing the GUT group is
controlled by the number of holomorphic sections of the canonical bundle of
S. This then presents a paradox: what four-dimensional modes do holomor-
phic normal deformations of S in X describe? As we will see in Section 4,
the answer to this puzzle is that the seven-brane tadpole equations connect
the bundle Kg and Ng,x in such a way that the holomorphic sections of Kg
are always a subset of the holomorphic sections of Ng,x. Roughly speaking
what is happening is that some of the normal deformations of S in X are
massive in the seven-brane gauge theory because one cannot consistently
extend these deformations to the other seven-branes in X while maintaining
supersymmetry. The fact that the adjoints transform as sections of Kg and
not Ng/x is simply encoding this fact. In any case, the fundamental conclu-
sion that a decoupling limit implies no four-dimensional adjoint Higgsing of
the GUT group remains valid.

Now that we have discussed the basics of the decoupling limits in question,
it is useful to make a more refined classification of the local picture of X
near S when S collapses. There are three qualitatively distinct possibilities:

1. Elementary contraction to a point: S shrinks to a point and no
other surface shrinks.

2. Elementary contraction to a curve: S shrinks to a curve and no
other surface shrinks.

3. Non-elementary contraction: S shrinks either to a point or
a curve and another surface that
meets S also shrinks.

Both physically and mathematically the decoupling limits associated to
elementary contractions are the cleanest. In the case of a non-elementary
contraction one expects that wrapped branes on the additional surfaces
shrinking in the decoupling limit contribute to the effective four-dimensional
spectrum and interactions for the GUT theory supported on .S. Mathemat-
ically, elementary contractions are simplest because a piece of technology,
Grauert’s criterion [13], gives necessary and sufficient conditions for them to
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occur. The statement is that S can undergo an elementary contraction to a
point if and only if ¢1(Ng/x) is negative along every curve in S. Similarly
S can undergo an elementary contraction to a curve if ¢1(Ng/x) is negative
along each fiber of the contraction of S to the limit curve.

Given any particular three-fold X, it is straightforward to apply Grauert’s
criterion to determine which surfaces can undergo elementary contractions.
For example, consider the well-studied case of type II strings on a Calabi—
Yau three-fold X. If S C X is a surface which can undergo an elementary
contraction to a point then via the adjunction formula:

Ozcl(X)|5':Cl(S)—i-Cl(NS/X). (3.5)

By Grauert, c¢1(Ng/x) is negative so (3.5) implies that ¢;(S) is positive and
hence S is del Pezzo. Notice in this computation how significantly the canon-
ical bundle of the three-fold X entered. An F-theory compactification is not
a Calabi—Yau compactification and there are an infinite number of possible
surfaces which can shrink inside X and form candidate brane worldvolumes.
Indeed if we put no restrictions on ¢;(X) then there are no restrictions on
the kinds of surfaces which can shrink.* Of course as discussed in Section 2,
there are restrictions on ¢;(X) and in Section 4 we will analyze the resulting
restrictions on placed on brane worldvolumes S. However for now we simply
wish to make the point that in an F-theory compactification there is nothing
a priori special about del Pezzo surfaces.

3.2 A no-go result against Fanos

In the previous section we outlined the basic geometry relevant to study-
ing decoupling limits on seven-branes in any ambient three-fold geometry
X. Now we will restrict to Fano three-folds, so ¢1(X) is positive definite.
The discussion at the end of Section 2 about Mori’s classification of Kéahler
degenerations of Fano three-folds states that the only surfaces S in a Fano
X which can undergo elementary contractions are P?, quadric cones, and P*
fibrations over curves. The quadric cone is a singular complex surface and
a formalism for investigating the four-dimensional gauge theories obtained
by compactifying seven-branes on such surfaces has not yet been developed.
Thus in the following, we will restrict ourselves to the smooth possibilities
for S.

4To illustrate this point let S be any Kéhler surface, and pick H a positively curved
line bundle on S. Now form the Kéhler three-fold P(Os(—H) ® Os) = X. Then X is
fibered over S and S sits inside X as a section. Since we chose H to be positively curved,
S has negative normal bundle in X and by Grauert S can be shrunk to a point inside X.
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Now we will impose a single constraint which we believe is necessary for
the phenomenological success of any seven-brane model. We will demand
that S has a sufficient number of candidate matter curves to construct a
model which is remotely MSSM-like. As we have reviewed in the introduc-
tion, Yukawa couplings are generated at points in S where matter curves
intersect. Given any pair of matter curves in S they will generically inter-
sect for dimensional reasons and hence the existence of Yukawa couplings
is enforced topologically by intersection theory. To geometrically engineer
the structure of the MSSM interactions while at the same time avoiding
such disasters as proton decay then requires a sufficient number of linearly
independent cohomology classes of curves. At the bare minimum we expect
that h''(S) > 3, leaving no possibilities for S in the case of elementary
contractions inside Fanos.

The line of reasoning in the above paragraph still leaves open the possi-
bility that S might undergo a non-elementary contraction inside a Fano X.
Indeed, the boundary of the Kéhler cone of X contains not only the faces,
which describe degenerations classified by Mori, but also edges where faces
intersect and multiple surfaces collapse yielding a non-elementary contrac-
tion. At such an edge not only do the individual surfaces corresponding to
each face collapse, but also every surface cohomologically equivalent to an
arbitrary sum of these surfaces also shrinks. To completely rule out Fano
three-folds as candidate compactifications we thus need to generalize slightly
Mori’s analysis to account for this possibility.

As a prerequisite we need to be more specific about what exactly the
existence of a decoupling limit implies. To this end, in Appendix B we
prove a well-known mathematical result called negativity of contraction. If
S can shrink then necessarily S contains a curve C' with ¢1(Ng/x)C < 0.
And furthermore, the curve C deforms in S, CC > 0. As explained in
Appendix B this implies that no positive power of the normal bundle of
S admits any holomorphic sections so S is certainly rigid. Now to analyze
possible non-elementary contractions inside a Fano X, we use the adjunction
formula to relate the canonical bundle of S to the normal bundle of S:

KS:KX‘S@)NS/X- (3.6)

The canonical bundle of X is negative-definite since X is Fano, and by neg-
ativity of contraction we can find a deformable curve C' on which Ng,x is
negative. Thus by (3.6) we learn that the canonical bundle K is itself nega-
tive along the deformable curve C. The same logic from Appendix B implies
that no positive power of Ng,x admits sections then implies that no posi-
tive power of Kg admits sections. Complex surfaces satisfying this property
have been completely classified [14] and are known as ruled surfaces. They
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all are of the following form: a P! bundle over an arbitrary curve of any
genus, blown up at points an arbitrary number of times.

To the result of the previous paragraph we now add our phenomenological
restriction: h%!(S) > 3. This means that there is at least one blowup of the
ruled surface S. What we will now demonstrate is that as long as X is
Fano, no such surface can ever contract. The complete proof of this fact is
somewhat involved and relegated to Appendix C, however we can present
simple cases to illustrate why this is so. To begin with consider for example
the case where S is ruled over a surface of genus zero. In this case S is
a blowup of a Hirzebruch surface F,, at a positive number of points. One
interesting feature that all such surfaces have in common is that they have a
Mori cone of curves which is spanned by rational curves (P!’s) with strictly
negative normal bundle. That is if S is any blowup of a Hirzebruch surface,
and C' C S any curve then in terms of linear equivalence:

C=> ali (3.7)

where in (3.7), each of the coefficients a; is non-negative, and the curves
I'; are rational curves with I';I; < 0. This property of such S might sound
rather esoteric, but as we will now show together with Fano condition this
obstructs any such S from admitting even a non-elementary contraction. To
see this we need to apply only the genus formula together with adjunction
to each of the rational curves I';:

0=g(y) = %(Fl —a(9))ri+1= %(CI(NS/X) (X)) + F;Pi 1
(3.8)

Since we are assuming that X is Fano and we know that I';T'; < 0 (3.8)
implies that Ng/xI'; > 0. Together with the fact (3.7) that such I'; span
the Mori cone, this argument shows that Ng,xC > 0 for any curve C' C S.
Comparing this with our discussion of negativity of contractions we conclude
that a blowup of F,, can never contract inside Fano three-folds.

Another way to gain intuition for the geometric content of this no-go
theorem is to attempt to build a counterexample. As a strategy for trying
to build a counterexample we start first with the degenerated limit of our
three-fold and then modify it by a sequence of blowups. The exceptional
divisors of the blowups then yield surfaces inside the modified three-fold
which admit decoupling limits. The basic Chern class identities for blowups
tell us that if Z is a blowup of the three-fold Z then the Chern classes are
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related by
a(Z)=a(Z)-D, (3.9)

where in the above D is an effective divisor. Thus, at least for curves not
contained in the divisor D, blowing up reduces the first Chern class. Now
we know from Mori’s classification of elementary contractions on Fanos that
the only smooth surfaces which collapse in a single blowdown are P? and
minimal ruled surfaces so any hypothetical counterexample involves at least
two blowups. Since we want the end result of the blowups to be Fano, (3.9)
suggests that we take as the degenerated limit of X a three-fold with a large
first Chern class. Thus we will start with P? and attempt to create a Fano
X with a decoupling limit surface S by blowing up twice.

One such attempt is illustrated in figure 3. We consider a singular curve
C in P3 with an ordinary double point at p € P3. We blowup P2 at p to
create a P? denoted by E in the illustration. The fact that the two branches
of C' meet at p with distinct tangents means that in the blowup, the strict
transform of C' meets E transversally at a pair of points. Now we blowup
again at the strict transform of C to obtain the final three-fold X. In X,
FE has been modified by a blowup at the two points of intersection with the
strict transform of C' creating a non-minimal del Pezzo, dP,. Inside X this
dPs is contractible via a non-elementary contraction where X undergoes a
sequence of blowdowns back to P3. Unfortunately, however, X is not Fano.
Inside E there is a distinguished line L connecting the two points where the
strict transform of C' meets E. Using the usual Chern class identities for
blowups, one readily checks that ¢; (X)) is not positive on the strict transform
of L in X. The general argument of Appendix C builds on this idea using
Mori theory. A straightforward argument reduces an arbitrary hypothetical
counterexample to this specific example and then rules it out analogously.

Thus we see that as candidate global completions of a local F-theory
GUTs, Fano three-folds are ruled out. In fact our arguments imply much
more; these considerations are all local with respect to the compact part
of the brane worldvolume S inside X. It follows that if ¢;(X)|g is positive
and S contains a sufficient number of mater curves to engineer the stan-
dard model, then S never admits a decoupling limit. The fact that our
arguments are local also makes them robust. One cannot invalidate the
conclusions by putting some horrible singularity of X far away from S. As
long as the physics in a small neighborhood of the seven-brane is geomet-
rically describable the analysis presented in this section goes through. In
fact, as demonstrated in Appendix C, even allowing singularities of S and
X only adds the possibility for S to be a singular quadric cone mentioned
in Section 2. This result reinforces the conceptual link between asymptotic
freedom of the gauge theory on the seven-brane and the existence of a limit



DECOUPLING GRAVITY IN F-THEORY 711

3 proper exceptional divisor propir transform X
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Figure 3: An attempt to create a Fano three-fold with a dP» which admits
a decoupling limit by blowing up P? twice. The construction fails because
c1(X) is not positive on the proper transform of the line L.

where gravity decouples. We have seen in Section 2 that curves C C X with
c1(X)C < 0 always lie in non-abelian singularities of the elliptic four-fold.
The fact that X cannot be Fano at S then tells us that we are tantalizingly
close to being forced into the physically desired situation of non-abelian
gauge theory simply by the existence of a decoupling limit.

4 Constraints on colliding seven-Branes

Hopefully the analysis of Section 3 has convinced the reader that Fano three-
folds are bad candidate geometries for a global completion of a phenomeno-
logically successful local F-theory GUT. Thus in this section we will turn
our attention to compactifications where the three-fold X is not Fano. The
geometry in this case becomes more subtle, and the three-folds under inves-
tigation are now more varied and unclassified. Nevertheless, one can still
make substantial progress by studying how the Ricci curvature of X behaves
near our seven-brane. As we have already seen, the Ricci curvature near the
seven-brane, i.e., the restriction of the first Chern class of X to S, is inti-
mately connected to the study of contractions of S. What we will now show
is that ¢1(X) also plays an essential role in limiting the local interactions
and matter content allowed in any gauge theory supported on S.

4.1 Seven-brane tadpoles

Intuitively, it is clear that the curvature of X near S plays a role in con-
straining the allowed behavior of gauge theories on S. After all, matter is



712 CLAY CORDOVA

dictated by intersections of seven-branes, and since each seven-brane pro-
duces a local curvature backreaction on the geometry, knowledge of ¢;(X)|s
tells us something about what kinds of branes can meet S. The precise
manifestation of this intuition is in the classification of degenerating ellip-
tic fibers in the Weierstrass model. Suppose for example that S supports
a seven-brane of SU(n) gauge group together with unspecified matter and
Yukawa couplings. Then from table 1 we see that the vanishing loci of f, g,
and A take the form:

A =nS+ Dy, (41)
g = D27
[ = Ds,

where in (4.1) to (4.3), the D; denote effective divisors distinct from S.
On the other hand since f, g, and A are sections of 4c¢1(X), 6¢1(X), and
12¢1(X) (4.1) to (4.3) encode properties about the canonical bundle of X.
Viewed in this light, (4.1) to (4.3) take the form of global seven-brane tad-
pole equations. To see how they work in practice it is helpful to study (4.1)
to (4.3) in Sen’s IIB weak coupling limit [33]. For concreteness suppose we
were studying F-theory on a Calabi-Yau four-fold whose base is P3. Let
H denote a hyperplane in P2. The analog of (4.1) then simply states that
the total generalized seven-brane charge as measured by the descriminant is
—12Kps = 48H. We know from Sen’s work that in the weak coupling limit
we can interpret this F-theory compactification as an orientifold compactifi-
cation of IIB on a Calabi—Yau three-fold B. Thus B should be a double cover
of P3. The fact that B is Calabi-Yau tells us that the branch locus of the
cover, where the orientifold planes reside, is in the class of —2Kp3 = 8H.
Since O7 planes have D7 charge equal to —4, we see that to cancel the
D7 tadpole we must include in our compactification D7 branes whose total
charge is 32H. Now perturb slightly away from the weak coupling limit.
Sen tells us that each of the O7’s resolve into a pair of mutually non-local
(p,q) seven-branes, and hence the total generalized seven-brane charge of
the compactification is

7 — brane charge = 32H + 2 x 8H = 48H.
~~ ———

contribution from D7  contribution from smeared out O7

(4.4)

Exactly as required. In the IIB limit these generalized tadpoles (4.1) to (4.3)
will always be equivalent to the ordinary seven-brane tadpole condition, but
away from the perturbative regime they force somewhat surprising relations
on the configurations of seven-branes.
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Another way to understand (4.1) to (4.3) is to note that in compactifi-
cations on lower dimensional manifolds they become much more familiar.
Indeed if we consider the foundational example of F-theory compactified on
K3 [34] then the tadpole equations tells us the well-known fact that the
total generalized seven-brane charge on the P! base of K3 is —12Kp1 = 24.
It is perhaps not a widely appreciated fact that in compactifications on
higher dimensional manifolds, tadpole cancellation becomes a much stronger
requirement. The point is that when we compactify F-theory on K3 the gen-
eralized tadpole constraints are basically a relation among numbers. On the
other hand when we compactify F-theory on a Calabi—Yau four-fold, the
seven-brane tadpoles are relations among cohomology classes of surfaces.
Given any such relation, we can intersect it with other cohomology classes
to obtain new relations. This last fact is particularly useful and powerful.
We can take (4.1) to (4.3) and restrict them to the brane surface S itself.
Then we obtain tadpole equations among cohomology classes on .S that we
can address in a local model, and which must be satisfied for any local seven-
brane model to embed in string theory when gravity is turned back on.

To make a systematic study of these restrictions, it is most convenient to
prescribe the singularities of the elliptic four-fold using the Tate form of the
equation for an elliptic curve:

y? = 2 + a1zy + asz® + asy + asx + ag, (4.5)

where now each a,, is a section of —nKx. We will focus on the phenomeno-
logically relevant example of an SU (5) gauge group on S though it should be
clear that this method has more general application. As with the Weierstrass
form of the four-fold, the singularity type on a surface can be read off from
the vanishing order of the a;. Below we list only the groups relevant for us,
a complete list can be found in [4].

Let z denote a local coordinate on X such that z = 0 locally defines S.
Since we want SU(5) gauge symmetry on S, in accordance with able 2 we
must choose:

a1 =by as=2zby az=2%b3 as=2bs ag= 2"bg, (4.6)

Where in (4.6) none of the b; vanish identically on S where z = 0. One
readily computes that up to irrelevant constants, the discriminant of (4.5)
can be expanded in the following series in z:

A = 2% [b]P + 2b7(8b2P + b1 R) + O(2%)] . (4.7)
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And the quantities P and R are expressed in terms of the b; as

P = b2by — bybsby + bibg, (4.8)
R = 4bybabg — by — b1b3.

Along curves in S the singularity type enhances to a rank one ADF exten-
sion of SU(5) and matter appears. To deduce the precise charges one utilizes
the Katz—Vafa procedure [21]. For example, near the curve X5 in S where
the singularity enhances to SU(6) the local geometry is that of a single U (1)
brane meeting the SU(5) brane S along ¥5. We can then view this theory
as an SU(6) gauge theory which has been Higgsed to SU(5) x U(1). Since
the SU(6) theory contains only adjoints, the matter content arising at the
intersection of the seven-branes is then determined by reducing the adjoint
of SU(6):

35 —-240P 1B 51 5+1, (4.10)

where the subscript refers to the U(1) charge. Thus in terms of SU(5)
representation content, the curve X5 of SU(6) singularity enhancement hosts
matter which transforms in the fundamental and antifundamental of SU(5).
Similarly, along a curve 319 the singularity increases to SO(10) and matter
in the 10 and 10 appears.

It is significant that the locations of the matter curves are completely
fixed by the local behavior of the a; near S in (4.6). Since these are all
sections of powers of — K x the adjunction formula then connects the matter
curves with the normal bundle of S in X and the canonical bundle of S
itself. To see this explicitly observe that the locus of SO(10) enhancement
is exactly defined by b; = 0. On the other hand, we see that from (4.6) that
b1 is a section of —Kx. Thus as cohomology classes:

210:Cl(X)|Szcl(S)+Cl(NS/X>' (411)

Similarly, the SU(6) locus is determined by P = 0. Recalling that A is in
the class of 12¢1 (X)), homogeneity of (4.7) implies

25:861(X)|S—55052801(S)+301(NS/X), (4.12)

where in (4.12) we have used the fact that the self-intersection of S represents
the Chern class of the normal bundle of S in X. A priori, we do not know
exactly what the normal bundle of S is, however we see that we can eliminate
the normal bundle from (4.11) to (4.12) to obtain a constraint:

3¥X10 — 25 + 501(5) =0. (4.13)

In other words, local seven-brane models have significantly less freedom
than one might expect. It is not possible to specify arbitrarily the matter
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curves on the seven-brane. Once the surface S and class of the 10 curve are
specified, the class of the 5 curve is determined by (4.13). Some comments
on (4.11) to (4.13) are in order:

(1)

The derivation of these equations following this method was first per-
formed in [11]. There it was observed following [32] that the constraint
(4.13) has an interpretation in the IIB weak coupling limit in terms
of the Green—Schwarz cancellation of the mixed gauge gravitational
anomalies on the seven-brane gauge theory. The idea is that we can
view each of the matter curves as a six-dimensional charged defect in
the twisted gauge theory on the seven-brane S, and so under a gen-
eral gauge and Lorentz transformation the action acquires a variation
localized on the matter curves which must be cancelled appropriately
by the variation due to bulk fields.

Equations (4.11) to (4.13) allow us to resolve the puzzle about the mis-
match between the holomorphic normal deformations of S and the light
adjoints arising from the dimensional reduction of ¢. In Section 3 we
attributed this mismatch to the fact that some of the normal deforma-
tions of S cannot be consistently extended to the remaining branes in
the geometry. In order for this interpretation to make sense we would
expect that in the seven-brane theory with no matter, Ng,x matches
with Kg, the latter being where the field ¢ is valued. Examining (4.11)
we see that when Y19 vanishes we indeed have the equality Kg = Ng, x
implying that the ambient geometry is locally Calabi—Yau. This is as
one might expect from perturbative IIB considerations; the 10 curve
is the locus of intersection of the seven-brane S with any orientifold
planes so a necessary condition for X to be locally Calabi—Yau near
S is the absence of any 10 curves. Curiously, if one further requires
that the theory contain no 5 curves then the unique solution to (4.11)
to (4.13) is ¢1(S) = Ng/x = 0 so the only seven-brane theory without
matter which can be consistently coupled to gravity has S = K3 in an
ambient Ricci flat geometry.

More generally, the constraint (4.11) shows that the light adjoints
in the theory descending from the ¢ field are in one-to-one corre-
spondence with the subset of holomorphic normal deformations which
vanish along the curve ¥19. In the IIB limit this reflects the simple
fact that at 19, S meets its mirror image at the orientifold plane,
and any allowed motion of the seven-brane configuration must respect
this fact.

Using the techniques demonstrated thus far we can extend the constraints
(4.11) to (4.13) to a method for counting the Yukawa couplings in the geome-
try. As discussed in the introduction, Yukawa couplings are generated when



716 CLAY CORDOVA

Table 2: Four-fold singularities for SU(5) gauge theories as specified by the
vanishing orders of a;.

Group a1 as a3 aqg ag A Physical meaning Defining equation
SUB) 0 1 2 3 5 5 Gauge fieldson S z2=0
(6) 0 1 3 3 6 6 Charged matter in 5 z2=P=0
O(10) 1 1 2 3 5 7 Charged matter in 10 z2=0b; =0
(12) 1 1 3 3 5 8 Yukawacoupling5510 2z=0b =0b3=0
FEg 1 2 2 3 5 8 Yukawa coupling 51010 z2=0b; =b, =0
SU(T) 0 1 3 4 7 7 Yukawa coupling551 z=P=R=0

(bh b3) 7é (07 O)

matter curves intersect and hence the singularity type enhances by a rank-
two extension of SU(5). The relevant rank two enhancements together with
their associated physical interpretation are cataloged in table 2. We will
denote by p(G) for G = SU(7),SO(12), Es the number of points in S gen-
erating each of the indicated Yukawas. Examining table 2 and (4.6), (4.7)
and using homogeneity of the discriminant as above we find

P(SO(12)) = by N bs = (3¢1(X)er (X) — 261(X)S)S, (4.14)
p(E6) =biNby = (261(X)Cl( ) —C1 (X)S)S, (415)

p(SU(?)) PNR—-2b;Nbs = (6661( )Cl(X) 8901(X)S + 3085)5
(4.16)

The only small subtlety in deriving these formulas occurs on the left-hand
side of (4.16). Points where by meets b3 define SO(12) points and also occur
in the intersection P N R; in other words an SO(12) point is a special case
of an SU(7) point.> To avoid overcounting the SU(7) Yukawa points we
must then subtract these by N bg points from the P N R points. The reason
for the factor of two in the subtraction is then that points in P N R where
b1 = bs = 0 are intersections with multiplicity two, as can easily be seen from
the defining (4.8) to (4.9).

Now, because of (4.11) these polynomials in ¢;(X) and S can be reduced
to purely local data about the seven-brane S and the 10 curve 319 with
result:

p(SO(12)) = X10X10 + 2X10¢1(5), (4.17)
p(E6) = X10%10 + X1001(5), (4.18)
p(SU(7)) = 7X10210 + 29X10c1 (S) + 3001(5)61(5). (4.19)

5T would like to thank Mboyo Esole for patiently explaining this to me.
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Again we see that the local freedom in a seven-brane model is less than
expected. Once S and X1¢ are chosen, the number of Yukawa couplings of
each type are determined. In fact, one linear combination of these Yukawas
is even independent of the matter curves and sensitive only to the brane
worldvolume S

p(SU(7)) + 15p(Eg) — 22p(SO(12)) = 30¢1(S)e1 (S). (4.20)

It is unclear to us what, if any, the precise gauge theory interpretation of
these constraints are. The fact that they are derived analogously to the
anomaly (4.13) suggests a relation to anomaly cancellation and the Green—
Schwarz mechanism, this time constraining the number and kind of four-
dimensional defects in the compactified seven-brane gauge theory. In any
case, the method of restricting the seven-brane tadpoles to a seven-brane and
studying their intersection provides a simple derivation of (4.19) to (4.18),
and it is easy to check that these constraints are satisfied in all known
globally consistent examples [6,11,24].

It is important to understand the implications of the anomaly (4.13) and
Yukawa constraints (4.19) and (4.18) for the local models constructed by
Heckman, Vafa, and collaborators. Taking as a representative example [3],
one finds a presentation of matter curves and a choice of surface S. If one
interprets their construction in the strictest sense as a claim that there exist
only those matter curves and nothing more, then their models are obstructed
from UV completion by the constraints derived in this section. However,
a more reasonable interpretation of their work is that the matter curves
enumerated represent only a proper subset of the complete brane intersection
locus. Indeed while for generic seven-brane intersections the 10 curve g is
a single connected curve, it is certainly possible that for a suitably prescribed
intersection the 10 curve splits into, say, two pieces Y19 = C + Cy, where
C contains the piece of the 10 curve appearing in a Heckman—Vafa model
and Cy is chosen to satisfy the anomaly (4.13). To demonstrate consistency
of their models it is thus necessary to exhibit an explicit splitting of the
brane intersection locus which does not modify the phenomenology. We
will refer to this problem as a factorization problem: one must factorize the
brane intersection locus in order to satisfy the constraints.® It is clear that
this is a feature of brane constructions which can and should be addressed
in a purely local model. Although we will not discuss this problem in detail,
the restrictions on models with decoupling limits derived in Section 4.2 will
likely prove to be useful in attacking this issue.

5The existence of this problem, if not its underlying cause was first recognized in [24].
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It may be possible to solve the factorization problem while leaving no
residue of its existence in four dimensions. The charged four-dimensional
matter fields in the theory are the zero modes of the fields on the matter
curves, so in the notation of the previous paragraph it could be that the curve
(5 supports no zero modes and therefore does not effect the four-dimensional
action. There is at least one significant question to be addressed in solving
the factorization problem in this way:

o What stabilizes the factorization? This is clearly a subissue of the
general problem of moduli stabilization. It seems that some degree of
factorization will be required purely by phenomenology. For example,
it is reasonable to surmise that the 5 curve must be split into a least
three pieces:

E5ZC5H—|—C§,H+05M—}—--~ , (4.21)

where in (4.21), Cs,, denotes a curve supporting the 5 Higgs field, Cy ,
denotes a curve supporting the 5 Higgs field, and Cs,, a curve sup-
porting the 5 matter field. It is unclear whether stabilizing an addi-
tional factorization beyond that required by phenomenology will be
any more challenging then the general problem of moduli stabilization
faced by any viable model. Returning to the particular constructions
of Heckman, Vafa, et al., it is natural to expect that the enhanced sym-
metry structures in [7,17] will play a fundamental role in stabilizing
the required factorization in their models.

In the remainder of the paper when we make assertions about the phe-
nomenological implications of our results we will have in mind models that
do not face a factorization problem beyond that demanded by phenomenol-
ogy. We will take as our working definition of a minimal generic F-theory
GUT a model where there exists a single connected 10 curve and a 5 curve
split into three pieces corresponding to the three MSSM matter curves in
(4.21), and nothing else. These curves and their intersections will then be
chosen in order to satisfy the constraints (4.13), (4.19), (4.17), and (4.18).
Further, we will assume that the points of intersection of these curves are
uncorrelated and constrained only by basic phenomenological requirements
of, for example, matter parity.” Our purpose in these assumptions is not to
claim that these models are preferred. On the contrary, we will see in Sec-
tion 4.2 that for purely local models these assumptions are in fact a bit too

"Supersymmetry breaking may require additional fields. For example in a gauge-
mediated scenario one could envision further factorizing say the 5 curve to include an
additional piece supporting a vector-like pair of messenger fields [18,23]. Because we
must require messenger matter couplings to vanish this additional curve will not effect the
assertions made in the remainder of the paper and can safely be ignored.
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strong. We use these models as examples because for these, the constraints
derived in this section are the most powerful.

For the class of F-theory GUTs defined above, there is a simple conse-
quence of the Yukawa constraint (4.18) that is worth mentioning. To this end
we must first recall the four-dimensional meaning of the number of Yukawa
points [3,19]. Along a matter curve, say Y19, resides a six-dimensional defect
theory coupled to the seven-brane gauge theory on S. The SU(5) represen-
tation on the matter curve is determined by the Katz—Vafa Higgsing proce-
dure reviewed above. In particular since the representation always results
from breaking an adjoint, the six-dimensional theory on the matter curve
is vector-like. To obtain a four-dimensional chiral spectrum we now switch
on a brane flux on S and dimensionally reduce. Say for example we find k
chiral zero modes, and let their wavefunctions on 319 be ¥ (w), ..., ¥ (w),
where w denotes a local coordinate on 19, and w = 0 is a point in .S where
a Yukawa coupling is generated. The zero modes can be organized according
to their vanishing order at w = 0:

pj(w) ~ wi L, (4.22)

At the point w = 0, three matter curves meet and to leading order the
Yukawa coupling for the zero-modes involved is simply given by the product
of the three wavefunctions at the Yukawa point [2,10]. According to (4.22)
all but one of the zero modes vanishes at this point so we see that a single
Yukawa point in S leads to a rank one matrix of four-dimensional Yukawas
for the zero modes on Y19. More generally when there are multiple points
generating Yukawas for the zero modes on X1¢g the basis with the simple
behavior (4.22) will be different for each point, so the previous argument
implies that the number of Yukawa points for the matter curve 319 is the
rank of the four-dimensional Yukawa matrix for the zero modes on X1¢.8

Now examine (4.18). For generic brane moduli Y19 is a single connected
curve and supports all three standard model generations of 10. We can
apply the genus formula:

p(E@') = (210210 — 21001(5)) + 221001(5) = 2g(210> — 2+ 221001(5).
(4.23)

In particular, the right-hand side of (4.23) is even. In accordance with
the arguments above we conclude that the Yukawa matrix for the Eg cou-
pling 5 10 10 has even rank. On reduction to standard model gauge group

8Obviously the rank is bounded above by the number of zero modes, so once the number
of Yukawa points exceeds the number of zero modes we simply have maximal rank.
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SU(3) x SU(2) x U(1) this coupling is responsible for the mass of up-type
quarks, and hence to leading order has rank one among the observed stan-
dard model spectrum. The minimal solution of (4.23) consistent with low-
energy data is then not three 10 zero modes with a rank one Yukawa, but
rather four 10 zero modes with a rank two Yukawa. In other words: For
generic brane moduli which can accommodate the standard model, F-theory
GUTs predict the existence of additional 10’s. In keeping with the generic-
ity assumption one might expect that the two eigenvalues of this matrix are
roughly of the same order, in which case these additional quarks should not
be too much heavier than the top quark. This is certainly possible while
staying in experimental bounds. For example, if one adds a complete fourth
generation to the standard model the bound on the mass of the up-type
quark t' is my > 256 GeV [20].7

4.2 Decoupling limits and examples

In Section 4.1 we derived a number of global constraints on any local F-
theory SU(5) GUT. These are a priori constraints on the form of local
singularities of any compact elliptically fibered Calabi—Yau four-fold with
section and are valid independent of the existence of a decoupling limit. If
we now assume further that our seven-brane gauge theory can be consistently
decoupled from gravity, then the anomaly and Yukawa constraints acquire
new power due to the fact that we now have independent knowledge of the
normal bundle of S. For example, consider (4.11) as a relation among line
bundles on S:

Ng/x — Y10 = K. (4.24)

If S admits a decoupling limit then by negativity of contraction, no positive
power of Ng,x admits a holomorphic section, and hence by (4.24) no positive
power of the canonical bundle admits any section. As mentioned in Section 3
this implies that S is a ruled surface, a P! fibration over any smooth complex
curve, blown up at points an arbitrary number of times.

Mathematically, there is absolutely no constraint on the genus g of the
base of this ruled surface. But for g > 0 the surface S has non-trivial
holomorphic one-forms h'?(S) = g. In the four-dimensional effective the-
ory these one-forms give rise to adjoint chiral superfields descending from
the reduction of the gauge field on the seven-brane. The difficulty for g > 0
seems to be that there is no way to generate a holomorphic mass for these

°In order to avoid constraints from electroweak precision observables it is necessary
that there be a minor mass hierarchy between the new bottom-type quark and the up
type. All this and more is reviewed in the cited reference.
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Figure 4: An example of a ruled surface S is a P! fibration over a curve of
genus two. A seven-brane gauge theory compactified on S would have a pair
of phenomenologically undesirable light adjoint scalars.

adjoints, at least if we utilize only the seven-brane gauge theory on S [3,8,10].
The adjoints descending from holomorphic one-forms have couplings only to
vector-like pairs of zero modes and so in the absence of supersymmetry
breaking remain massless. In practice, this means that we must exclude
these adjoints from the spectrum. Indeed even a single SU(3) adjoint of
the QCD color gauge group that persists to the weak scale is enough to
force atrong to reach a Landau pole before the GUT scale. Thus from now
on we will impose as a second phenomenological constraint h1?(S) = g = 0.
The surfaces S which remain are then the so-called rational surfaces which
can be obtained by blowups of the Hirzebruch surface F,,. We will use the
notation B;F,, to indicate a blowup at k points, and for the remainder of
the paper S will always denote such a surface. Our requirement discussed
in Section 3 of a sufficient number of matter curves then tells us that & > 1.
A significant feature of all of these surfaces is that they are all simply con-
nected and hence admit no Wilson lines. In particular, this means that the
only known way to Higgs the GUT group is to use brane flux [11].

We have seen that there are a number of different ways in which a seven-
brane might admit a decoupling limit. By far the simplest however is that
the compact part of the brane worldvolume should undergo an elementary
contraction to a point. In this case one can be sure that no additional
geometric scales from X enter in the gauge theory on the seven-brane. Using
the techniques developed thus far it is now easy to show no Bi[F,, which
carries an SU(5) brane admits such a decoupling limit. To show this, all
we need to do is run the argument in Section 3 used to rule out Fanos in
reverse. We know that S has a Mori cone of curves spanned by rational
curves I'; with negative normal bundle, and further by Grauert c1(Ng,x) is
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negative on all of the I';. We again apply the genus formula:

0=g(y) = %(Fz —(9))ri+1= %(CI(NS/X) — (X)) + Ty

+1.
(4.25)

And this time we conclude that —cy(X)I'; > 0. Since any curve in S is
a positive integral sum of the I'; we conclude that in fact —c1(X) > 0 on
all of S. If ¢;(X) vanishes on S then by (4.11) there is no 10 curve, a
phenomenological disaster. Thus we must have —c1(X) > 0 on at least one
curve, or what is equivalent, —c;(X) must be positive on at least one curve
C C X with CC > 0. Applying the same logic used in Appendix B to deduce
that negativity of contraction implies no holomorphic normal deformations,
we conclude that every section of the bundle — K x vanishes identically on
S. In particular in the notation of table 2, a; must vanish so such a surface
never supports an SU(5)-type brane. In the language of IIB, there must be
an orientifold plane directly on top of our seven-brane.

We can gather more information about seven-brane models with decou-
pling limits by incorporating the considerations of Section 4.1. As a prelude
to this, it is useful to review the cohomology of the candidate seven-brane
surfaces BiIF,,. The Hodge diamond of these surfaces has the following shape:

h?2(9) 1
R2LH(S)  hb2(S) 0 0
R¥0(S)  AbL(S)  ROES) =0 2+k O (4.26)
R1O(S)  hOL(S) 0 0
h90(S) 1

HY(BiF,,) is generated by 2+ k cohomology classes, B, F, and E; for
i=1,...,k. Each of these classes is represented in B.F, by a rational
curve. The intersections of these classes are given by

BB=-n, BF=1, EjE;=-%; FF=FE; =BE =0. (4.27)

Finally, the first Chern class of BF,, is then given by

k
c1(S) =2B+ (n+2)F - ) _E;. (4.28)
=1

The constraints derived in Section 4.1 suggest that to refine our understand-
ing of seven-brane models with decoupling limits we should constrain the
10 curve X19. One way to do this is to apply index theory to the normal
bundle Ng,x. The existence of a decoupling limit implies in particular that
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S is rigid so (S, N s/x) = 0. Similarly by Serre duality, adjunction, and
our derivation (4.11) we have

h?(S, Ng/x) = h’(S, Ks — Ng/x) = h%(S, Kx|s) = h’(S, —X10) = 0,
(4.29)

where the last equality in (4.29) follows from the elementary fact that X1¢
is an effective divisor in S. In particular, we deduce that the holomorphic
Euler characteristic x,, (S, Ng/x) satisfies the inequality

X1 (S Ngyx) = h°(S, Ng/x) — ' (S, Ng/x) + h*(S, Ng/x)
= —h'(S, Ng/x) < 0. (4.30)

On the other hand, the quantity x ., (S, N, s/x) can independently be com-
puted by an application of the index theorem:

c c1(S
XHOI(S7NS/X) = /SCh(NS/X>Td(S) =1+ 1(]\75/;()1()
n Cl(NS/X)ch(NS/X), s

where in (4.31) we have used the intersection ring of B;F,, to simplify the
right-hand side. Now we eliminate ¢;(Ng,x) in favor of Y19 using (4.11).
Combining (4.31) with the inequality (4.30) we obtain

Y10210 — X10c1(S)
2

+1<0. (4.32)

The result (4.32) provides useful information about any seven-brane model
with a decoupling limit. In the simplest class of such models g is single
connected curve in which case the left-hand side of (4.32) is simply the genus
of this curve. Since the genus of a curve is never negative for these examples,
(4.32) states that %10 is a smooth P!. More generally in models where the
10 curve is factorized into a number of pieces, (4.32) significantly constrains
the intersections of the components.

A second general result with interesting implications concerns the struc-
ture of Yukawa couplings. For the phenomenological success of our model,
we require non-vanishing up- and down-type Yukawa matrices, so p(Fg) and
p(SO(12)) must be positive. On the other hand, we have seen in (4.18) that
the number of Fg Yukawa coupling points can be expressed in terms of the
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10 curve. Thus
p(Fs) = 10210 + ¢1(5)X10 > 0. (4.33)

On combining the two inequalities (4.32) and (4.33) we then have
01(5)210 = p(SO(lQ)) —p(EG) > 1. (4.34)

Furthermore, by combining (4.34) with the Yukawa sum relation (4.20) on
S =2 B.F, we find

p(SU(T)) > 262 — 30k. (4.35)

Let us discuss the latter of these inequalities first. The SU(7)-type Yukawa
points give rise to the interaction 5 5 1, where 1 denotes standard model
singlets localized on matter curves on branes transverse to S. A simple can-
didate interpretation of these singlets is that they are right-handed neutrinos
which acquire Majorana masses from dynamics not confined to S. Integrat-
ing out these heavy fields from the four-dimensional effective action, we then
find a neutrino mixing matrix whose structure is determined by the SU(7)
Yukawas. At least for small k, (4.35) implies that there are a large num-
ber of uncorrelated points where this Yukawa is generated so generically we
would expect a completely anarchic structure. To be concrete, the del Pezzo
models studied in the recent F-theory literature all have 1 < k < 7 in which
case a typical number of SU(7) points is in the hundreds.

The implications of (4.34) are significantly more dramatic. The inequal-
ity (4.34) implies that in models with a decoupling limit there is necessarily
a mismatch between the number of SO(12) couplings and the number of
FEg couplings. It follows from our analysis in Section 4.1 that for a generic
minimal F-theory GUT we expect a mismatch in rank between the up- and
down-type Yukawa matrices. This is a phenomenological disaster. To avoid
this conclusion we must break the genericity or minimality assumption in
some way. One particularly natural idea first proposed in [7,17] for dif-
ferent reasons is to correlate the points in .S where the Yukawa couplings
are generated by bringing them close together. In this case, the bases of
zero modes with the nice behavior (4.22) at the Yukawa points are related
because the interaction points are nearby, and hence our assertion that the
number of Yukawa points is the rank of the corresponding four-dimensional
Yukawa matrix is violated. In general, one would expect that to stabilize
this additional structure would require an additional symmetry and there is
an obvious candidate: consider a Yukawa coupling where SU(5) enhances by
more than a rank two extension. From the point of view of the SU(5) model
with the generic Yukawa points, this means that we have put several inter-
actions directly on top of each other. This is an intriguing possibility, and
though beyond the scope of this paper, it would be interesting to understand
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the a priori constraints on such exotic point-like singularities analogous to
(4.19) and (4.18).

After this brief general overview of decoupling seven-brane models we
now turn to more specific scenarios indexed by the local model of X near
S. The no-go result presented in this section implies that our seven-brane
either decouples from gravity by undergoing an elementary contraction to
a curve, or a non-elementary contraction to a point or a curve. In what
follows, we will highlight some interesting gross features of these scenarios.
Our discussion is rather brief, and the physics remains to be understood
in detail.

4.2.1 Elementary contraction to a curve

In this case, the surface S shrinks to a curve and no other surface which
meets S shrinks in the decoupling limit. A globally complete example of this
type was recently constructed in [6] by blowing up a singular Fano three-
fold along a curve to produce a shrinkable brane worldvolume. Following
Donagi and Wijnholt [11] we can easily determine the Chern class of the
normal bundle of S inside the ambient three-fold X for all such models.
When the surface S = B;F,, collapses, it does so by shrinking F' and all of
the E; while keeping the curve B at finite size. Grauert’s criterion then tells
us that c1(Ng/x) must be negative on the curves F' and E;. Further, for
each 7 the cohomology class of F' — E; also represents a collapsed curve so
c1(Ng/x) is also negative on this class. Using the intersection ring (4.27) it
is easy to check that the solution to these constraints is

k
CI(NS/X) = —aB + (m - n— 2)F + ZCiEiy (4.36)
=1

where the integers a, m, and ¢; in (4.36) are subject to the relation a > ¢; >
0. Meanwhile (4.11) together with the form (4.28) of the Chern class of S
tells us that class of the 10 curve is

k
S10=c1(S) +a(Ngyx) = (2—a)B+mF + Y (1—c)E;. (437
=1

The class of ¥1¢ must be a curve in S, so in particular this means that in
(4.37) the coefficient of B must be non-negative, 2 > a. Combined with our
previous inequality this implies a = 2 and ¢; = 1 hence

Notice that for a generic model where Yq¢ is an irreducible curve, m =1
and Y19 is indeed a P! in agreement with our more general result (4.32).
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Thus we learn that SU(5) GUT models with a decoupling limit corre-
sponding to an elementary contraction to a curve are characterized topolog-
ically by three natural numbers: n and k tell us that S = B;F,, while m tells
us the class of the 10 curve via (4.38). In particular, a choice of these three
numbers uniquely fixes the number of Yukawa points via (4.17) to (4.19):

p(SO(12)) = 4m, (4.39)
p(Eg) = 2m, (4.40)
p(SU(T)) = 240 + 58m — 30k. (4.41)

Although the mathematical properties of these models can be described
succinctly and have been discussed by several authors in the recent F-theory
literature [5,6, 11], it is unclear to us whether the decoupling condition of
shrinking only to a curve and not to a point is really physically well behaved.
To understand our skepticism the reader should recall from Section 3 that
the physical decoupling limit of interest is not the limit where S shrinks but
rather it is the limit where the ambient three-fold becomes very large while
Vol(S) remains fixed. Indeed only in the latter case does the Planck mass
tend to infinity. Although we have analyzed the properties of decoupling
limits by working with a rescaled Kahler class we should take care that the
geometry is under control when we rescale back to the physical metric. To
address this subtlety in detail let us denote by wpnys(t) the one-parameter
family of Kéhler classes relevant to the physical decoupling limit. As ¢ — oo
we have

wghys(t) ~ Vol(X)(t) ~ M3(t) — oo wghys(t)S ~ Vol(S)(t) — finite # 0.
(4.42)

Meanwhile, in contrast to the behavior (4.42), we have the mathemati-
cally convenient Kéhler class wmatn (t) utilized throughout the later half of
Section 3. For the case of an elementary contraction to a curve we have for
large t:

3
Wmath

(t) — finite # 0 w2, (t)- S = 0 wWiaen(t) - B — finite # 0. (4.43)

But now wpnys(t) differs from wimaen(t) simply by an overall rescaling by a
positive non-zero function of ¢. It then follows from (4.42) to (4.43) that
parametrically for large ¢:

wphys(t) B ~ Vol(B)(t) ~ Vol(X)3(t) — oo. (4.44)

This result is intuitively obvious. If the size of B could be set indepen-
dently from the size of X, then S would admit a decoupling limit where it
contracted to a point.
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Equation (4.44) shows that decoupling limits which in the frame of
wWmath (t) are characterized by contractions to curves do not act trivially
on S in the metric specified by wpnys(t). Since the volume of S is fixed in
the physical decoupling limit while the volume of B grows large, it must be
that other curves in S become very small to compensate. Thus asymptoti-
cally in the physical decoupling limit, S appears roughly as a very long and
thin tube in X. It seems likely to us that due to these small curves in S,
large curvature corrections enter the seven-brane action and we lose control.
Equally strange, although these decoupling limits do achieve a parametri-
cally small parameter Mgur/Mp, it does not appear that the zeroth-order
term in an expansion in this parameter is well defined. In the strict decou-
pling limit, B has infinite volume, the corresponding small curves have zero
volume, and at least as a four-dimensional quantum field theory with finite
coupling constants, the seven-brane gauge theory does not make sense.

It seems then that in the strongest sense of decoupling gravity while pre-
serving the seven-brane gauge theory on S, these models fail. If one cannot
consistently impose the physical decoupling limit then it does not make sense
to use the mathematical criterion of shrinkability to privilege these models
over the most general F-theory GUT and in this regard these models are
not on the same footing as those where S can shrink to a point. Neverthe-
less, we have included them in the analysis throughout this paper because
they illustrate an potentially interesting way to weaken the decoupling limit
hypothesis. Perhaps for certain examples the curvature corrections to the
brane action in these models can be circumvented, in which case these decou-
pling limits seem to have a parametric separation of gauge and gravitational
scales but admit no naive expansion in Mgyt/Mp. Understanding the pre-
cise physical implications of this scenario remains an open problem.

4.2.2 A non-elementary contraction to a point

The remaining viable possibility is then a seven-brane which in the frame of
Wmath () can undergo a non-elementary contraction to a point. An example
of this type was constructed in [24].1° The technique of their construction
is similar in spirit to the proposed counterexample constructed in Section 3.
One begins with a Fano three-fold which is the base of an elliptic Calabi—Yau
four-fold and modifies the Fano by a sequence of blowups. The character-
istic feature of these constructions is that there is another surface S’ which
meets the SU(5) GUT brane S and also shrinks during the decoupling limit.

%Tn an early version of [24] the authors claimed that their three-fold was Fano. In
agreement with our no-go result in Section 3, this is in fact not the case. This in no way
effects the rest of their work.
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Intuitively, one strongly suspects that this S” will influence the local physics
on S. There are at least two ways in which this might occur:

e A seven-brane might wrap S’. In this case we would have a gauge group
which is a product G x SU(5), with the interesting feature that the
coupling constant of the new gauge group scales parametrically with
the GUT coupling:

1 1
Vol(S) ™ Vol(g) ~ eUT

(4.45)

agr ~

e A three-brane might wrap S’. In this case one expects an instan-
ton contribution to the superpotential for the fields the GUT brane.
Although such contributions are exponentially suppressed, the model
[15] shows that such instantons can sometimes be the leading contri-
bution to supersymmetry breaking.

In fact, we can make a more precise statement about the necessity of one
of these two options which holds at least for the vast majority of cases. To do
this we will make use of Witten’s characterization of three-brane instantons
that contribute to the superpotential in F-theory [36].!* To deduce whether
a three-brane wrapping S’ contributes to the superpotential one considers
not only S’ but rather the three-fold D obtained by restricting the Calabi—
Yau four-fold to the part of the fibration over S’. Witten’s result is that a
sufficient condition for the three-brane to give a non-vanishing contribution
to the superpotential is

(D) = n*°(D) = K3°(D) = 0. (4.46)

To analyze candidate three-brane instantons in our case we then need to
constrain not only S’, but also the characteristics of the elliptic four-fold
near S’

To proceed with the former first we consider the intersection S N S’. This
is non-empty and contains a curve C' on which the negativity of the normal
bundle of S in X is violated, SC > 0. Let us make the slightly stronger
assumption that in fact SC > 1. Because the Mori cone of S is spanned by
rational curves, we can then find a rational curve I' also contained in S’ NS

"Strictly speaking Witten’s analysis applies only in the case where the three-brane
meets no other branes, a condition that is explicitly violated here. In the following we will
be naive and assume that his results extend to this more exotic case.
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with ST > 1. The normal bundle of I' in X is split as
NI‘/XgNS/X’F@NS’/X‘FgNF/S’@NF/S‘ (447)

Hence the fact that ST' > 1 means deg(Np/s > 1). Thus S’ is a surface
which contains a rational curve which moves in a large family. A result from
the classification of algebraic surfaces then tells us that S’ is itself a rational
surface, related to ), by a sequence of blowups and blowdowns. In particular
h10(S") = h20(S") = 0. Now to analyze the structure of the elliptic fibration
restricted to S’ we need only recall that S’ is itself a shrinkable surface. A
straightforward application of the spectral sequence in [12] then implies that
if there is no seven-brane wrapping S’ then necessarily we have h*%(D) =
0 for ¢ >0 so a three-brane wrapping S’ always contributes to the non-
perturbative superpotential.!?

Thus we see that under very mild assumptions, non-elementary contrac-
tions are always accompanied by additional physics due to wrapped branes
on the additional collapsing surfaces. Understanding precisely the implica-
tions of this result, in particular how to compute the contribution of the
three-brane instanton in this exotic situation then seems to be an important
direction for future research.

5 Conclusions

One of the primary results of this paper is that there are a priori restrictions
on the local singularities of compact elliptic Calabi—Yau four-folds. These
appear in the form of compatibility conditions on the matter curves in a
seven-brane and on the Yukawa couplings for these matter curves, and seem
closely related to anomaly cancellation and the Green—Schwarz mechanism.
It is natural to suspect that the list of restrictions derived in this paper is
not complete and that further effort might lead to new information. Mathe-
matically, the constraints on local singularities derived in this work all result
from the observation that ¢;(X) controls the locus of seven-branes in X and
can be expressed at a brane in terms of only the local data of the singularity.
Phrased in this way, an obvious guess for a method to derive new constraints
is then to study the local behavior of the second Chern class c2(X) near a
seven-brane worldvolume. For dimensional reasons it is natural to expect
that ca(X) has something to do with the matter curves in the compactifica-
tion. If a relation analogous to that of ¢;(X) with the seven-branes exists

12 As with Witten’s result Grassi’s work [12] has assumptions which are violated in our
example. We will assume that the formalism developed there can be suitably generalized
our more exotic setup.
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then following the technique of Section 4 would likely give rise to interest-
ing further restrictions on local configurations of seven-branes in any theory
with gravity.

When combined with the assumption of a gravitational decoupling limit,
the restrictions on local singularities derived in this paper yield powerful
and phenomenologically interesting constraints on the form of local SU(5)
GUTs. Furthermore, the decoupling limit precludes the simplest class of UV
completions, Fano three-folds. In this regard another obvious and ambitious
direction to pursue is to classify all three-folds X which can form the base
of elliptic Calabi—Yau four-folds. The analogous problem for Calabi—Yau
three-folds has been carried out, and the fact that birational geometry in
three dimensions is well-understood suggests that such a classification might
be tractable with existing technology. A particularly relevant aspect of this
classification for local F-theory GUTs is to understand how far from Fano X
can be. In Section 2 we have shown that the negativity of ¢;(X) at a seven-
brane is closely related with the seven-brane moduli. In any complete model
these moduli must all be stabilized and it would be interesting to understand
how much of this can be achieved simply by requiring a decoupling limit.

Finally, in terms of the immediate physical applications of our work there
is the obvious question of understanding what aspects of the phenomeno-
logically attractive local models of Vafa, Heckman, et al. can be dovetailed
with the restrictions on local models derived in this paper. The anomaly
and Yukawa constraints (4.13), (4.17), (4.18), and (4.19) imply that in order
to consistently couple these models to gravity one must first solve the factor-
ization problem discussed in Section 4.1. Regardless of whether or not this
issue can be overcome for their exact models, the results of this work suggest
that there is reason to be hopeful about the prospects for constructions close
in spirit to their ideas. Indeed we have seen that a number of phenomeno-
logically desirable ingredients discussed in [7,15-17,19] such as enhanced
Yukawa structures, three-brane instantons, and U(1) hidden sectors seem
to be necessary properties of any consistent seven-brane GUT model with a
decoupling limit. What the results of this paper demonstrate is that these
phenomenological components are tightly constrained and tied together in
surprising ways. The existence of these new restrictions together with the
increasing proximity of upcoming collider experiments is likely to make the
next stage of research on seven-brane GUTs a particularly exciting time.
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Appendix A Limits of Kahler degenerations

In this Appendix we will explain exactly how one can pass from a degener-
ation of a three-fold X where a surface S shrinks to zero size in the sense of

2\3/4
i UseD (A.1)
tmoo ([ w})l/?
to a compact limit geometry X where S has degenerated to a curve or a
point. We will first consider the simplest case of a Fano three-fold, and then
later discuss generalizations to X which are non-Fano. To proceed with the
analysis, suppose S C X is such that it admits a decoupling limit as defined
by (A.1). Then by definition this means that there exists a of sequence of
Kahler classes wy for n = 1,2,... with the property that

i s (A.2)

n— oo (fX w%)l/Q

Written in this form, it obvious that the decoupling condition is insensitive
to the overall normalization of the Kéhler form. Given any sequence {wy,}
satisfying (A.2), we can obtain another such sequence by multiplying each
wp, by any positive real number f,,. We will find it convenient to analyze
the geometry of the decoupling limit by renormalizing the w, such that a
limiting class w exists. To see that this is always possible we simply note
that the cohomology H!(X, R) where w, takes values is a finite-dimensional
vector space. We can fix a norm || || on this vector space and replace w,, by
wn/||lwn |- It follows that our new sequence of Kéhler classes has unit norm
for all n hence as n — oo we can find a subsequence which converges to a
non-zero class w. Notice that by the decoupling limit condition (A.2) the
limiting class w necessarily collapses the surface S to zero volume, so w lives
in the boundary of the Kéahler cone. Depending on the resulting limit, the
geometry of X might also degenerate. For example, it could easily happen
that w3 = 0 so that our original three-fold looks asymptotically like a surface
or curve.

It is at this point that we can use the Fano condition to make the first of
several simplifications. We recall that on X one has the finite dimensional
vector space spanned by numerical equivalence classes of curves. Inside this
vector space is a cone NFE(X) which contains the effective curves. The
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Mori cone theorem [27] tells us the structure of the piece of this cone which
intersects negatively with the canonical divisor of X. Since X is Fano every
curve intersects negatively with Kx, hence in this case the cone theorem
yields complete information and NE(X) is of the form

m

NE(X) = Y Ry [T (A.3)
=1

where in the above I'; denotes a rational curve and the notation simply means
that NE(X) is the convex hull of the rays generated by these extremal
curves. In particular, we see that the cone of curves is closed and hence
its boundary ONE(X) can be defined by integral equations in an integral
basis for Ho(B,Z). Now, via the intersection paring on X we can view the
Kahler cone, A(X), as the dual cone to NE(X). Hence the boundary of
this cone, where our limiting Kéhler class w takes values, is also cut out
by integral equations and therefore on the boundary of the Kéahler cone
the rational cohomology classes are dense. That is H'(X, Q)N OA(X)
is dense in OA(X). We can therefore pick a sequence of rational classes
wr € HY1(X,Q) NOA(X) such that as k — oo the wy, approach our original
limiting class w. Furthermore, we can assume that for all k£, and any curve
C on X, wpC =0 if and only if wC = 0, the key again being that these are
integral equations on JA(X). Since for our purposes, the only interesting
information contained in w is exactly those curves on X which are collapsed,
i.e., satisfy wC = 0 we see that we can assume that w is in fact a rational
cohomology class. Moreover, since the set of curves on X which are con-
tracted is invariant under rescaling of the class w we can multiply w by a
suitable positive integer and assume that it is an integral cohomology class
(henceforth also called w). We can therefore pick a line bundle £ with first
Chern class w and study the Kahler degeneration of X via the geometry of L.

Now, as we have seen above the line bundle £ is non-trivial and since
w lies in the boundary of the Kéhler cone, £ has non-negative degree on
every curve in X. Thus in particular £ admits holomorphic sections. Let
$1,--.,5n+1 denote a basis of these sections. Then we can define a rational
map from X to P" by

b [s1(b) i+t spt1(D)]. (A.4)

If X were an arbitrary three-fold then this map would not in general be
holomorphic on all of X since it is ill-defined on the common vanishing locus
of all of the sections s;. However a theorem due to Kawamata [22] tells us
that on a Fano variety this complication does not occur, provided we pass to
a sufficiently high power of the line bundle H. Applying this in our case we
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learn that some multiple m of our limiting class w determines a morphism
from f: X — P" for some n whose image will henceforth be denoted X.
Since we are working up to scale on w we may as well assume that m is one.
By the decoupling condition (A.1) the image of our distinguished surface S
has zero volume, and must be either a curve or a point. Thus we see that
the fact that X is Fano allows us to find a holomorphic map f: X — X
which carries out the given Kéhler degeneration all at once, and that a
necessary condition for decoupling gravity on S is that f(S) has dimension
less than two.

Now let us attempt to generalize this lemma to the case where X is no
longer assumed to be Fano. As discussed in Section 3 the most interesting
case is when w? > 0 so that the limit of the three-fold has non-zero volume,
and from now we restrict to these examples. In mathematical terminology
this means that the map f defined above is a birational morphism, i.e., a
local modification of the three-fold X. The main difficulty in generalizing
our argument is that it is no longer true in general that the rational coho-
mology classes are dense on the boundary of the Kéahler cone. However if
X is Calabi-Yau, a theorem due to Wilson [35] implies that at least when
w? > 0 we can pass to a rational class as above. Kawamata’s theorem goes
through and again we find a holomorphic map carrying out the limit of our
Kéhler degeneration. More generally as long as ¢1(X) > 0 our argument
goes through unmodified [26]. Finally, though we will not address this in
the present work, we believe that a generalization of this idea should apply to
all X which can form the base of an elliptically fibered Calabi—Yau four-fold.

Appendix B Negativity of contraction

Here we discuss the precise implications of the requirement of contractibility
on a surface S C X. We have already argued intuitively in Section 3.1 that
if S can shrink inside X then necessarily the normal bundle of S in X admits
no holomorphic sections. To understand this formally as well as to extract
more detailed information, let us first study the case of a curve L which
can shrink inside a surface D while leaving D at finite volume. We expect
that L should be rigid which means that its self-intersection number, LL,
is negative. To see this we think of the degenerated limit of D inside an
ambient projective space PV and consider a hyperplane section H gf this
limit. Pulling back H to D itself we then obtain an ample divisor H that
satisfies the following self-evident intersections:

HL=0, HH >0. (B.1)
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Now we apply the Hodge index theorem. The intersection form on the
Kahler surface D has exactly one positive eigenvalue with an eigenspace
spanned by H. The orthogonal complement of H, which includes L, there-
fore has negative-definite self-intersection numbers.

To upgrade this argument to a shrinkable surface S inside a three-fold X
we simply take a generic hyperplane section H of the entire configuration. In
this way we find a curve C = SN H inside the surface H which can shrink
while leaving H at finite two-dimensional volume. Applying the previous
analysis for shrinkable curves we learn that C' has negative normal bundle
in H:

N¢/pC <0. (B.2)

But since C' is the transverse intersection of S and H its normal bundle is
split as

Neyx & Neyg ® Neoys = Ngyxle @ Nyyx|le- (B.3)

Hence combining (B.2) to (B.3) we learn that along the curve C', the normal
bundle of S in X has negative degree, c1(Ng/x)C < 0. Furthermore, by
considering different hyperplane sections of S we see that the curve C' can
deform in S so deg(N¢/g) > 0. This is the more precise statement we have
been looking for. If S can shrink then necessarily S contains a deformable
curve C' on which Ng,x has negative degree. This well-known mathematical
result is called negativity of contraction. It clearly implies that S is rigid.
Indeed if o were a holomorphic section of mNg,x with m > 0 then the locus
in S where o vanishes represents the Chern class of Ng,x and hence meets
C negatively. On the other hand, we can express the vanishing set of ¢ as

c=kC+E, (B.4)

where in (B.4), E is a positive sum of curves distinct from C and k£ > 0.
Now intersect (B.4) with C. Since C' and E are distinct complex manifolds,
they meet non-negatively. And since C' can deform in S we have CC =
deg(N¢g/s) > 0. Thus we deduce that oC > 0 contradicting the fact that
Ng/x has negative degree on C'. We conclude that no positive power of the
normal bundle of S in X admits holomorphic sections.

Appendix C Classification of contractible surfaces inside
Fano three-folds

In this appendix we prove the classification result stated in Section 3. We will
freely use the mathematical language and techniques of birational geometry.
For background material see [27].
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Theorem C.1. Let f: X — X be a birational morphism with X a smooth
Fano three-fold. Then f maps every smooth non-minimal surface S cX
other than the Hirzebruch surface Fy to a variety of dimension two in X.

Proof. We are going to need a refined version of Mori’s classification of
extremal rays of birational type, which is true for smooth Fano three-folds
[31]. In the following table D denotes the exceptional divisor of a Kx
negative extremal ray contraction generated by a rational curve I', and Cp
denotes the associated contraction morphism. Mori’s classification tells us

that Cr is the inverse of blowing up Cr(X) at Cr(D).

Type of T’ Cr and D r

E1, Cr(D) a smooth curve, and Cr(X) T a P! fiber of D
is a smooth Fano three-fold
D a P! bundle ~Kx-T'=1

Ey Cr(D) 2 P!, and Cp(X) a smooth T a P! fiber of D
three-fold
D 2 P! x P! with normal bundle —Kx -I'=1

Es Cr(D) is a point, Cp(X) isasmooth T a line in D = P?
Fano three-fold
D>~P? with normal bundle —Kx-TI =2
Op(D) = Op2(—1)

Es Cr(D) is an ordinary double point T either P! fiber of D
on Cr(D)
D ~P! x P! with normal bundle —Kx-I'=1
Op(D) = Opiypi(—1, —1)

Ey Cr(D) is a double point on Cr(X), I a ruling of the cone D
D = quadric cone in P3
D has normal bundle Op(D)= —-Kx-I'=1
Op ® Ops(—1)

E5 Cr(D) is a quadruple point on I a linein D = P?
Cr(X)
D= with normal bundle —-Kx-I'=1

]P)2
OD D) = OPZ(—Q)

Suppose that S is a smooth non-minimal surface other than Fy which is
contracted by the morphism f. We know from the above table that S is
not contacted primitively. Therefore S is contained in the linear span of the
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primitive exceptional divisors contracted by f:
S=> aD; (C.1)
i

Our first lemma tells us the type of one of the rays:

Lemma C.1. At least one of the extremal curves I'; is of type E1q.

Proof. Suppose that all rays are not of type Ej1,. Observe that via the
classification of extremal rays all of the exceptional divisors D; has an ample
conormal bundle, —D;|p, > 0. From this we deduce that every curve C' on
such an exceptional divisor D; is movable. To see this we simply apply the
genus formula together with adjunction:

Kp,C CC Kx+D)C CC
5 +2=1+( XJ; ) + (C.2)

0<g(C)=1+

Since both —Kx and —D; are ample on D; (C.2) implies that CC > 0. It
follows from this D; does not meet D; for ¢ # j. For if C' C D; N D; is some
effective curve contained in the transverse intersection of D; with D; then
the normal bundle of C' in X can be decomposed as

Neyx = Neyp, ® Neyp, = Djle @ Dilc. (C.3)

But then
0 < deg(Neyp,) = E;C (C.4)

Which contradicts the fact that £; has ample conormal bundle. More gen-
erally, the intersection may not be transverse but the conclusion that excep-
tional divisors which are both not of type Fj, do not meet clearly remains
valid. Now we return to (C.1). Since S is not equal to any of the exceptional
divisors Fj;, S meets some curve C' C E; non-negatively. But then

0<SC =Y aEC =aE;C. (C.5)

Since E; has ample conormal bundle we learn that a; is non-positive for all
j, which contradicts the fact that S is effective. O

Thus let 'y denote the ray of type E14, Mori theory tells us that we can
factor the morphism f through the contraction of ray generated by I'y. Thus
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we have the diagram

C

X (C.6)

Ty Y
N
X
where in the above Y] is a smooth Fano three-fold. Now consider the image of
S inside Y7; either Cr, (S) is a primitive exceptional divisor of the morphism
g or it is not. If not, then we can apply Lemma C.1 again to find another ray
I’y of type E14. Iterating this procedure, we then see that after a sequence
of E1, type ray contractions, S must map to a primitive exceptional divisor
D, associated to an extremal rational curve vy inside some smooth Fano
three-fold Y,,. Thus we can factor f as

CF 3 CF n C’Y

X Yi Y., 1% (C7>

where S is contracted in the sequence of maps along the top of the diagram
by first mapping to a primitive exceptional divisor D, and is then collapsed
by the primitive contraction C, : Y, — W.

Now we want to reconstruct S by blowing up. Inside each smooth Fano
three-fold Y} is a smooth curve Zi, and Yj_1 is obtained from Yj by blowing
up along Zj. The following lemma is very useful for analyzing this situation:

Lemma C.2 (Mori Mukai). o Let C CYy be any curve such that
—Ky, - C = 1. Then either C is disjoint from Zy, or C = Z,.
o Let C C Yy be any curve such that —Ky, C = 2. Then either C is
disjoint from Zy, or C = Zy, or C meets Zy transversally at a single
point.

Proof. Assume that —Ky, C < 2, that C # Zj, and that C meets Z. Let
D denote the exceptional divisor of the blowup Cr, : Y;_1 — Yj. Then the
canonical bundles of the two Fano three-folds Y;_; and Y} are related by

—Cr, (Ky,) = D = —Ky,_,. (C.8)

Let C' denote the strict transform of C' under the blowup. Then intersecting
both sides of (C.8) with C' we find

~Ky,C —DC = —Ky, ,C >0, (C.9)
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where on the right-hand side, the inequality comes from the fact that Yz 4
is Fano. By hypothesis C # Zj and C meets Zj, so CD > 0. Then (C.9)
forces =Ky, C = 2 and DC = 1 which proves the lemma. O

Now we can use Lemma C.2 to constrain the type of the ray ~.

Lemma C.3. The extremal curve v is of type Es.

Proof. Suppose 7 is not of type Fo. Then the associated exceptional divisor
D, is covered by the deformations of the extremal ray v and —Ky, v = 1.
Suppose that Z,, meets D,. By Lemma C.2, we then learn that Z,, C D,.
Blowing up Z,, we then see that the proper transform, ﬁw of D, is again

isomorphic to D,. Furthermore, it is clear that the proper transform D,
is again covered by curves C' with —Ky, ,C' =1 so we can apply the same

argument to the IA),Y inside Y,,_1. Proceeding inductively we learn that S is
isomorphic to D, a primitive exceptional divisor. U

Thus the ray v must be of type Fy. From Mori’s classification we learn
that D, is a smooth P2 and —Ky,y = 2. Say Z, meets D,. By Lemma
C.2 either Z, C D, or Z, meets D, transversally at a single point. In
the former case we blowup and the proper transform of D, is unmodified.
In the latter case, the proper transform IA)V is isomorphic to the Hirzebruch
surface F1. Furthermore lA)AY is covered by the curves consisting of the proper
transforms of lines through the point where Z,, meets D, together with the
exceptional curve. Applying the blowup formula (C.8) it is easy to see
that these curves meet the anticanonical divisor of Y,,_; once, hence by the
argument of Lemma 3, S is actually isomorphic to 137 which is a Hirzebruch
surface 1. This completes the proof of the theorem. O

In fact because of the work of Cutcosky [9] this theorem generalizes to the
case of arbitrary singularities of .S and Gorenstein singularities of X provided
we allow for the additional possibility of S the rank three singular quadric
cone in P3. Gorenstein singularities are the natural class of singularities
for X to consider in F-theory. Indeed if the singularities are worse then
Gorenstein then the canonical divisor of X can never be represented by a line
bundle so the Weierstrass model construction of the Calabi—Yau presumably
does not make sense.
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