
c© 2011 International Press
Adv. Theor. Math. Phys. 15 (2011) 355–447

Rigorous construction and

Hadamard property of the Unruh

state in Schwarzschild spacetime

Claudio Dappiaggi1, Valter Moretti2 and Nicola Pinamonti3

1Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and
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Abstract

The discovery of the radiation properties of black holes prompted
the search for a natural candidate quantum ground state for a mass-
less scalar field theory on Schwarzschild spacetime, here considered in
the Eddington–Finkelstein representation. Among the several available
proposals in the literature, an important physical role is played by the
so-called Unruh state, which is supposed to be appropriate to capture
the physics of a black hole formed by spherically symmetric collapsing
matter. Within this respect, we shall consider a massless Klein–Gordon
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field and we shall rigorously and globally construct such state, that is on
the algebra of Weyl observables localised in the union of the static exter-
nal region, the future event horizon and the non-static black hole region.
Eventually, out of a careful use of microlocal techniques, we prove that
the built state fulfils, where defined, the so-called Hadamard condition;
hence, it is perturbatively stable, in other words realizing the natural
candidate with which one could study purely quantum phenomena such
as the role of the back reaction of Hawking’s radiation.

From a geometrical point of view, we shall make a profitable use of
a bulk-to-boundary reconstruction technique which carefully exploits the
Killing horizon structure as well as the conformal asymptotic behaviour of
the underlying background. From an analytical point of view, our tools
will range from Hörmander’s theorem on propagation of singularities,
results on the role of passive states, and a detailed use of the recently
discovered peeling behaviour of the solutions of the wave equation in
Schwarzschild spacetime.
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1 Introduction

In the wake of Hawking’s discovery of the radiating properties of black
holes [28], several investigations on the assumptions leading to such result
were prompted. In between them, that of Unruh [54] caught the attention
of the scientific community, since he first emphasized the need to identify a
physically sensible candidate quantum state, which could be called the vac-
uum for a quantum massless scalar field theory on the Schwarzschild space-
time. This is especially true when such spacetime is viewed as that of a real
black hole obtained out of the collapse of spherically symmetric matter.

If we adopt the standard notation (e.g., see [57]), this spacetime can be
identified with the union of the regions I and III in the Kruskal manifold
including the future horizon, though we must omit the remaining two regions
together with their boundaries [56, 57]. To the date, in the literature, three
candidate background states are available, going under the name of Boul-
ware (for the external region), Hartle–Hawking (for the complete Kruskal
manifold) and Unruh state (for the union of both the external and black
hole region, including the future event horizon). The goal of this paper
is to focus on the latter, mostly due to its remarkable physical properties.
As a matter of fact, earlier works (see for example [2, 3, 13]) showed that
such a state could be employed to compute the expectation value of the
regularized stress-energy tensor for a massless scalar field in the physical
region of Schwarzschild spacetime, above pointed out. The outcome is a
regular expression on the future event horizon while, at future null infinity,
it appears an outgoing flux of radiation compatible with that of a blackbody
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at the black hole temperature. As pre-announced, this result, together with
Birkhoff’s theorem, lead to the conjecture that the very same Unruh state,
say ωU, as well as its smooth perturbations, is the natural candidate to be
used in the description of the gravitational collapse of a spherically sym-
metric star. However, to this avail, one is also lead to assume that ωU

fulfils the so-called Hadamard property [38, 57], a prerequisite for states on
curved background to be indicated as physically reasonable. As a mat-
ter of fact, in between the many properties, it is noteworthy to emphasise
that such condition assures the existence of a well-behaved averaged stress
energy tensor [57]. Therefore, from a heuristic point of view, this condi-
tion is tantamount to require that the ultraviolet behaviour mimics that of
the Minkowski vacuum, leading to a physically clear prescription on how
to remove the singularities of the averaged stress-energy tensor; this comes
at hand whenever one needs to compute the back-reaction of the quantum
matter on the gravitational background through Einstein’s equations.

The relevance of the Hadamard condition is further borne out by the anal-
ysis in [25], where the description of the gravitational collapse of a spherically
symmetric star is discussed and, under the assumption of the existence of
suitable algebraic states of Hadamard form, it is shown that the appear-
ance of the Hawking radiation, brought, at large times, by any of the said
states, is precisely related to the scaling-limit behaviour of the underlying
two-point function of the state computed on the 2-sphere determined by the
locus where the star radius crosses the Schwarzschild one.

It is therefore manifest the utmost importance to verify whether ωU sat-
isfies or not the Hadamard property, a condition which appears reasonable
to assume at least in the static region of Schwarzschild spacetime also in
view both of the former analysis in [13] and of the general results achieved
in [49] applied to those in [23]. Indeed such a check is one of the main
purposes to write this paper. Our goals are, however, broader, as we shall
make a novel use of the Killing and conformal structure of Schwarzschild
spacetime in order to construct rigorously and unambiguously the Unruh
state, contemporary in the static region, inside the internal region and on
the future event horizon. To this avail, we shall exploit some techniques
which in the recent past have been successfully applied to manifolds with
Killing horizons, asymptotically flat spacetimes (see also the recent [53]) as
well as cosmological backgrounds [14,15,20–22,41–43]. Within this respect,
it is also important to mention that, although, for different physical goals,
a mathematically similar technology was employed in [31] including a proof
of the Hadamard property of the relevant states.

That mathematical technology also relies upon some ideas essentially due
to Ashtekar [59] and that have also received attention for applications to
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electrodynamics [60, 61] in asymptotically at spacetimes. Finally, a mathe-
matically similar procedure was employed in [31] to prove the Hadamard
property of some relevant states in a di erent physical context.

From the perspective of this manuscript, the above cited paper are most
notable for their underlying common “philosophy”. To wit, as a first step,
one always identifies a preferred codimension 1 null submanifolds of the
background, one is interested in. Afterwards, the classical solutions of the
bulk dynamical system, one wishes to consider, are projected on a suitable
function set living on the chosen submanifold. The most notable property
of this set is that one can associate to it a Weyl algebra of observable, which
carries a corresponding distinguished quantum algebraic state, which can
be pulled-back to bulk via the above projection map. On the one hand
this procedure induces a state for the bulk algebra of observables and, on
the other hand, such new state enjoys several important physical properties,
related both with the symmetries of the spacetime and with suitable notions
of uniqueness and energy positivity.

Particularly, although at a very first glance, one would be tempted to
conclude that the Hadamard property is automatically satisfied as a con-
sequence of the construction itself and of the known results for the micro-
local composition of the wave front sets, actually we face an harsher reality.
To wit, this feature has to be verified via a not so tantalising case by case
analysis since it is strictly intertwined to the geometrical details of the back-
ground. Unfortunately the case, we analyse in this paper, is no exception
and, thus, we shall be forced to use an novel different procedure along the
lines below outlines.

As a starting point, we shall remark that, in the Schwarzschild back-
ground, the role of the distinguished null codimension one hypersurface, on
which to encode the bulk data, will be played by the union of the complete
Killing past horizon and of null past infinity. Afterwards, as far as the state
is concerned, it will be then defined on the selected hypersurfaces just fol-
lowing the original recipe due to Unruh: a vacuum defined with respect to
the affine parameter of the null geodesics forming the horizon and a vacuum
with respect to the Schwarzschild Killing vector ∂t at past null infinity. At a
level of two-point function, the end point of our construction takes a rather
distinguished shape whenever restricted to the subalgebra smeared by com-
pactly supported functions, which coincides with the one already noticed
in [23,38,48]. Nonetheless, from our perspective, the most difficult technical
step will consist of the extension of the methods employed in our previous
papers, the reason being that the full algebra both on the horizon and on
null infinity is subject to severe constraints whose origin can be traced back
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to some notable recent achievements by Dafermos and Rodnianski [18]. To
make things worse, a similar problem will appear for the state constructed
for the algebra at the null infinity. Nonetheless we shall display a way to
overcome both potential obstructions and the full procedure will ultimately
lead to the implementation of a fully mathematically coherent Unruh state,
ωU for the spacetime under analysis.

Despite these hard problems, the bright side of the approach, we advocate,
lies in the possibility to develop a global definition for ωU for the spacetime
which encompasses the future horizon, the external as well as the inter-
nal region. Furthermore our approach will be advantageous since it allows
to avoid most of the technical cumbersomeness, encountered in the earlier
approaches, the most remarkable in [23] (see also [35]), where the Unruh
state was defined via an S-matrix out of the solutions of the corresponding
field equation of motion in asymptotic Minkowski spacetimes. Alas, the defi-
nition was established only for the static region and the Hadamard condition
was not checked, hence leaving open several important physical questions.

Differently, our boundary-to-bulk construction, as pre-announced, will
allow us to make a full use of the powerful techniques of microlocal analysis,
thus leading to a verification of the Hadamard condition using the global
microlocal characterisation discovered by Radzikowski [45,46] and fruitfully
exploited in all the subsequent literature (see also [11]). Differently from the
proofs of the Hadamard property presented in [42] and [22] here we shall
adopt a more indirect procedure, which has the further net advantage to
avoid potentially complicated issues related to the null geodesics reaching
i− from the interior of the Schwarzschild region. The Hadamard property
will be first established in the static region making use of an extension of
the formalism and the results presented in [49] valid for passive states. The
black hole region together with the future horizon will be finally encom-
passed by a profitable use of the Hörmander’s propagation of singularity
theorem joined with a direct computation of the relevant remaining part of
wavefront set of the involved distributions, all in view of well-established
results of microlocal analysis.

From a mathematical point of view, it is certainly worth acknowledging
that the results we present in this paper are obtainable thanks to several
remarkable achievements presented in a recent series of papers due to Dafer-
mos and Rodnianski [16–19], who discussed in great details the behaviour
of a solution ϕ of the Klein–Gordon equation in Schwarzschild spacetime
improving a classical result of Kay and Wald [37]. Particularly we shall
benefit from the obtained peeling estimates for ϕ both on the horizons
and at null infinity, thus proving the long-standing conjecture known as
Price law [16].
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In detail, the paper will be divided as follows.

In Section 2.1, we recall the geometric properties of Schwarzschild
spherically symmetric solution of Einstein’s equations. Particularly, we shall
introduce, characterise and discuss all the different regions of the background
which will play a distinguished role in the paper.

Subsequently, in Sections 2.2 and 2.3, we shall define the relevant Weyl
C∗-algebras of observables respectively in the bulk and in the codimension 1
submanifolds, we are interested in, namely the past horizon and null infinity.

Eventually, in Section 2.4, we shall relate bulk and boundary data by
means of an certain isometric ∗-homomorphism whose existence will be
asserted and, then, discussed in detail.

Section 3 will be instead devoted to a detailed analysis on the relation
between bulk and boundary states. Particularly we shall focus on the state
defined by Kay and Wald for a (smaller) algebra associated with the past
horizon H [38], showing that that state can be extended to the (larger)
algebra relevant for our purposes.

The core of our results will be in Section 4 where we shall first define the
Unruh state and, then, we will prove that it fulfils the Hadamard property.
Eventually we draw some conclusions.

Appendix A contains further geometric details on the conformal structure
of Schwarzschild spacetime, while Appendix C encompasses the proofs of
most propositions. At the same time Appendix B is noteworthy because
it summarises several different definitions of the KMS condition and their
mutual relation is briefly sketched.

1.1 Notation, mathematical conventions

Throughout, A ⊂ B (or A ⊃ B) includes the case A = B, moreover R+
.=

[0,+∞), R
∗
+
.= (0,+∞), R−

.= (−∞, 0], R
∗−
.= (−∞, 0) and N

.= {1, 2, . . .}.
For smooth manifolds M ,N , C∞(M ; N ) is the space of smooth functions
f : M → N . C∞

0 (M ; N ) ⊂ C∞(M ; N ) is the subspace of compactly-
supported functions. If χ : M → N is a diffeomorphism, χ∗ is the natu-
ral extension to tensor bundles (counter-, co-variant and mixed) from M
to N (Appendix C in [56]). A spacetime (M , g) is a Hausdorff, second-
countable, smooth, four-dimensional connected manifold M , whose smooth
metric has signature −+++. We shall also assume that a spacetime is ori-
ented and time oriented. The symbol �g denotes the standard D’Alembert
operator associated with the unique metric, torsion free, affine connection
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∇(g) constructed out of the metric g. �g is locally individuated by gab∇a
(g)∇b

(g).
We adopt definitions and results about causal structures as in [44, 56], but
we take recent results [8, 9] into account, too. If (M , g) and (M ′, g′) are
spacetimes and S ⊂ M ∩ M ′, then J±(S; M ) (I±(S; M )) and J±(S; M ′)
(I±(S; M ′)) indicate the causal (resp. chronological) sets generated by
S in the spacetime M or M ′, respectively. An (anti)symmetric bilinear map
over a real vector space σ : V × V → R is non-degenerate when σ(u, v) = 0
for all v ∈ V entails u = 0.

2 Quantum Field theories — bulk to boundary relations

2.1 Schwarzschild–Kruskal spacetime

In this paper, we will be interested in the analysis of a Klein–Gordon scalar
massless field theory on Schwarzschild spacetime and, therefore, we shall
first recall the main geometric properties of the background we shall work
with. Within this respect, we shall follow Section 6.4 of [56] and we will
focus on the physical region M of the full Kruskal manifold K (represented
in Figure 2 in the appendix), associated with a black hole of mass m > 0.

M is made of the union of three pairwisely disjoint parts, W ,B and Hev

which we shall proceed to describe. According to Figure 1 (and Figure 2 in
the appendix), we individuate W as the (open) Schwarzschild wedge, the
(open) black hole region is denoted by B while their common boundary,
the event horizon, is indicated by Hev.

The underlying metric is easily described if we make use of the standard
Schwarzschild coordinates t, r, θ, φ, where t ∈ R, r ∈ (rS,+∞), (θ, φ) ∈

Figure 1: The overall picture represents M . The regions W and B respec-
tively correspond to regions I and III in Figure 2. The thick horizontal line
denotes the metric singularity at r = 0, Σ is a spacelike Cauchy surface for
M while Σ′ is a spacelike Cauchy surface for W .
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S
2 in W , whereas t ∈ R, r ∈ (0, rS), (θ, φ) ∈ S

2 in B. Within this respect
the metric in both W and B assumes the standard Schwarzschild form:

−
(

1 − 2m
r

)
dt⊗ dt+

(
1 − 2m

r

)−1

dr ⊗ dr + r2hS2(θ, φ), (2.1)

where hS2 is the standard metric on the unit 2-sphere. Here, per direct
inspection, one can recognise that the locus r = 0 corresponds to proper
metrical singularity of this spacetime, whereas r = rS = 2m individuates
the apparent singularity on the event horizon.

It is also convenient to work with the Schwarzschild light or
Eddington–Finkelstein coordinates [38,57] u, v, θ, φ which cover W and
B separately, such that (u, v) ∈ R

2, (θ, φ) ∈ S
2 and

u
.= t− r∗ in W , u

.= −t− r∗ in B,

v
.= t+ r∗ in W , v

.= t− r∗ in B,

r∗ .= r + 2m ln
∣∣∣ r
2m

− 1
∣∣∣ ∈ R.

A third convenient set of global null coordinates U, V, θ, φ can be intro-
duced on the whole Kruskal spacetime [56]:

U = −e−u/(4m), V = ev/(4m) in W , (2.2)

U = eu/(4m), V = ev/(4m) in B. (2.3)

In this frame,

W ≡ {(U, V, θ, φ) ∈ R
2 × S

2 | U < 0, V > 0},
B ≡ {(U, V, θ, φ) ∈ R

2 × S
2 | UV < 1, U, V > 0},

M
.= W ∪ B ∪ Hev ≡ {(U, V, θ, φ) ∈ R

2 × S
2 | UV < 1, V > 0}.

Each of the three mentioned regions, seen as independent spacetimes, is
globally hyperbolic.

The event horizon of W , Hev is one of the two horizons we shall consider.
The other is the complete past horizon of M , H which is part of the
boundary of M in the Kruskal manifold. These horizons are respectively
individuated by:

Hev ≡ {(U, V, θ, φ) ∈ R
2 × S

2 | U = 0, V > 0},
H ≡ {(U, V, θ, φ) ∈ R

2 × S
2 | V = 0, U ∈ R}.

For future convenience, we decompose H into the disjoint union H = H− ∪
B ∪ H+ where H± are defined according to U > 0 or U < 0 while B is the
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bifurcation surface at U = 0, i.e., the spacelike 2-sphere with radius rS
where H meets the closure of Hev.

The metric on M (and in the whole Kruskal manifold) takes the form:

g = −16m3

r
e−

r
2m (dU ⊗ dV + dV ⊗ dU) + r2hS2(θ, φ), (2.4)

where the apparent Schwarzschild-coordinate singularity on both H and
Hev has disappeared. It coincides with the radial Schwarzschild coordinate
in both W and B, hence taking the constant value rs on Hev ∪ B; at the
same time, the metric singularity, located at r = 0, corresponds to UV = 1.

Let us now focus on the Killing vectors structure. Per direct inspection
of either (2.1) or (2.4), one realizes that there exists a space of Killing
vectors generated both by all the complete Killing fields associated with the
spherical symmetry — ∂φ for every choice of the polar axis z — and by
a further smooth Killing field X. It coincides with ∂t in both W and B,
although it is timelike and complete in the former static region, while it is
spacelike in the latter. Moreover X becomes light-like and tangent to H and
Hev (as well as to the whole completion of Hev in the Kruskal manifold) while
it vanishes exactly on B, giving rise to the structure of a bifurcate Killing
horizon [38]. It is finally useful to remark that the coordinates u and v are
respectively well defined on both Hev and H± where it turns out that:

X = ∓∂u on H±, X = ∂v on Hev.

To conclude this short digression on the geometry of Kruskal–Schwarzschild
spacetime, we notice that, by means of a conformal completion procedure,
outlined in Appendix A, one can coherently introduce the notion of future
and past null infinity �±. Along the same lines (see again Figures 1 and
2 in the appendix), we also shall refer to the formal points at infinity i±, i0,
often known as future, past and spatial infinity, respectively.

2.2 The Algebra of field observables of the spacetime

We are interested in the quantisation of the free massless scalar field ϕ [38,57]
on the globally hyperbolic spacetime (N , g). The real field ϕ is supposed to
be smooth and to satisfy the massless Klein–Gordon equation in (N , g):

Pgϕ = 0, Pg
.= −�g + 1

6Rg. (2.5)

Since we would like to use conformal techniques, we have made explicit
the conformal coupling with the metric, even if it has no net effect for the
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case N = M , since the curvature Rg vanishes therein. Nonetheless, this
allows us to make a profitable use of the discussion in Appendix A when
N = M and M̃ ⊃ M . Here M̃ stands for the conformal extension (see
also Figure 2 in the appendix) of the previously introduced physical part of
Kruskal spacetime M , equipped with the metric g̃ which coincides with g/r2

in M . In such case, if the smooth real function ϕ̃ solves the Klein–Gordon
equation in M̃ (where now Rg̃ �= 0):

Pg̃ϕ̃ = 0, Pg̃
.= −�g̃ + 1

6Rg̃, (2.6)

ϕ
.= 1
r ϕ̃�N solves (2.5) in M .

Generally we shall focus our attention to the class S(N ) of real smooth
solutions of (2.5) which have compact support when restricted on a (and thus
on every) spacelike smooth Cauchy surface of a globally hyperbolic spacetime
(N , g). This real vector space becomes a symplectic one (S(N ), σN ) when
equipped with the non-degenerate, Σ-independent, symplectic form [4, 38,
57], for ϕ1, ϕ2 ∈ S(N ),

σN (ϕ1, ϕ2)
.=

∫
ΣN

(ϕ2∇nϕ1 − ϕ1∇nϕ2) dμg(ΣN ). (2.7)

Here ΣN is any spacelike smooth Cauchy surface of N with the metric
induced measure μg(ΣN ) and future-directed normal unit vector n.

Furthermore, for any N ′ ⊂ N such that (N ′, g�N ′) is globally hyper-
bolic, the following inclusion of symplectic subspaces holds

(S(N ′), σN ′) ⊂ (S(N ), σN ).

Such statement can be proved out of both (2.7) and the independence from
the used smooth spacelike Cauchy surface. To this avail, it is crucial that
every compact portion of a spacelike Cauchy surface of N ′ can be viewed
as that of a second smooth spacelike, hence acausal, Cauchy surface of N
as shown in [9] (though, for acausality, one should also refer to Lemma 42
in Chap. 14 of [44]).

The quantisation procedure within the algebraic approach goes along the
guidelines given in [38,57] as follows: the elementary observables associated
with the field ϕ are the (self-adjoint) elements of the Weyl (C∗-) algebra
W(S(N )) [6, 27, 38, 57] whose generators will be denoted by WN (ϕ), ϕ ∈
S(N ), as discussed in the Appendix B.
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In order to interpret the elements in W(S(N )) as local observables smeared
with functions of C∞

0 (N ; R), we introduce some further technology. Gen-
erally, globally hyperbolicity of the underlying spacetime, as in the case of
(N , g), entails the existence of the causal propagator, EPg : APg −RPg :
C∞

0 (N ; R) → S(N ) associated to Pg and defined as the difference of the
advanced and retarded fundamental solution [4, 57]. Furthermore EPg :
C∞

0 (N ; R) → S(N ) is linear, surjective withKerEPg = Pg(C∞
0 (N ; R)) and

it is continuous with respect to the natural topologies of both C∞
0 (N ; R)

and C∞(N ; R). Finally, given ψ ∈ S(N ) and any open neighbourhood
N ′ of any fixed smooth spacelike Cauchy surface of N , there exists fψ ∈
C∞

0 (N ′; R) with EPgfψ = ψ. Consequently, supp ψ ⊂ J+(supp fψ; N ) ∪
J−(supp fψ; N ).

The standard Hilbert space picture, where the generators WN (EPgf) are
interpreted as exponentials of standard field operators, eiΦ(f), can be intro-
duced in the GNS representation, (Hω,Πω,Ψω), of any fixed algebraic state
ω : W(S(N )) → C [27, 57], such that the unitary one-parameter group R �
t �→ Πω (WN (tEN f)) is strongly continuous. The field operators Φω(f)
which arise as the self-adjoint generators of those unitary one-parameter
groups, Πω (WN (EN tf)) = exp{itΦω(f)}, enjoy all the standard proper-
ties of usual quantisation procedure of Klein–Gordon scalar field based on
CCR [38,57]. A different but equivalent definition is presented in the Appen-
dix B. A physically important point, which would deserve particular atten-
tion, is the choice of physically meaningful states, but we shall just come
back later to such issue.

2.3 Algebras on H and �±

Let us consider the case N = M , the latter being the physical part of
Kruskal spacetime beforehand introduced. The null 3-surfaces H, �±, as
well as, with a certain difference, Hev and H±, can be equipped with a
Weyl algebra of observables along the guidelines given in [21] and references
therein. These play a central role in defining physically interesting states
for W(S(M )) in the bulk. To keep the paper sufficiently self-contained, we
briefly sketch the construction. Let N be any 3-submanifold of a spacetime —
either (M , g) or its conformal completion (M̃ , g̃) —, whose metric, when
restricted to N, takes the complete Bondi form:

cN (−dΩ ⊗ d
− d
⊗ dΩ + hS2(θ, φ)) (2.8)

where cN is a non-vanishing constant, while (
,Ω, θ, φ) defines a coordinate
patch in a neighbourhood of N seen as the locus Ω = 0 though such that
dΩ�N�= 0. Out of this last condition, we select 
 ∈ R as a complete parameter
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along the integral lines of (dΩ)a and, in view of the given hypotheses, N turns
out to be a null embedded codimension 1-submanifold diffeomorphic to R ×
S

2.1 It is possible to construct a symplectic space (S(N), σN), where S(N)
is a real linear space of smooth real-valued functions on N which includes
C∞

0 (N; R) and such that the right-hand side of

σN(ψ,ψ′) .= cN

∫
N

(
ψ′∂ψ
∂


− ψ
∂ψ′

∂


)
d
 ∧ dS2, ψ, ψ′ ∈ S(N) (2.9)

can be interpreted in the sense of L1(R × S
2; d
 ∧ dS2), where dS2 is the

standard volume form on S
2. Similarly to what it has been done in the bulk,

since the only structure of symplectic space is necessary, one may define the
Weyl algebra W(S(N)), since the assumption that C∞

0 (N; R) ⊂ S(N) entails
that σN is non-degenerate, hence W(S(N)) is well defined.

An interpretation of σN can be given thinking of ψ,ψ′ as boundary values
of fields ϕ,ϕ′ ∈ S(M ). The right-hand side of (2.9) can then be seen as the
integral over N of the 3-form η[ϕ,ϕ′] associated with ϕ,ϕ′ ∈ S(K )

η[ϕ,ϕ′] .= 1
6

(
ϕ∇aϕ′ − ϕ′∇aϕ

)√−gεabcddxb ∧ dxb ∧ dxc, (2.10)

where εabcd is totally antisymmetric with ε1234 = 1 and where ψ
.= ϕ�N,

ψ′ .= ϕ′�N. Furthermore, in order to give a sense to the integration of η[ϕ,ϕ′]
over N, we assume that N is positively oriented with respect to its future-
directed normal vector. The crucial observation is now that, integrating
η[ϕ,ϕ′] over a spacelike Cauchy surface Σ ⊂ M , one gets exactly the stan-
dard symplectic form σM (ϕ,ϕ′) in (2.7) (or that appropriate for the globally
hyperbolic spacetime containing N). In view of the validity of the Klein–
Gordon equation both for ϕ and ϕ′, the form η[ϕ,ϕ′] satisfies dη[ϕ,ϕ′] = 0.
Therefore one expects that, as a consequence of Stokes–Poincaré theorem it
can happen that σM (ϕ,ϕ′) = σN(ϕ�N, ϕ

′�N). If this result is valid, it implies
the existence of an identification of W(S(M )) (or some relevant sub algebra)
and W(S(N)). This is nothing but the idea we want to implement shortly
with some generalizations.

In the present case, we shall consider the following manifolds N equipped
with the Bondi metric and thus the associated symplectic spaces (S(N), σN):

(a) H with 
 .= U where cN = r2S, rS being the Schwarzschild radius,

1In [20,21,41,42] it was, more strongly, assumed and used the geodetically complete
Bondi form of the metric, i.e., the integral lines of (dΩ)a forming N are complete null
geodesics with � ∈ R as an affine parameter. It happens if and only if, in the considered
coordinates, ∂Ωg���N= 0 for all � ∈ R and (φ, θ) ∈ S

2. This stronger requirement holds
here for H and �±.
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(b) �± with 
 .= u or, respectively, 
 .= v where cN = 1.
In the cases (b), the metric restricted to N with Bondi form is the
conformally rescaled and extended Kruskal metric g̃, with g̃�M = g/r2,
defined in the conformal completion M̃ of M , as discussed in the
Appendix A.

It is worth stressing that 
 in Equation (2.9) can be replaced, without
affecting the left-hand side of (2.9), by any other coordinate 
′ = f(
),
where f : R → (a, b) ⊂ R is any smooth diffeomorphism. This allows
us to consider the further case of symplectic spaces (S(N), σN) where
N is:

(c) H± with 
 .= u and cN = r2S,

independently from the fact that, in the considered coordinates, the metric
g over H± does not take the Bondi form.

2.4 Injective isometric ∗-homomorphism between the
Weyl algebras

To conclude this section, as promised in the introduction, we establish
the existence of some injective (isometric) ∗-homomorphisms which map
the Weyl algebras in the bulk into Weyl subalgebras defined on appropriate
subsets of the piecewise smooth null 3-surfaces �− ∪ H. To this end we
have to specify the definition of S(H), S(H±) and S(�±). From now on,
referring to the definition of the preferred coordinate 
 as pointed out in
the above-mentioned list and with the identification of H, Hev, H± and �±
with R × S

2 as appropriate:

S(H) .=
{
ψ ∈ C∞(R × S

2; R)
∣∣ ∃∃Mψ > 1, Cψ, C ′

ψ ≥ 0 with |ψ(
, θ, φ)|

<
Cψ

ln |
| , |∂�ψ(
, θ, φ)
∣∣∣∣ < C ′

ψ

|
| ln |
| if |
| > Mψ, (θ, φ) ∈ S
2

}
,

(2.11)

where 
 = U on H, and

S(�±) .=

{
ψ ∈ C∞(R × S

2; R)
∣∣ ψ(
) = 0 in a neighbourhood of i0 and

∃∃Cψ, C ′
ψ ≥ 0 with |ψ(
, θ, φ)| < Cψ√

1 + |
| , |∂�ψ(
, θ, φ)|

<
C ′
ψ

1 + |
| , (
, θ, φ) ∈ R × S
2

}
, (2.12)
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where 
 = u on �+ or 
 = v on �−, and, finally,

S(Hev),S(H±) .=

{
ψ ∈ C∞(R × S

2; R) | ψ(
) = 0 in a neighbourhood of B

and ∃∃Cψ, C ′
ψ ≥ 0 with |ψ(
, θ, φ)| < Cψ

1 + |
| ,

|∂�ψ(
, θ, φ)| < C ′
ψ

1 + |
| , (
, θ, φ) ∈ R × S
2

}
, (2.13)

where 
 = v on Hev and 
 = u on H±.

It is a trivial task to verify that the above defined sets are real vector
spaces; they include C∞

0 (R × S
2; R) and, if ψ belongs to one of them, ψ∂�ψ ∈

L1(R × S
2, d
 ∧ dS2) as requested. Furthermore the above definitions rely

upon the fact that the restrictions of the wavefunctions of S(M ) to the
relevant boundaries of M satisfy the fall-off conditions in (2.11), (2.12),
(2.13) while approaching i±, a fact which will shortly play a crucial role.

To go on, notice that, given two real symplectic spaces (with nondegen-
erate symplectic forms) (S1, σ1) and (S2, σ2), we can define the direct sum
of them, as the real symplectic space (S1 ⊕ S1, σ1 ⊕ σ2), where the non-
degenerate symplectic form σ1 ⊕ σ2 : (S1 ⊕ S2) × (S1 ⊕ S2) → R is

σ1 ⊕ σ2((f, g), (f ′, g′))
.= σ1(f, f ′) + σ2(g, g′), for all f, f ′ ∈ S1 and g, g′ ∈ S2. (2.14)

If we focus on the Weyl algebras W(S1), W(S2), W(S1 ⊕ S2), it is natural to
identify the C∗-algebra W(S1 ⊕ S2) with W(S1) ⊗ W(S2) providing, in this
way, the algebraic tensor product of the two C∗-algebras with a natural C∗-
norm (there is no canonical C∗-norm for the tensor product of two generic
C∗-algebras). This identification is such that WS1⊕S2((f1, f2)) corresponds
to WS1(f1) ⊗WS2(f2) for all f1 ∈ S1 and f2 ∈ S2.

We are now in a position to state and to prove the main theorems of this
section, making profitable use of the results achieved in [19]. Most notably,
we are going to show that W(S(M )) is isomorphic to a sub C∗-algebra of
W(S(H)) ⊗ W(S(�−)). As a starting point, let us notice that, if ϕ and ϕ′
are solutions of the Klein–Gordon equation with compact support on any
spacelike Cauchy surface Σ of M , the value of σM (ϕ,ϕ′) is independent
on the used Σ and, therefore, we can deform it preserving the value of
σM (ϕ,ϕ′). A tricky issue arises if one performs a limit deformation where
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the final surface tends to H ∪ �− since

σM (ϕ,ϕ′) = σH

(
ϕH, ϕ

′
H

)
+ σ�−

(
ϕ�− , ϕ′

�−
)
, (2.15)

where the arguments of the symplectic forms in the right-hand side (which
turns out to belong to the appropriate spaces (2.11), (2.12)) are obtained
either as restrictions to H or as (suitably rescaled) limit values towards �−
of both ϕ and ϕ′. As the map ϕ �→ (ϕH, ϕ�−) is linear and the sum of
the above symplectic forms is the symplectic form σ on S

.= S(H) ⊕ S(�−),
this entails that we have built up a symplectomorphism from S(M ) to S,
ϕ �→ (ϕH, ϕ�−) which must be injective. In view of known theorems [6],
this entails the existence of an isometric ∗-homomorphism ı : W(S(M )) →
W(S(H)) ⊗ W(S(�−)). Our goal now is to formally state and to prove the
result displayed in (2.15).

Theorem 2.1. For every ϕ ∈ S(M ), let us define

ϕ�−
.= lim

→�−
rϕ, and ϕH

.= ϕ �H .

Then the following facts hold.

(a) The linear map

Γ : S(M ) � ϕ �→ (ϕ�− , ϕH),

is an injective symplectomorphism of S(M ) into S(�−) ⊕ S(H)
equipped with the symplectic form, such that, for ϕ,ϕ′ ∈ S(M ):

σM (ϕ,ϕ′) .= σ�−
(
ϕ�− , ϕ′

�−
)

+ σ�H

(
ϕH, ϕ

′
H

)
. (2.16)

(b) There exists a corresponding injective isometric ∗-homomorphism

ı : W(S(M ))→ W(S(�−)) ⊗ W(S(H)),

which is unambiguously individuated by

ı (WM (ϕ)) = W�− (ϕ�−) ⊗WH (ϕH) .

Proof. Let us start from point (a). If ϕ ∈ S(M ), we can think of it as
a restriction to M of a solution ϕ′ of the Klein–Gordon equation in the
whole Kruskal manifold. To this end one should also notice that the initial
data of ϕ on a spacelike Cauchy surface of M can also be seen as initial
data on a spacelike Cauchy surface of the whole Kruskal manifold. This is
a direct application of the results in [9] and [44]. Therefore, ϕH

.= ϕ′ �H is
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well-defined and smooth. Similarly, the functions ϕ�−
.= lim→�− rϕ are well

defined, smooth and vanish in a neighbourhood of the relevant i0 in view of
the following lemma whose proof is sketched in Appendix C. �

Lemma 2.1. If ϕ ∈ S(M ), rϕ uniquely extends to a smooth function ϕ̃
defined in M joined with open neighbourhoods of �+ and �− included in the
conformal extension M̃ of M discussed in the Appendix A. Furthermore,
there are constants v(ϕ), u(ϕ) ∈ (−∞,∞) such that ϕ̃ vanishes in W if u <
u(ϕ), v > v(ϕ) and thus, per continuity, it vanishes in the corresponding limit
regions on �+ ∪ �−.

Since the map Γ is linear by construction, it remains to prove that (i)
ϕH ∈ S(H) and ϕ�± ∈ S(�±) as defined in (2.11) and (2.12), and that (ii)
Γ preserves the symplectic forms, i.e.,

σM (ϕ1, ϕ2) = σS(H)⊕S(�−) (Γϕ1,Γϕ2) . (2.17)

Notice that, since σM is nondegenerate, the above identity implies that the
linear map Γ is injective. Let us tackle point (i): since the behaviour of ϕ�−
in a neighbourhood of i0 is harmless, we only need to establish the vanishing
of both ϕH and ϕ�− as they approach i−, with a peeling-off rate consistent
with that of definitions (2.11) and (2.12). Such a result is a consequence of
the following proposition whose proof, in Appendix C, enjoys a lot from [19].

Proposition 2.1. Let us fix R̂ > rS, then the following facts hold:

(a) If ϕ ∈ S(M ) and ϕ̃ extends rϕ across �± as stated in Lemma 2.1, there
exist constants C1, C2 ≥ 0 depending on both ϕ and C3, C4 depending
on ϕ and R̂, such that the following pointwise bounds hold in both
W ∪ Hev and W ∪ H−:

|ϕ| ≤ C1

max{2, v} , |X(ϕ)| ≤ C2

max{2, v} , (2.18)

and, respectively,

|ϕ| ≤ C1

max{2,−u} , |X(ϕ)| ≤ C2

max{2,−u} . (2.19)

Similarly, if one assumes also r ≥ R̂ and t > 0 (including the points
on �+),

|ϕ̃| ≤ C3√
1 + |u| , |X(ϕ̃)| ≤ C4

1 + |u| , (2.20)
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or, if r ≥ R̂ but t < 0 (including the points on �−),

|ϕ̃| ≤ C3√
1 + |v| , |X(ϕ̃)| ≤ C4

1 + |v| .

X is the smooth Killing vector field on the conformally extended
Kruskal spacetime with X = ∂t in W , X = ∂v on Hev, X = ∂u on
H−, X = ∂u on �+ and X = ∂v on �−.

(b) If the Cauchy data (ϕ�Σ,∇nϕ�Σ) on Σ ↪→K of ϕ tend to 0 in the
sense of the test function (product) topology on C∞

0 (Σ; R), then the
associated constants Ci tend to 0, for i = 1, 3.

If the Cauchy data (ϕ′�Σ,∇nϕ
′�Σ) on Σ ↪→ K of ϕ′ .= X(ϕ) tend

to 0 in the sense of the test function (product) topology on C∞
0 (Σ; R),

then the associated constants Ci tend to 0, for i = 2, 4.

It is noteworthy to emphasise that, during the final stages of the realiza-
tion of this paper, a new result on the peeling-off behaviour of the solutions
of the wave equation in Schwarzschild black-hole was made public [39]. Par-
ticularly the decay rate on the horizon has been improved; nonetheless, to
our purposes, the original one obtained by Dafermos and Rodnianski suffice.

Since ϕ and ϕ̃ are smooth, X(ϕ) = ∂uϕ on H− and X(ϕ̃) = ∂vϕ̃ on �−, it
comes out, per direct inspection, that ϕH ∈ S(H) and ϕ�− ∈ S(�−) since the
definitions (2.11) and (2.12) are fulfilled, for 
 = U and 
 = v respectively;
furthermore, in view of the last statement of the above proposition, it holds
ϕ�+ ∈ S(�+).

In order to conclude, let us finally prove item (ii), that is (2.17), mak-
ing use once more of Proposition 2.1. Let us consider ϕ,ϕ′ ∈ S(M ) and a
spacelike Cauchy surface ΣM of M so that,

σM (ϕ,ϕ′) =
∫

ΣM

(
ϕ′∇nϕ− ϕ∇nϕ

′) dμg(ΣM ),

where n is the unit normal to the surface ΣM and μg(ΣM ) is the metric
induced measure on ΣM and, in the following, we shall write dμg in place of
dμg(ΣM ) and Σ in place of ΣM . Since both ϕ and ϕ′ vanish for sufficiently
large U , we can use the surface Σ, defined as the locus t = 0 in W , and,
out of the Poincaré theorem (employing the 3-form η as discussed in Section
2.3), we can write

σM (ϕ,ϕ′) =
∫

Σ∩W
ϕ′X(ϕ) − ϕX(ϕ′)dμg

+ r2S

∫
H+

(
ϕ′∂Uϕ− ϕ∂Uϕ

′) dU ∧ dS2, (2.21)
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where we have used the fact that B ∩ Σ has measure zero. We shall prove
that, if one restricts the integration to W ,

∫
Σ∩W

ϕ′X(ϕ) − ϕX(ϕ′)dμg = r2S

∫
H−

(
ϕ′∂Uϕ− ϕ∂Uϕ

′) dU ∧ dS2

+
∫
�−

(
ϕ̃′∂vϕ̃− ϕ̃∂vϕ̃′

)
du ∧ dS2. (2.22)

Since, with the same procedure, one gets an analogous statement for the
portion of the initial integration taken in W , though with the integration
in dU extended over R

− and the remaining one on �−, this will conclude
the proof.

In order to prove the identity (2.22), we notice at first that:

∫
Σ∩W

ϕ′X(ϕ) − ϕX(ϕ′)dμg

=
∫

[rS,+∞)×S2

r2 (ϕ′X(ϕ) − ϕX(ϕ′))
1 − 2m/r

∣∣∣∣
(t=0,r,θ,φ)

dr ∧ dS2(θ, φ).

Afterwards, we break the integral on the right-hand side into two pieces with
respect to the coordinate r∗:

∫
[rS,+∞)×S2

r2 (ϕ′X(ϕ) − ϕX(ϕ′))
1 − 2m/r

∣∣∣∣
(t=0,r,θ,φ)

dr ∧ dS2

=
∫

(−∞,R̂∗)×S2

r2
(
ϕ′X(ϕ) − ϕX(ϕ′)

)∣∣
(t=0,r∗,θ,φ)

dr∗ ∧ dS2

+
∫

[R̂∗,+∞)×S2

(
rϕ′X(rϕ) − rϕX(rϕ′)

)∣∣
(t=0,r∗,θ,φ)

dr∗ ∧ dS2.

We started assuming Σ as the surface t = 0 in (2.21); however, the value of
t is immaterial, since we can work, with a different surface Σt obtained by
evolving Σ along the flux of the Killing vector X. We remind that X = ∂t in
W and X = 0 exactly on B, which, as a consequence, is a fixed submanifold
of the flux. Furthermore we also know that the symplectic form σM (ϕ,ϕ′)
is constructed in such a way that its value does not change varying t, by
construction.

Since B is fixed under the flux of X, per direct application of Stokes-
Poincaré theorem, one sees that this invariance holds also for the integration
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restricted to W . In other words, for every t > 0:
∫

Σ∩W

ϕ′X(ϕ) − ϕX(ϕ′)dμg =
∫

Σt∩W

ϕ′X(ϕ) − ϕX(ϕ′)dμg

=
∫

(u0(t),+∞)×S2
r2 (ϕ′X(ϕ) − ϕX(ϕ′))|(t,t−u,θ,φ)du ∧ dS2

+
∫

[v0(t),+∞)×S2

(
ϕ̃′X(ϕ̃) − ϕ̃X(ϕ̃′)

)∣∣∣
(t,v−t,θ,φ)

dv ∧ dS2,

where we have also changed the variables of integration from r∗ either to
v = t+ r∗ or to u = t− r∗ and both u0(t)

.= t− R̂∗ and v0(t)
.= t+ R̂∗ are

functions of t. Hence∫
Σ∩W

ϕ′X(ϕ) − ϕX(ϕ′)dμg

= lim
t→−∞

∫
(u0(t),+∞)×S2

r2
(
ϕ′X(ϕ) − ϕX(ϕ′)

)∣∣
(t,t−u,θ,φ)

du ∧ dS2

+ lim
t→−∞

∫
[v0(t),+∞)×S2

(
ϕ̃′X(ϕ̃) − ϕ̃X(ϕ̃′)

)∣∣∣
(t,v−t,θ,φ)

dv ∧ dS2. (2.23)

The former limit should give rise to an integral over H−, whereas the latter
to an analogous one over �−. Let us examine them separately and we start
from the latter.

To start with we notice that, in view of (a) in Lemma 2.1, the integra-
tion in v can be performed in (−∞, v1] for some constant v1 ∈ R, without
affecting the integral for every t < 0. Therefore

lim
t→−∞

∫
[v0(t),+∞)×S2

(
ϕ̃′X(ϕ̃) − ϕ̃X(ϕ̃′)

)∣∣∣
(t,v−t,θ,φ)

dv ∧ dS2

= lim
t→−∞

∫
(−∞,v1]×S2

χ[v0(t),+∞)(v)
(
ϕ̃′X(ϕ̃) − ϕ̃X(ϕ̃′)

)∣∣∣
(t,v−t,θ,φ)

dv ∧ dS2,

where χI is the characteristic function of I ⊂ R. In view of the uniform
bounds, associated with the constants C3 and C4, given by v- integrable func-
tions in (−∞, v1], as stated in Proposition 2.1, we can now apply Lebesgue’s
dominated convergence theorem to the limit in the right-hand side:

lim
t→−∞

∫
R×S2

χ[v0(t),+∞)(v)
(
ϕ̃′X(ϕ̃) − ϕ̃X(ϕ̃′)

)∣∣∣
(t,v−t,θ,φ)

dv ∧ dS2

=
∫
�−

(
ϕ̃′∂vϕ̃− ϕ̃∂vϕ̃′

)
dv ∧ dS2. (2.24)
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Let us now consider the remaining integral on the right-hand side of (2.23).
Fix u1 − R̂∗ ∈ R and the following decomposition

∫
(u0(t),+∞)×S2

r2
(
ϕ′X(ϕ) − ϕX(ϕ′)

)∣∣
(t,t−u,θ,φ)

du ∧ dS2

=
∫

Σ
(u1)
t

ϕ′X(ϕ) − ϕX(ϕ′)dμg.

+
∫

(u0(t),u1]×S2

r2
(
ϕ′X(ϕ) + −ϕX(ϕ′)

)∣∣
(t,t−u,θ,φ)

du ∧ dS2.

Here we have used the initial expression for the first integral, which is per-
formed over the compact subregion Σ(u1)

t of Σt ∩ W which contains the
points with null coordinate U included in [−exp{−u1/(4m)}, 0]. It is note-
worthy that such integral is indeed the one of the smooth 3-form η

.= η[ϕ,ϕ′]
defined in (2.10) and, furthermore, in view of Klein-Gordon equation, dη =
0. Thus, by means of an appropriate use of the Stokes-Poincaré theorem,
this integral can be re-written as an integral of η over two regions. The first
is a compact subregion of H+ which can be constructed as the points with
coordinate U ∈ [U1, 0], where U1

.= −e−u1/(4m); the second, instead is the
compact null 3-surface S(u1)

t formed by the points in M with U = U1 and
lying between Σt and H−. To summarise:

∫
Σ

(u1)
t

ϕ′X(ϕ) − ϕX(ϕ′)dμg =
∫

H−∩{U1≤U≤0}
η +

∫
S

(u1)
t

η.

If we adopt coordinates U, V, θ, φ, the direct evaluation of the first integral
on the right-hand side produces:

∫
Σ

(u1)
t

ϕ′X(ϕ) − ϕX(ϕ′)dμg

= r2S

∫
H−∩{U1≤U≤0}

(
ϕ′∂Uϕ− ϕ∂Uϕ

′) dU ∧ dS2 +
∫
S

(u1)
t

η.

We have obtained

lim
t→−∞

∫
(u1,+∞)×S2

r2
(
ϕ′X(ϕ) − ϕX(ϕ′)

)∣∣
(t,t−u,θ,φ)

du ∧ dS2

= r2S

∫
H+

R∩{U1≤U≤0}

(
ϕ′∂Uϕ− ϕ∂Uϕ

′) dU ∧ dS2 + lim
t→−∞

∫
S

(u1)
t

η

+ lim
t→−∞

∫
(u0(t),u1]×S2

r2
(
ϕ′X(ϕ) − ϕX(ϕ′)

)∣∣
(t,t−u,θ,φ)

du ∧ dS2. (2.25)
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If we perform the limit as t→ −∞, one has
∫
S

(u1)
t

η → 0, because it is the

integral of a smooth form over a vanishing surface (as t→ −∞), whereas

lim
t→−∞

∫
(u0(t),u1]×S2

r2
(
ϕ′X(ϕ) − ϕX(ϕ′)

)∣∣
(t,t−u,θ,φ)

du ∧ dS2

=
∫

H−∩{u1≥u}
χ(u0(t),+∞)(u)r

2
S

(
ϕ′∂uϕ− ϕ∂uϕ

′) du ∧ dS2

= r2S

∫
H−∩{U1≥U}

(
ϕ′∂Uϕ− ϕ∂Uϕ

′) dU ∧ dS2,

where we stress that the final integrals are evaluated over H− and we have
used again Lebesgue’s dominated convergence theorem thanks to the esti-
mates associated with the constants C1 and C2 in Proposition 2.1. Inserting
the achieved results in the right-hand side of (2.25), we find that:

lim
t→−∞

∫
R×S2

r2
(
ϕ′X(ϕ) − ϕX(ϕ′)

)∣∣
(t,t−u,θ,φ)

du ∧ dS2

= r2S

∫
H−

(
ϕ′∂Uϕ− ϕ∂Uϕ

′) dU ∧ dS2
S2 .

Such identity, brought in (2.23), yields, together with (2.24), (2.22), hence
concluding the proof of (a).

Item (b) can be proved as follows. In the following S
.= S(H) ⊕ S(�−) and

σ is the natural symplectic form on such space. Let us consider the closure
of the sub ∗-algebra generated by all the generators WS(Γϕ) ∈ W(S) for all
ϕ ∈ S(M ). This is still a C∗-algebra which, in turn, defines a realization of
W(S(M )) because Γ is an isomorphism of the symplectic space (S(M ), σM )
onto the symplectic space (Γ(S(M )), σ�Γ(S(M ))×Γ(S(M ))). As a consequence
of Theorem 5.2.8 in [6], there is a ∗-isomorphism, hence isometric, between
W(S(M )) and the other, just found, realization of the same Weyl algebra,
unambiguously individuated by the requirement ıM (WM )(ϕ) .= WS(Γϕ).
This isometric ∗-isomorphism individuates an injective ∗-homomorphism of
W(S(M )) into W(S, σ) ≡ W(S(H)) ⊗ W(S(�−)). �

As a byproduct and a straightforward generalisation, the proof of the
above theorem also establishes the following:

Theorem 2.2. With the same definitions as in Theorem 2.1 and defining,
for ϕ ∈ S(W ), ϕH−

.= lim→H− ϕ and ϕHev

.= lim→Hev ϕ, the linear maps

Γ− : S(W ) � ϕ �→ (ϕH− , ϕ�−) ∈ S(H−) ⊕ S(�−),

Γ+ : S(W ) � ϕ �→ (ϕHev , ϕ�+) ∈ S(Hev) ⊕ S(�+)
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are well-defined injective symplectomorphisms. As a consequence, there exists
two corresponding injective isometric ∗-homomorphisms:

ı− : W(S(W )) → W(S(H−)) ⊗ W(S(�−)),

ı+ : W(S(W )) → W(S(Hev)) ⊗ W(S(�+)),

which are respectively unambiguously individuated by the requirements for
ϕ ∈ S(W )

ı− (WW (ϕ)) = WH− (ϕH−) ⊗W�− (ϕ�−) ,

ı+ (WW (ϕ)) = WHev (ϕHev) ⊗W�+ (ϕ�+) .

Before the conclusion of the present section, we would like to stress
that a result similar to the one presented in Theorems 2.1 and 2.2 can be
obtained for the algebra of observables defined on the whole Kruskal exten-
sion K of the Schwarzschild spacetime. In such case, an injective isometric
∗-homomorphisms ıK : W(S(K ))→W(S(�+

L ))⊗W(S(H)) ⊗ W(S(�−)) can
be constructed out of the projection ΓK : S(K ) � ϕ �→ (ϕ�+

L
, ϕH, ϕ�−) ∈

S(�+
L ) ⊕ S(H) ⊕ S(�−) from the requirement ıK (WK (ϕ)) = W�+

L

(
ϕ�+

L

)
⊗

WH (ϕH) ⊗W�− (ϕ�−) where �+
L stands for the future null infinity of the

left Schwarzschild wedge in the Kruskal spacetime K .

3 Interplay of bulk states and boundary states

3.1 Bulk states induced form boundary states by means of the
pullback of ı and ı−

In this section, we construct the mathematical technology to induce alge-
braic states (see Appendix B) on the algebras W(S(M )) and W(S(W ))
from those defined, respectively, on W(S(H)) ⊗ W(S(�−)) and W(S(H−)) ⊗
W(S(�−)). A bit improperly, we shall call bulk states those with respect
to W(S(M )) and on the other subalgebra defined above while boundary
states will be called those on W(S(H)) ⊗ W(S(�−)). To this end, the main
tools are Theorems 2.1 and 2.2. Let us consider the case of W(S(M )) as an
example. If the linear functional ω : W(S(H)) ⊗ W(S(�−)) → C is an alge-
braic state, the isometric ∗-homomorphism ı constructed in Theorem 2.1
gives rise to ωM : W(S(M )) → C defined as

ωM
.= ı∗(ω), where (ı∗(ω)) (a) .= ω (ı(a)) , for every a ∈ W(S(M )).

(3.1)
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A similar conclusion can be drawn using ı− for the corresponding algebra.
The situation will now be specialised to quasifree states and, as discussed
in Appendix B, one of these can be unambiguously defined on W(S(H)) ⊗
W(S(�−)), just requiring that

ωμ (WH∪�−(ψ)) = e−μ(ψ,ψ)/2, for all ψ ∈ S(H) ⊕ S(�−),

where μ : (S(H) ⊕ S(�−)) × (S(H) ⊕ S(�−)) → R is a real scalar product
satisfying (B.1). Furthermore the “quasi-free”-property is stable under pull-
back, i.e., if (3.1) is quasifree, then ωM is such. Therefore, we can simply
turn our attention to quasifree states defined on the boundaries W(S(�±)),
W(S(H)), and on the possible composition of such states in view of the
following proposition.

Proposition 3.1. Let (S1, σ1), (S2, σ2) be symplectic spaces and ω1, ω2 be
two quasifree algebraic states on W(S1, σ1) and W(S2, σ2), induced respec-
tively by the real scalar products μ1 : S1 × S1 → R and μ2 : S2 × S2 → R.
Then the scalar product μ1 ⊕ μ2 : (S1 ⊕ S2) × (S1 ⊕ S2) → R defined by:

μS1⊕S2((ψ1, ψ2), (ψ′
1, ψ

′
2))

.= μ1(ψ1, ψ
′
1) + μ2(ψ2, ψ

′
2),

for all (ψ1, ψ2), (ψ′
1, ψ

′
2) ∈ S1 ⊕ S2,

uniquely individuates a quasifree state ω1 ⊗ ω2 on W(S1) ⊗ W(S2) as

ω1 ⊗ ω2 (WS1(ψ1) ⊗WS2(ψ2)) = e−μ1⊕μ2((ψ1,ψ2),(ψ′
1,ψ

′
2))/2,

for all (ψ1, ψ2) ∈ S1 ⊕ S2.

Proof. Only the validity of (B.1) for μ1 ⊕ μ2 has to be proved with respect to
σ1 ⊕ σ2 defined in (2.14). This fact immediately follows from the definition
of μ1 ⊕ μ2 and making use of (2) in remark B.1. �

We can iterate the procedure in order to consider the composition of three
(or more) states on corresponding three (or more) Weyl algebras. Hence, in
view of the established proposition we may study separately the quasifree
states on the Weyl algebras W(S(N)) associated to the null surfaces N (a)–
(c) listed in Section 2.3.

3.2 The Kay–Wald quasifree state on W(H)

We remind the reader that, if μ individuates a quasifree state over W(S, σ),
its two-point function is defined as λμ(ψ1, ψ2)

.= μ(ψ1, ψ2) − i
2σ(ψ1, ψ2)

(see Appendix B). When one focuses on the one-particle space structure
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(Kμ,Hμ) (see Appendix B) one has λμ(ψ1, ψ2) = 〈Kμψ1,Kμψ2〉μ, where
〈·, ·〉μ is the scalar product in Hμ. The two-point function of a quasifree
state on a given Weyl algebra brings in the same information as the scalar
product μ itself since the symplectic form is known a priori; thus the two-
point function individuates the state completely.

In [38], some properties are discussed for a particular state on W(S(K )),
where K is the whole Kruskal extension of the Schwarzschild spacetime. If
existent, such state was proved to be unique with respect to certain algebras
of observables and to satisfy the KMS property when one works on a suitable
algebra of observables in W . From a physical perspective, this is nothing
but the celebrated Hartle-Hawking state when the background is the whole
Kruskal spacetime. It is important to remark that, in [38], general globally-
hyperbolic spacetimes with bifurcate Killing horizon are considered, whereas
our work only focuses on M . As an intermediate step, Kay and Wald also
showed that the two-point function λKW of the state has a very particular
form when restricted to the horizon H, more precisely

λKW(ϕ1, ϕ2) = lim
ε→0+

−r
2
S

π

∫
R×R×S2

ϕ1�H(U1, θ, φ) ϕ2�H(U2, θ, φ)
(U1 − U2 − iε)2

× dU1 ∧ dU2 ∧ dS2. (3.2)

provided that ϕ1�H, ϕ2�H∈ C∞
0 (R × S

2; R). It is important to stress that the
above expression is valid when ϕ1�H and ϕ2�H have compact support on H.
Actually, the same two-point function was already found both in [48], while
discussing the physical consequences of the Bisognano–Wichmann theorem,
and in [23], while analysing the various states in the right Schwarzschild
wedge W of the Kruskal manifold with an S-matrix point of view. In the
latter paper, the two-point function in (3.2) was referred to the Killing hori-
zon in the two-dimensional Minkowski spacetime rather than Kruskal one.
In such a case there are smooth solutions of the Klein–Gordon equation,
for m ≥ 0, and with compactly supported Cauchy data, which intersect the
horizon in a compact set. These solutions of the characteristic Cauchy prob-
lem can be used in the right-hand side of (3.2) when the discussion is referred
to Minkowski spacetime instead of the Kruskal one. These “Minkowskian
solutions”, at least in the case m = 0 where asymptotic completeness was
proved to hold, are related to the corresponding solutions (i.e., ϕ1, ϕ2) in
Schwarzschild spacetime by means of a relevant Møller operator. Unfor-
tunately, in the proper Schwarzschild space, the wavefunctions ϕ1 and ϕ2

with compact support on H fail to be smooth in general, since they are weak
solutions of the characteristic problem [23], hence they do not belong to the
space S(K ) in general, making difficult the direct use of λKW. This is a
potential issue in [38] which has minor consequences for the validity of the
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KMS property discussed below (see also the Note added in proof in [38] for
more details).

We shall now prove that, actually, such form of the two-point function
can be extended in order to work on elements of S(H) and, with this exten-
sion, it defines a quasifree state on W(S(H)). This result is by no means
trivial, because the space S(H) contains the restrictions to the horizon of
the various elements of S(K ), that is all the smooth wavefunctions with
compact support on spacelike Cauchy surfaces. Our result, which is valid
for the particular case of the Kruskal spacetime and for m = 0, is obtained
thanks to the achievements recently presented in [19]. At the same time
the space S(H) is just the one used in the hypotheses of Theorem 2.1,
which assures the existence of the ∗-homomorphism ı. As remarked at the
end of the previous section, the procedure can be generalised in order to
individuate an injective ∗-homomorphism from the algebra of observables
on the whole Kruskal space to the algebras on �+

L , H and �−, that is
ıK : W(S(K )) → W(S(�+

L )) ⊗ W(S(H)) ⊗ W(S(�−)). Therefore, the state
on S(K ) could be used, together with a couple of states on W(�−) and
on W(�+

L ) to induce a further one on the whole algebra of observables
W(S(K )). This should provide an existence theorem for the Hartle–Hawking
state on the whole Kruskal manifold K . However we shall not attempt to
give such an existence proof here and we rather focus attention on another
physically interesting state, the so called Unruh vacuum defined only in
the submanifold M . Nevertheless, even in this case we have to tackle the
problem of the extension of the two-point function (3.2) to the whole space
S(H). We shall prove the existence of such an extension that individuates,
moreover, a pure quasifree state on W(S(H)), and which turns out to be
KMS at inverse Hawking’s temperature when restricting on a half-horizon
W(S(H±)) with respect to the Killing displacements given by X�H. The
way we follow goes on through several steps. As a first step we introduce a
relevant Hilbert space which we show later to be the one-particle space of
the quasifree state we wish to define on W(S(H)). The proof of the following
proposition is in Appendix C. From now on,

F (ψ)(K, θ, φ) .=
∫

R

eiKU

√
2π
ψ(U, θ, φ)dU,

indicates the U -Fourier transform of ψ, also in the L2 (Fourier–Plancherel)
sense or even in distributional sense if appropriate. For all practical purposes,
the properties are essentially the same as for the standard Fourier transform.2

2For some general properties, see Appendix C of [42] with the caveat that, in this cited
paper, F was indicated by F+ and the angular coordinates (θ, φ) on the sphere were
substituted by the complex ones (z, z̄) obtained out of stereographic projection.
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Proposition 3.2. Let (C∞
0 (H; C), λKW) be the Hilbert completion of the

complex vector space C∞
0 (H; C) equipped with the Hermitian scalar product:

λKW(ψ1, ψ2)
.= lim
ε→0+

−r
2
S

π

∫
R×R×S2

ψ1(U1, θ, φ)ψ2(U2, θ, φ)
(U1 − U2 − iε)2

dU1 ∧ dU2 ∧ dS2.

(3.3)

where H ≡ R × S
2 adopting the coordinate (U, θ, φ) over H. Denote by ψ̂+

.=
F (ψ)�{K≥0,θ,φ∈S2} the restriction to positive values of K of the U -Fourier
transform of ψ ∈ C∞

0 (H; C). The following facts hold.

(a) The linear map

C∞
0 (H; C) � ψ �→ ψ̂+(K, θ, φ) ∈ L2(R+ × S

2, 2KdK ∧ r2SdS2) .= HH

is isometric and uniquely extends, by linearity and continuity, to a
Hilbert space isomorphism of

F(U) : (C∞
0 (H; C), λKW) → HH.

(b) If one switches to R in place of C

F(U) (C∞
0 (H; R)) = HH.

As a second step we should prove that there is a natural way to densely
embed S(H) into the Hilbert space (C∞

0 (H; C), λKW), that is into HH, as
the definition of quasifree state requires. However, this is rather delicate
because the most straightforward way, computing the U -Fourier transform
of ψ ∈ S(H) and checking that it belongs to L2(R+ × S

2, 2KdK ∧ r2SdS2) =
HH, does not work. The ultimate reason lies in the too slow decay of ψ as
|U | → +∞ obtained in [19] and embodied in the definition of S(H) itself.
As a matter of fact, the idea we intend to exploit is, first, to decompose
every ψ ∈ S(H) as a sum of three functions, one compactly supported and
the remaining ones supported in H+ and H− respectively and, then, to
consider each function separately. The following proposition, whose proof
is in Appendix C, analyses the features of the last two functions. It also
introduces some results, which will be very useful later when dealing with
the KMS property of the state λKW.

In the following H1(H±)u are the Sobolev spaces of the functions ψ :
R × S

2 → C, referred to the coordinate (u, θ, φ) ∈ R × S
2 on H±, which lie

in L2(R × S
2, du ∧ dS2) together with their first (distributional) u derivative.

If one follows the same proof as that valid for C∞
0 (R; C) and H1(R) along the

line of Theorem VIII.6 in [7] (employing sequences of regularising functions
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which are constant in the angular variables), one establishes that C∞
0 (H±; C)

is dense in H1(H±)u. Every ψ ∈ S(H±) is an element of H1(H±)u as it
follows immediately from the definition of S(H±).

Proposition 3.3. The following facts hold, where u .= 2rS ln(U) ∈ R and
u
.= −2rS ln(−U) ∈ R are the natural global coordinate covering H+ and H−,

respectively, while μ(k) is the positive measure on R:

dμ(k) .= 2r2S
ke2πrSk

e2πrSk − e−2πrSk
dk.

(a) If ψ̃ = (F (ψ))(k, θ, φ) = ψ̃(k, θ, φ) denotes the u-Fourier transform of
either ψ ∈ C∞

0 (H+; C) or ψ ∈ C∞
0 (H−; C) the maps

C∞
0 (H±; C) � ψ �→ ψ̃ ∈ L2(R × S

2, dμ(k) ∧ dS2)

are isometric when C∞
0 (H±; C) is equipped with the scalar product

λKW. It uniquely extends, per continuity, to the Hilbert space
isomorphisms:

F
(±)
(u) : C∞

0 (H±; C) → L2(R × S
2, dμ(k) ∧ dS2), (3.4)

where C∞
0 (H±; C) are viewed as Hilbert subspaces of (C∞

0 (H; C), λKW).
(b) The spaces S(H±) are naturally identified with real subspaces of

C∞
0 (H; C) in view of the following.

If either {ψn}n∈N, {ψ′
n}n∈N ⊂ C∞

0 (H+; R) or {ψn}n∈N, {ψ′
n}n∈N ⊂ C∞

0

(H−; R) and, according to the case, both sequences {ψn}n∈N, {ψ′
n}n∈N con-

verge to the same ψ ∈ S(H±) in H1(H±), then both sequences are of Cauchy
type in (C∞

0 (H; C), λKW) and ψn − ψ′
n → 0 in (C∞

0 (H; C), λKW).
The subsequent identification of S(H±) with real subspaces of C∞

0 (H; C) is
such that:

F
(±)
(u) �S(H±)= F �S(H±), (3.5)

where F : L2(R × S
2, du ∧ dS2) → L2(R × S

2, dk ∧ dS2) stands for the stan-
dard u-Fourier–Plancherel transform.

We are finally in a position to specify how S(H) is embedded in HH. Let
us consider a compactly supported smooth function χ ∈ C∞(H), such that



RIGOROUS CONSTRUCTION AND HADAMARD PROPERTY 383

χ = 1 in a neighbourhood of the bifurcation sphere B ∈ H. Every ψ ∈ S(H)
can now be decomposed as the sum of three functions:

ψ = ψ− + ψ0 + ψ+, with ψ± = (1 − χ)ψ �H±∈ S(H±) and

ψ0 = χψ ∈ C∞
0 (H; R), (3.6)

Now let us define the map KH : S(H) → HH = L2(R+ × S
2, dK ∧ dS2) as

KH : S(H) � ψ �→ F(U) (ψ−) + F(U)(ψ0) + F(U) (ψ+) ∈ HH, (3.7)

where F(U)(ψ±) makes sense in view of the identification of S(H) with a
real subspace of (C∞

0 (H; C), λKW) as established in (b) of Proposition 3.3.
The following proposition yields that KH, in particular, is well-defined and
injective and, thus, it identifies S(H) with a subspace of HH. Such identi-
fication enjoys a nice interplay with the symplectic form σH. Furthermore
we prove that, K : S(H) → HH is continuous if viewing S(H) as a normed
space equipped with the norm

‖ψ‖χH = ‖(1 − χ)ψ‖H1(H−)u
+ ‖χψ‖H1(H)U + ‖(1 − χ)ψ‖H1(H+)u

(3.8)

where ‖ · ‖H1(H±)u
and ‖ · ‖H1(H)U are the norms of the Sobolev spaces

H1(H±)u and H1(H)U respectively.

Notice that, ‖ · ‖χH and ‖ · ‖χ′
H, defined with respect of different decompo-

sitions generated by χ and χ′, are equivalent, in the sense that there are two
positive real numbers C1 and C2 such that C1‖ψ‖χH ≤ ‖ψ‖χ′

H ≤ C2‖ψ‖χH for
all ψ ∈ S(H). The proof of such an equivalence is based on the decomposi-
tion of the various integrals appearing in the mentioned norms with respect
to both the partitions of the unit χ, 1 − χ and χ′, 1 − χ′. Afterwards one
employs iteratively the triangular inequality and the fact that the norms
‖ · ‖H1(H±)u

and ‖ · ‖H1(H)U are equivalent when evaluated on smooth func-
tions whose support is compact and does not include zero, because the
Jacobian of the change of coordinates in the lone variable U is strictly pos-
itive and bounded. To conclude the proof one should notice that (χ− χ′)
is a compactly supported smooth function on the disjoint union of a pair
of fixed compact sets J × S

2 ⊂ H, that do not contain 0. Due to such an
equivalence, we will often write ‖ψ‖H in place of ‖ψ‖χH.

Proposition 3.4. The linear map KH : S(H) → HH in (3.7) verifies the
following properties:

(a) it is independent from the choice of the function χ used in the decom-
position (3.6) of ψ ∈ S(H);
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(b) it reduces to F(U) when restricting to C∞
0 (H; R);

(c) it satisfies

σH(ψ,ψ′) = −2Im〈KH(ψ),KH(ψ′)〉HH
, if ψ,ψ′ ∈ S(H); (3.9)

(d) it is injective;
(e) it holds KH(S(H)) = HH;
(f) it is continuous with respect to the norm ‖ · ‖H defined in (3.8) for

every choice of the function χ. Consequently, there exists C > 0
such that

|〈KH(ψ),KH(ψ′)〉HH
| ≤ C2‖ψ‖H · ‖ψ′‖H if ψ,ψ′ ∈ S(H).

The proof is in Appendix C. Collecting all the achievements and present-
ing some further result, we can now conclude stating the theorem about the
state individuated by λKW.

Theorem 3.1. The following facts hold referring to (HH,KH).

(a) The pair (HH,KH) is the one-particle structure for a quasi-free pure
state ωH on W(S(H)) uniquely individuated by the requirement that
its two-point function coincides to the right-hand side of (3.3) under
restriction to C∞

0 (H; R).
(b) The state ωH is invariant under the natural action of the one-parameter

group of ∗-automorphisms generated by X�H and of those generated by
the Killing vectors of S

2.
(c) The restriction of ωH to W(S(H±)) is a quasifree state ωβH

H± individu-
ated by the one particle structure (HβH

H± ,K
βH

H±) with:

HβH

H±
.= L2(R × S

2, dμ(k) ∧ dS2) and KβH

H±
.= F �S(H±)= F

(±)
(u) �S(H±).

(d) The states ωβH

H± satisfy the KMS condition with respect to one-parameter
group of ∗-automorphisms generated by, respectively, ∓X�H, with
Hawking’s inverse temperature βH = 4πrS.

(e) If {β(X)
τ }τ∈R denotes the pull-back action on S(H−) of the one-

parameter group generated by X�H, that is (βτ (ψ))(u, ω) = ψ(u− τ, ω),
for every τ ∈ R and every ψ ∈ S(H−) it holds:

KβH

H−β
(X)
τ (ψ) = eiτ k̂KβH

H−ψ

where k̂ is the k-multiplicative self-adjoint operator on L2(R × S
2,

dμ(k) ∧ dS2). An analogous statement holds for H+.
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Proof. (a) In view of Proposition B.1 (and Lemma B.1), the wanted state is
the one uniquely associated with the real scalar product over S(H)

μH(ψ,ψ′) .= Re〈KHψ,KHψ
′〉HH

, (3.10)

and the one-particle structure is just (HH,KH). This holds true provided
two conditions are fulfilled, as required in Proposition B.1. The first one
asks for

|σH(ψ,ψ′)|2 ≤ 4μH(ψ,ψ)μH(ψ′, ψ′). (3.11)

This fact is an immediate consequence of (c) in Proposition 3.4. The second
condition to be satisfied is that KH(S(H)) + iKH(S(H)) = HH and, actually,
a stronger fact holds: KH(S(H)) = HH, because of (e) in Proposition 3.4.
As a consequence, the state ωH is pure for (d) in Proposition B.1.

(b) We only consider the case of H+, the other case being analogous.
The state ωβH

H+ , which is the restriction of ωH to W(S(H+)), is by definition
completely individuated out of the requirement that

ωβH

H+ (WH+(ψ)) = e−μH(ψ,ψ)/2, for ψ ∈ S(H+).

One can also prove the following three facts. (i) If ψ,ψ′ ∈ S(H+), then:

μH(ψ,ψ′) = ReλKW(ψ,ψ′) = Re〈F (+)
(u) ψ, F

(+)
(u) ψ

′〉
H

βH
H+

= Re〈ψ̃, ψ̃′〉L2(R×S2,dμ(k)∧dS2)

= Re〈KβH

H+ψ,K
βH

H+ψ
′〉

H
βH
H+

,

due to (a) and (b) in Proposition 3.3. (ii) Condition (3.11) is valid also under
restriction to S(H+) if one notices that σH+ = σH�S(H+)×S(H+). (iii) One

has KβH

H+(S(H+)) + iKβH

H+(S(H+)) = HβH

H+ by (a) and (b) of Proposition 3.3,
if one bears in mind that S(H+) + iS(H+) ⊃ C∞

0 (H+; C). This concludes
the proof because (i), (ii) and (iii) entail that (HβH

H+ ,K
βH

H+) is the one-particle
structure of ωβH

H+ in view of Proposition B.1 (and Lemma B.1).

(c) If ψ ∈ S(H), the 1-parameter group of symplectomorphisms β
(X)
τ

generated by X individuates β(X)
τ (ψ) ∈ S(H) such that β(X)

τ (ψ)(U, θ, φ) =
(ψ)

(
eτ/(4m)U, θ, φ

)
. This is an obvious consequence of X = −∂u on H+,

X = ∂u on H− and X = 0 on the bifurcation at U = 0. Since β(X) pre-
serves the symplectic form σH, there must be a representation α(X) of β(X),
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in terms of ∗-automorphisms of W(S(H)). We do not need now the explicit
form of α(X), rather let us focus on β(X) again. If ψ ∈ C∞

0 (H; R), one has
immediately, from the definition of F(U), which coincides with that of KH in

the considered case, that KH(β(X)
τ (ψ))(K, θ, φ) = e−τ/(4m)KH(ψ) (e−τ/(4m)

K, θ, φ). This result generalises to the case where ψ ∈ S(H) has support in
the set U > 0 (or U < 0) as it can be proved along the lines of the proof of
(b) of Proposition 3.3. Here. if one employs a sequence of smooth functions
ψn supported in U > 0 (resp. U < 0) which converges to ψ in the Sobolev
topology of H1(H±, du) (see the mentioned proof), and uses the fact that
β

(X)
τ (ψn) converges to β

(X)
τ (ψ) in the same topology. Summing up, from

definition (3.7), one gets that KH(β(X)
τ (ψ))(K, θ, φ) =

(
U

(X)
τ ψ

)
(U, θ, φ) .=

e−τ/(4m)KH(ψ)
(
e−τ/(4m)K, θ, φ

)
for every ψ ∈ S(H) without further restric-

tions. Since U
(X)
τ is an isometry of L2(R+ × S

2,KdK ∧ dS2), in view of
the definition of ωH it yields that ωH(WH(β(X)

τ ψ)) = ωH(WH(ψ)) for all
ψ ∈ S(H), and, per continuity and linearity, this suffices to conclude that ω
is invariant under the action of the group of ∗-automorphisms α(X) induced
by X. The proof for the Killing vectors of S

2 is similar.

(d) and (e) In S(H−), the natural action of the one parameter group of
isometries generated byX�H− is β(X)

τ : ψ �→ β
(X)
τ (ψ) with β(X)

τ (ψ)(u, θ, φ) .=
ψ(u− τ, θ, φ), for all u, τ,∈ R, (θ, φ) ∈ S

2 and for every ψ ∈ S(H−). As
previously, this is an obvious consequence of X = ∂u on H−. Since β(X)

preserves the symplectic form σH− , there must be a representation α(X)

of β(X), in terms of ∗-automorphisms of W(S(H−)). Let us prove that
α(X) is unitarily implemented in the GNS representation of ωβH

H− . To this
end, we notice that β is unitarily implemented in HH− , the one-particle
space of ωβH

H− out of the strongly-continuous one-parameter group of unitary

operators Vτ such that
(
Vτ ψ̃

)
(k, θ, φ) = eikτ ψ̃(k, θ, φ). This describes the

time displacements with respect to the Killing vector ∂u. Thus the self-
adjoint generator of V is h : Dom(k̂) ⊂ L2(R × S

2, dμ(k) ∧ dS2) → L2(R ×
S

2, dμ(k) ∧ dS2) with k̂(φ)(k, θ, φ) = kφ(k, θ, φ) and

Dom(k̂) .=
{
φ ∈ L2(R × S

2, dμ(k) ∧ dS2)
∣∣∣∣
∫

R×S2

|kφ(k, θ, φ)|2 dμ(k) ∧ dS2 < +∞
}
.

Per direct inspection, if one employs the found form for V and exploits

ωβH

H− (WH−(ψ)) = e−
1
2
〈ψ̃,ψ̃〉L2(R×S2,dμ(k)∧dS2) ,
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one sees that ωβH

H− is invariant under α(X), so that it must admit a unitary
implementation [1]. In order to establish that the α(X)-invariant quasifree
state ωβH

H− over the Weyl algebra W(S(H−)) is a KMS state with inverse
temperature βH = 4πrS with respect to α(X) which, in turn, is unitarily
implemented by V = {exp{iτ k̂}}τ∈R in the one particle space HβH

H− , on
can use Proposition B.3 in the appendix and prove that KβH

H−(S(H−)) ⊂
Dom

(
e−

1
2
βk̂

)
while 〈eiτ k̂KβH

H−ψ, KβH

H−ψ
′〉=〈e−βH k̂/2KβH

H−ψ
′, e−βHk̂/2eiτ k̂KβH

H−ψ〉.
Luckily these requirements hold per direct inspection since KβH

H−(ψ) =
ψ̃ ∈ L2(R × S

2, dμ(k) ∧ dS2). Here we used the explicit form of the mea-

sure μ(k) and the identity ψ̃(−k, ω) = ψ̃(k, ω) if ψ ∈ S(H−) because ψ is
real-valued. The case of H+ is strongly analogous, the only difference being
X�H+= −∂u. �

We conclude stating without proof (straightforward in this case) the fol-
lowing proposition which concerns the natural X-invariant vacuum states of
H− and Hev(actually, a quasifree regular ground states in the sense of [38]).

Proposition 3.5. If KH− : S(H−) → HH−
.= L2(R+ × S

2, 2kdk ∧ dS2)
denotes the standard u-Fourier-Plancherel transform, followed by the restric-
tion to R+ × S

2, the following facts hold.

(a) The pair (HH− ,KH−) is the one-particle structure for a quasi-free pure
state ωH− on W(S(H−)).

(b) The state ωH− is invariant under the natural action of the one-
parameter group of ∗-automorphisms generated by X�H− and those
generated by the Killing vectors of S

2.
If one replaces the u-Fourier-Plancherel transform with the v-Fourier–
Plancherel one, an analogous state ωHev can be defined, which is
invariant under the natural action of the one-parameter group of
∗-automorphisms generated by X�Hev and those generated by the Killing
vectors of S

2.

3.3 The vacuum state ω�− on W(�−)

We now introduce a relevant vacuum state ω�− on W(�−) which is invariant
with respect to u-displacements and under the isometries of S

2. The idea is,
in principle, the same as for ωH, i.e., one starts from a two-point function
similar to λKW, with the important difference that the coordinate U is now
replaced by v. As a starting point we state the following proposition whose
proof is, mutatis mutandis, identical to that of Proposition 3.2.
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Proposition 3.6. Consider the Hilbert completion
(
C∞

0 (�−
R; C), λ�−

)
of the

complex vector space C∞
0 (�−; C) equipped with the Hermitian scalar product:

λ�−(ψ1, ψ2)
.= lim
ε→0+

− 1
π

∫
R×R×S2

ψ1(v1, θ, φ)ψ2(v2, θ, φ)
(v1 − v2 − iε)2

dv1 ∧ dv2 ∧ dS2,

(3.12)

where �− ≡ R × S
2 adopting the coordinate (v, θ, φ) over �−. The following

facts hold.

(a) If ψ̂+(k, θ, φ) .= F (ψ)�{k≥0,(θ,φ)∈S2} (k, θ, φ) denotes the v-Fourier
transform of ψ ∈ C∞

0 (�−; C) restricted to k ∈ R+ (see the Appendix
C in [42]), the map

C∞
0 (�−; C) � ψ �→ ψ̂+(k, θ, φ) ∈ L2(R+ × S

2, 2kdk ∧ dS2) =: H�−

is isometric and it uniquely extends, per continuity, to a Hilbert space
isomorphism of

F(v) : (C∞
0 (�−; C), λ�−) → H�− . (3.13)

(b) If one replaces C with R:

F(v) (C∞
0 (�−; R)) = H�− . (3.14)

We have now to state and to prove the corresponding of the Proposition
3.4, which establishes that there exists a state ω�− , which is completely
determined by λ�− and it is such that the one-particle space coincides with
H�− . The delicate point is to construct the corresponding of the R-linear
map KH, which now has to be thought of as K�− : S(�−) → H�− . Let us
notice that K�− cannot be defined as the v-Fourier transform (neither the
Fourier–Plancherel transform), since the elements of S(�−) do not decay
rapidly enough. Similarly to what done before, a suitable extension with
respect to the topology of (C∞

0 (�−; C), λ�−) is necessary. To this end, we
are going to prove that the real subspace of the functions of S(�−) sup-
ported in the region v > 0 can be naturally identified with a real subspace
of (C∞

0 (�−; C), λ�−). This is stated in the following proposition whose proof
is in Appendix C. In the following, we pass to the coordinate over R defined
by x

.=
√
v if v ≥ 0 and x

.= −√−v if v ≤ 0. Then, if we adopt the coor-
dinate x over the factor R of �− ≡ R × S

2, the Sobolev space H1(�−)x, is
that of the functions which belong to L2(R × S

2, dx ∧ dS2) with their (dis-
tributional) first x derivative. Notice that, in view of the very definition of
S(�−), if ψ is supported in the subset of �− with v < 0 (i.e., x < 0) and
ψ ∈ S(�−), then ψ ∈ H1(�−)x.
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Proposition 3.7. If ψ ∈ S(�−) and supp (ψ) ⊂ R
∗− × S

2 (where R
∗−
.=

(−∞, 0)), the following holds.

(a) Every sequence {ψn}n∈N ⊂ C∞
0 (R∗− × S

2; R) such ψn → ψ as n→ +∞
in H1(�−)x is necessarily of Cauchy type in (C∞

0 (�−; C), λ�−).
(b) There is {ψn}n∈N ⊂ C∞

0 (R∗− × S
2; R) such ψn → ψ as n→ +∞ in

H1(�−)x and, if {ψ′
n}n∈N ⊂ C∞

0 (R∗− × S
2; R) converges to the same

ψ in H1(�−)x, then ψ′
n − ψn → 0 in (C∞

0 (�−; C), λ�−).

As a consequence every ψ ∈ S(�−) with supp (ψ) ⊂ R
∗
+ × S

2 can be
naturally identified with a corresponding element of (C∞

0 (�−; C), λ�−),
which we indicate with the same symbol ψ.

With this identification it holds

F(v)�S(�−)= Θ · F �S(�−), (3.15)

and, for ψ,ψ′ ∈ S(�−),

λ�−(ψ,ψ′) =
∫

R+×S2

(
F (ψ′) (I + C) F (ψ)

)
(h, ω) 2h dh ∧ dS2(ω), (3.16)

where, Θ(h) = 0 if h ≤ 0 and Θ(h) = 1 otherwise. Here F : L2(R ×
S

2, dx ∧ dS2) → L2(R × S
2, dh ∧ dS2) is the x-Fourier–Plancherel

transform (x .= −√−v if v ≤ 0 and x
.=
√
v if v ≥ 0) while C stands

for the standard complex conjugation.

We are in a position to define the map K�− along the lines followed for
KH. Let χ be a non-negative smooth function on �− whose support is
contained in R

∗− × S
2, and such that η(v, θ, φ) = 1 for v < v0 < 0. Consider

ψ ∈ S(�−) and decompose it as:

ψ = ψ0 + ψ−,where ψ0 = (1 − η)ψ and ψ− = ηψ ∈ S(�−) (3.17)

Obviously, ψ0 ∈ C∞
0 (�−; R) and supp (ψ−) ⊂ R

∗− × S
2, where R

∗− is referred
to the coordinate v on R. Finally, let us define

K�+(ψ) .= F(v)(ψ0) + F(v)(ψ−), ∀ψ ∈ S(�−), (3.18)

where, ψ− in the second term is considered an element of (C∞
0 (�−; C), λ�−)

in view of Proposition 3.7. The map K�+ : S(�−) → H�− is continuous when
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the domain is equipped with the norm

‖ψ‖η�− = ‖ψ−‖H1(�−)x
+ ‖ψ0‖H1(�−)v

(3.19)

where ‖ · ‖H1(�−)x
and ‖ · ‖H1(�−)v

are the norms of the Sobolev spaces
H1(�−)x and H1(�−)v respectively, the latter hence with respect to the
v-coordinate. Let us remark that, as before, different η and η′ produce
equivalent norms ‖ · ‖η�− and ‖ · ‖η′�− ; for this reason we shall drop the index
η in ‖ · ‖η�− if not strictly necessary. The following proposition states that
the definition of K�− , given above, is meaningful; its proof, which will be
discussed in Appendix C, relies on Propositions 3.6 and 3.7 and it is very
similar to that of Proposition 3.4.

Proposition 3.8. The linear map K�− : S(�−) → H�− in (3.18) enjoys the
following properties:

(a) it is well-defined, i.e., it is independent from the chosen decomposition
(3.17) for a fixed ψ ∈ S(�−);

(b) it reduces to F(v) when restricting to C∞
0 (�−; R);

(c) it satisfies:

σ�−(ψ,ψ′) = −2Im〈K�−(ψ),K�−(ψ′)〉H�− , if ψ,ψ′ ∈ S(�−);

(d) it is injective;
(e) it holds K�−(S(�−)) = H�−;
(f) it is continuous with respect to the norm ‖ · ‖�− defined in (3.19) for

every choice of the function η. Consequently, there exists a constant
C > 0 such that:

|〈K�−(ψ),K�−(ψ′)〉H�− | ≤ C2‖ψ‖�− · ‖ψ′‖�− if ψ,ψ′ ∈ S(�−).

We can now define the state ω�− collecting all the achieved results.

Theorem 3.2. The following facts hold referring to (H�− ,K�−).

(a) The pair (H�− ,K�−) is the one-particle structure for a quasi-free pure
state ω�− on W(S(�−)) which is uniquely determined by the require-
ment that its two-point function coincides with the right-hand side of
(3.12) under the restriction to C∞

0 (�−; R).
(b) The state ω�− is invariant under the natural action of the one-para-

meter group of ∗-automorphisms generated both by X��− and by the
Killing vectors of S

2.
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(c) If {β(X)
τ }τ∈R denotes the pull-back action on S(�−) of the one-

parameter group generated by X��− that is (βτ (ψ))(v, ω) = ψ(v − τ, ω),
for every τ ∈ R and every ψ ∈ S(�−) it holds:

K�−β(X)
τ (ψ) = eiτĥK�−ψ

where ĥ is the h-multiplicative self-adjoint operator on H�− = L2(R ×
S

2, 2h dh ∧ dS2).
Analogous statements hold for W(S(�±

L )) and for W(S(�+)), hence
there exists the corresponding states ω�±

L
and ω�+ exist.

Proof. The proof of (a) and (b) is essentially identical to that of the cor-
responding items in Theorem 3.1. Particularly, the proof of item (b) is a
trivial consequence of Lemma C.3. �

4 The extended Unruh state ωU

When a spherically-symmetric black hole forms, the metric of the space-
time outside the event horizon, as well as that inside the region containing
the singularity away from the collapsing matter, must be of Schwarzschild
type due to the Birkhoff theorem (see [57, 58] for a more mathematically
detailed discussion). A model of this spacetime can be realized selecting a
relevant subregion of M in the Kruskal manifold, i.e., the so called regions
I and II of the Kruskal diagram as depicted in chapter 6.4 of [56]. A quan-
tum state that accounts for Hawking’s radiation in such background was
heuristically defined by Unruh in M , who employed a mode decomposition
approach [13,54,57]. A rigorous, though indirect, definition of ωU, restricted
to W , has been subsequently proposed by Kay and Dimock in terms of an
S-matrix interpretation, though under the assumption of asymptotic com-
pleteness, which was proved to hold in the massless case [23]. It is imperative
to stress that, in the last cited papers, the restriction to the static region W
was crucial to employ the mathematical techniques used to describe the scat-
tering in stationary spacetimes and, as a byproduct, the algebras W(S(H))
and W(S(�−)) were introduced and used with some differences with respect
to our approach.

4.1 The states ωU, ωB and their basic properties

We are in a position to give a rigorous definition of the Unruh state by
means of the technology previously introduced. Our definition is valid for
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the whole region M and it does not require any S-matrix interpretation,
nor formal manipulation of distributional modes as in the more traditional
presentations (see [13]). Our prescription is a possible rigorous version of
Unruh original idea according to which the state is made of thermal modes
propagating in M from the white hole and of vacuum modes entering M
from �−. Together the Unruh state ωU on W(S(M )) we also define the
Boulware vacuum, ωB on W(S(W )), since it will be useful later.

Definition 4.1. Consider the states ω�+ , ω�− , ωH and ωHev as in Theo-
rem 3.2, Theorem 3.1, Proposition 3.5. The Unruh state is the unique one
ωU : W(S(M )) → C such that:

ωU (WM (ϕ)) = ωH (WH(ϕH))ω�− (W�−(ϕ�−)) for all ϕ ∈ S(M ). (4.1)

The Boulware vacuum is the unique state ωB : W(S(W )) → C such that:

ωB (WW (ϕ)) =ωHev (WHev(ϕHev))ω�+ (W�+(ϕ�+)) for all ϕ∈S(W ).
(4.2)

In other words ωU
.= (ı)∗ (ωH ⊗ ω�−) and ωB

.= (ı+)∗ (ωH+ ⊗ ω�−).

We study now the interplay between ωU, ωB and the action of X. The
Killing field X individuates a one-parameter group of (active) symplecto-
morphisms {β(X)

t }t∈R on S(M ) which leaves S(M ) and S(W ) invariant. As
X is defined on the whole manifold M̃ , similarly, a one-parameter group of
(active) symplectomorphisms are induced on S(�±), S(H), S(H−), S(Hev)
and, henceforth, we shall use the same symbol {β(X)

t }t∈R for all these groups.
In turn, {β(X)

t }t∈R induces a one-parameter group of ∗-automorphisms,
{α(X)

t }t∈R, on W(M ) unambiguously individuated by the requirement:

α
(X)
t (WM (ϕ)) .= WM

(
β

(X)
t (ϕ)

)
, for all ϕ ∈ S(M ). (4.3)

Whenever {α(X)
t }t∈R acts on W(S(M )) and W(S(W )), it leaves these alge-

bras fixed and the second one in particular represents the time-evolution,
with respect to the Schwarzschild time, of the observables therein. Anal-
ogous one-parameter groups of ∗-automorphisms, indicated with the same
symbol, are defined on W(�±), W(H), W(H−), W(Hev) by X. The follow-
ing relations hold true, for all t ∈ R and ϕ ∈ S(M ):

Γ
(
β

(X)
t (ϕ)

)
=

(
β

(X)
t (ϕH), β(X)

t (ϕ�−)
)
. (4.4)

The same result is valid if one replaces M with W , H with H− or Hev and,
in the second case, �− with �+, so that Γ is substituted by Γ− or Γ+ respec-
tively, while ı by ı− or ı+ correspondingly. The proof is a consequence of
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the invariance of the Klein–Gordon equation under β(X). Similar identities
hold concerning the remaining Killing S

2-symmetries of both M and W .

Proposition 4.1. The following facts hold,

(a) ωU and ωB are invariant under the action of {α(X)
t }t∈R and under

that of the remaining Killing S
2-symmetries of the metric of M and

W respectively.
(b) ωB is a regular quasifree ground state, i.e., the unitary one-

parameter groups which implements {αt}t∈R are strongly continuous
and the self-adjoint generators have positive spectrum with no zero
eigenvalues in the one-particle spaces. Hence it coincides to the anal-
ogous vacuum state defined with respect to the past null boundary of
W , i.e., ωB = (ı−)∗ (ωH− ⊗ ω�−).

Proof. (a) If one bears in mind the same statement for the region W , the one
under analysis follows from (4.3), (4.4) together with the definitions (4.1)
and (4.2). One must also take into account that the states ωH, ω�− , ωHev ,
ω�+ , are invariant under the action of both {α(X)

t }t∈R and the remaining
Killing symmetries, as established in Theorems 3.1, 3.2 and Proposition 3.5.
(b) By direct inspection one sees that, in the GNS representation space of
the quasifree states, ωB and (ı−)∗ (ωH− ⊗ ω�−) are quasifree regular ground
states with respect to {αt}t∈R. Thus Kay’s uniqueness theorem [34] implies
that ωB = (ı−)∗ (ωH− ⊗ ω�−). �

If ϕ,ϕ′ ∈ S(W ), the function Fϕ,ϕ′(t) .= ωU

(
WW (ϕ)α(X)

t (WW (ϕ))
)

decomposes in a product

Fϕ,ϕ′(t) = F
(βH)
ϕ,ϕ′ (t)F (∞)

ϕ,ϕ′ (t).

If one refers to the Schwarzschild-time evolution, the first factor fulfils the
KMS requirements (see Definition B.2), whereas the second factor enjoys the
properties of a ground state two-point function: it can be extended to an
analytic functions for Imt > 0 which is continuous and bounded in Im t ≥ 0
and tends to 1 as R � t→ ±∞. The term F

(βH)
ϕ,ϕ′ (t), which evaluates only

the part ϕH− and ϕ′
H− of the wavefunctions, represents the components of

the wavefunction which brings the thermal radiation entering W through
the white hole. The latter, which evaluates only the components ϕ�− and
ϕ′
�− of the wavefunctions, represents the part of the wavefunction associated

with the Boulware vacuum.
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4.2 On the Hadamard property

Let us consider a quasifree state ω on the Weyl algebra of the real Klein–
Gordon scalar field W(N ) for a globally hyperbolic spacetime (N , g) and let
(Hω,Kω) be its one-particle structure which determines the Fock GNS repre-
sentation (Hω,Πω,Ψω) of ω. Finally introduce the field operators Φω(f) as
discussed in Section 2.2. The two-point function of ω is the bilinear form
λ : S(N ) × S(N ) → C where λω(ψ,ψ′) .= 〈Kωψ,Kωψ′〉Hω . Equivalently, if
one follows Section 2.2 and Appendix B, it turns out that

λω(ψ,ψ′) = 〈Ψω,Φω(f)Φω(f ′)Ψω〉, ψ = EPgf, ψ′ = EPgf
′,

where the expectation value of the product of two field operators Φω(f) and
Φω(f ′) is computed with respect to the cyclic vector Ψω of the GNS represen-
tation of ω and where EPg : C∞

0 (N ; C) → S(N ) is the causal propagator.
Therefore a smeared two-point function can equivalently be defined as a
bilinear map Λω : C∞(N ; R) × C∞(N ; R) → C associated with the formal
integral kernel Λω(x, x′) with

Λω(f, g) .=
∫

N ×N
Λω(x, x′)f(x)g(x′)dμg(x)dμg(x′)

.= 〈Ψω,Φω(f)Φω(f ′)Ψω〉.

Furthermore

Λω(f, g) = λω(EPgf,EPgg) if f, g ∈ C∞(N ; R).

In this framework, the state ω is said to satisfy the local Hadamard prop-
erty when, in a geodetically convex neighbourhood of any point the two-
point (Wightmann) function ω(x, x′) of the state has the structure

Λω(x, x′) =
Δ(x, x′)
σ(x, x′)

+ V (x, x′) lnσ(x, x′) + w(x, x′),

where Δ(x, x′) and V (x, x′) are determined by the local geometry, σ(x, x′) is
the signed squared geodetical distance of x and x′ , while w is a smooth func-
tion determining the quasifree state. The precise definition, also at global
level and up to the specification of the regularisation procedure enclosed in
the definition of σ, was stated in [38]. The knowledge of the singular part
of the two-point function and, thus, of all n-point functions in view of Wick
expansion procedure, allows the definition of a suitable renormalization pro-
cedure of several physically interesting quantities such as the stress energy
tensor, to quote just one of the many examples [30,40,56]. It has thus been
the starting point of a full renormalization procedure in curved spacetime as
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well as other very important developments of the general theory [10–12,29].
A relevant technical achievement was obtained by Radzikowski [45,46] who,
among other results, proved the following: if one refers to the Klein–Gordon
scalar field, the global Hadamard condition for a quasifree state ω whose two-
point function is a distribution Λω ∈ D ′(N × N ), where (N , g) is globally
hyperbolic and time-oriented, is equivalent to the following constraint on
the wavefront set [32] of Λω.

WF (Λω) = {(x, y, kx, ky) ∈ T ∗(N × N ) \ {0} | (x, kx) ∼ (y,−ky), kx � 0},
(4.5)

that is usually referred to microlocal spectrum condition — see [51]
for recent developments —. One should notice that, above, 0 denotes the
null section of T ∗(N × N ) and (x, kx) ∼ (z, kz) means that there exists a
light-like geodesic γ connecting x to z with kx and kz as (co)tangent vectors
of γ respectively at x and at z. Particularly if x = z, it must hold that
kx = kz, kz being of null type. The symbol � indicates that kx must lie in
the future-oriented light cone.

The aim of this subsection is to prove that the two-point function associ-
ated to the state (4.1) on W(M ) fulfils the Hadamard property by means of
the microlocal approach based on condition (4.5). To this avail, the general
strategy, we shall follow, consists of combining in a new non- trivial way the
results presented in [49] and in [22, 42]. Since we interpret the two-point
function as a map from C∞

0 (M ; C) × C∞
0 (M ; C) → C a useful tool is the

map Γ : S(M ) → S(H) ⊕ S(�−) introduced in the statement of Theorem
2.1. We shall combine it with the causal propagator to obtain

(ϕfH, ϕ
f
�−) .= ΓEPgf. (4.6)

We can now state the following proposition, whose ultimate credit is to allow
us to check microlocal spectrum condition (4.5) since the two-point function
of ωU determines a proper distribution of D ′(M × M ).

Proposition 4.2. The smeared two-point function ΛU:C∞
0 (M ; R)×C∞

0 (M ;
R) → C of the Unruh state ωU can be written as the sum

ΛU = ΛH + Λ�− , (4.7)

with ΛH and Λ�− defined out of the following relations for λH and λ�− as
in (3.3) and (3.12):

ΛH(f, g) .= λH(ϕfH, ϕ
g
H), Λ�−(f, g) .= λ�−(ϕf�− , ϕ

g
�−),

for every f, g ∈ C∞
0 (M ; R),
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Separately, ΛH, Λ�− and ΛU individuate elements of D ′(M × M ) that we
shall indicate with the symbols ΛH, Λ�− and ΛU. These are uniquely indi-
viduated by C-linearity and continuity under the assumption (4.7) as

ΛH(f ⊗ g) .= λH(ϕfH, ϕ
g
H), Λ�−(f ⊗ g) .= λ�−(ϕf�− , ϕ

g
�−),

for every f, g ∈ C∞
0 (M ; R). (4.8)

The proof is in Appendix C.

In the remaining part of this section we shall prove one of the main
theorems of this paper, namely that ΛU satisfies the microlocal spectral
condition (4.5) and thus ωU is Hadamard.

Theorem 4.1. The two-point function ΛU ∈ D ′(M × M ) associated with
the Unruh state ωU satisfies the microlocal spectral condition:

WF (ΛU) = {(x, y, kx, ky) ∈ T ∗(M × M ) \ {0}, (x, kx) ∼ (y,−ky), kx � 0} ,
(4.9)

consequently ωU is of Hadamard type.

Proof. As it is often the case with identities of the form (4.9), the best
approach, to prove them, is to show that two inclusions ⊃ and ⊂ hold sep-
arately, hence yielding the desired equality. Nonetheless, in this case, we
should keep in mind that ΛU is a two-point function, hence it satisfies in
a weak sense the equation of motion (2.5) with respect to Pg, a properly
supported, homogeneous of degree 2, hyperbolic operator of real principal
part and the antisymmetric part of ΛU must correspond to the causal prop-
agator EPg introduced in Section 2.2. In this framework, all the hypothesis
to apply the theorem of propagation of singularities (PST), as in Theorem
6.1.1 in [24], are met. Hence one has all the ingredients necessary to pro-
ceed as in the proof of Theorem 5.8 in [50], to conclude that the inclusion ⊃
holds true once ⊂ has been established. Therefore, in order to prove (4.9),
it is enough to establish only the inclusion ⊂. This will be the goal of the
remaining part of the proof and we shall divide our reasoning in two differ-
ent sequential logical steps. In the first part, below indicated as part 1, we
shall prove that the microlocal spectrum condition is fulfilled in the static
region W . In the second, displayed as part 2, we apply this result extending
it to the full M , mostly by means of the PST which strongly constraints
the form of WF (ΛU) in the full background. The left-over terms, which
are not fulfilling (4.9), are eventually excluded by means of a case-by-case
analysis. �
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Part 1. In order to establish the validity of the microlocal spectral condition
in W , our overall idea is to restrict ΛU to a distribution in D ′(W × W ) and
to apply/adapt to our case the result on the wave-front set of the two-point
function of passive quantum states, as devised in [49].

As a starting point, let us remind that W is a static spacetime with
respect to the Schwarzschild Killing vector X, and that the state ΛU is
invariant under the associated time translation, as established in Proposition
4.1. However, despite this set-up, ΛU is not passive in the strict sense
given in [49] and, hence, we cannot directly conclude that the Hadamard
property is fulfilled in W , i.e., in other words, Theorem 5.1 in [49] does not
straightforwardly go through. Nonetheless, luckily enough, a closer look at
the proof of the mentioned statement reveals that it can be repeated slavishly
with the due exception of the step 2) in which the passivity condition is
explicitly employed. Yet, this property is not used to its fullest extent and,
actually, a weaker one suffice to get the wanted result; in other words, the
mentioned “step 2)”, or more precisely formula (5.2) in the last mentioned
paper, can be recast as the following lemma for ΛU.

Lemma 4.1. The wave front set of the restriction to D(W × W ) of ΛU,
satisfies the following inclusion

WF (ΛU�D(W ×W ))

⊂ {(x, y, kx, ky) ∈ T ∗(W × W ) \ {0}, kx(X) + ky(X) = 0, ky(X) ≥ 0} ,

where X is the generator of the Killing time translation.

Proof. As a first step we recall the invariance of ΛU, as well as of Λ�− and
ΛH, under the action of X, an assertion which arises out of part (b) of
both Theorems 3.1 and 3.2. Furthermore, out of (4.8), it is manifest that
both Λ�− and ΛH satisfy in a weak sense and in both entries the equation
of motion, since they are constructed out of the causal propagator (4.8).
Yet their antisymmetric part does not correspond to the causal propagator
and this lies at the heart of the impossibility to directly apply the proof of
Theorem 5.1 as it appears in [49].

Nevertheless, if we still indicate by β
(X)
t (t ∈ R) the pull-back action of

one-parameter group of isometries generated byX on elements in C∞
0 (W ; R),

we can employ (4.8), as well as the definition of both λ�− and λH, to infer
the following: Λ�− , which we shall refer as vacuum like, fulfils formula
(A1) in [49]:

∫
R

f̂(t)Λ�−(h1 ⊗ β
(X)
t (h2))dt = 0, h1, h2 ∈ C∞

0 (W ; R)
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for all f̂(t) .=
∫

R
e−iktf(k)dk such that f ∈ C∞

0 (R∗−; C). At the same time
ΛH fulfils formula (A2) in the same mentioned paper, which implies that it
is KMS like at inverse temperature βH , i.e.,

∫
R

f̂(t)ΛH(h1 ⊗ β
(X)
t (h2))dt

=
∫

R

f̂(t+ iβH)ΛH(β(X)
t (h2) ⊗ h1)dt, h1, h2 ∈ C∞

0 (W ; R),

for every f ∈ C∞
0 (R; R). The former identity arises out of the Fubini–

Tonelli’s theorem and of basic properties of the Fourier–Plancherel trans-
form. To wit, if one bears in mind the definition of Λ�− , ω�− , the explicit
expression of H�− = L2(R+ × S

2; 2kdk ∧ dS2) as well as part (c) of
Theorem 3.2:

Λ�−(h1 ⊗ β
(X)
t (h2)) =

∫
S2

dS2(ω)
∫ +∞

0
ψ1(k, ω)eitkψ2(k, ω)2kdk,

for suitable functions ψ1 and ψ2 ∈ L2(R × S
2; 2kdk ∧ dS2) which corresponds

to h1 and h2. We also stress that the k integration is only extended to the
positive real axis, whereas the support of f is contained in R−. If one notices
that, if h ∈ C∞

0 (W ; R), then ϕhH ∈ S(H−), then the second identity follows
similarly from Theorem 3.1. Here the key ingredients are the definition of
ΛH, ωβH

H− and the explicit expression of the measure μ(k) in HβH

H− = L2(R ×
S

2;μ(k) ∧ dS2), and point (e) of Theorem 3.1.

The validity of this pair of identities suffices to establish the statement
of Proposition 2.1 in [49], whose proof can be slavishly repeated with our
slightly weaker assumptions, though one should mind the different conven-
tions in our definition of the Fourier transform. From this point onwards,
one can follow, in our framework and step by step, the calculations leading
to the second point in the proof of Theorem 5.1 in [49], which is nothing but
the statement of our lemma. We shall not reproduce all the details here,
since it would lead to no benefit for the reader. �

Equipped with the proved lemma, and following the remaining steps of the
proof of Theorem 5.1 in [49] the last statement in the thesis of Theorem 5.1
in [49] can be achieved in our case, too. As remarked immediately after the
proof of the mentioned theorem in [49], that statement entails the validity
of the microlocal spectrum condition for the considered two-point function.
Thus we can claim that
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Proposition 4.3. The two-point function ΛU ∈ D ′(M × M ) of the Unruh
state, restricted on C∞

0 (W × W ; C), satisfies the microlocal spectral condi-
tion (4.5) with N = W and thus ωU�W(W ) is a Hadamard state.

Part 2. Our goal is now to establish that the microlocal spectrum condition
for ΛU(x, x′) holds true also considering pairs (x, x′) ∈ M × M which do not
belong to W × W . The overall strategy, we shall employ, mainly consists of
a careful use of the propagation of singularity theorem, which shall allow us
to divide our analysis in simpler specific subcases.

To this avail, we introduce the following bundle of null cones Ng ⊂ T ∗M \
{0} constructed out of the principal symbol of Pg, as in (2.5):

Ng
.= {(x, kx) ∈ T ∗M \ {0} , gμν(x)(kx)μ(kx)ν = 0} .

We define the bicharacteristic strips generated by (x, kx) ∈ Ng

B(x, kx)
.=

{
(x′, k′x) ∈ Ng | (x′, kx′) ∼ (x, kx)

}
,

where ∼ was introduced in (4.5). The operator Pg is such that we can apply
to the weak-bisolution ΛU the theorem of propagation of singularities (PST),
as devised in Theorem 6.1.1 of [24]. This guarantees that, on the one hand:

WF (ΛU) ⊂ ({0} ∪ Ng) × ({0} ∪ Ng) , (4.10)

while, on the other hand,

if (x, y, kx, ky) ∈WF (ΛU) then B(x, kx) ×B(y, ky) ⊂WF (ΛU). (4.11)

A pair of technical results, we shall profitably use in the proof, are given
by the following lemma and proposition whose proofs can be found in
Appendix C.

The proposition characterizes the decay property, with respect to p ∈
T ∗
xM , of the distributional Fourier transforms even though one should notice

that in [32] the opposite convention concerning the sign in front of i〈p, ·〉 is
adopted:

ϕ
fp

�−
.= lim

→�−
EPg(f ei〈p,·〉), ϕ

fp

H
.= EPg(f ei〈p,·〉)�H,

where we have used the complexified version of causal propagator, which
enjoys the same causal and topological properties as those of the real one.
Henceforth 〈·, ·〉 denotes the standard scalar product in R

4 and | · | the asso-
ciated norm, computed after the choice of normal coordinates. From now
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on we also shall assume to fix a coordinate patch whenever necessary, all the
results being independent from such a choice, as discussed after Theorem
8.2.4 in [32]. We remind the reader that, given a function F : R

n → C, an
element k ∈ R

n \ {0} is said to be of rapid decrease for F if there exists
an open conical set Vk, i.e., an open set such that, if p ∈ Vk then λp ∈ Vk for
all λ > 0, such that, Vk � k and, for every n = 1, 2, . . . , there exists Cn ≥ 0
with |F (p)| ≤ Cn/(1 + |p|n) for all p ∈ Vk.

Proposition 4.4. Let us take (x, kx) ∈ Ng such that (i) x ∈ M \ W and
(ii) the unique inextensible geodesic γ (co-)tangent to kx at x intersects H in
a point whose U coordinate is non-negative. Let us also fix χ′ ∈ C∞(H; R)
with χ′ = 1 in U ∈ (−∞, U0] and χ′ = 0 if U ∈ [U1,+∞) for a constant value
of U0 < U1 < 0.

For any f ∈ C∞
0 (M ) with f(x) = 1 and sufficiently small support, kx is

a direction of rapid decrease for both p �→ ‖ϕfp

�−‖�− and p �→ ‖χ′ϕfp

H‖H.

The pre-announced lemma has a statement which closely mimics an
important step in the analysis of the Hadamard form of two-point func-
tions, first discussed in [50]. It establishes the the right-hand side of (4.10)
can be further restricted.

Lemma 4.2. Isolated singularities do not enter the wave-front set of ΛU,
namely

(x, y, kx, 0) /∈WF (ΛU), (x, y, 0, ky) /∈WF (ΛU)

if x, y ∈ M , kx ∈ T ∗
xM , ky ∈ T ∗

yM .

Thus, as a consequence of (4.10), it holds

WF (ΛU) ⊂ Ng × Ng.

The next step in our proof consists of the analysis of WF (ΛU), in order
to establish the validity of (4.9) with = replaced by ⊂. We shall tackle
the cases which are left untreated by the statement of Proposition 4.3 in
particular. As previously discussed, this suffices to conclude the proof of
the Hadamard property for ωU.

The remaining cases amount to the points in WF (ΛU) such that, in view
of Lemma 4.2, (x, y, kx, ky) ∈ Ng × Ng with either x, either y or both in
M \ W . Therefore, we shall divide the forthcoming analysis in two parts,
case A, where only one point is in M \ W , and case B, where both lie in
M \ W .
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Case A. Let us consider an arbitrary (x, y, kx, ky) ∈ Ng × Ng which belongs
to WF (ΛU) and such that x ∈ M \ W and y ∈ W , the symmetric case being
treated analogously. If a representative of the equivalence class B(x, kx) has
its basepoint in W , (4.11) entails that the portion of B(x, kx) ×B(y, ky)
enclosed in T ∗(W × W ) must belong to WF (ΛU�C∞

0 (W ×W ;C)) and, thus, it
must have the shape stated in Proposition 4.3. Thanks to the uniqueness of
a geodesic which passes through a point with a given (co-)tangent vector, it
implies that (x, kx) ∼ (y,−ky) and kx � 0 as wanted.

Let us consider the remaining subcase where no representative of B(x, kx)
has a basepoint in W . Our goal is to prove that, in this case, (x, y, kx, ky) �∈
WF (ΛU) for every ky. This will be established showing that there are two
compactly supported smooth functions f and g with f(x) = 1 and g(y) =
1 such that (kx, ky) individuate directions of rapid decrease of (px, py) �→
ΛU((fei〈px,〉 ⊗ hei〈py ,〉).

If B(x, kk) does not meet W , there must exist (q, kq) ∈ B(x, kx), such
that q ∈ H and the Kruskal null coordinate U = Uq is non-negative. Let us
consider, then, the two-point function

ΛU(f ⊗ h) = ΛH(f ⊗ h) + Λ�−(f ⊗ h), f, h ∈ C∞
0 (M ; R),

where ΛH and Λ�− are as in (4.8). If the supports of the chosen f and
h are sufficiently small, we can always engineer a function χ ∈ C∞

0 (H) in
such a way that χ(Uq, θ, φ) = 1 for all (θ, φ) ∈ S

2 and χ = 0 on J−(supp h)
and H. Furthermore, if we use a coordinate patch which identifies an open
neighbourhood of supp(f) with R

4 and we set χ′ .= 1 − χ, we can arrange a
conical neighbourhood Γkx ∈ R

4 \ {0} of kx such that all the bicharacteris-
tics B(s, ks) with s ∈ supp(f) and ks ∈ Γkx do not meet any point of suppχ′
on H. If we refer to (4.6), we can now divide ΛH(f ⊗ h) as:

ΛH(f ⊗ h) = λH(χϕfH, ϕ
h
H) + λH(χ′ϕfH, ϕ

h
H),

and we separately analyse the behaviour of the following three contributions
at large (kx, ky) :

λH(χϕfkx
H , ϕ

hky

H ) , λH(χ′ϕfkx
H , ϕ

hky

H ) and λ�−(ϕfkx

�− , ϕ
hky

�− ).
(4.12)

Each of these should be seen as the action of a corresponding distribution
in D ′(M × M ). The scenario, we face, is less complicated than it looks at
first glance since we know that neither (x, y, kx, 0) nor (x, y, 0, ky) can be
contained in WF (ΛU), as Lemma 4.2 yields. Hence this implies that, in
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the splitting we are considering in (4.12), we can focus only on the points
(x, y, kx, ky) where both kx and ky are not zero. If we were able to prove
that these points are not contained in the wave front set of any of the three
distributions (4.12), we could conclude that they cannot be contained in the
wave front set of the their sum ΛU, because the wave front set of the sum
of distributions is contained in the union of the wave front set of the single
component. At the same time, the second and third distribution in the right-
hand side of (4.12) turn out to be dominated by C‖χ′ϕf−kx

H ‖H‖ϕhky

H ‖H and

C ′‖ϕf−kx

�− ‖�−‖ϕhky

�− ‖�− , respectively, C and C ′ being suitable positive con-
stants, whereas ‖ · ‖H and ‖ · ‖�− stand for the norm (3.8) and (3.19). This
is a by-product of the continuity property presented in points (f) of both
Propositions 3.4 and 3.8, here adapted for complex functions, too. Fur-
thermore, per Proposition 4.4, both ‖χ′ϕfkx

H ‖H and ‖ϕfkx

�− ‖�− are rapidly
decreasing in kx ∈ T ∗M \ {0} for an f with sufficiently small support and
if kx is in a open conical neighbourhood of any null direction. The remain-
ing two terms ‖ϕhky

H ‖H and ‖ϕhky

�− ‖�− , in (4.12), can at most grow poly-
nomially in ky. The last property can be proved as follows: if one starts
from the bounds for the behaviour of the wavefunctions restricted to on
H− and �−, as per Proposition 2.1, one can estimate the norms ‖ϕhky

�− ‖�− ,

‖ϕhky

H ‖H embodying the dependence on ky in the explicit expression of the
coefficients Ci which appear in Proposition 2.1. Then, out of an argument
similar to the one exploited in the proof of Proposition 4.4, for fixed ky

and h, those coefficients can be bounded by C

√
|Ẽ5(ϕhky )| as in (C.20),

where Ẽ5(ϕhky ) is the integral of a polynomial of derivatives of ϕhky on
a suitable Cauchy surface Σ ⊂ W . Notice that ϕhky (z) = (EPg(hky))(z) is
smooth, has compact support when restricted on a Cauchy surface, and
together with the compact supports of its derivatives are contained in a
common compact subset K ⊂ Σ. One can exploit the continuity of the
causal propagator EPg , to conclude that, for every fixed multi-index α,
supK |∂αEPg(hky)| is bounded by a corresponding polynomial in the absolute
values of the components of ky. The coefficients are the supremum of deriva-
tives of h ∈ C∞

0 (M ; R) up to a certain order. This implies immediately that

Ẽ5(ϕhky ), as well as ‖ϕhky

�− ‖�− , ‖ϕhky

H ‖H are polynomially bounded in ky, also
because the computation of Ẽ5(ϕhky ) has to be performed on a compact set
K ⊂ Σ.

We now remind the reader that we have identified K × K with R
4 × R

4

by means of a suitable pair of coordinate frames. Hence cotangent vectors
at different points x and y can be thought of as elements of the same R

4

and, hence, compared. This allows us to define the following open cone in



RIGOROUS CONSTRUCTION AND HADAMARD PROPERTY 403

R
4, Γ ⊂ R

4 × R
4, i.e., with 0 < ε < 1,

Γkx =
{

(px, py) ∈ R
4 × R

4

∣∣∣∣ ε|px| < |py| < 1
ε
|px| ,−px ∈ U−kx

}
, (4.13)

where Ukx is an open cone around the null vector kx �= 0 where p �→
‖χ′ϕfpx

H ‖η
H− and p �→ ‖ϕfpx

�− ‖�− decrease rapidly. Hence, per construction,
for any direction (kx, ky) with both kx �= 0 and ky �= 0 of null type, there is
a cone Γkx containing it. Moreover, all the directions contained in Γkx are

of rapid decrease for both λH(χϕfkx
H , ϕ

hky

H ) and λH(χ′ϕfkx
H , ϕ

hky

H ) because,
just in view of the shape of Γkx , the rapid decrease of ‖χ′ϕf−px

H ‖H and

‖ϕf−px

�− ‖�− controls the polynomial growth in |py| of ‖ϕhpy

H ‖H and ‖ϕhpy

�− ‖�− ,
respectively.

We are thus left off only with the first term in (4.12) and, also in this case,
if the support of f and h are chosen sufficiently small, λH(χϕfkx

H , ϕ
hky

H ) can
be shown to be rapidly decreasing in both kx and ky. To this end, let us thus

choose χ′′ ∈ C∞(H; R) such that both χ′′(p) = 1 for every p in supp (ϕ
hky

H )
(also for every ky) and χ′′ ∩ χ = ∅. We can write

λH(χϕfkx
H , ϕ

hky

H ) =
∫

H×H
χ(x′)

(
EPg(fkx)

)
(x′) T (x′, y′)χ′′(y′)ϕ

hky

H (y′)

× dUx′dS
2(θx′ , φx′) dUy′dS2(θy′ , φy′)

Theorem 8.2.14 of [32] guarantees us that

(x′, y′, kx′ , ky′) �∈WF
(
(Tχ′′) ◦ (χEPg�H)

) ∀(y′, ky′) ∈ T ∗M ,

where T is the integral kernel of λH seen as a distribution on D ′(H × H),
while ◦ stands for the composition on H with EPg on the left of T . Finally
EPg�H means that the left entry of the causal propagator has been restricted
on the horizon H, an allowed operation thanks to Theorem 8.2.4 in [32]. One
can convince himself, out of a direct construction, that the set of normals
associated to the map embedding H in W does not intersect the wave front
set of EPg . The integral kernel of (χTχ′′)(x′, y′), with the entry x′ restricted
on the support of χ and the entry y′ restricted on that of χ′′, moreover,
is always smooth and, if one keeps x′ fixed, it is dominated by a smooth
function whoseH1-norm in y′ is, uniformly in x′, finite. This also yields that,
the H1(H)U-norm of ‖(Tχ′′) ◦ χEPgfkx‖H1(H)U is dominated by the product
of two integrals one over x′ and one over y′. The presence of the compactly
supported function χ and the absence of points of the form (x, y, kx, 0) and
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(y, x, 0, ky) in WF (EPg) assures that the integral kernel of χTχ′′ is rapidly
decreasing in kx. Summing up we have that

|λH(χϕfkx
H , ϕ

hky

H )| ≤ C‖ (
(Tχ′′) ◦ (χEPg)

)
(f−kx)‖H1(H)U ‖ϕhky

H ‖H, (4.14)

where the second norm in the right-hand side is given in (3.8). This bound
proves that, for a fixed ky, kx → λH(χϕfkx

H , ϕ
hky

H ) is rapidly decreasing.

To conclude, if we look again at (4.14) and if we introduce a cone as in
(4.13), out of Lemma 4.2, we can control the (at most) polynomial
growth of ‖ϕhky

H ‖H using the rapidly decreasing map kx �→ ‖ (
(Tχ′′) ◦ (χEPg)

)
(f−kx)‖H1(H)U . Hence we establish that (kx, ky) is a direction of fast decreas-

ing of λH(χϕfkx
H , ϕ

hky

H ).

Case B. We shall now tackle the case in which we consider an arbitrary but
fixed (x, y, kx, ky) ∈ Ng × Ng, with both x and y lying M \ W .

If one assumes that (x, y, kx, ky) ∈WF (ΛU) we have to prove that both
(x, kx) ∼ (y,−ky) and kx � 0 have to be valid. If B(x, kx) and B(y, ky) are
such that both admit representatives in W , we make use of both (4.11) and
of the fact that elements in the wavefront set of the restriction of ΛU to W
fulfils (x′, k′x′) ∼ (y′,−k′y′) and k′x′ � 0. Hence one extends this property to
(x, y, kx, ky) following the same reasoning as the one at the beginning of the
Case A. If, instead, only one representative, either of B(x, kx) or of B(y, ky)
lies in W , then we fall back in Case A studied above again thanks to (4.11).
Thus, we need only to establish the wanted behaviour of the wave front
set when it is possible to find representatives of both B(x, kx) and B(y, ky)
which intersect H at a non-negative value of U . We shall follow a procedure
similar to the one already employed in [42].

In this framework, let us consider the following decomposition of
ΛU(ϕfkx ⊗ ϕhky ):

λU(ϕfkx , ϕhky ) = λH(ϕfkx , ϕhky ) + λ�−(ϕfkx , ϕhky ),

where f, h ∈ C∞
0 (M ) and they attain the value 1 respectively at the point

x and y.

As before, we start decomposing the first term in the preceding expression
by means of a partition of unit χ, χ′ on H, where χ, χ′ ∈ C∞

0 (H) satisfy
χ+ χ′ = 1 : H → R. We obtain

λH(fkx , hky) = λH(χϕfkx
H , χϕ

hky

H ) + λH(χ′ϕfkx
H , χϕ

hky

H )

+ λH(χϕfkx
H , χ′ϕ

hky

H ) + λH(χ′ϕfkx
H , χ′ϕ

hky

H ). (4.15)
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Furthermore, the above functions χ, χ′ can be engineered in such a way
that the inextensible null geodesics γx and γy, which starts respectively at x
and y with cotangent vectors kx and ky, intersect H in ux and uy (possibly
ux = uy), respectively, included in two corresponding open neighbourhoods
Ox and Oy (possibly Ox = Oy) where χ′ vanishes. Let us start from the
first term in the right-hand side of (4.15) and, particularly, we shall focus
on the wave front set of the unique extension of f ⊗ g �→ λH(χϕfH, χϕ

h
H) to

a distribution in D ′(M × M ). If we indicate as T the integral kernel of λH,
interpreted as distribution of D ′(H × H), we notice that, as an element in
D ′(M × M ), λH can be written as:

λH(χϕfH, χϕ
h
H) .= χTχ

(
EPg �H ⊗EPg �H (f ⊗ h)

)
,

where EPg �H is the causal propagator with one entry restricted on the
horizon H and χTχ ∈ E′(H × H). Thanks to the insertion of the compactly
supported smooth functions χ, and with the knowledge that WF (EPg ⊗
EPg)H×H = ∅ (see [42]), we can make sense of the previous expression as an
application of Theorem 8.2.13 in [32], of which we also employ the notation.
The wave front set of T has been already explicitly written in Lemma 4.4 of
[42] and, hence, still Theorem 8.2.13 in [32] guarantees us that if (x, y, kx, ky)
is contained in the wave front set of the resulting distribution then (x, kx) ∼
(y,−ky) and kx � 0 hold.

If we come back to the remaining terms in (4.15), it is possible to show
that all of them, together with λ�− are rapidly decreasing in both kx and
ky, provided that f and h have sufficiently small support. Hence they give
no contribution to WF (ΛU).

Here we analyse in details only the second term in (4.15) since the others
can be treated exactly in the same way. To start with, notice that, due to (f)
in proposition 3.4 |λH(χ′ϕfkx

H , χϕ
hky

H )| is bounded by C‖χ′ϕfkx
H ‖H−‖χϕhky

H ‖H,
where ‖ · ‖H is the norm introduced in (3.8) and C > 0 is a constant. Due
to Proposition 4.4, ‖χ′ϕfkx

H ‖H is rapidly decreasing in kx for some f with
sufficiently small support. Finally, the rapid decrease of ‖χ′ϕf−kx

H ‖H can

control the at-most polynomial growth of ‖χϕhky

H ‖H, as discussed above in
the analysis of (4.12) using the fact that (x, y, kx, 0) and (x, y, 0, ky) cannot
be contained in the wave front set of ΛU; this leads to the construction of
the open cone Γkx .

If we collect all the pieces of information we have got about the shape of
ΛU, we can state that:

WF (ΛU) ⊂ {(x, y, kx, ky) ∈ T ∗(M × M ) \ {0}, (x, kx) ∼ (y,−ky), kx � 0}

and this concludes the proof.
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To conclude this section we have an important remark on the physical
interpretation of ωU, that arises if one combines the results presented above,
on the Hadamard property fulfilled by ωU in the full region M , together with
the known achievements due to Fredenhagen and Haag [25] (see also the
discussion Section VIII.3 in [27]). In such paper the authors showed that,
whenever a state ω′ is vacuum like far away from the black hole, its two-
point function Λ′(x, x′) tends to zero when the spatial separation between x
and x′ tends to infinity and whenever it is of Hadamard form in a neighbour-
hood of Hev, then, towards future infinity, the Hawking radiation appears.
More precisely, if h is a compactly supported smooth function supported
far away from the black hole, they show that, for positive large values of T ,
the expectation value of Λ′(βXT (h), βXT (h)), interpreted as the response of a
detector, is composed by two contributions. One relates the signals received
by outward directed detectors (looking away from the collapsed star) and
such contribution is completely due to the Boulware vacuum. The other one
takes, instead, the approximated form

∑
l,m

∫
R

dε
|D�(ε)|2

ε(eεβH − 1)
|h̃lm(ε)|2 (4.16)

valid at positive large T and assuming that the support of h stays in a
region r >> R > 0. Above |D�(ε)|2 is the (gravitational) barrier penetration
factor at energy ε. Furthermore |h̃lm(ε)|2 is the sensitivity of the detector to
quanta of energy ε and to angular momentum individuated by the quantum
numbers l and m, found employing an approximated mode decomposition
as displayed in equation (VIII.3.45) of [27]. Formula (4.16) shows that the
asymptotic counting rate is the one produced by an outgoing flux of radiation
at temperature 1/βH modified by the barrier penetration effect.

We stress that, as ωU is of Hadamard form on M , the Fredenhagen–
Haag’s result can be applied to the Unruh state, proving that it describes the
appearance of the Hawking radiation near �+ as described in (4.16). Here,
the splitting of ΛU(β(X)

T (h), β(X)
T (h)) in the two contributions ΛH(β(X)

T (h),
β

(X)
T (h)), due to H and Λ�−(β(X)

T (h), β(X)
T (h)) due to �− is already embod-

ied in the very construction of ωU as ωH ⊗ ω�− . Furthermore, they coincide
separately with the two terms surviving in the limit T → +∞ according to
the analysis given in [25]. This last extent can be shown by invariance of
ωU under β(X), hence moving towards the past the Cauchy surface used
in [25], instead of moving the support of h towards the future. In the limit
T → +∞, the contribution due to H, gives rise to the expression (4.13)
in [25] in particular. Finally, one can follow almost slavishly the very steps
of [25], which are based on the asymptotic behaviour of the solutions of the
Klein–Gordon equation in W , to get (4.16).
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As a last comment, we emphasize that this result is stable under perturba-
tions of the state ωU that involve only modification of ωH in such a way
that its integral kernel, seen as an hermitian map on S(H), differs from the
one of λH in (3.3) by a smooth function on H × H, integrable in the prod-
uct measure (dU ∧ dS2) ∧ (dU ′ ∧ dS′2). Let us indicate by ω′′ the perturbed
state and by Λ′′ its two-point function, which is supposed to be a well defined
distribution in D ′(M × M ); per direct application of Lebesgue’s dominated
convergence theorem, one finds that the contribution due to the perturba-
tion vanishes at large T under the action of β(X)

T , so that:

lim
T→∞

Λ′′(β(X)
T f ⊗ β

(X)
T h) = ΛU(f ⊗ h), f, h ∈ C∞

0 (W ).

This is tantamount to claim that, for large positive values of T , ω′′ tends
weakly to the Unruh state. In other words, far in the future, the effects seen
in ω′′ coincide with those shown in ωU, hence the Hawking radiation also
appears in the perturbed state.

5 Conclusions

In this paper we employed a bulk-to-boundary reconstruction procedure to
rigorously and unambiguously construct and characterise on M (i.e., the
static joined with the black hole region of Schwarzschild spacetime, event
horizon included) the so-called Unruh state ωU. Such state plays the role
of natural candidate to be used in the quantum description of the radiation
arising during a stellar collapse. Furthermore we proved that ωU fulfils the
so-called Hadamard condition, hence it can be considered a genuine ground
state for a massless scalar field theory living on the considered background.
Overall, the achieved result can be seen as a novel combination of earlier
approaches [20–22, 42] with the theorems proved in [49] as well as with the
powerful results obtained by Rodnianski and Dafermos in [16,17,19].

Therefore we can safely claim that it is now possible to employ the Unruh
vacuum in order to use the analysis in [25] as a starting point, to study
quantum effects such as the role of the back reaction of Hawking’s radiation,
a phenomenon that was almost always discarded as negligible.

At the same time it would be certainly interesting to try to enhance the
results of this paper since, as one can readily infer from the main body of the
manuscript, ωU has been here constructed only on M . It is worth stressing
that it is, however, possible to extend ωU to the whole Kruskal manifold fol-
lowing our induction procedure, defining a further part of the state on �+

L .
The obtained state on the whole Weyl algebra W(K ) would be invariant
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under the group of Killing isometries generated by X and without zero
modes, if one refers to the one-parameter group of isometries. The problem
with this extension is related with the Hadamard constraint. Indeed, we do
not expect that this extension is of Hadamard form on H, due to a theoret-
ical obstruction beyond Candelas’ remarks [13]. In view of the uniqueness
and KMS-property theorem proved in [38] for a large class of spacetimes
including the Kruskal one, the validity of the Hadamard property on the
whole spacetime together with the invariance under X and the absence of
zero-modes imply that the state is unique on a certain enlarged algebra of
observables A on K . Furthermore it coincides with a KMS state with
respect to the Killing vector X at the Hawking temperature, i.e. it must be
the Hartle–Hawking state for a certain subalgebra of observables A0I ⊂ A
supported in the wedge W . These algebras are obtained out of a two steps
approach. At first one enlarges W(K ) to A , whose Weyl generators are
smeared with both the standard solutions of KG equation with compactly
supported Cauchy data in K and a certain class of weak solutions of the
same equation. Afterwards one restricts this enlarged algebra to a certain
subalgebra of observables A0I supported in W , in a suitable sense related
with the properties of the supports of the smearing distributions across the
Killing horizon. With respect to our state we know that the KMS prop-
erty is not verified in a neighbourhood of �−, so we do not expect that any
extension of that state satisfies there the KMS property. Nonetheless the
issue is not completely clear since the extension we are discussing and the
failure of the KMS condition are both referred to W(W ) rather than A0I .
Hence further investigations in such direction would be desirable.

A further and certainly enticing possible line of research consists of using
the very same approach discussed in this paper in order both to rigorously
define the very Hartle–Hawking state and to prove its Hadamard property;
although, from a physical perspective, this is certainly a very interesting
problem, from a mathematical perspective, it amounts to an enhancement
of the peeling behaviours for the solutions of the Klein–Gordon equation
discussed by Rodnianski and Dafermos, also beyond what recently achieved
in [39]. Although there is no proof that the obtained ones are sharp condi-
tions, the high degree of mathematical specialisation, needed to obtain the
present results, certainly makes the proposed programme a challenging line
of research, which we hope to tackle in future papers.

As an overall final remark, it is important stress that all our results are
only valid for the massless case, since the massive one suffers of a potential
sever obstruction which is the same as the one pointed out in [20]. To wit
it appears impossible to directly project on null infinity a solution of the
massive wave equation and, hence, the problem must be circumvented with
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alternative means, as it has been done, for example, in Minkowski spacetime
in [14]. A potential solution of this puzzle in the Schwarzschild background
would be certainly desirable.
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Appendix A Further details on the geometric setup

In this paper, the extension of the underlying background to include null
infinities as well as a region beyond them, plays a pivotal role and we shall
now dwell into a few more details. To this end, one purely follows [52] and
rescales the global metric g in (2.4) by a factor 1/r2 after which one can
notice that the obtained manifold (M , g/r2) admits a smooth larger exten-
sion (M̃ , g̃). We have to notice that, in this case, the singularity present at
r = 0 in (M , g) is pushed at infinity in the sense that the non-null geodesics
takes an infinite amount of affine parameter to reach a point situated at
r = 0. The extension of (M̃ , g̃) obtained in this way does not cover the sets
indicated as i± and i0 in Figures 1 and 2, though it includes the bound-
aries �±, called future and past null infinity, respectively. These repre-
sent subsets of M̃ which are null 3-submanifold of M̃ formally localised at
r = +∞.

Let us now examine the form of the rescaled extended metric restricted
to the Killing horizon H as well as to the null infinities �±. Per direct
inspection, one finds that, if one fixes Ω .= 2V , which vanishes on H,

g̃�H= r2S (−dΩ ⊗ dU − dU ⊗ dΩ + hS2(θ, φ)) .

In this case V ∈ R is the complete affine parameter of the null g̃-geodesics
generating H and H itself is obtained setting U = 0. This form of the metric
is called geodetically complete Bondi form.

The same structure occurs on �+, formally individuated by v = +∞ and
on �−, formally individuated by u = −∞, where the metric g̃ has still a
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Figure 2: The Kruskal spacetime K is the union of the open regions I, II,
III and IV including their common boundaries. M is the union of I and
III including the common boundary Hev. The conformal extension M̃ of
M beyond �+ and �− is the grey region. The thick lines denote the metric
singularities at r = 0.

geodetically complete Bondi form, namely

g̃��+= −dΩ ⊗ du− du⊗ dΩ + hS2(θ, φ),

where Ω .= −2/v individuates �+ for Ω = 0. Similarly

g̃��−= −dΩ ⊗ dv − dv ⊗ dΩ + hS2(θ, φ),

where Ω .= −2/u individuates �+ for Ω = 0

X = ∂u on �+, X = ∂v on �−.

In both cases the coordinates u and v are well defined and they coincide
with the complete affine parameters of the null g̃-geodesics forming �+ and
�− respectively.

With respect to Killing symmetries, we notice that the g-Killing vector X
is also a Killing vector for g̃ and it extends to a g̃-Killing vector X defined
on M̃ . Particularly, in ∂M it satisfies

X = ∂u on �+, X = ∂v on �−.
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Appendix B Weyl algebras, quasifree states, KMS condition

A C∗-algebra W(S) is called Weyl algebra associated with a (real) symplec-
tic space (S, σ) (the symplectic form σ being non-degenerate) if it contains
a class of non-vanishing elements W (ψ) for all ψ ∈ S, called Weyl genera-
tors, which satisfy Weyl relations3:

(W1) W (−ψ) = W (ψ)∗, (W2) W (ψ)W (ψ′) = eiσ(ψ,ψ′)/2W (ψ + ψ′).

W(S) coincides with the closure of the ∗-algebra (finitely) generated by
Weyl generators. As a consequence of (W1) and (W2), one gets: W (0) = I

(the unit element), W (ψ)∗ = W (ψ)−1, ||W (ψ)|| = 1 and, out of the non-
degenerateness of σ, W (ψ) = W (ψ′) iff ψ = ψ′.

W(S) is uniquely determined by (S, σ) (theorem 5.2.8 in [6]): Two dif-
ferent realizations admit a unique ∗-isomorphism which transform the for-
mer into the latter, preserving Weyl generators, and the norm on W(S)
is unique, since ∗ isomorphisms of C∗-algebras are isometric. This result
implies that every GNS ∗-representation of a Weyl algebra is always faith-
ful and isometric. It is also worth mentioning that, per construction, any
GNS ∗-representation of a Weyl algebra is such that the generators are
always represented by unitary operators, but it is not the case for other
∗-representations in Hilbert spaces.

W(S) can always be realized in terms of bounded operators on 
2(S),
viewing S as a Abelian group and defining the generators as (W (ψ)F )(ψ′) .=
e−iσ(ψ,ψ′)/2F (ψ + ψ′) for every F ∈ 
2(S). In this realization (and thus in
every realization) it turns out that the generators W (ψ) are linearly inde-
pendent. A state ω on W(S), with GNS triple (Hω,Πω,Ωω), is called reg-
ular if the maps R � t �→ Πω(W (tψ)) are strongly continuous. In general,
strong continuity of the unitary group implementing a ∗-automorphism rep-
resentation β of a topological group G � g �→ βg for a β-invariant state ω
on a Weyl algebra W(S), is equivalent to limg→I ω(W (−ψ)βgW (ψ)) = 1
for all ψ ∈ S. The proof follows immediately from ||Πω

(
βg′W (ψ)

)
Ωω −

Πω (βgW (ψ)) Ωω||2 = 2 − ω
(
W (−ψ)βg′−1gW (ψ)

) − ω
(
W (−ψ)βg−1g′W (ψ)

)
and Πω(W(S))Ωω = Hω.

If ω is regular, in accordance with Stone theorem, one can write
Πω(W (ψ)) = eiσ(ψ,Φω), σ(ψ,Φω) being the (self-adjoint) field operator
symplectically-smeared with ψ.

3Notice that in [38] a different convention for the sign of σ in (W2) is employed.
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When W(S) = W(S(N )) is the Weyl algebra on the space of Klein–
Gordon equation solutions as in Section 2.2, the field operator Φω(f) intro-
duced in that section, smeared with smooth compactly supported functions
f ∈ C∞

0 (N ; R), is related with σ(ψ,Φω) by

Φω(f) .= σ(EPg(f),Φω) for all f ∈ C∞
0 (N ; R),

where we exploit the notations used in Section 2.2. In this way, the field
operators enter the theory in the Weyl algebra scenario. At a formal level,
Stone theorem together with (W2) imply both R-linearity and the stan-
dard CCR:

(L) σ(aψ + bψ′,Φω) = aσ(ψ,Φω) + bσ(ψ′,Φω),

(CCR) [σ(ψ,Φω), σ(ψ′,Φω)] = −iσ(ψ,ψ′)I,

for a, b ∈ R and ψ,ψ′ ∈ S. Actually (L) and (CCR) hold rigorously in an
invariant dense set of analytic vectors by Lemma 5.2.12 in [6] (it holds if ω
is quasifree by Proposition B.1).

In the standard approach of QFT, based on bosonic real scalar field oper-
ators Φ, either a vector or a density matrix state are quasifree if the asso-
ciated n-point functions satisfy (i) 〈σ(ψ,Φ)〉 = 0 for all ψ ∈ S and (ii) the
n-point functions 〈σ(ψ1,Φ) · · ·σ(ψn,Φ)〉 are determined from the functions
〈σ(ψi,Φ)σ(ψj ,Φ)〉, with i, j = 1, 2, . . . , n, using standard Wick’s expansion.
A technically different but substantially equivalent definition, completely
based on the Weyl algebra was presented in [38]. It relies on the following
three observations: (a) if one works formally with (i) and (ii), one finds
that it holds 〈eiσ(ψ,Φ)〉 = e−〈σ(ψ,Φ)σ(ψ,Φ)〉/2. In turn, at least formally, such
identity determines the n-point functions by Stone theorem and (W2). (b)
From (CCR) it holds 〈σ(ψ,Φ)σ(ψ′,Φ)〉 = μ(ψ,ψ′) − (i/2)σ(ψ,ψ′), where
μ(ψ,ψ′) is the symmetrised two-point function (1/2)(〈σ(ψ,Φ)σ(ψ′,Φ)〉 +
〈σ(ψ′,Φ)σ(ψ,Φ)〉) which defines a symmetric positive-semidefined bilinear
form on S. (c) 〈A†A〉 ≥ 0 for elements A .= [eiσ(ψ,Φ) − I] + i[eiσ(ψ,Φ) − I]
entails:

|σ(ψ,ψ′)|2 ≤ 4 μ(ψ,ψ)μ(ψ′, ψ′), for every ψ,ψ′ ∈ S, (B.1)

which, in turn, implies that μ is strictly positive defined because σ is non-
degenerate. If one reverses the procedure, the general definition of quasifree
states on Weyl algebras is the following.

Definition B.1. Let W(S) be a Weyl algebra and μ a real scalar product
on S satisfying (B.1). A state ωμ on W(S) is called the quasifree state
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associated with μ if

ωμ(W (ψ)) .= e−μ(ψ,ψ)/2, for all ψ ∈ S.

The following technical lemma is useful to illustrate the GNS triple of a
quasifree state as established in the subsequent theorem. The last statement
in the lemma arises out of the Cauchy–Schwarz inequality and the remaining
part out of Proposition 3.1 in [38].

Lemma B.1. Let S be a real symplectic space with σ non-degenerate and
μ a real scalar product on S fulfilling (B.1). There exists a complex Hilbert
space Hμ and a map Kμ : S → Hμ with:

(i) Kμ is R-linear with dense complexified range, i.e. Kμ(S) + iKμ(S) =
Hμ,

(ii) for all ψ,ψ′ ∈ S, 〈Kμψ,Kμψ
′〉 = μ(ψ,ψ′) − (i/2)σ(ψ,ψ′).

Conversely, if the pair (H,K) satisfies (i) and σ(ψ,ψ′) = −2Im〈Kψ,Kψ′〉H,
with ψ,ψ′ ∈ S, the unique real scalar product μ on S satisfying (ii) veri-
fies (B.1).

An existence theorem for quasifree states can be proved using the lemma
above with the following proposition relying on Lemma A.2, Proposition 3.1
and a comment on p.77 in [38]).

Proposition B.1. For every μ as in Definition B.1 the following hold.

(a) There exists a unique quasifree state ωμ associated with μ and it is
regular.

(b) The GNS triple (Hωμ ,Πωμ ,Ωωμ) is determined as follows with respect
to (Hμ,Kμ) as in Lemma B.1. (i) Hωμ is the symmetric Fock space
with one-particle space Hμ. (ii) The cyclic vector Ωωμ is the vacuum

vector of Hω. (iii) Πωμ is determined by Πωμ(W (ψ)) = eiσ(ψ,Φωμ ), the
bar denoting the closure, where4

σ(ψ,Φωμ) .= ia(Kμψ) − ia†(Kμψ), for all ψ ∈ S

a(φ) and a†(φ), φ ∈ Hμ, being the usual annihilation (antilinear in φ)
and creation operators defined in the dense linear manifold spanned by
the states with finite number of particles.

4The field operator Φ(f), with f in the complex Hilbert space h, used in [6] in Propo-

sitions 5.2.3 and 5.2.4 is related to σ(ψ,Φ) by means of σ(ψ,Φ) =
√

2Φ(iKμψ) assuming
H
.
= h.
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(c) A pair (H,K) �= (Hμ,Kμ) satisfies (i) and (ii) in Lemma B.1 for μ,
thus determining the same quasifree state ωμ, if and only if there is a
unitary operator U : Hμ → H such that UKμ = K.

(d) ωμ is pure, i.e., its GNS representation is irreducible if and only if
Kμ(S) = Hμ. In turn, this is equivalent to 4μ(ψ′, ψ′) = supψ∈S\{0} |σ
(ψ,ψ′)|/μ(ψ,ψ) for every ψ′ ∈ S.

Remark B.1.

(1) Kμ is always injective due to (ii) and non-degenerate-
ness of σ.

(2) Consider the real Hilbert space obtained by taking the completion
of S with respect to μ. The requirement (B.1) is equivalent to the
fact that there is is a bounded operator S everywhere defined over
the mentioned Hilbert space, with S = −S∗, ||S|| ≤ 1 and such that
1
2σ(ψ,ψ′) = μ(ψ, Sψ′), for all ψ,ψ′ ∈ S.

(3) The pair (Hμ,Kμ) is called the one-particle structure of the quasi-
free state ωμ.

Let us pass to discuss the KMS condition [6, 27, 33]. KMS state are the
algebraic counterpart, for infinitely extended systems, of thermal states of
standard statistic mechanics. There are several different equivalent defini-
tions of KMS states, see [6] for a list of various equivalent definitions. While
bearing in mind Definition 5.3.1 and Proposition 5.3.7 in [6], we adopt the
following one:

Definition B.2. A state ω on a C∗-algebra A is said to be a KMS state
at inverse temperature β ∈ R with respect to a one-parameter group of
∗-automorphisms {αt}t∈R which represents, from the algebraic point of view,
some notion of time-evolution if, for every pair A,B ∈ A , and with respect
to the function R � t �→ ω (Aαt(B)) =: F (ω)

A,B(t), the following facts hold.

(a) F (ω)
A,B extends to a continuous complex function F

(ω)
A,B = F

(ω)
A,B(z) with

domain

Dβ
.= {z ∈ C | 0 ≤ Imz ≤ β} if β ≥ 0, or

Dβ
.= {z ∈ C | β ≤ Imz ≤ 0} if β ≤ 0,

(b) F (ω)
A,B = F

(ω)
A,B(z) is analytic in the interior of Dβ;

(c) it holds, and this identity is — a bit improperly — called the KMS
condition:

F
(ω)
A,B(t+ iβ) = ω (αt(B)A) , for all t ∈ R.
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With the given definition, an {αt}t∈R-KMS state ω turns out to be invariant
under {αt}t∈R [6]; the function Dβ � z �→ F

(ω)
A,B(z) is uniquely determined

by its restriction to real values of z (by the “edge of the wedge theorem”)
and supDβ

|F (ω)
A,B| = sup∂Dβ

|F (ω)
A,B| (by the “three lines theorem”) [6].

Equivalent definitions of KMS states are obtained by the following propo-
sitions, the second for quasifree states, due to Kay [36,38] and relying upon
earlier results by Hugenholtz [33]. We sketch the proofs since they are very
spread in the literature.

Proposition B.2. An algebraic state ω, on the C∗-algebra A , which is
invariant under the one-parameter group of ∗-automorphisms {αt}t∈R is a
KMS state at the inverse temperature β ∈ R if and only if its GNS triple
(Hω,Πω,Ωω) satisfies the following three requirements.

(1) The unique unitary group R � t �→ Ut which leaves Ωω invariant and
implements {αt}t∈R — i.e. Πω (αt(A)) = UtΠω(A)U∗

t for all A ∈ A
and t ∈ R — is strongly continuous, so that Ut = eitH for some self-
adjoint operator H on Hω.

(2) Πω (A ) Ωω ⊂ Dom
(
e−βH/2

)
.

(3) There exists an antilinear operator J : Hω → Hω with JJ = I such
that:

Je−itH = e−itHJ for all t ∈ R, and e−βH/2Πω(A)Ωω

= JΠω(A∗)Ωω, for all A ∈ A .

Proof. A {αt}t∈R-KMS state with inverse temperature β is {αt}t∈R-invariant
and fulfils the conditions (1), (2) and (3) due to Theorem 6.1 in [33]. Con-
versely, consider an {αt}t∈R-invariant state ω on A , which fulfils the con-
ditions (1), (2) and (3). When A and B are entire analytic elements of A

(see [6]), R � t �→ F
(ω)
A,B(t) uniquely extends to an analytic function on the

whole C and thus (a) and (b) in Definition B.2 are true. (1), (2), (3) and
ezHΩω = Ωω, for all z ∈ Dβ (following from (2) and (3)) also entail (c):

ω(αt(B)A) = 〈Ωω, UtΠω(B)U∗
t Πω(A)Ωω〉 = 〈Πω(B∗)Ωω, U

∗
t Πω(A)Ωω〉

= 〈JU∗
t Πω(A)Ωω, JΠω(B∗)Ωω〉

= 〈U∗
t e−βH/2Πω(A∗)Ωω, e−βH/2Πω(B)Ωω〉

= 〈Ωω, Πω(A)ei(t+iβ)HΠω(B)e−i(t+iβ)HΩω〉 = F
(ω)
A,B(t+ iβ).
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The validity of conditions (a), (b) and (c) for entire analytic elements
A,B ∈ A implies the validity for all A,B ∈ A , as established in [6] (com-
pare Definition 5.3.1 and Proposition 5.3.7 therein). �
Proposition B.3. Consider a quasifree algebraic state ωμ on the Weyl-
algebra W(S), with one-particle structure (Hμ,Kμ). Assume that (i) ωμ
is invariant under the one-parameter group of ∗-automorphisms {αt}t∈R

and that (ii) {αt}t∈R is implemented by a strongly continuous unitary one-
parameter group {Ut}t∈R in the GNS Hilbert Fock space, leaving fixed the
vacuum vector, and obtained by tensorialization of a unitary one-parameter
group {Vt = eiτh}t∈R in Hμ. The following facts are equivalent.

(a) ωμ is a KMS state at the inverse temperature β ∈ R with respect to
{αt}t∈R.

(b) There is an anti-unitary operator j : Hμ → Hμ with jj = I and the
following facts hold:
(i) Kμ(S) ⊂ Dom

(
e−

1
2
βh

)
, (ii) [j, Vt] = 0 for all t ∈ R, (iii) e−

1
2
βh

Kμψ = −jKμψ for all ψ ∈ S(Hμ).

(c) Kμ(S) ⊂ Dom
(
e−

1
2
βh

)
and 〈e−ithx, y〉 = 〈e−βh/2y, e−ith e−βh/2x〉 if

x, y ∈ Kμ(S) and t ∈ R.

Proof. (a) is equivalent to (b) as proved on pages 80-81 in [38]. (b) entails
(c) straightforwardly. If one assumes (c) and exploits (i) of Lemma B.1,
j : Hμ → Hμ, which fulfils (b), is completely individuated by continuity and
anti-linearity under the request that jKμψ = −e−

1
2
βhKμψ when ψ ∈ S. �

Appendix C Proofs of some propositions

Proof of Lemma 2.1. As in Appendix A, let us consider the conformal exten-
sion (M̃ , g̃) of the spacetime (M , g) determined in [52] where g̃ = g/r2 in
M (see Figure 2). In view of the previously illustrated properties of EPg ,
if ϕ ∈ S(M ), there is a smooth function fϕ with support contained in M
and such that ϕ = EPgfϕ, and suppϕ ∈ J+(suppfϕ; M ) ∪ J−(suppfϕ; M ).
Since J±(suppfϕ; M ) ⊂ J±(suppfϕ; M̃ ), the very structure of M̃ (see
Figure 2) guarantees that, if the smooth extension ϕ̃ of rϕ in a neigh-
bourhood of �± ⊂ M̃ exists, it must have support bounded by constants
v(ϕ), u(ϕ) ∈ (−∞,∞). Here we adopt the relevant null coordinates in the
considered neighbourhood: (Ω, u, θ, φ) or (Ω, v, θ, φ) respectively, where Ω =
1/r in W . Furthermore, in view of the shape of J±(suppfϕ; M̃ ), the anal-
ogous property holds true for the support of ϕ in W . The existence of ϕ̃
can be established examining the various possible cases. To start with, let
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us assume that suppfϕ ⊂ W . Let p ∈ W be in the chronological past of
suppfϕ sufficiently close to i−. Afterwards, let us consider a second point
q beyond �+, though sufficiently close to �+ so that the closure of Np,q

.=
I+(p; M̃ ) ∩ I−(q; M̃ ) does not meet the timelike singularity in the confor-
mal extension of M on the right of �+. Let us consider Np,q as a spacetime
equipped with the metric g̃. It is globally hyperbolic since, per direct inspec-
tion, one verifies that the diamonds J+(r; Np,q) ∩ J−(s; Np,q) are empty or
compact for r, s ∈ Np,q while the spacetime itself is causal. Hence EPg̃

is
well defined and individuates a solution ϕ̃

.= EPg̃
fϕ of the Klein–Gordon

equation associated with Pg̃, as in (2.6), with g̃ = g/r2. Thanks to the prop-
erties of the Klein–Gordon equation under conformal rescaling [56], one has
ϕ̃ = rϕ in M because g̃ = g/r2 therein. If we keep p fixed while moving
q in a parallel way to �+ towards i+, one obtains an increasing class of
larger globally hyperbolic spacetimes Np,q and, correspondingly, a class of
analogous extensions ϕ̃ on corresponding Np,q. Furthermore, if one con-
siders two of these extensions, they coincide in the intersections of their
domains (see Figure 3). In order to draw these conclusions, we exploited
of the uniqueness of the solution of a Cauchy problem as well as the prop-
erty according to which any compact portion of a spacelike Cauchy surface
of a globally hyperbolic spacetime can be extended to a smooth spacelike
Cauchy surface of any larger globally hyperbolic spacetime [9]. Hence the
initial data can be read on the larger spacelike Cauchy surface, also thanks
to its acausal structure (Lemma 42 from Chap. 14 in [44]). Accordingly, a
smooth extension of rϕ turns out to be defined in a neighbourhood of �+

and an almost slavish procedure yields the analogous extension on �−. Let
us now suppose that suppfϕ ⊂ B. In such case ϕ cannot reach �+ and,
thus, the only extension of rϕ concerns �−. The employed procedure is
similar to the one above, though the class of globally hyperbolic spacetime
is constructed as follows. Let us take a point p beyond �− sufficiently close
to i− and let us consider the intersection Np

.= I+(p; M̃ ) ∩ I−(M ; M̃ ). If
one moves p parallelly to �− drawing closer to i−, one obtains an increasing
class of globally hyperbolic spacetimes. Equipped with the metric g̃ = g/r2,
and, correspondingly, a class of solutions of the rescaled Klein–Gordon equa-
tion. These define the smooth extension ϕ̃ of rϕ in an open neighbourhood
of �−. Let us now consider the case where suppfϕ is concentrated in an
arbitrarily shrunk open neighbourhood of Hev. While the behaviour of ϕ in
a neighbourhood of �−, mimics the previously examined one, that around
�+ deserves a closer look mostly with reference to the construction of the
relevant globally hyperbolic spacetimes. To this end, let us fix a point p ∈ W
in the chronological past of suppfϕ sufficiently close to H. Afterwards, let us
consider a smooth spacelike surface Σ in the chronological future of suppfϕ,
which lies in the past of i+ in M̃ and it intersects �+ for some u = uΣ.
The relevant class of globally hyperbolic spacetimes is now made of the
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Figure 3: The grey region indicates the globally hyperbolic subspacetime
Np,q of M̃ , the point p eventually tends to i−.

sets Np,Σ
.= J−(Σ; M̃ ) ∩ J+(p; M̃ ) when Σ moves towards i+. It remains

to consider the case where suppfϕ intersect Hev, but it is not confined in
a small neighbourhood of Hev. In this case, if one takes into account the
linearity of both the causal propagator and Pg̃, we can reduce ourselves to
a combination of the three above considered cases. If one decomposes the
constant function 1 in W as the sum of three non-negative smooth func-
tions 1 = f1 + f2 + f3, with f1 supported in B, f2 supported in W and f3

supported in an arbitrarily shrunk open neighbourhood of Hev, we have
fϕ = fϕ · f1 + fϕ · f2 + fϕ · f3. If we fix rϕi

.= rEPg(fϕ · fi), i = 1, 2, 3, each
wavefunction can be treated separately as discussed above, hence yielding
corresponding extensions ϕ̃i to �+. The sum of these extensions is, per
construction, the wanted one ϕ̃ of rϕ. The same procedure applies to the
case of �−. �

Proof of Proposition 2.1. (a) We consider the proof for the case of t > 0, i.e.,
the behaviour of the wavefunctions about Hev and �+ only), the remaining
case being then an immediate consequence of the symmetry X → −X of the
Kruskal geometry.

To start with, it is worth noticing that each of our coordinates u, v
amounts to twice the corresponding one defined in [19] and the difference of
our r∗ and that defined in [19] is 3m+ 2m lnm.

The bounds concerning the constants C1 and C3 are proved in Theorem
1.1 of [19]. Here, sufficiently regular solutions of the massless Klein–Gordon
equation are considered and initial data are assigned on a smooth com-
plete spacelike Cauchy surfaces of the full Kruskal extension of M , which is
asymptotically flat at spatial infinity. Furthermore it is imperative that the
said data vanish fast enough at space infinity. In our case these requirements
are fulfilled because the elements of S(M ) are smooth and have compact
support on every smooth spacelike, hence acausal, Cauchy surface of M ;
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therefore we can employ the results in [9] to view these as Cauchy data
on a smooth spacelike Cauchy surface of the full Kruskal extension. The
bound that concerns C2 has the same proof as that for C1 because, when
ϕ ∈ S(M ), X(ϕ) ∈ S(M ), X itself being a smooth Killing vector field. To
conclude the proof, it is enough to show the last bound, related with the
constant C4. To this end, let us fix ϕ ∈ S(M ) and re-define, if necessary,
the origin of the killing time t in W in order that u(ϕ) ≥ 2, where u(ϕ) is
the constant defined in Lemma 2.1. Now we focus on the proof contained
in Section 13.2 of [19] and particularly on the part called “decay in r ≥ R̂”
which concerns the bound associated with C3. We want to adapt such proof
to our case, replacing the solution φ there considered with our X(ϕ), so
that also rφ is replaced by rX(ϕ) = X̃(rϕ) in W . Furthermore it smoothly
extends to X(ϕ̃) on W ∪ �+. It is remarkable that it suffices to prove the
bound in the region {r > R̂} ∩ {t > 0} in W , since it would then hold on
�+ per continuity.

One should notice that only the region {r ≥ R̂} ∩ {t > 0} ∩ {u ≥ 2} has
to be considered. Indeed, in the set {u < 2} ∩ {v > v

(ϕ)
0 } for some v(ϕ)

0 ∈ R,
X(ϕ̃) vanishes due to Lemma 2.1. Hence X(ϕ̃) vanishes in {r ≥ R̂} ∩
{t > 0} ∩ {u < 2} ∩ {v > v

(ϕ)
0 }, trivially satisfying the wanted bound. The

region individuated by {r ≥ R̂} ∩ {t ≥ 0} ∩ {u ≤ 2} ∩ {v ≤ v
(ϕ)
0 } is, more-

over, compact thus X(ϕ̃) is bounded therein and it also satisfies the looked-
for bound.

In the region {r ≥ R̂} ∩ {t > 0} ∩ {u ≥ 2}, along the lines of p. 916–917
in [19], though with φ replaced by ϕ′ .= X̃(ϕ), we achieve, out of a Sobolev
inequality on the sphere

r2
∣∣ϕ′(u, v, θ, φ)

∣∣2 ≤ C

∫
S2

r2
∣∣ϕ′∣∣2 dS2 + C

∫
S2

∣∣r � ∇ϕ′∣∣2 r2dS2

+ C

∫
S2

∣∣r2 � ∇� ∇ϕ′|2) r2dS2,

where � ∇ denotes the covariant derivative with respect to metric induced
on the sphere of radius r, while dS2 is the volume form on the unit sphere.
If the squared angular momentum operator is denoted as Ω2 .= r2 � ∇� ∇ the
above inequality can be re-written as:

r2
∣∣ϕ′(u, v, θ, φ)

∣∣2 ≤ C

∫
S2

∣∣Ω0ϕ′∣∣2 r2dS2 + C

∫
S2

∣∣Ω0ϕ′∣∣ ∣∣Ω1ϕ′∣∣ r2 dS2

+ C

∫
S2

∣∣Ω2ϕ′∣∣2 r2 dS2. (C.1)
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To conclude it is sufficient to prove that, for k = 0, 1, 2 and if r ≥ R̂,
u ≥ 2, t > 0: ∫

S2

∣∣∣Ωkϕ′
∣∣∣2 r2dS2 ≤ Bk/u

2, (C.2)

for some constants Bk ≥ 0. Let us notice that, in view of Cauchy-Schwartz
inequality, the second integral in the right-hand side of (C.1) is bounded by
the product of the square root of the integrals with k = 0 and k = 1 in the
left-hand side of (C.2). If we follow [19] and if we pass to the coordinates
(t, r∗, θ, φ) (see Section A), and for some constant D ≥ 0:

∫
S2

∣∣∣Ωkϕ′
∣∣∣2 r2(t, r∗, θ, φ)dS2

≤
∫

S2

∣∣∣Ωkϕ′
∣∣∣2 r2(t, r̃∗, θ, φ) dS2 +D

∫ r∗

r̃∗

∫
S2

|∂ρΩkϕ′||Ωkϕ′|

× r2(t, ρ, θ, φ) dρ dS2 +D

∫ r∗

r̃∗

∫
S2

|Ωkϕ′|2r(t, ρ, θ, φ) dρ dS2. (C.3)

If we stick to [19], the parameter r̃∗ ≥ R̂∗ can be fixed so that the first
integral in the right-hand side satisfies

∫
S2

∣∣∣Ωkϕ′
∣∣∣2 r2(t, r̃∗, θ, φ) dS2 ≤ Ē2/t

2 ≤ Ē2/u
2, (C.4)

where the constant Ē2 was defined in [19] and it depends on Ωkϕ′ ∈ S(M ).
Here we have also used the fact that u = t− r∗ ≥ 2 with r∗ > 0 and t > 0;
hence that u ≤ t. From now on, our procedure departs form that followed
in [19]. With respect to the third integral in the right-hand side of (C.3), it
can be re-written

∫ r∗

r̃∗

∫
S2

(∂tΩkϕ)2r(t, ρ, θ, φ) dρ dS2

≤ const.
∫ r∗

r̃∗

∫
S2

(∂tΩkϕ)2r2(t, ρ, θ, φ)dρdS2 ≤ F (S),

where S is the achronal hypersurface individuated by the fixed time t, the
interval [r̃∗, r∗] and the coordinates (θ, φ) which vary over S

2. F (S) is then
the flux of energy through S associated with the Klein–Gordon field Ωkϕ.
Theorem 1.1 in [19] assures now that, for some constant C ′, which depends
on ϕ,

F (S) ≤ C ′/v+(S)2 + C ′/u+(S)2,

where v+(S) = max{infS v, 2} and u+(S) = max{infSu, 2}. In our case, per
construction, we have max{infS v, 2} ≥ t+ R̂∗ and max{infSu, 2} = u(t, r∗,



RIGOROUS CONSTRUCTION AND HADAMARD PROPERTY 421

φ, θ). For t > 0, r ≥ R̂, u > 2, one can conclude:

∫ r∗

r̃∗

∫
S2

|Ωkϕ′|2r(t, ρ, θ, φ) dρ dS2

≤ C ′

(t+ R̂∗)2
+
C ′

u2
=

C ′

(u+ r∗ + R̂∗)2
+
C ′

u2
≤ 2C ′

u2
,

and thus
∫ r∗

r̃∗

∫
S2

|Ωkϕ′|2r(t, ρ, θ, φ) dρ dS2

≤ const.
∫ r∗

r̃∗

∫
S2

|Ωkϕ′|2r(t, ρ, θ, φ)2 dρ dS2 ≤ K

u2
. (C.5)

Let us finally consider the second integral in the right-hand side of (C.3).
We notice that

∫ r∗

r̃∗

∫
S2

|∂ρΩkϕ′|2r(t, ρ, θ, φ)2 dρ dS2 ≤ F ′(S),

where F ′(S) is the flux of energy through S associated with the Klein–Gordon
field Ωkϕ′. If we deal with it as before, we obtain the bound

∫ r∗

r̃∗

∫
S2

|∂ρΩkϕ′|2r(t, ρ, θ, φ)2 dρ dS2 ≤ K ′

u2
. (C.6)

The Cauchy–Schwartz inequality, together with (C.5) and (C.6), leads to

∫ r∗

r̃∗

∫
S2

|∂ρΩkϕ′||Ωkϕ′|r(t, ρ, θ, φ)2dρdS2 ≤ K ′′

u2
. (C.7)

If one puts all together in the right-hand side of (C.3), the bounds (C.4),
(C.5) and (C.7) yield (C.2).

(b) Let us fix Σ as any smooth spacelike Cauchy surface of M . Notice that
if the sequence of initial data converge to zero in the test function topology
on Σ, there is a compact set C ⊂ Σ which, per definition, contains all the
supports of the initial data of the sequence. In view of [9], we can construct
a smooth spacelike Cauchy surface Σ′ of the complete Kruskal manifold K ,
which includes that compact. Thus, the sequence of initial data tends to
0 in the test function topology of Σ′ as well. Such data on Σ can be read
on Σ′ since the supports of the solutions cannot further intersect Σ′ as it is
acausal. From standard results of continuous dependence from compactly
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supported initial data of the smooth solutions of hyperbolic equations in
globally hyperbolic spacetimes (see Theorem 3.2.12 in [4]), if the initial
data on a fixed spacelike Cauchy surface Σ′ tend to 0 in the test function
topology, then also the solution tends to 0 in the topology of C∞(K ; R).
At the same time, as one can prove out of standard results on the topology
of causal sets (e.g., see [56] and particularly Theorems 8.3.11 and 8.3.12
in combination with the fact that the open double cones form a base of
the topology) J+(C; K ) ∪ J−(C; K ) has compact intersection with every
spacelike Cauchy surface of K , since C is compact in Σ′. So all initial data
on Σ′′ of the considered sequence of solutions are contained in a compact,
too. From these results we conclude that, if the initial data tend to 0 in the
test function topology on Σ′, the associated solution, whenever restricted on
any other Cauchy surface Σ′′ ⊂ K yields, per restriction, new initial data,
which also tend to 0. For convenience, we fix Σ′′ as an extension of the
spacelike Cauchy surface of W (whose closure intersects B) individuated in
W as the locus t = 1. If we refer to (a), one sees that the coefficients Ci are
obtained as the product of universal constants and integrals of derivatives
of the compactly supported Cauchy data of both ϕ, and, where appropriate,
X(ϕ) over Σ′′ ∩ W . This is explained in Theorem 1.1, Theorem 7.1 as well as
in the formulae appearing in Section 4 of [19], though one should reformulate
them with respect both to r∗ and to the global coordinates U and V instead
of u, v and r). From these formulas it follows immediately that the constants
Ci vanish provided that the Cauchy data tend to 0 in the test function
topology on Σ′′, and this requirement is valid in our hypotheses. �

Proof of Proposition 3.2. (a) To start with, we notice that, by direct inspec-
tion, as shown in [38] and [42], though the angular coordinates (θ, φ) substi-
tuted by the complex ones (z, z̄) obtained out of stereographic projection,
it turns out that:

〈ψ̂+, ψ̂′
+〉HH

.=
∫

R+×S2

ψ̂+(K, θ, φ)ψ̂′
+(K, θ, φ) 2K dK ∧ r2SdS2

= lim
ε→0+

−r
2
S

π

∫
R×R×S2

ψ(U1, θ, φ)ψ′(U2, ω)
(U1 − U2 − iε)2

dU1 ∧ dU2 ∧ dS2,

for ψ,ψ′ ∈ C∞
0 (H; C).

As a consequence we have obtained that the map M : C∞
0 (H; C) � ψ �→

ψ̂+(K,ω) ∈ HH is isometric and thus, per continuity, it uniquely extends to a
Hilbert space isomorphism F(U) of (C∞

0 (H; C), λKW) onto the closed Hilbert
space M(C∞

0 (H; C)) ⊂ HH. To conclude the proof of the first statement in
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(a), it is enough to establish that M(C∞
0 (H; C)) = HH. This immediately

follows from the two lemma proved below.

Lemma C.1. M(C∞
0 (H; C)) includes the space S0 whose elements f =

f(K,ω) are the restrictions to R+ × S
2 of the functions in S (R × S

2) and
they vanish in a neighbourhood of K = 0 depending on f .

Above and henceforth S (R × S
2) denotes the complex Schwartz space

on R × S
2, i.e. the space of complex-valued smooth functions on R × S

2

which vanish, with all their K-derivatives of every order, as |K| → +∞
uniformly in the angles and faster than every inverse power of |K|. This
space can be equipped with the usual topology induced by seminorms (see
Appendix C of [42]).

Lemma C.2. S0 is dense in HH.

Concerning (b), we notice that, if f ∈ S0, if ∈ S0 and that both vanish
in a neighbourhood of K = 0. Therefore, it is possible to arrange two real
functions in S (H), g1 and g2 such that ĝ1+ = f and ĝ2+ = if . With the
same proof of Lemma C.1 one can establish that gi are the the limits, in
the topology of λKW, of sequences {f(i)n} ⊂ C∞

0 (H; R). We have obtained
that every complex element of the dense subspace S0 ⊂ HH is the limit of
elements of F(U) (C∞

0 (H; R)). �

Proof of Lemma C.1. Let us take f ∈ S0. As a consequence, it can be
written as the restriction to R+ × S

2 of F ∈ S (R × S
2). In turn, F =

F+(g) for some g ∈ S (R × S
2), since the Fourier transform is bijective from

S (R × S
2) onto S (R × S

2) (see Appendix C of [42]). Since C∞
0 (R × S

2; C)
is dense in S (R × S

2) in the topology of the latter, there is a sequence
{gn} ⊂ C∞

0 (R × S
2; C) with gn → g in the sense of S (R × S

2). Since the
Fourier transform is continuous with respect to that topology, we con-
clude that F+(gn) → F in the sense of S (R × S

2). By direct inspection
one finds that the achieved result implies that F+(gn) �R+×S2→ F �R+×S2

in the topology of every L2(R+ × S
2, cKndK ∧ r2SdS2) for every power n =

0, 1, 2, . . . and c > 0. Particularly it happens for n = c = 2. We have found
that, for every f ∈ S0, there is a sequence inM(C∞

0 (R × S
2; C)) which tends

to f in the topology of HHR
and thus S0 ⊂M(C∞

0 (R × S2; C)). �

Proof of Lemma C.2. In this proof R
∗
+
.= (0,+∞) and N

∗ = {1, 2, . . .}. A
well-known result is that C∞

0 ((a, b); C) is dense in L2((a, b), dx) so that,
particularly, C∞

0 ((1/n, n); C) is dense in L2((1/n, n), dx), and, thus, if we
introduce the new variable K =

√
x, it turns out that the space C∞

0

((1/
√
n,

√
n); C) is dense in L2((1/

√
n,

√
n), 2KdK).
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Since, in the sense of the Hilbertian direct sum, ⊕n∈NL
2((1/

√
n,

√
n), 2K

dK) = L2(R∗
+, 2KdK) (for instance making use of Lebesgue’s dominated

convergence theorem), we conclude that C∞
0 (R∗

+; C) = ∪n∈N∗C∞
0 ((1/n, n); C)

is dense in L2(R∗
+, 2KdK) = L2(R+, 2KdK) and, thus, there must exist a

Hilbert base {fn}n∈N ⊂ C∞
0 (R∗

+; C).

By standard theorems on Hilbert spaces with product measure, we know
that a Hilbert base of the space L2(R+ × S

2, 2KdK ∧ r2SdS2) is {fnYm}n,m∈N,
provided that {Ym}m∈N and {fn}n∈N are respectively one for L2(S2, r2SdS

2)
and for L2(R+, 2KdK). The elements Ym can be chosen as harmonic func-
tions so that they are smooth and compactly supported. Therefore, if
{fn}n∈N ⊂ C∞

0 ((0,+∞); C), it holds that {fnYm}n,m∈N ⊂ C∞
0 (R∗

+ × S
2; C)

and, thus, trivially, the space C∞
0 (R∗

+ × S
2; C) is dense in L2(R+ × S

2, 2K
dK ∧ r2SdS2). Since it holds C∞

0 (R∗
+ × S

2; C) ⊂ S0, the achieved result
proves the thesis. �

Proof of Proposition 3.3. We only consider the case of H+, the proof for H−
being identical.

(a) If ψ1, ψ2 ∈ C∞
0 (H+; C), then:

λKW(ψ1, ψ2) = lim
ε→0+

− 1
4π

∫
R×R×S2

ψ1(u1, θ, φ)ψ2(u2, θ, φ)[
sinh

(
u1−u2

4rS

)
− iε

]2 du1 ∧ du2 ∧ dS2.

(C.8)

That identity follows from the expression of λKW given in (3.2), passing to
the coordinates u1, u2 and making an appropriate use of Sokhotskys formula
1/(x− i0+)2 = 1/x2 − iδ′(x) (where 1/x2 is the derivative of the distribu-
tion −1/x interpreted in the sense of the principal value). Actually, passing
to coordinates u1, u2 from the inital ones U1, U2, a bounded strictly positive
factor arises in front of ε, but it can safely be replaced by the costant 1, as it
can be easily proved (especially taking into account that the used test func-
tions have compact support). In spite of the different relation between the
coordinate U and u, the same result arises referring to H− instead of H+. We
notice that the u-Fourier transform of the distribution − 1

4π
1[

sinh
(

u
4rS

)
−i0+

]2

turns out to be just 1√
2π

dμ(k)
dk . Hence, the limit as ε→ 0+ of the integral in

the right-hand side of (C.8) can be interpreted as the L2(R × S
2, dv ∧ dS2)

scalar product of ψ1 and the the L2(R × S
2, dk ∧ dS2) function obtained by

the u-convolution of the Schwartz distribution const./
[
sinh

(
u

4rS

)
− i0+

]
with the compactly-supported function ψ2. The convolution makes sense
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if one interprets ψ2 as a distribution with compact support; it produces a
distribution which is the antitransform of ψ̃2dμ/dk which, in turn, belongs
to the Schwartz space by construction. Hence, up to an antitransformation,
the said convolution has to be an element of L2(R × S

2, du ∧ dS2) as previ-
ously stated. In this sense we can apply first the convolution theorem for
Fourier transforms and, afterwards, the fact that the Fourier transform is
an isometry, achieving:

lim
ε→0+

− 1
4π

∫
R×R×S2

ψ1(u1, θ, φ)ψ2(u2, θ, φ)[
sinh

(
u1−u2

4rS

)
− iε

]2 du1 ∧ du2 ∧ dS2

=
∫

R×S2

ψ̃(k, θ, φ)ψ̃(k, θ, φ)
dμ

dk
dk ∧ dS2,

which implies that the map C∞
0 (H+; C) � ψ �→ ψ̃ ∈ L2(R × S

2, dμ(k) ∧ dS2)
is isometric, when the domain is equipped with the scalar product λKW.
The fact that this map extends to a Hilbert space isomorphism F

(+)
(u) :

C∞
0 (H+; C) → L2(R × S

2, dμ(k) ∧ dS2) is very similar to the proof of the
analogue for F(U) and the details are left to the reader.

(b) Let us indicate by ψ̃ ≡ F (ψ) the Fourier–Plancherel transform of ψ,
computed with respect to the coordinate u. Per definition, if ψ ∈ S(H+), one
has ψ, ∂uψ ∈ L2(R × S

2, du ∧ dS2), so that ψ belongs to the Sobolev space
H1(H+)u and, equivalently, ψ̃ ∈ L2(R × S

2, dk ∧ dS2) ∩ L2(R × S
2, k2dk ∧

dS2). The last inclusions also implies that ψ̃ belongs to L2(R × S
1, |k|dk ∧

dS2) and L2(R × S
1, dμ ∧ dS2). Since C∞

0 (H+; C) is dense in H1(H+)u, if
ψ ∈ S(H+), there is a sequence of functions ψn ∈ C∞

0 (H+; R) with
F

(+)
(u) (ψn) = F (ψn) → ψ̃, in the topology of both L2(R × S

2, dk ∧ dS2) and
L2(R × S

2, k2dk ∧ dS2). In turn this implies the convergence in the topology
of L2(R × S

2, dμ ∧ dS2). Since L2(R × S
1, dμ ∧ dS2) is isometric to

C∞
0 (H+; C), the sequence {ψn} is of Cauchy type in (C∞

0 (H; C), λKW). For
the same reason, any other {ψ′

n} ∈ C∞
0 (H+; R) which converges to the same

ψ, is such that ψn − ψ′
n → 0 in (C∞

0 (H; C), λKW). Therefore ψ is natu-
rally identified with an element of C∞

0 (H+; C), which we shall denote with
the same symbol ψ. With this identification, for ψ ∈ S(H+), the fact that
F

(+)
(u) (ψn) → ψ̃ = F (ψ) in the topology of L2(R × S

2, kdk ∧ dS2) implies that

F
(+)
(u) (ψ) = F (ψ) by continuity of F(u). �
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Proof of Proposition 3.4. The map KH is per construction linear. Let us
prove that (a) is valid, i.e., KH does not depend on the particular decompo-
sition (3.6) for a fixed ψ ∈ S(H). Consider a different analogous decomposi-
tion ψ = ψ′− + ψ′

0 + ψ′
+. We have that the two definitions of KHψ coincides

because their difference is:

F(U)(ψ−) − F(U)(ψ
′
−) + F(U)(ψ0) − F(U)(ψ

′
0) + F(U)(ψ+) − F(U)(ψ

′
+)

= F(U)(ψ− − ψ′
−) + F(U)(ψ0 − ψ′

0) + F(U)(ψ+ − ψ′
+)

= ̂ψ− − ψ′− + ψ̂0 − ψ′
0 + ̂ψ+ − ψ′

+

= ψ̂ − ψ = 0,

Here we have used the fact that, per construction, ψ± − ψ′± and ψ0 − ψ0

belongs to C∞
0 (H; R) and thus F(U), acting on each of them, produces the

standard U -Fourier transform indicated by ·̂.
(b) The statement is valid per definition of KH. Let us thus prove (c).

From now on we write σ instead of σH. Let us take ψ,ψ′ ∈ S(H) and decom-
pose them as ψ = ψ1 + ψ2 + ψ3 and as ψ′ = ψ′

1 + ψ′
2 + ψ′

3 where ψ1, ψ
′
1 ∈

S(H+), ψ2, ψ
′
2 ∈ C∞

0 (H; R) and ψ3, ψ
′
3 ∈ S(H−

R). In this way we have:

σ(ψ,ψ′) = σ(ψ1, ψ
′
1) + σ(ψ2, ψ

′
2) + σ(ψ3, ψ

′
3) + σ(ψ1, ψ

′
2) + σ(ψ1, ψ

′
3)

+σ(ψ2, ψ
′
1) + σ(ψ2, ψ

′
3) + σ(ψ3, ψ

′
1) + σ(ψ3, ψ

′
2).

Let us examine each term separately. Consider σ(ψ1, ψ
′
1). From now on

ψ̃ ≡ F (ψ) is the Fourier–Plancherel transform of ψ, computed with respect

to the coordinate u. Notice that ψ̃1(−k, θ, φ) = ψ̃1(k, θ, φ) since ψ1 and ψ′
1

are real. By direct inspection, if one uses these ingredients and the definition
of dμ(k), one gets immediately the first identity:

σ(ψ1, ψ
′
1) = −2Im〈ψ̃1, ψ̃′

1〉L2(R×S1,dμ∧dS2) = −2Im〈F(U) ◦ (F (+)
(u) )−1

× (ψ̃1), F(u) ◦ (F (+)
(u) )−1(ψ̃′

1)〉L2(R+×S1,dK∧dS2)

= −2Im〈KHψ1,KHψ
′
1〉HH

, (C.9)

The second identity arises form the fact that F(U) ◦ (F (+)
(u) )−1 is an isometry

as follows from (b) in Proposition 3.3 and (a) in Proposition 3.2. The last
identity is nothing but the definition of KH. With the same procedure we
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similarly have

σ(ψ3, ψ
′
3) = −2Im〈KHψ1,KHψ

′
1〉HH

.

If we refer to σ(ψ2, ψ
′
2), we can employ the coordinate U taking into account

that the support of those smooth functions is compact when referred to the
coordinates (U, θ, φ) over H.

Hence, ψ2, ψ
′
2, ∂Uψ2, ∂Uψ

′
2 ∈ L2(R × S

2, dU ∧ dS2) so that, at a level of
U -Fourier transforms, it holds ψ̂2+, ψ̂′

2+ ∈L2(R+ ×S
2, dK ∧ dS2)∩L2(R+ ×

S
2,KdK ∧ dS2). Finally, in the considered case, directly by the definition,

KHψ
′
2 = ψ̂′

2+ and KHψ2 = ψ̂2+. If one uses the fact that ψ̂2(−K, θ, φ) =

ψ̂2(K, θ, φ) since ψ2 and ψ′
2 are real, one straightforwardly achieves the

first identity:

σ(ψ2, ψ
′
2) = −2Im〈ψ̂2+, ψ̂′

2+〉L2(R+×S2,2KdK∧dS2)

= −2Im〈F(U)ψ2+, F(U)ψ
′
2+〉L2(R+×S2,2KdK∧dS2)

= −2Im〈KHψ2,KHψ
′
2〉HH

.

The remaining identities follow from the definition of F(U) and KH. As a
further step we notice that

σ(ψ1, ψ
′
3) = 0 = −2Im〈KHψ1,KHψ

′
3〉HH

σ(ψ3, ψ
′
1) = 0 = −2Im〈KHψ3,KHψ

′
1〉HH

.

Let us focus on the first identity, the second being analogous; it holds true
because the functions have disjoint supports, whereas 〈KHψ3,KHψ

′
1〉HH

= 0
since, per direct application of (b) in Proposition 3.3, ψ1 ∈ S(H+) is the limit
of a sequence of real smooth functions f (1)

n with support in H+ whereas
ψ′

3 ∈ S(H+) is the limit of a sequence of real smooth functions f (3)
n with

support in H−. Hence

Im〈KHf
(1)
n ,KHf

(2)
m 〉HH

= ImλKW(f (1)
m , f (2)

n )

= −r
2
S

π
Im

∫
R×R×S2

f
(1)
n (U1, θ, φ)f (2)

m (U2, θ, φ)
(U1 − U2 − i0+)2

dU1 ∧ dU2 ∧ dS2(θ, φ)

= −r
2
S

π
Im

∫
R×R×S2

∂U1f
(1)
n (U1, θ, φ)f (2)

m (U2, θ, φ)
U1 − U2 − i0+

dU1 ∧ dU2 ∧ dS2(θ, φ)

= −r2S
∫

R×R×S2

∂U1f
(1)
n (U1, θ, φ)f (2)

m (U2, θ, φ)δ(U1 − U2)dU1

∧ dU2 ∧ dS2(θ, φ) = 0,
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since f (1)
n and f (2)

m have disjoint support. Let us examine the term σ(ψ1, ψ
′
2):

in this case we decompose ψ1 = f1 + g1 where f1 ∈ C∞
0 (H+; R) and g1 ∈

S(H+), but supp (g1) ∩ supp (ψ′
2) = ∅. We have:

σ(ψ1, ψ
′
2) = σ(f1, ψ

′
2) + σ(g1, ψ′

2).

At the end of this proof we shall also prove that:

σ(ψ1, ψ
′
2) = 0 = −2Im〈KHψ1,KHψ

′
2〉HH

. (C.10)

Conversely σ(f1, ψ
′
2) = −2Im〈KHf1,KHψ

′
2〉HH

, exactly as in the case
σ(ψ2, ψ

′
2) examined above. If we sum up, per R-linearity:

σ(ψ1, ψ
′
2) = −2Im〈KHψ1,KHψ

′
2〉HH

.

With an analogous procedure we also achieve:

σ(ψ2, ψ
′
1) = −2Im〈KHψ1,KHψ

′
2〉HH

σ(ψ2, ψ
′
3) = −2Im〈KHψ2,KHψ

′
3〉HH

,

and

σ(ψ3, ψ
′
2) = −2Im〈KHψ3,KHψ

′
2〉HH

. (C.11)

The identities (C.9)–(C.11), per R-linearity, yield the thesis:

σ(ψ,ψ′) = −2Im〈KHψ,KHψ
′〉HH

.

The proof ends provided we demonstrate (C.10). We only sketch the argu-
ment leaving the details to the reader. The proof is based on the following
result. If ψ ∈ S(H) and T ∈ R, let us denote by ψT ∈ S(H) the function
such that ψT (U, θ, φ) .= ψ(U − T, θ, φ). It is possible to prove that

(KH(ψT )) (K, θ, φ) = e−iKT (KH(ψ)) (K, θ, φ). (C.12)

The proof of (C.12) is straightforward when ψ ∈ C∞
0 (H; R), since, in such

case KH is the positive frequency part of the U -Fourier transform of ψ. If
ψ �∈ C∞

0 (H; R), we can decompose it as ψ− + ψ0 + ψ+, as in the definition
of KH, fixing ψ− and ψ+ in order that (ψ±)T are still supported in (−∞, 0)
and (0,+∞) respectively if |T ′| ≤ T . If one uses the fact, which can be
proved by inspection, that — up to a re-definition of the initially taken ψn
– C0(H+; R) � (ψn)T → (ψ+)T in H1(H+)u if C0(H+; R) � ψn → ψ+, one
gets that (C.12) is valid for ψ+. The very same argument applies also ψ−.
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The very definition of KH entails the validity of (C.12) for every ψ ∈ S(H),
which, in turn, yields (C.10) immediately, because, in the examined case,

σ(ψ1, ψ
′
2) = 0 = −2Im〈KHψ1,KHψ

′
2〉HH

.

The left hand side vanishes as ψ1, ψ
′
2 have disjoint supports, whereas the

right-hand side can be re-written as:

−2Im
∫

R×S2

e−iTK (KHg1) (K, θ, φ) e−iTK
(
KHψ

′
2

)
(K, θ, φ) 2KdK

∧ dS2(θ, φ) = −2Im
〈
KH((g1)T ),KH((ψ′

2)T )
〉
.

Such term is also vanishing, because we can fix T so that supp ((g1)T ) ⊂
H− and supp ((ψ′

2)T ) ⊂ H+, hence reducing to the case σ(ψ1, ψ
′
3) = 0 =

−2Im〈KHψ1,KHψ
′
3〉HH

examined beforehand.

(d) is a trivial consequence of (c) : if KHψ = 0, then Im〈KHψ,KHψ
′〉 = 0

and thus σH(ψ,ψ′) = 0 for every ψ′ ∈ S(H). Since σH is nondegenerate, it
implies ψ = 0. Let us prove (e). As C∞

0 (H; R)) ⊂ S(H),

HH = F(U)(C∞
0 (H; R)) = KH(C∞

0 (H; R)) ⊂ KH(S(H)) ⊂ HH

and thus KH(S(H)) = HH.

The first identity arises out of (a) in Proposition 3.2, the second out of (b)
in Proposition 3.4.

We can now conclude proving (f). The continuity of KH with respect
to the considered norm holds for the following reason. If {ψn}n∈N ⊂ S(H)
and ||ψn||χH → 0, then, if we decompose ψn = ψ0n + ψ+n + ψ−n, separately,
ψ0n and ψ±n → 0 in the respective Sobolev topologies. In turn KH(ψ0n) =
FU(ψ0n) → 0 because the Sobolev topology is stronger than that of L2(R ×
S

2; dU ∧ dS2) and KH(ψ±n) → 0 for (b) in Proposition 3.3. Per definition of
KH, it hence holds KH(ψn) → 0. Thus the linear map KH : S(H) → sHH is
continuous it being continuous in 0. Particularly, we conclude, that there
exists Cχ > 0 (the value 0 is not allowed since KH cannot be null function)
with ||KH(ψ)||HH

≤ Cχ||ψ||χH for every ψ ∈ S(H). The Cauchy–Schwartz
inequality implies the one displayed in (f). �
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Proof of Proposition 3.7. Let us define v = x2 if x ≥ 0 and v = −x2 if v < 0.
Per direct inspection one sees that, if ψ,ψ′ ∈ C∞

0 (R∗− × S
2; R),

∫
R2×S2

ψ(v, θ, φ)ψ′(v′, θ, φ)
(v − v′ − i0+)2

dv ∧ dv′ ∧ dS2(θ, φ)

=
∫

R2×S2

ψ(v(x), θ, φ)ψ′(v(x′), θ, φ)
(x′ − x− i0+)2

dx ∧ dx′ ∧ dS2(θ, φ)

+
∫

R2×S2

ψ(v(x), θ, φ)ψ′(v(−x′), θ, φ)
(x′ − x− i0+)2

dx ∧ dx′ ∧ dS2(θ, φ). (C.13)

At a level of x-Fourier transform, let us denote as ψ̇ = ψ̇(h, θ, φ), with h ∈ R

and (θ, φ) ∈ S
2 the x-Fourier transform of ψ(v(x)). Let us also define ψ̇+

.=
ψ̇�R+×S2 , then, out of the fact that if φ is real valued, as it happens for ψ and

ψ′, then φ̇+(h, θ, φ) is the x Fourier transform of x �→ φ(−x, θ, φ)), (C.13)
can be re-written as

λ�+

(
ψ,ψ′) =

∫
R+×S2

ψ̇′
+(h, θ, φ)ψ̇+(h, θ, φ)2h dh ∧ dS2

+
∫

R+×S2

ψ̇′
+(h, θ, φ)

(
Cψ̇+

)
(h, θ, φ)2h dh ∧ dS2, (C.14)

where the operator C : L2(R+ × S
2, 2h dh) → L2(R+ × S

2, 2h dh) is
anti-unitary and it is nothing but the complex conjugation. Now let us
take ψ ∈ S(�−) which is completely supported in R+ × S

2. Per defini-
tion of S(�−), the function ψ = ψ(v(x)) and its x-derivative belong to
L2(R × S

2, dx ∧ dS2) and, thus, ψ belongs to H1(�+)x. A sequence of func-
tions ψn ∈ C∞(R∗− × S

2; R) which converges to ψ in H1(�−)x can be con-
structed as ψn = χn · ψ, where χn(x)

.= χ(x/n) ≥ 0 with χ(x) = 1 if x ∈
(−1,+∞) and χ(x) = 0 for x ≤ −2. Per direct inspection and thanks to
Lebesgue’s dominated convergence theorem, one achieves that C∞(R∗− ×
S

2; R) � ψn → ψ in H1(�−)x as n→ +∞. Consequently ψ̇n → ψ̇ both in
L2(R × S

2, dh) and in L2(R+ × S
2, h2dh). Therefore ψ̇n+ → ψ̇+ in the topol-

ogy of L2(R+ × S
2, 2h dh). Finally, in view of (C.14) and on account of the

continuity of C, the sequence {ψn}n∈N is of Cauchy type with respect to λ�− .
The same argument shows that, if C∞(R∗− × S

2; R) � ψ′
n → ψ in H1(�−) as

n→ +∞, then λ�−(ψn − ψ′
n, ψn − ψ′

n) → 0 as n→ +∞. Hence (3.15) and
(3.16) are trivial consequences of what proved, which is tantamount to verify
(a) and (b). �

Proof of Proposition 3.8. The proofs of items (a),(b),(d),(e) as well as (f)
are very similar to those of the corresponding items in Proposition 3.4,
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so they will be omitted. We instead focus our attention on (c), whose
proof is similar to the same point (c) of Proposition 3.4, though with some
relevant differences. Let us ake ψ,ψ′ ∈ S(�−) and let us decompose them
as ψ = ψ0 + ψ1, ψ′ = ψ′

0 + ψ′
1 where ψ0, ψ1 ∈ C∞

0 (�−; R) while ψ′
0, ψ

′
1 are

supported in (0,+∞) × S
2. Since σ .= σ�− and 〈, 〉 = 〈, 〉�+ , it holds

σ(ψ,ψ′) = σ(ψ0, ψ
′
0) + σ(ψ0, ψ

′
1) + σ(ψ1, ψ

′
0) + σ(ψ1, ψ

′
1).

Exactly as in (c) of the Proposition 3.4, we conclude that

σ(ψ0, ψ
′
0) = −2Im〈K�−ψ0,K�−ψ′

0〉. (C.15)

With reference to σ(ψ1, ψ
′
1), we have instead:

−2Im〈K�−ψ1,K�−ψ′
1〉 = −2Im〈F(v)(ψ1), F(v)(ψ

′
1)〉 = −2Imλ�−(ψ1, ψ

′
1).

If we make both use of (3.16), and of the fact that the above identity can
be used for ψ1, ψ

′
1 as established in (b) of Proposition 3.6, we have

−2Im〈K�−ψ1,K�−ψ′
1〉 = −2Im

∫
R+×S2

ψ̇1ψ̇′
12h dh ∧ dS2

− 2Im
∫

R+×S2

ψ̇1ψ̇′
12h dh ∧ dS2,

where ψ̇(h, θ, φ) is the x-Fourier–Plancherel transform of ψ = ψ(v(x), θ, φ).
The last term in the right-hand side can be omitted for the following rea-
son. If we look at (C.13), we see that −i0+ can be replaced by +i0+ without
altering the result, since the functions in the numerator have disjoint sup-
ports. This is equivalent to say that, in the right-hand side of (C.14), the
last term can be replaced with its complex conjugation without affecting
the final result. Finally, this means that the identity written above can be
equivalently recast as

−2Im〈K�+ψ1,K�−ψ′
1〉 = −2Im

∫
R+×S2

ψ̇1ψ̇12h dh ∧ dS2

− 2Im
∫

R+×S2

ψ̇1ψ̇12h dh ∧ dS2.

As a consequence the last term can be dropped, so that:

−2Im〈K�+ψ1,K�−ψ′
1〉 = −4Im

∫
R+×S2

ψ̇1hψ̇′
1 dh ∧ dS2

= 2i
∫

R×S2

ψ̇1hψ̇′
1 dh ∧ dS2 = σ(ψ1, ψ

′
1). (C.16)
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In the last passage we have used that −ihψ̇′
1 is the x-Fourier transform of

∂xψ
′
1, and that the integration in σ(ψ1, ψ

′
1) can be performed in the vari-

able x since the singularity of the coordinates at x = 0 is irrelevant, the
supports of ψ1 and ψ′

1 being away from there. One should also notice that
these functions are real so that ψ̇i(h, θ, φ) = ψ̇i(−h, θ, φ). Let us consider
the term σ(ψ0, ψ

′
1) the other, σ(ψ1, ψ

′
0) can be treated similarly. To this

end, let us decompose ψ′
1 = φ′0 + φ′1 in order that φ′0 ∈ C∞

0 (�−; R) and the
support of φ′1 is disjoint from that of ψ0. Therefore: σ(ψ0, ψ

′
1) = σ(ψ0, φ

′
0) +

σ(ψ0, φ
′
1) = −2Im〈K�+ψ1,K�−φ′1〉 + σ(ψ0, φ

′
1). Since we shall prove that:

σ(ψ0, φ
′
1) = 0 = −2Im〈K�−ψ0,K�+φ′1〉, (C.17)

we also have that

σ(ψ0, ψ
′
1) = −2Im〈K�−ψ0,K�−ψ′

1〉, and similarly,

σ(ψ1, ψ
′
0) = −2Im〈K�−ψ1,K�−ψ′

0〉,

which, together (C.15) and (C.16) implies the validity of (c) by bi-linearity:

σ(ψ,ψ′) = −2Im〈K�−ψ,K�−ψ′〉.

To conclude, it is enough to prove (C.17). The left-hand side vanishes since
the supports of the functions ψ0, φ

′
1 are disjoint by construction. Hence, it

remains to verify that Im〈K�+ψ0,K�−φ′1〉 = 0. If it were supp (ψ0) ⊂ (−∞,
0) × S

2 and supp (φ′1) ⊂ (0,+∞) × S
2, one would achieve Im〈K�−ψ0,

K�−φ′1〉 = 0 through the same argument used in the corresponding case
(that of σ(ψ1, ψ

′
3)) in the proof of (c) of the Proposition 3.4. To wit, one

should employ a sequence of real smooth functions which tends to φ′1 in the
topology of λ�− and with compact supports all enclosed in (0,+∞) × S

2.
Such a sequence exists in view of Proposition 3.6. As a matter of fact,
we can focus our attention to the lone case supp (ψ0) ⊂ (−∞, 0) × S

2 and
supp (φ′1) ⊂ (0,+∞) × S

2, thanks to the following lemma which will also
play a pivotal role in the proof of (b) of Theorem 3.2.

Lemma C.3. For ψ ∈ S(�−) and L ∈ R, let ψL ∈ S(�−) denote the func-
tion with ψL(v, θ, φ) .= ψ(v − L, θ, φ) for all v ∈ R and θ, φ ∈ S

2. With the
given definition for K�− : S(�−) → H�−, it holds:

(K�−ψL) (k, θ, φ) = e−iLk (K�−ψ) (k, θ, φ), ∀(k, θ, φ) ∈ R+ × S
2. (C.18)

Proof of Lemma C.3. Per definition, if ψ ∈ S(�−) is fixed, K�−ψ = F(v)ψ0 +
F(v)ψ−, where ψ = ψ0 + ψ− with ψ0 ∈ C∞

0 (�−; R) and ψ− ∈ S(�−) with
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supp (ψ−) ⊂ (−∞, 0) × S
2. Let us fix L ∈ R and let us notice that, the very

definition of F(v) on C∞
0 (�−; R) yields

F(v)(ψ0)L = e−iLkF(v)ψ0.

To conclude it is sufficient to establish that it also holds:

F(v)(ψ−)L = e−iLkF(v)ψ−. (C.19)

Since the definition of K�−ψ does not depend on the chosen decomposition
ψ = ψ0 + ψ−, we can fix ψ0 and ψ− such that the support of (ψ−)L is still
included in (−∞, 0). This holds true for every ψ− if L ≤ 0, but it is not
straightforward for L > 0 and, in this case, the support of ψ− has to be fixed
sufficiently far from 0). To establish (C.19), let us use the coordinate x =
−√−v for v < 0. The singularity at v = 0 does not affect the procedure since
the supports of all the involved functions do not include it. We know, thanks
to the proof of Proposition 3.6, that there exists a sequence C∞

0 (�−; R) �
ψn → ψ−, all supported in supp (ψ−) ⊂ (−∞, 0) × S

2; the convergence is
here meant both in in the topology of H1(�−) and in that of λ�− . Per
direct inspection, one sees that, for the above-mentioned sequence it holds
supp (ψn)L ⊂ supp (ψL)⊂ (0,+∞) × S

2 and ψn→ψ− entails (ψn)L→ (ψ−)L
for n→ +∞ in the topology of H1(�−)x. According to (b) in Proposi-
tion 3.6, this also implies that the convergence holds in the topology of λ�− .
Since F(v) is continuous with respect to the last mentioned topology, we get,
as n→ +∞:

e−iLkF(v)ψn = F(v)(ψn)L → F(v)(ψ−)L.

On the other hand, since F(v)ψn → F(v)ψ− in L2(R+ × S
2, kdk ∧ dS2), it

trivially holds as n→ +∞:

e−iLkF(v)ψn → e−iLkF(v)ψ−,

and thus

e−iLkF(v)ψ = F(v)(ψ−)L,

which implies (C.19), concluding the proof. �

To conclude the proof of (c), we note that, in view of (C.18), it must
hold −2Im〈K�−ψ0,K�+φ′1〉 = −2Im〈K�−(ψ0)L,K�−(φ′1)L〉 for every L ∈ R.
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Therefore, we can fix L so that supp (ψ0)L ⊂ (−∞, 0) × S
2 and supp ((φ′1))L)

⊂ (0,+∞) × S
2, obtaining, as said before,

−2Im〈K�−ψ0,K�−φ′1〉 = −2Im〈K�−(ψ0)L,K�−(φ′1)L〉 = 0.

This implies (C.17) and, hence, (c). �

Proof of Proposition 4.2. The first assertion arises per direct inspection of
Definition 4.1 and, thus, we need only to prove that the (complexified)
functionals on C∞

0 (M ; C) × C∞
0 (M ; C), ΛH and Λ�− are separately dis-

tributions in D ′(M × M ). To this end, it suffices to show that the maps
f �→ Λi(f, ·) and g �→ Λi(·, g) are weakly continuous, i.e., they tend to 0 when
tested with any sequence of functions hj ∈ C∞

0 (M ; C) which converges to 0
in the topology of test functions. Here and hereafter the subscript i stands
either for H or for �−. According to Theorem 2.1.4 of [32], such statement
entails that both Λi(f, ·) and Λi(·, g) are distributions in D ′(M ), hence they
are sequentially continuous. Once established, one can, therefore, invoke
the Schwartz’ integral kernel theorem to conclude that Λi ∈ D ′(M × M ).
In view of the complexification procedure, it is sufficient to consider only
the case of real valued test functions.

Let us start with �−; in this case λ�− has the explicit form (3.16) in
Proposition 3.7 and, thus, one can take into account a generic decomposition
(3.17) generated by a smooth function η supported on R

∗− × S
2 and equal

to one for v < v0 < 0. Due to the continuity property, discussed at point (f)
of Proposition 3.4,

|Λ�−(f, h)| = |λ�−(ϕf�− , ϕ
h
�−)| ≤ C ‖ϕf�−‖η�− ‖ϕh�−‖η�− .

We recall that, for every ϕ ∈ S(�−), ‖ϕ‖η�− is defined in (3.19) as the sum

‖ϕ‖η�− = ‖ηϕ‖H1(�−)x
+ ‖(1 − η)ϕ‖H1(�−)v

.

Continuity is tantamount to show that, for f, g ∈ C∞
0 (M ; R), if f → 0 with

a fixed g (or g → 0 with a fixed f) in the topology of C∞
0 (M ; C), both

Sobolev norms, above written, tend to zero. Let us start from the second
one. For a given compact K ⊂ M , as in the proof of Lemma 2.1, let us fix a
sufficiently large globally hyperbolic spacetime N ⊂ M̃ which is equipped
with the metric g̃ and which extends M partly around �−. Furthermore N
must include K and N ∩ �− should encompass all the points with v ≥ v0,
reached by the closure in M ∪ �− of J−(K; M ). If we notice that the causal
propagator EPg̃

is a continuous map from C∞
0 (M ; R) → C∞(N ; R), one

has that (1 − η)ϕf�− and all the v-derivatives uniformly vanishes as f → 0



RIGOROUS CONSTRUCTION AND HADAMARD PROPERTY 435

in the topology of C∞
0 (M ; C). Since, per constriction, all the functions

(1 − η)ϕf�− have support in a common compact of R × S
2 determined by

η and J−(K; M )), also ‖(1 − η)ϕf�−‖H1(�−)v
tends to zero in view of the

integral expression of the Sobolev norm.

To conclude, in order to deal with the contribution ‖ηϕf�−‖H1(�−)x
, let us

notice that, according to Proposition 2.1 (point (b) in particular), the restric-
tion of a solution of the D’Alembert wave equation on �− decays on null
infinity, for |v| greater than a certain |v0|, as Cf√

1+|v| , while its v-derivative

as Cf

1+|v| , where Cf tends to 0 as f → 0 in the topology of C∞
0 (M ; C). Hence

per direct inspection, if we work with the coordinate x, also‖ηϕf�−‖H1(�−)x

vanishes as f tends to zero in the topology of C∞
0 (M ; C).

The case of H can be dealt with in the same way using the continuity
presented in point (f) of Proposition 3.4 and the appropriate decay estimates
of the wave functions presented in Proposition 2.1. As before, one can reach
the conclusion that both ΛH(f, ·) and ΛH(·, g) lie in D ′(M ). �

Proof of Proposition 4.4. Let us start considering ‖ϕfp

�−‖�− as defined in
(3.19) for some generic decomposition based on the choice of the function
η). Here f ∈ C∞

0 (M ) and p lie in a conic neighbourhood Vkx of kx, we
are going to specify. The procedure we shall employ can be similarly used
also for ‖χ′ϕfp

H‖H− to show that it is rapidly decreasing in p. Furthermore
we recall that fp

.= fei〈p,·〉, while ϕfp

�− is the smooth limit towards of �− of
EPgfp, where EPg is the causal propagator of Pg as in (2.5). Furthermore
ϕ
fp

�− , together with its derivative along the global null coordinate v is known
to decay at −∞ according to the estimates (2.20) in Proposition 2.1, in turn
based on the work of [19], i.e.,

|ϕfp

�− | ≤ C3√
1 + |v| , |X(ϕfp

�−)| ≤ C4

1 + |v| .

Here X still stands for the smooth Killing vector field on the conformally
extended Kruskal spacetime, coinciding with ∂v on �−. They yields that the
norm ‖ϕfp

�−‖�− , defined as in (3.19), is controlled by the above coefficients
C3 and C4 which depend on ϕfp , since the norms of the remaining univer-
sal functions smoothed about i− are finite. Hence, we shall analyse them
explicitly and we notice that all the relevant results in 2.1 can be straight-
forwardly extended to the complex case. Our goal is to establish that the
coefficients C3 and C4 are rapidly decreasing in p when computed for ϕfp in
the given hypotheses about x and kx.
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As a starting point, let us consider the case in which x ∈ I+(B; M ), B

being the bifurcation. In order to study this, as well as all other scenarios,
we make use of the results and of the techniques available in [19] of which
we shall adopt nomenclatures and conventions. In this last cited paper it is
manifest, that, up to a term depending on the support of initial data, the
dependence on the wave function in C3 and C4 is factorised in the square root
of the so-called coefficient Ẽ5, namely formula (5.4) in [19]. After few formal
manipulations, the relevant expression can be (re)written as an integral
over the constant time surface Σ1 ⊂ W , unambiguously individuated, in the
coordinates (t, r, θ, φ), as the locus t = −1. Here we consider t = −1 because
we are interested in the decay property in a neighbourhood of i−. Hence

Ẽ5(ϕ) =
∑
i=1..2

∫
Σ1

Tμν(Ωiϕ) nμnνdμ(Σ1) +
∑
i=1..4

∫
Σ1

Tμν(Ωiϕ) Kμnνdμ(Σ1)

+
∑
i=1..5

∫
Σ1

Tμν(Ωiϕ) Xμnνdμ(Σ1), (C.20)

where n is the vector orthogonal to Σ1, pointing towards the past, and
normalised as gμνnμnν = −1, K .= v2 ∂

∂v + u2 ∂
∂u is the so-called Morawetz

vector field, X is the timelike Killing vector field ∂
∂t , whereas dμ(Σ1) is the

metric induced measure on Σ1. Furthermore,

Tμν(ϕ) =
1
2

(∂μϕ∂νϕ+ ∂νϕ∂μϕ) − 1
2
gμν

(
∂λϕ∂

λϕ
)
,

stands for the stress-energy tensor computed with respect of the solution
ϕ, while Ω2 .= r2 �∇�∇ is the squared angular momentum operator, �∇, being
the covariant derivative induced by the metric (2.4), normalised with r =
1, on the orbits of SO(3) isomorphic to S

2. We remark both that the
above expression can be found in Theorem 4.1 in [18] and, more impor-
tant to our purposes, that the integrand is a (Hermitian) quadratic combi-
nation of a finite number of derivatives of ϕfp on Σ1. Furthermore, since
J−(supp(fp); M ) ∩ Σ1 is compact, the integrand in (C.20) does not vanish
at most on a compact set and, thus, the overall integral can be bounded by
a linear combination of products of the sup of the absolute value of deriva-
tives of ϕfp up to a certain order, all evaluated on Σ1. Let us notice that, all
the remaining functions in the integrand which define Ẽ5, barring the said
products of derivatives, are continuous and, thus, bounded on the compact
set where ϕfp does not vanish on Σ1.

Let us thus focus on ϕfp itself as well as on both the initially chosen
x ∈ I+(B; M ) and kx. If one uses global coordinates, we identify an open
relatively compact set O which contains both the support of f and that
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of the function ρ we shall introduce in R
4 by means of a local coordinate

patch. In this way every vector p ∈ R
4 can be viewed as an element of

the cotangent space at any point in that set. It is also always possible to
select f ∈ C∞

0 (M ; R) with f(x) = 1 and with a sufficiently small support,
such that every inextensible geodesic starting from supp(f), with cotangent
vector equal to kx, intersects H in a point with coordinate U > 0. Hence, we
can always fix ρ ∈ C∞

0 (K ; R) such that (i) ρ = 1 on J−(supp(f); M ) ∩ Σ1

and (ii) the null geodesics emanating from supp(f) with kx as cotangent
vector do not meet the support of ρ. Furthermore, on account of the form
of the wave front set of EPg(z, z

′), now thought of in the whole Kruskal
spacetime K , whose elements (z, z′, kz, kz′) have always to fulfil (z, kz) ∼
(z′,−kz′), we realize that, with (x, kx) fixed as above and with the given
definitions of f and ρ,

{
(x1, x2, k1, kx) ∈ T ∗(M × M ) | x1 ∈ supp (ρ), x2 ∈ supp (f), k1 ∈ R

4
}

∩WF (E) = ∅.

If we employ this result and if we remember the definition of wavefront set
we can use Lemma 8.1.1 in [32], though working in the coordinate frame
initially fixed on the compact O, to further adjust ρ, f while preserving
the constraints already stated. In this way there exists an open conical
neighbourhood Vkx of kx in T ∗

xM such that for all n, n′ = 1, 2, . . . , one can
find two non-negative constants Cn and C ′

n which fulfil

|ρ̂Ef(k1, p)| ≤ Cn
1 + |k1|n

C ′
n′

1 + |p|n′ , (C.21)

uniformly for (k1, p) ∈ (R4 \ {0}) × Vkx . The searched bounds on the
behaviour at large |p| for C3 and C4, computed for ϕfp with p in a open
conical neighbourhood of kx, arise in term of corresponding bounds of the
derivatives |∂axϕfp(x)∂bxϕ

fp(x)|. One must take into account the explicit
expression of both C3 and C4 as integrals over the relevant portion of Σ1,
which has finite measure because it is compact. Each factor ∂axϕ

fp(x) coin-
cides with the inverse k1-Fourier transform of ρ̂Ef(k1, p) multiplied with
powers of the components of k1 up to a finite order which depends on the
considered degree of the derivative. As a last step, to get rid of the k1 depen-
dence, one needs to integrate the absolute value over k1, but the right-hand
side of (C.21) grants us that the overall procedure yields that the supremum
of the integrand in (C.20) is of rapid decrease in p for all p ∈ Vkx .

Nonetheless, the result is not yet conclusive since we still need to analyse
the case in which the point x lies in ∂J+(B; K ) ∩ M , that is x ∈ Hev. In
such case, for every open cone Γ ∈ T ∗

xM containing kx, there exists p ∈ Γ
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such that the inextensible geodesic which starts form x and it is tangent
to p, meets the closure of Σ1, hence reaching B. Therefore, in order to
apply the same argument as before, we need to modify the form of Σ1 in
the computation of (C.20) in a neighbourhood of B. Therefore we need a
slightly more refined estimate of the decay-rate of the solutions of (2.5) on
�−. This can be achieved if we adapt the proof of Theorem 1.1 in [19] under
the assumption that we modify the form of Σ1, used to compute (C.20) into
that of another spacelike hypersurface, say Σ′

1, contained in W and such
that it intersects H at some negative value of the Kruskal null coordinate
U . Hence it differs from Σ1 only in a neighbourhood of B.

In the forthcoming discussion, we shall briefly review the arguments given
in [19] in order to show that it is really possible to deform the initial surface
Σ1 on which the value of Ẽ5 is computed, preserving at the same time the
decay estimates presented above as well as in (2.20). To this end we shall
follow the discussion and the notation introduced in [19] in order to obtain
the decay estimates in the neighbourhood of i+. The desired estimates
towards i− could be obtained out of the time reversal symmetry. Let us start
noticing that a central role in the analysis performed in [19] is played by the
flux generated by the Morawetz vector field K = v2 ∂

∂v + u2 ∂
∂u . Moreover, as

explained in Section 9 of [19], the crucial estimates, are obtained out of the
divergence, a.k.a, Stokes-Poincaré theorem, applied to the current JKμ (ϕ):

JKμ (ϕ) = KνTμν(ϕ) + |ϕ|2∇μψ − ψ∇μ|ϕ|2, ψ =
tr∗

4r

(
1 − 2m

r

)

which is generated by K though with a modification due to total deriva-
tives. If we follow such way of reasoning, we can compute the mentioned flux
between two spacelike smooth surfaces Σ1 and Σ2 in W , identified respec-
tively as the loci with fixed time coordinate {t = t1} and {t = t2}, though
with t2 > t1. The end point is

ÊK
ϕ (t2) = ÊK

ϕ (t1) + ÎKϕ (P),

where ÊK
ϕ (t2) is the boundary term computed on Σ2 and ÎKϕ (P) is the the

volume term computed in the region P
.= J+(Σ1) ∩ J−(Σ2). Let us notice

that the integrand of the boundary terms ÊK
ϕ (t1) are everywhere positive,

while, as it can be seen from Proposition 10.7 of [19], the one of the volume
element ÎKϕ (P) is negative everywhere, but in the region P ∩ {r0 < r < R}
where the constant r0 and R (with 2m < r0 < 3m < R) are defined in Sec-
tion 6 of [19]. For our later purposes, since we would like to eventually
deform both Σ1 and Σ2 in a neighbourhood of B, one should notice that the
integrand is negative on such a neighbourhood if chosen in the region r < r0.
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Since the pointwise decay estimate towards i+ on �+ can be obtained
from ÊK

ϕ (t), the problem boils down to control the bad positive volume
term in ÎKϕ (P). Luckily enough, the positive part of ÎKϕ (P) can be tamed
by t2 times ÎXϕ (P) + ÎXΩϕ(P) where ÎXϕ (P) is the sum of the volume terms.
These arise out of the divergence theorem applied to the modified current
generated by vectors like X� = f�(r∗) ∂

∂r∗ acting separately on an angular
mode decomposition5 . We refer to Section 7 of [19] for further details on
the construction of ÎXϕ (P) and to [17] for recent results that do not require
a decomposition in modes.

Notice that, as discussed in proposition 10.2 of [19] the boundary terms
|EX

ϕ (t)| are always smaller then a constant C times the conserved flux of
energy Eϕ(t), with respect to the Killing time ∂

∂t . Hence, if we collect all
these results, it is possible to write

ÊK
ϕ (t) ≤ ÊK

ϕ (t1) + (t− t1)C (Eϕχ(t1) + EΩϕχ(t1)) , (C.22)

where Ω is the square root of the angular momentum while ϕχ is a solu-
tion of the equation of motion coinciding with ϕ on (t1, t) × (r0, R) × S

2.
This vanishes in a neighbourhood of B, as the one constructed in the proof
of Proposition 10.12 in [19]. More precisely, for t sufficiently close to t1,
ϕχ can be chosen as the solution generated by the following compactly sup-
ported Cauchy data on Σt1 : ϕ

χ(t1, r∗) = χ(2r∗/t1)ϕ(t1, r∗) and ∂tϕχ(t1r∗) =
χ(2r∗/t1)∂tϕ(t1, r∗), where χ is a compactly supported smooth function on
R equal to 1 on [−1, 1] and vanishing outside [−1.5, 1.5].

As explained in Section 12.1 of [19], it can be shown that, if t2 = 1.1t1
and t1 is sufficiently large, then Eϕχ(t2) ≤ C t−2

2 ÊKϕ(t2) and this allows to
obtain a better estimate then (C.22), namely it yields

t2Î
X
ϕ (P) ≤ C

t2
ÊK
ϕ (t1) + C (Eϕχ(t1) + EΩϕχ(t1)) , (C.23)

which is valid for t2 = 1.1t1 in particular. The estimate for a generic interval
t− t1 can be obtained, along the lines of Section 12.1 of [19], dividing t− t1
in sub interval ti+1 = 1.1ti and eventually summing the estimates (C.23)
over i. In such a way it is possible to obtain

tÎXϕ (P) ≤ CÊK
ϕ (t1) + C log(t) (Eϕχ(t1) + EΩϕχ(t1)) ,

for a generic interval. As a final step, if we apply the same reasoning for
tÎXΩϕ(P) and if we use both of them to control ÎKϕ , we obtain a better estimate

5Here �(�+ 1) is the eigenvalue of the angular momentum operator.
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for ÊK then the one (C.22), namely

ÊK
ϕ (t) = CÊK

ϕ (t1) + CÊK
Ωϕ(t1) + C log(t)(Eϕχ(t1)

+ EΩϕχ(t1) + EΩΩϕχ(t1)), (C.24)

where t in (C.22) is substituted by log(t), the price to pay in order to consider
higher angular derivatives.

The log(t) can eventually be removed once again out of the same line
of reasoning, using (C.24) in place of (C.22) to improve (C.23). The end
point is

ÊK
ϕ (t2) ≤ C

( ∑
n=0..3

ÊΩnϕ(t1) +
∑
n=0..2

ÊK
Ωnϕ(t1)

)
≤ Ẽ5(Σ1).

We would like to stress that, since the integrand IKϕ (O) is positive whenever
O is a small neighbourhood of B, the very same results can be obtained out
of a modification of the surfaces Σ1 and Σ2 in such a way that they are still
spacelike while they intersect the horizon Hev at positive V equal to V0;
in this new framework the form of Ẽ5(Σ′

1) is left unaltered with respect to
(C.20), though it is computed on a modified surface Σ′

1. The decay estimate
towards i+ on �+ can eventually be obtained as in Section 13.2 of [19]. At
this point, out of time reversal, we can employ a similar argument as before
in order to get the rapid decrease in p of ‖ϕfp

�−‖η�− .

The horizon case can be dealt in a similar way and, in such case, the
pointwise decay on H− can be shown to be controlled by an integral similar
to the one defining Ẽ5, though here it is again computed on the modified
surface. In order to establish the mentioned peeling off rate, it is, however,
necessary to consider another flux, namely that generated by a vector field Y
which approaches 1

1− 2m
r

∂u on the horizon H, as described in Section 8 of [19].

In this framework, even if the integrand of the volume term ÎYϕ , associated
with Y , is negative in a region formed by the compact interval [r̂0, R], it can
be controlled in a similar way as previously discussed for ÎXϕ . �

Proof of Lemma 4.2. As a starting point, let us recall that ΛU is a weak-
bisolution of (2.5), whose antisymmetric part is nothing but the causal
propagator EPg in M . The wave-front set of EPg is well-known [45] and
it contains only pair of non-vanishing light-like covectors, so that:

(x, y, kx, 0) /∈WF (EPg), (x, y, 0, ky) /∈WF (EPg).
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Therefore, whenever (x, y, kx, 0) ∈WF (ΛU), also (y, x, 0, kx) must lie in
WF (ΛU) and vice versa; otherwise the wavefront set of the antisymmet-
ric part of ΛU, which is nothing but EPg , would contain a forbidden ele-
ment (x, y, kx, 0). This allow us to focus only on an arbitrary, but fixed
(x, y, kx, 0) ∈ T ∗(M × M ) \ {0} and we need to show that it does not lie in
WF (ΛU). Furthermore we know, thanks to Part 1 of the proof of Theorem
4.1, that ΛU is of Hadamard form in W and, thus, the statement of this
lemma holds if x, y ∈ W . We shall hence focus on the case of x ∈ M \ W
and y ∈ W , the remaining ones will be treated later. In this scenario, it
suffices to consider only those kx such that there are no representatives
of B(x, kx) lying in W , otherwise we would be falling in the already dis-
cussed case using a propagation of singularities argument. This restriction
yields, however, that a representative (q, kq) ∈ B(x, kx) exists such that q ∈
H+ ∪ B. Summarising, we are going to prove that (x, y, kx, 0) is a direction
of rapid decreasing for ΛU(fkx , h), for some functions f, g ∈ C∞

0 (M ; R) with
f(x) = h(y) = 1, provided that both x ∈ M \ W , y ∈ W and a representa-
tive (q, kq) ∈ B(x, kx) exists such that q ∈ H+ ∪ B. As before, fkx

.= fei〈kx,·〉

and ϕh .= Eh.

In this scenario, let us pick a partition of unit χ+ χ′ = 1 : H → R where
χ ∈ C∞

0 (H; R) and χ = 1 in a neighbourhood of q. Hence

ΛU(fkx , h) = λH(χϕfkx
H , ϕhH) + λH(χ′ϕfkx

H , ϕhH) + λ�−(ϕfkx

�− , ϕ
h
�−). (C.25)

The second and third terms are rapidly decreasing in kx because they
are respectively dominated by C‖χ′ϕfkx

H ‖H− · ‖ϕhH‖H− and C ′‖ϕfkx

�− ‖�− ·
‖ϕh�−‖�− , C and C ′ being positive constants, which, in turn, are rapidly
decreasing in kx due to Proposition 4.4. The norms ‖ · ‖H and ‖ · ‖�− are
those respectively defined in (3.8) and in (3.19). Therefore, we need only
to establish that kx is of rapid decreasing for λH(χϕfkx

H , ϕhH). This can
be done by the same procedure as that used at the end of the case A in
the proof of Theorem 4.1 leading to (4.14), to prove the rapid decrease of
kx �→ λH(χϕfkx

H , ϕ
hky

H ) for a fixed ky and assuming ky = 0 there (that part
of the proof is independent form the lemma we are proving here, while this
lemma is used elsewhere therein).

Let us now treat the case y ∈ M \ W and x ∈ W , and let us prove that
(x, y, kx, 0) �∈WF (ΛU) following procedures analogous to those exploited
in [49]. To this end we adopt an overall frame where a coordinate, indicated
by t, is tangent to X and the remaining three coordinates are denoted as x.
In this setting, the pull-back action of the one-parameter group generated
by X acts trivially as (βτf)(t, x) = f(t− τ, x). To start with, let us notice
that, due to the restriction (4.10), the cases of kx spacelike or timelike can
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be immediately ruled out, so we are left to consider kx ∈ T ∗
x (M \ W ) ≡ R

4

of null type. Hence we can exploit the splitting kx = (kxt, kx), where we
have isolated the t-component from the three remaining ones kx.

For kx as before, let us consider the two non-null and non-vanishing covec-
tors q = (0, kx) and q′ = (−kxt, 0). In view of (4.10) (x, y, q, q′) �∈WF (ΛU),
hence, out of (c) of Proposition 2.1 of [55], there exists an open neigh-
bourhood V ′ of (q, q′), as well as a function ψ′ ∈ C∞

0 (R4 × R
4; C) with

ψ′(0, 0) = 1, such that for all n ≥ 1,

sup
k,k′∈V ′

∣∣∣∣
∫
dτdτ ′dx′dy′ ψ′(x′, y′) eiλ−1(ktτ+kx′)eiλ−1(k′tτ ′+k

′
y′)

ΛU(βτ ⊗ βτ ′(F
(p)
(x′,y),λ))

∣∣∣∣ ≤ Cnλ
n, (C.26)

which holds for every 0 < λ < λn, where both Cn ≥ 0 and λn > 0 are suit-
able constants. In the preceding expression we have employed the notation
x′ = (τ, x′), and y′ = (τ ′, y′) where we have highlighted the t−component.
Moreover F (p)

(x′,y′)λ
(z, u) is defined as follows

F
(p)
(x′,y′),λ(z, u)

.= F (x+ λ−p(z − x′ − x), y + λ−p(u− y′ − y)),

F ∈ C∞
0 (M × M ; C), F̂ (0, 0) = 1,

F̂ being the standard Fourier transform. At this point we can make a
clever use of the translation invariance of ΛU under the action of β−τ−τ ′ ⊗
β−τ−τ ′ in order to infer that ΛU(βτ ⊗ βτ ′(F

(p)
(x′,y′),λ)) is equal to ΛU(β−τ ′ ⊗

β−τ (F
(p)
(x′,y′),λ)), Hence, from (C.26), it arises that, for all p ≥ 1:

sup
k,k′∈V

∣∣∣∣
∫
dτdτ ′dx′dy′ ψ′(x′, y′) eiλ−1(ktτ+kx′)eiλ−1(k′tτ ′+k

′
y′)

× ΛU(β−τ ′ ⊗ β−τ (F
(p)
(x′,y),λ)))

∣∣∣∣ ≤ Cnλ
n,

if 0 < λ < λn. The found result implies that (C.26) also holds if one replaces
(i) ψ′ with ψ(x′, y′) .= ψ((τ ′, x′), (τ, y′)) and (ii) V ′ with V = {(−k′t, k),
(−kt, k′)) ∈ R

4 × R
4 | ((kt, k), (k′t, k′)) ∈ V ′}. This is an open neighbour-

hood of (kx, 0) as one can immediately verify since V ′ � (q, q′), so that both
V � (kx, 0), and the map R

4 × R
4 � ((kt, k), (k′t, k′)) �→ (−k′t, k), (−kt, k′)) ∈

R
4 × R

4 is a homeomorphism, it being linear and bijective. If one exploit
once more Proposition 2.1 of [55], it yields that (x, y, kx, 0) �∈WF (ΛU) as
desired.
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In order to conclude the proof, we need to analyse the last possible case,
namely both x, y ∈ M \ W . If a representative of either B(x, kx) or B(y, ky)
lies in T ∗W , we fall back in the previous analysis. Hence, we need only to
focus on the scenario where no representatives of both B(x, kx) and B(y, ky)
lies in T ∗W . In this case, we can make use of an argument substantially
identically to the one used in the analysis above, i.e., if we introduce a par-
tition of unit on H for both variables. In this way we have a decomposition
like (C.25) with two more terms which can be analysed exactly as the others,
thus leading to the wanted statement. �
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