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Abstract

We test a recently proposed wall-crossing formula for the change of
the Hilbert space of Bogomol’nyi–Prasad–Sommerfield (BPS) states in
d = 4, N = 2 theories. We study decays of D4D2D0 systems into pairs
of D4D2D0 systems and we show how the wall-crossing formula repro-
duces results of Göttsche and Yoshioka on wall-crossing behavior of the
moduli of slope-stable holomorphic bundles over holomorphic surfaces.
Our comparison shows very clearly that the moduli space of the D4D2D0
system on a rigid surface in a Calabi–Yau is not the same as the mod-
uli space of torsion-free sheaves, even when worldhseet instantons are
neglected. Moreover, we argue that the physical formula should make
some new mathematical predictions for a future theory of the moduli of
stable objects in the derived category.
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1 Introduction

Consider a four-dimensional quantum field theory, or supergravity theory,
with N = 2 supersymmetry on a spacetime which is asymptotically
Minkowskian. These theories have moduli characterizing their vacua as well
as distinguished subspaces in their Hilbert space — spaces of Bogomol’nyi–
Prasad–Sommerfield (BPS) states — defined to be the one-particle states
transforming in small representations of the supersymmetry algebra. One
of the reasons the spaces of BPS states are so useful and interesting is that
the rigidity of the representation theory of supersymmetry implies they are
— like an index — immune to many deformations of parameters. Neverthe-
less, in d = 4,N = 2 theories closer inspection reveals that the space of BPS
states is only locally constant, and in fact it depends on the moduli of the vac-
uum, a feature which already played an important role in the Seiberg–Witten
theory [39]. Spaces of BPS states can jump discontinuously across real codi-
mension one walls in moduli space, known as walls of marginal stability.
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Recently, in the context of Calabi–Yau compactification of type-II string
theory, a precise wall-crossing formula for the change in the number of BPS
states has been proposed [12]. It is the purpose of this note to test that for-
mula in situations where it is not obvious that the derivation of [12] applies.
Conversely, using the relation between BPS states and the mathematics of
coherent sheaves and their derived categories, we can use the physically
derived formula to make some interesting predictions for mathematics.

Here is a brief outline of the paper: In Section 2, we recall the wall-
crossing formula and suggest that it is a universal formula for d = 4 N = 2
theories. In Section 3, we apply it to the case of wall-crossing for type-II
strings on a Calabi–Yau manifold, emphasizing the case where a D4 brane
wrapping a surface S splits as a pair of D4 branes wrapping S. In Sec-
tion 4, we turn to the relation of D-branes to mathematical moduli spaces.
We review mathematical results on walls of stability for coherent sheaves
on surfaces. In Section 5 we compare the physical formula with the results
of Göttsche and Yoshioka on wall-crossing formulae for the Hodge polyno-
mials of moduli spaces of coherent sheaves on S, in the case where S is
rigid. The agreement turns out to be perfect in the leading approximation
as the Kähler class goes to infinity. A surprising point emerges that — even
neglecting worldsheet instanton corrections — subleading corrections in the
expansion in large Kähler class lead to a distinction between the physical
and mathematical walls of stability. We interpret this as a signal that the
moduli space of D4D2D0 branes wrapping a rigid surface S is not that of
coherent sheaves — as is often asserted — but rather that of stable objects
in the derived category. In Section 6, we explore some generalizations which
are of interest both physically and mathematically. In particular in Section
6.1, we discuss decays of D4D2D0 systems into D4D2D0 systems wrap-
ping different surfaces. A surprising consequence of these decays is that
a D4D2D0 system can wrap an ample divisor and split into two systems
wrapping ample divisors, even at large Kähler structure.1 We comment on
the implications of this for the Ooguri-Strominger-Vafa (OSV) conjecture in
Section 7, and conclude by pointing out an interesting open problem.

2 The wall-crossing formula

Let us recall the basic wall-crossing formula of [12] (whose notation and
conventions we always adopt). First, we assume that the BPS state is a
particle in a spacetime, which is asymptotically Minkowskian. We assume

1Examples where an ample D4 decays into a pair of ample D4’s have been indepen-
dently discovered in [13].
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there is some unbroken abelian gauge symmetry at low energy so that BPS
particles can be characterized by their electric and magnetic charge. This
charge, which we denote by Γ, will be valued in a symplectic lattice. The
moduli of the vacua will be denoted by t, so we are interested in studying the
spaces H(Γ; t): these are the finite dimensional spaces of BPS one-particle
states of charge Γ with boundary conditions at infinity corresponding to the
vacuum t.

The space H(Γ; t) is a representation of the rotation group Spin(3).
Because of the supersymmetry the representation is of the form

H(Γ; t) = (2(0) ⊕ (1
2)) ⊗H′(Γ; t). (2.1)

In general, we will let (j) denote a representation of Spin(3) of half-integer
spin j. We interpret the space for j = −1/2 as the zero vector space.

Next, we must introduce the Dirac–Schwinger–Zwanziger duality-
invariant symplectic product on the charges, denoted 〈Γ1, Γ2〉. We also
need the central charge of the N = 2 supersymmetry algebra in the charge
sector Γ with vacuum determined by t. We denote this complex number by
Z(Γ; t).

The basic mechanism by which H(Γ; t) changes was already explained
in [7, 8, 39]. There are real codimension one walls of marginal stability,
denoted, MS(Γ1, Γ2) with Γ = Γ1 + Γ2 across which those BPS states, which
are boundstates of other BPS states of charges Γ1,2, become unstable. As
with non-Fredholm perturbations in index theory, a state can “move off to
infinity” in fieldspace and leave the Hilbert space. The walls of marginal
stability are therefore defined by

MS(Γ1, Γ2) = {t|Z(Γ1; t) = λZ(Γ2; t) �= 0, for some λ ∈ R+}. (2.2)

Now, a basic stability criterion was derived in [9, 10] in the context of d =
4,N = 2 supergravity: a boundstate which decays across a marginal stability
wall will be stable on the side:

〈Γ1, Γ2〉ImZ(Γ1; t)Z(Γ2; t) > 0. (2.3)

The wall-crossing formula then states that as t moves through the wall at
tms ∈ MS(Γ1, Γ2) from the stable side (2.3) to the unstable side the space
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of BPS states loses a summand

ΔH′
BPS = (j12) ⊗H′(Γ1; tms) ⊗H′(Γ2; tms), (2.4)

where the spin j12 is given by

j12 = −1
2 + 1

2 |〈Γ1, Γ2〉|. (2.5)

In stating (2.4), we assume that Γ1 and Γ2 are primitive, and that the
point tms on the wall is generic in the sense that it is not on the intersection
of walls of marginal stability for Γi themselves.2

Although the formula (2.4) was derived within the specific context of
multi-centered solutions of supergravity we believe the wall-crossing formula
is, in fact, universal within the context of d = 4, N = 2 theories and does
not depend on being able to represent the boundstate as a classical super-
gravity solution. On a wall of marginal stability a boundstate of two BPS
constituents is marginally bound so the constituents can be adiabatically
separated from each other. By locality, the statespace should be a prod-
uct of the space of states for each constituent times the statespace for the
common electromagnetic field. A standard computation in classical elec-
tromagnetism shows that two dyons in R

3 of charge Γ1, Γ2 carry angular
momentum around their midpoint given by

�J =
1
2
〈Γ1, Γ2〉 �x1 − �x2

|�x1 − �x2| . (2.6)

The “correction” by −1/2 in (2.5) above is a quantum effect and can be
established, in the context of multi-centered solutions of supergravity, as
discussed in [11]. It would be desirable to have a more general argument for
this quantum correction.

The space of BPS states is not only a representation of Spin(3) but also
of the U(1) R-symmetry, where the supercharges have quantum numbers

2In [12] a generalization for the case when one of Γi is not primitive was proposed.
The generalization when both Γ1 and Γ2 are not primitive is open and appears to be
challenging.
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J3 R J3 + R J3 − R

Q+
1
2 +1

2 1 0

Q− −1
2

1
2 0 −1

Q̄−̇
1
2 −1

2 0 +1

Q̄+̇ −1
2 −1

2 −1 0

A useful corollary of (2.4) for our discussion below follows if we define

Ω(Γ; t; x, y) := TrH′(Γ;t)(−x)J3+R(−y)J3−R, (2.7)

where J3 is a generator of Spin(3) and R is the U(1) R-charge of the BPS
states.

Now, suppose the modulus t crosses a wall where a particle of charge
Γ can decay into constituents of charges Γ1 and Γ2. The analysis of [11],
Section 4.2 shows that all the states can be taken to have zero R-charge.3

Then the wall-crossing formula (2.4) implies:

Ω(Γ; t+; x, y) − Ω(Γ; t−; x, y) = (−1)〈Γ1,Γ2〉−1(xy)−
1
2
(〈Γ1,Γ2〉−1)

× 1 − (xy)〈Γ1,Γ2〉

1 − xy

× Ω(Γ1; tms; x, y)Ω(Γ2; tms; x, y), (2.8)

where t+ is on the side Im(Z1Z2) > 0 and t− is on the side Im(Z1Z2) < 0.

Suppose that the states in H′(Γ; t) admit a description as cohomology
classes on some moduli space M, which we assume is Kähler and smooth.4

A 4D supersymmetric sigma model with Kähler target space M, reduces to
a (2, 2) supersymmetric quantum mechanics in 0 + 1 dimensions. Under the
identification of wavefunctions in the quantum mechanics with differential

3Under the R-symmetry θα −→ eiξθα we need to have Wα −→ e−iξWα and hence
λα −→ e−iξλα. If we take the vacuum |0〉 in Denef’s equation (4.14) to have R-charge +1
then all the states in the Coulomb multiplet have R-charge 0.

4In the mathematical applications, smoothness is not obvious. In such cases we might
be forced to restrict attention to more primitive numerical invariants, such as the Euler
character.
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forms on M we have

Q+ → ∂, (2.9)

Q− → ∂̄†, (2.10)

Q̄−̇ → ∂̄, (2.11)

Q̄+̇ → ∂†. (2.12)

In this situation, we can relate Ω to the Hodge polynomial e(M; x, y) of
M. We identify J3 with the Lefshetz sl(2) acting on the cohomology:

J3ω = 1
2(deg ω − dimc M)ω (2.13)

and hence

Ω(Γ; t; x, y) = (−1)dimM(xy)−
1
2

dimM ∑

p,q

(−1)p+qxpyq dim Hp,q(M) (2.14)

= (−1)dimM(xy)−
1
2

dimMe(M; x, y). (2.15)

Evidently, for this equation to make sense, the moduli space M must depend
on t.

Two special cases are of particular interest: if we put x = y then we obtain
the Poincaré polynomial. If we further take the limit y −→ 1, we obtain the
Witten index, i.e., the Euler character of M.

3 Wall crossing for Calabi–Yau compactification
of type-II strings

Now let X be a compact Calabi–Yau manifold, and consider the compacti-
fication of type-IIA strings on X. BPS charges are elements of γ ∈ K0(X),
but in this paper we will identify the charge with its image in Heven(X; Q),

Γ = ch(γ)
√

Td(X) := r + ch1(γ) + ĉh2(γ) + ĉh3(γ). (3.1)

In this case, the symplectic product on charges is given by

〈Γ1, Γ2〉 =
∫

X
Γ1Γ∗

2, (3.2)

where Γ −→ Γ∗ reverses the sign of the components of degree 2mod4. The
relevant moduli space of vacua for IIA strings is the complexified Kähler
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moduli space, and we identify t = B + iJ where B is the flat B-field poten-
tial, B ∈ H2(X; R) and J ∈ H2(X; R) is the Kähler class. In this paper, we
will work in the limit of large Kähler class and ignore worldsheet instan-
ton corrections to the period vector. Thus we will identify the holomorphic
central charge with

Zh(Γ; t) = −
∫

X
e−tΓ. (3.3)

(We only use the central charge to compute walls of marginal stability.
Therefore, it suffices to use the holomorphic rather than the normalized
central charge. We henceforth drop the subscript h.)

In order to compare with mathematical work we will, until Section 6,
concentrate on the case of D-branes which are boundstates of D4D2D0
branes localized on a holomorphic surface S in X. As we review in Section
4.1 below these are — classically — the pushforward from S of coherent
sheaves E on S, or on a “thickening of S.” We will furthermore take the
sheaves on S to be torsion-free.

In this case, the charge is [28, 34]

Γ = ch(j∗(E))
√

Td(X), (3.4)

where j : S ↪→ X is the inclusion. Let c1 and c2 be the Chern classes of E
and let r be the rank. It is useful to define

μ :=
c1

r
, Δ :=

1
r

(
c2 − r − 1

2r
c2
1

)
(3.5)

in terms of which

Γ = r[S] + rj∗
(
μ̂
)

+ q0ω, (3.6)

where μ̂ = μ + 1
2c1(S) and ω is the unit volume form on X. The D0 charge

is given by

q0 = r

[
χ(S)
24

+
∫

S

1
2
μ̂2 − Δ

]
. (3.7)

We now consider the wall of marginal stability for a decay Γ −→ Γ1 + Γ2

where all three charges Γ, Γ1, Γ2 have the form (3.6). For example Γ, Γ1, Γ2

could be the charges corresponding to torsion-free sheaves E, E1, E2 on S,
but there are other possibilities, discussed in Section 4.1 below. In this
case, the wall of marginal stability can be computed from the vanishing
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locus of5

Im(Z1Z2) =
r1r2

2
J2

SJS · (μ1 − μ2) + q1
0JS · r2μ̂2 − q2

0JS · r1μ̂1 (3.8)

+ (JS · BS)
(

r1 − r2

2
J2

S + q2
0 − q1

0

)

+ r1r2(JS · μ̂1BS · μ̂2 − JS · μ̂2BS · μ̂1) (3.9)

+
r1r2

2
B2

SJS · (μ2 − μ1) + (JS · BS)(BS · (r1μ̂1 − r2μ̂2))

(3.10)

+
r2 − r1

2
B2

S(JS · BS), (3.11)

where we have organized terms so that each line is homogenous in B and
within each line we have written the highest order in J first. In this formula,
all the intersection products are computed on S. In particular, JS , BS denote
the pullbacks of J, B to the surface S.

The spin factor is computed from6

〈Γ1, Γ2〉 = r1r2KS · (μ2 − μ1), (3.12)

where KS is the canonical bundle of S.

The formulae simplify considerably if we restrict attention to the subspace
with B = 0 and take JS −→ ∞. In this case the marginal stability wall
within the Kähler cone of S can be written as

JS · (μ1 − μ2) = 2
(

q2
0

r2

JS · μ̂1

J2
S

− q1
0

r1

JS · μ̂2

J2
S

)
, (3.13)

which clearly asymptotes to the wall

JS · (μ2 − μ1) = 0 (3.14)

for large JS .

5The solution set Im(Z1Z̄2) = 0 consists of both marginal stability and anti-marginal
stability walls, the latter being the case where the complex numbers Z1 and Z2 antialign.
The asymptotic component of the wall that we study is a marginal stability wall.

6It is important to get the sign right in this formula. Note that for a surface S ⊂ X
and closed differential forms η, ω defined on S,X, respectively, we have

∫
X

ω ∧ j∗(η) =∫
S

j∗(ω) ∧ η. Now, in particular, if PD(S) is the Poincaré dual of S then we may represent
it as the Thom class of the oriented normal bundle. Then, j∗(PD(S)) is the Euler class
of the normal bundle. For the case of a complex codimension one surface the Euler
class is c1(N(S ⊂ X)). Now, because X is Calabi–Yau, c1(N(S ⊂ X)) = −c1(TS). So
j∗(PD(S)) = KS .
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The distinction between equations (3.13) and (3.14) is important, and
is an order 1/J correction, hence can be significant even when instanton
corrections can be neglected. This is a simple way of seeing that it is not
sufficient to use the category of coherent sheaves when describing supersym-
metric D-branes, and presumably the correct generalization is to the derived
category of coherent sheaves. We will return to this point in Section 5.

As a simple example, consider the case of S = P
1 × P

1 so that JS = xd1 +
yd2, with di Poincaré dual to each P

1 factor and hence x, y > 0 in the Kähler
cone. We have plotted an interesting example in figure 1.

For large JS , Denef’s stability conditions says that

KS · (μ2 − μ1)JS · (μ2 − μ1) > 0, (3.15)

so this is the side on which there are “extra” states which we will lose.

For rigid surfaces, the Poincaré dual [S] will not lie in the Kähler cone, so
our discussion here goes beyond that of [12]. (It is possible, but not obvious,
that multicentered solutions corresponding to the above splits exist.) We
also remark that in equation (3.62) of version 1 of [12], the reader is led to
the impression that D4 cannot split into D4 + D4, but the argument there
assumes that [S] and JS are proportional to each other.

4 5 6 7 8 9 10

2

4

6

8

10

Figure 1: Example of the walls at B = 0 for different values of D0 charges
q1
0, q

2
0 with the same total D0 charge.



CROSSING THE WALL: BRANE VERSUS BUNDLES 1631

4 Moduli spaces

4.1 Generalities

The classical picture of a supersymmetric type-IIA D-brane wrapping cycles
in a Calabi–Yau manifold leads one naturally to the identification of classical
D-brane states with coherent sheaves on X [29,35]. However, there is in fact
much evidence to suggest that the proper mathematical description of the
moduli of classical supersymmetric IIA branes on X is given in terms of the
derived category of coherent sheaves [4]. Moduli spaces of derived objects
have been constructed so far in certain cases [32, 40] using the stability
conditions of Bridgeland [6]. Unfortunately, wall-crossing formulae seem to
be out of reach at the present stage. Nevertheless, we can make progress
for the case of a rigid holomorphic surface S ⊂ X since then the moduli
space of D4D2D0 branes is expected to be related to the moduli space of
slope-stable coherent sheaves. However, as we will see below, even at large
JS , this is not quite true.

In any case, one should define a moduli space of stable objects of fixed
characteristic classes, corresponding to the charge Γ and satisfying some
t-dependent stability condition, M(Γ; t), and then, ideally, identify

H′(Γ; t) ∼ H∗(M(Γ; t)). (4.1)

This equation is very rough. In addition to the actual construction of the
moduli space, one should specify what kind of cohomology one is using since
M will in general be singular or non-compact, etc.

We can also turn things around, and use the physical formula to make
a prediction for wall-crossing behavior of the eventually-to-be constructed
moduli spaces of stable objects in the derived category. For example, even if
S is not rigid, we expect the moduli space should be fibered over the moduli
of holomorphic surfaces S ⊂ X with fiber given by the moduli of coherent
sheaves on S (again, asymptotically for J −→ ∞). In this way we make
physical predictions for more general moduli spaces of sheaves.

One subtlety we have thus far suppressed is the following. If we consider
a charge of the form (3.6) then when r > 1 the D4-brane charge is not prim-
itive and could in principle be the charge of a “thickening” of the surface
S. (By a “thickening” we mean that if S is defined locally by the equation
f = 0 then rS is defined by the equation f r = 0.) Sheaves on such thick-
enings can, and sometimes do, contribute extra components to the moduli
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space. Physically, this corresponds to solutions to the BPS embedding equa-
tions for the D-brane gauge field A and normal bundle scalars Φ in which Φ
is nonzero. Such components have been discussed, for example, in [20]. In
our main application in Section 5 below S will be Fano, and using the van-
ishing theorem of [42] (or an analogous statement in the algebro-geometric
version, due to R. Thomas) one can show that such components do not
occur. Components due to thickenings might be important in the more gen-
eral applications discussed in Section 6 below. Exploring this point should
be interesting, but it is beyond the scope of this paper.7

4.2 Wall crossing for moduli spaces of coherent sheaves
on a surface S

Let S be a smooth projective surface with −KS effective, and let JS be
in the Kähler cone of S. Let M(r, c1, c2; JS) be the moduli space of rank
r ≥ 1 JS-semistable torsion-free sheaves on S with Chern classes (c1, c2) ∈
H2(S, Q) × H4(X, Q). Note that torsion-free sheaves of rank 1 are of the
form IZ ⊗ L where Z is a zero-dimensional subscheme of S and L is a line
bundle on S. Such objects are stable for any polarization JS , hence they do
not exhibit interesting wall-crossing behavior.8 Therefore we will consider
r ≥ 2 from now on. We will denote by M(r, c1, c2; JS) ⊂ M(r, c1, c2; JS) the
open subset corresponding to JS-stable sheaves.

According to a theorem of Maruyama [33], if −KS is effective, M(r, c1, c2;
JS) is smooth of expected dimension

dim(M(r, c1, c2; JS)) = 2r2Δ − r2χ(OS) + 1, (4.2)

where Δ has been defined in (3.5).

Therefore if any semistable sheaf E with invariants (r, c1, c2) is auto-
matically stable, it follows that M(r, c1, c2, JS) is smooth and projective.
This will be the case if for example the rank r and the degree (c1 · JS) are
coprime (assuming that the polarization JS is integral). In such cases the
Hodge polynomial of M(r, c1, c2, JS) is defined as usual in terms of Dolbeault
cohomology.

If there exist strictly semistable objects E with invariants (r, c1, c2), M(r,
c1, c2; JS) will be in general singular. However, it turns out that M(r, c1, c2;

7We thank Richard Thomas for raising the issue of these thickened components of
moduli space.

8It is important that we restrict attention to B = 0 here.



CROSSING THE WALL: BRANE VERSUS BUNDLES 1633

JS) is by construction the Geometric Invariant Theory quotient of a closed
subscheme Q(r, c1, c2) of the appropriate Quot scheme by an algebraic group
G = GL(N). According to [43,44], if −KS is effective, the semistable subset
Q(r, c1, c2) ⊂ Q with respect to the linearized group action is smooth. Then
one can define a Hodge polynomial of M(r, c1, c2; JS) as the equivariant
Hodge polynomial of Q(r, c1, c2) with respect to the G-action. More precisely
we have

e(MH(r, c1, c2), x, y) =
PG(Q(r, c1, c2), x, y)

1 − xy
, (4.3)

where PG(Q(r, c1, c2), x, y) denotes the equivariant Hodge polynomial of
Q(r, c1, c2). The normalization factor 1/(1 − xy) represents the Hodge poly-
nomial of the classifying space BC

×.

A more powerful approach has been recently developed in [23, 27] for
moduli spaces equipped with a perfect tangent-obstruction complex. This
allows one to define a virtual χy genus as well as a virtual elliptic genus.
It would be very interesting to understand the physical applications of this
construction, but we leave this for future work.

In the following, we will adopt the definition of [43, 44] assuming that
−KS is effective, and show that the resulting wall-crossing is in agreement
with physical predictions.

As shown for example in [26,41,44], the moduli spaces of sheaves depend
on the choice of the polarization JS in the Kähler cone and change discon-
tinuously across walls. The dimension does not jump across walls except in
cases when the moduli space is empty on one side of a wall. Rather, the two
moduli spaces are related by birational transformations.

We will briefly recall some basics of wall-crossing behavior following the
treatment of [44], which applies to higher rank sheaves. Employing the
notation of [44], let us denote by γ = (r, μ,Δ), where μ, Δ has been defined
in (3.5). The marginal stability walls in the Kähler cone C(S) are in one-to-
one correspondence to sequences γi = (ri, μi, Δi) ∈ H0(S, Q) ⊕ H2(S, Q) ⊕
H4(S, Q), i = 1, . . . , s, s ≥ 2, satisfying the following conditions:

(i) There exists a filtration

0 ⊂ F1 ⊂ · · · ⊂ Fs = E

with γ(Fi/Fi−1) = γi, i = 1, . . . , s.
(ii) There exists H ∈ C(X) so that (μi − μi−1, H) = 0 for all i = 1, . . . , s.

(iii) Δi ≥ 0.
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Given such a sequence (γ1, . . . , γs), the wall W is defined by

W = {H ∈ C(X)|(μi − μi−1, H) = 0, i = 1, . . . , s}.

A chamber C is defined to be a connected component of the complement
in C(S) of the union of all walls W . Since the moduli space does not vary
within any given chamber, we will write M(γ, C) for M(r, c1, c2, JS) with
JS ∈ C.

Suppose C1, C2 are two chambers in the Kähler cone separated by a wall
W . Then according to [44], there exist closed subsets VCa ∈ M(γ, Ca), a =
1, 2 so that any [E1] ∈ VC1 is slope-unstable with respect to any polarization
JS,2 ∈ C2 and conversely any [E2] ∈ VC2 is slope-unstable with respect to any
polarization in JS,1 ∈ C1. Moreover, let

0 ⊂ HN1(Ea) ⊂ · · · ⊂ HNha(Ea) = Ea

be the corresponding Harder–Narasimhan filtrations9 of Ea ∈ VCa for a =
1, 2. Then both filtrations have the same length h1 = h2 = s and the suc-
cessive quotients satisfy

γ(HNi(E1)/HNi−1(E1)) = γi, γ(HNi(E2)/HNi−1(E2)) = γs+1−i,

for i = 1, . . . , s.

In the following, we will restrict ourselves to walls W corresponding to
length s = 2 filtrations, which is the generic situation. For a wall W sepa-
rating two chambers C1, C2, we define ΓW to be

ΓW =
{

(γ1, γ2) ∈ (Hev(S, Q))2
∣∣∣∣

(μ1 − μ2, JS) = 0, for all JS ∈ W
(μ1 − μ2, JS,2) > 0, for all JS,2 ∈ C2

}
,

where Hev(S, Q) = H0(S, Q) ⊕ H2(S, Q) ⊕ H4(S, Q). Let also

dγ1,γ2 = −r1r2(P (μ2 − μ1) − Δ1 − Δ2),

9Any unstable torsion-free sheaf E on a smooth polarized projective variety X admits a
canonical filtration 0 ⊂ HN1(E) ⊂ · · · ⊂ HNh(E) = E called the Harder–Narasimhan fil-
tration of E [30]. This filtration is inductively constructed so that each successive quotient
HNk(E)/HNk−1(E) is semistable and moreover HNk(E)/HNk−1(E) is the maximal desta-
bilizing subsheaf of E/HNk−1(E). From a physical point of view, the Harder–Narasimhan
filtration encodes the decay products of the unstable D-brane configuration described
by E.
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where P (x) = x · (x − KS)/2 + χ(OS). Then the wall-crossing formula of
[44] reads10

e(M(γ, C2), x, y) − e(M(γ, C1), x, y)

=
1

1 − xy

∑

(γ1,γ2)∈ΓW

(
(xy)dγ2,γ1e(M(γ1, C2), x, y)e(M(γ2, C2), x, y)

− (xy)dγ1,γ2e(M(γ1, C1), x, y)e(M(γ2, C1), x, y)
)
. (4.4)

Now we specialize to the case of rank r = 2 sheaves. In this case (4.4) is
in agreement with the wall-crossing formula of [26]. In this case, we have

γ1 = (1, F1, n1), γ2 = (1, F2, n2) (4.5)

with n1, n2 ∈ Z≥0 and F1, F2 divisor classes on S. In addition F1 + F2 = c1.
The corresponding two-term Harder–Narasimhan filtration is

F1 = IZ1(F1), E/F1 = IZ2(F2), (4.6)

where Z1, Z2 are zero-dimensional subschemes of length n1, n2, respectively.
The moduli spaces of rank 1 sheaves are insensitive to the chamber structure.
We have

M(γ1, C1) = M(γ1, C2) = Pic(S) × Hilbn1(S),

M(γ2, C1) = M(γ2, C2) = Pic(S) × Hilbn2(S).

Let ξ = μ1 − μ2 = 2F1 − c1 as in [26]. Then a straightforward computation
yields

dγ1,γ2 = n1 + n2 − 1
2ξ · (ξ + KS) − χ(OS),

dγ2,γ1 = n1 + n2 − 1
2ξ · (ξ − KS) − χ(OS)

and one can easily check that the above formula (4.4) is in agreement with
Theorem 3.4 of [26].

In this case, we also have a very explicit description of the closed subspaces
of the moduli space of rank two sheaves which become unstable when cross-
ing the wall W ξ = {JS ⊂ C(S)|ξ · JS = 0}. According to [26] all rank two
sheaves which become unstable when crossing the wall W ξ from ξ · JS < 0
to ξ · JS > 0 are extensions of the form

0 → IZ1(F1) → E12 → IZ2(F2) → 0. (4.7)

10The wall-crossing formulae of [44] are actually written for Poincaré polynomials. The
generalization to Hodge polynomials is straightforward.
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For fixed Z1, Z2, F1, F2 the isomorphism classes of extensions of the form
(4.7) are parameterized by the projective space PExt1(IZ2(F2), IZ1(F1))
with11

K12 = dim Ext1(IZ2(F2), IZ1(F1)) = −1
2ξ(ξ + c1(S)) + n1 + n2 − χ(OS)

(4.8)

= −1
2ξ · c1(S) + c2 − c21+ξ2

4 − χ(OS).
(4.9)

The closed subspace of the moduli space which destabilizes when we cross
the wall is isomorphic to a closed subvariety V12 of a projective bundle P12

PExt1(IZ2(F2), IZ1(F1)) �� P12

��
Hilbn1(S) × Hilbn2(S) × Pic(S) × Pic(S).

(4.10)

Note that not all extensions of the form (4.7) are stable for ξ · JS < 0 [26,
Prop. 2.5(3)]. Therefore V will in general be a proper subvariety of the
above projective bundle.

There is a similar closed subspace V21 of the moduli space, which destabi-
lizes when we cross the wall in the opposite direction. This will be isomorphic
to a closed subvariety of a projective bundle P21 of the form

PExt1(IZ1(F1), IZ2(F2)) �� P21

��
Hilbn1(S) × Hilbn2(S) × Pic(S) × Pic(S).

(4.11)

Although V12,V21 have in general positive codimension in the projective
bundles (4.10), (4.11) respectively, the proof of [26, Thm. 3.4] shows that

dim(V12) − dim(V21) = dim(P12) − dim(P21). (4.12)

11The computation here is that χ(I2, I1) =
∫

S
ch(Iv

2 )ch(I1)Td(S) and dim Ext0 =

dim Ext2 = 0.



CROSSING THE WALL: BRANE VERSUS BUNDLES 1637

5 Comparison with the physical wall-crossing formula

In order to compare the physical wall-crossing formula with the mathematical
results reviewed in the previous section, note that any smooth projective
surface with −KS effective can be embedded in a smooth projective Calabi–
Yau three-fold. The most obvious examples are smooth elliptic fibrations
with section over S. If −KS is effective we can explicitly construct smooth
Calabi–Yau Weierstrass models over S which admit a canonical section.
Other examples can be obtained by resolving del Pezzo singularities in
Calabi–Yau three-folds.

We will compare the physical and mathematical wall-crossing formulae
assuming that for each γa, a = 1, 2, the moduli spaces M(γa, C1), M(γa, C2)
are isomorphic to each other. In other words, we will assume that the
moduli spaces of the decay products do not change as we cross the wall.
This is automatic for decays of rank two sheaves as discussed at the end of
the previous section. Then we can denote these moduli spaces simply by
M(γa), a = 1, 2 omitting the polarization subscript. Under this assumption,
formula (4.4) becomes

e(M(γ, C2), x, y) − e(M(γ, C1), x, y)

=
∑

(γ1,γ2)∈ΓW

(xy)dγ2,γ1 − (xy)dγ1,γ2

1 − xy
e(M(γ1), x, y)e(M(γ2), x, y). (5.1)

Using formula (4.2) for the expected dimension of the moduli space, a
straightforward computation yields

dim(MHa(γ)) − dim(M(γ1)) − dim(M(γ2))

= 2dγ2,γ1 + r1r2(μ2 − μ1, KS) − 1 = 2dγ2,γ1 + 〈Γ1, Γ2〉 − 1. (5.2)

Note also that

dγ1,γ2 − dγ2,γ1 = r1r2(μ2 − μ1, KS) = 〈Γ1, Γ2〉.

Then (5.1) can be further rewritten as

e(M(γ, C2), x, y) − e(M(γ, C1), x, y)

=
∑

(γ1,γ2)∈ΓW

(xy)(dim(M(γ))−dim(M(γ1))−dim(M(γ2))−〈Γ1,Γ2〉+1)/2

× 1 − (xy)〈Γ1,Γ2〉

1 − xy
e(M(γ1), x, y)e(M(γ2), x, y). (5.3)
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Let us now use the physical formula (2.8) to work out the change of the
Hodge polynomial of M(r, c1, c2; JS) when JS crosses a wall in the Kähler
cone. Of course ΔΩ(Γ −→ Γ1 + Γ2; tms) in general depends on tms. We are
assuming this has a finite limit for JS −→ ∞. From the spin factor we get:

sign(KS · (μ1 − μ2))(−1)〈Γ1,Γ2〉+1(xy)−
1
2
〈Γ1,Γ2〉+ 1

2
1 − (xy)〈Γ1,Γ2〉

1 − xy
. (5.4)

Equation (2.14) yields

e(M(γ), x, y) = (−1)dim(M(γ,JS))(xy)
1
2
dim(M(γ,JS))Ω(Γ; t, x, y)

for any charge Γ. Therefore the physical wall-crossing formula (2.8) yields
the following prediction for the change in the Hodge polynomials

sgn(KS · (μ1 − μ2))(−1)dim(M(γ))−dim(M(γ1))−dim(M(γ2))−〈Γ1,Γ2〉+1

× (xy)(dim(M(γ))−dim(M(γ1))−dim(M(γ2))−〈Γ1,Γ2〉+1)/2

× 1 − (xy)〈Γ1,Γ2〉

1 − xy
e(M(γ1), x, y)e(M(γ2), x, y). (5.5)

The overall sign can be simplified using the second equation in (5.2) which
shows that the exponent of (−1) in the first line of (5.5) equals 2dγ1,γ2 .
Since dγ1,γ2 is an integer by construction (it is actually the codimension of
a certain subscheme of a Quot scheme [44]), we are left with

sgn(KS · (μ1 − μ2))(xy)(dim(M(γ))−dim(M(γ1))−dim(M(γ2))−〈Γ1,Γ2〉+1)/2

× 1 − (xy)〈Γ1,Γ2〉

1 − xy
e(M(γ1), x, y)e(M(γ2), x, y). (5.6)

Now let us compare formulae (5.3) and (5.6). In (5.3) there is a sum over
all pairs of charges (γ1, γ2) in the set ΓW associated to a given wall W . This
reflects the fact that the moduli space undergoes simultaneous birational
transformations associated to all possible two term destabilizing Harder–
Narasimhan filtrations. On the other hand, note that the left-hand side of
(3.13) is independent of the choice of distribution D0 brane charge between
the two decay products, which is encoded in the invariants Δ1, Δ2. However,
the right-hand side is not independent, and the different torsion free sheaves
with the same total second Chern class will in fact lead to different physical
stability walls.
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In order to emphasize this point, let us concentrate on moduli spaces
of rank 2 sheaves as in [26]. Indeed, in this case, the right-hand side
of (3.13) reads:

1
J2

S

(JS · (μ2 − μ1))(n1 + n2) +
1
J2

S

(JS · (c1 + c1(S)))(n1 − n2) + · · · , (5.7)

where + · · · is independent of n1 and n2. The dependence of the walls on
n1 − n2 at fixed n1 + n2 is illustrated in figure 1.

Thus, already at large radius, taking into account the leading correction in
the 1/J expansion, but not including instanton effects, one sees that the rel-
evant physical moduli space cannot be the moduli space of coherent sheaves!
We interpret this as a signal that the physical moduli space should be the
“moduli space of stable objects in the derived category.” As we have men-
tioned, such a moduli space has not been constructed, and so we can take
the physical formula as a prediction for what should be true about such
moduli spaces.

Let us finally compare the sign of the wall-crossing formula. Using Denef’s
stability condition (2.3), which becomes (3.15) in our case, we see that we
lose the factorized Hilbert space as we go from

(KS · (μ1 −μ2))(JS · (μ1 −μ2))< 0 to (KS · (μ1 −μ2))(JS · (μ1 −μ2))> 0.

However, the mathematical wall-crossing formula (5.3) claims a universal
result for Δe going from

JS · (μ1 − μ2) > 0 to JS · (μ1 − μ2) < 0.

These are in beautiful agreement, since the spin factor indeed changes sign if
we change KS · (μ1 − μ2) < 0 to KS · (μ1 − μ2) > 0. To check the absolute
sign note that KS · (μ1 − μ2) < 0 corresponds to going from J · (μ1 − μ2) >
0 (this is the moduli space denoted Mγ

C′ in Corollary 3.3 of [44]) to JS · (μ1 −
μ2) < 0 (this is the moduli space denoted Mγ

C in Corollary 3.3 of [44]). To
compute the e-trace over the states we lose we therefore compute e(Mγ

C′) −
e(Mγ

C ). The agreement between the two formulae is perfect!

6 Generalizations

We have argued that the wall-crossing formula is universal, and hence we
expect the physical formulae to apply to a wide range of situations which
look very different from the mathematical point of view. Here we just point
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out a few special cases where the mathematical counterparts are unknown,
but perhaps within reach.

6.1 Bundles on different surfaces

We first generalize the story to decays where Γ −→ Γ1 + Γ2 involves D4
splitting into a pair of D4’s, but now the support of the two constituent
D4’s are in different cohomology classes. Thus, we can no longer work
within the framework of holomorphic bundles on surfaces, but must consider
torsion sheaves within the Calabi–Yau X. The surfaces have Poincaré duals
denoted by S1 and S2, respectively. Suppose the surfaces wrap Σ1, Σ2 and
let ji : Σi −→ X be the inclusion.

Now we have

Im(Z1Z2) =
r1r2

2

[
J2

S2
JS1 · μ̂1 − J2

S1
JS2 · μ̂2

]
+ · · · (6.1)

×〈Γ1, Γ2〉 = r1r2

(
j∗2(S1) · μ̂2 − j∗1(S2) · μ̂1

)
. (6.2)

Even to leading order in J the walls are now in general non-linear and
given by

JS1 · μ̂1

J2
S1

=
JS2 · μ̂2

J2
S2

. (6.3)

There are many examples in this class because linear systems on compact
three-folds generically contain reducible divisors. For concreteness we will
consider here decays associated with degenerations of spectral covers in an
elliptic fibration X. Such divisors are of special interest because they are
related to torsion-free sheaves supported on the Calabi–Yau three-fold X
by Fourier–Mukai transform. Therefore the physical wall-crossing predic-
tions for spectral covers can be translated to similar statements concerning
bundles supported on the Calabi–Yau three-fold X.

Let π : X −→ B be a smooth elliptic fibration with a section over a base
B, where we take B to be a smooth projective surface with effective anti-
canonical class. We will denote by σ the section class on X and write the
Kähler form of X in the form

J = tfαf + π∗JB,

where αf = σ + π∗c1(B) is Poincaré dual to the elliptic fiber class. Note
that we have the following relations in the intersection ring of X

αf · σ = 0, α2
f = αf · π∗c1(B), αf · π∗ω1 · π∗ω2 = (ω1 · ω2)B

for any curve classes ω1, ω2 on B.
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Consider the linear system |mσ + π∗η| where η is an effective curve class
on B and m ≥ 2. The generic member in this linear system is smooth and
irreducible if η satisfies the following conditions [16–19,37]:

(i) |η| is a base-point free linear system on B,
(ii) η − mc1(B) is an effective curve class on B.

Both these conditions will be satisfied if η is a sufficiently ample curve class
on B. We will assume this to be the case from now on. Note that this
also implies that the generic divisor in the above linear system is ample
on X. We will be interested in moduli spaces of torsion coherent sheaves
on X supported on divisors in |mσ + π∗η|. These moduli spaces contain
closed subsets parameterizing isomorphism classes of sheaves with reducible
support. In the following we will show that the sheaves with reducible
support can become unstable by crossing certain walls in the Kähler cone of
X, provided that certain numerical conditions for Chern classes are satisfied.

With this goal in mind let us consider a configuration of two smooth
irreducible divisors Σ1, Σ2 with classes S1 = m1σ + π∗η1, S2 = m2σ + π∗η2

where m1 + m2 = m, η1 + η2 = η. We will assume that Σ1, Σ2 intersect
transversely along a smooth curve in X. According to [31], coherent sheaves
supported on the union Σ1 ∪ Σ2 are in one-to-one correspondence with pairs
(E1, E2) of coherent sheaves supported on Σ1, Σ2 respectively and a mor-
phism f : E1|Σ1∩Σ2 −→ E2|Σ1∩Σ2 . Each sheaf Ei has topological invariants
(ri, μi, Δi) as in the previous section for i = 1, 2. We will take μ1, μ2 to be
some generic divisor classes on S1, respectively, S2 obtained by pull-back
from the ambient space

μ1 = b1σ + π∗ρ1, μ2 = b2σ + π∗ρ2,

where b1, b2 ∈ Q. Then we have

J2
Si

= (ηi · c1(B))t2f + 2(ηi · JB)tf + miJ
2
B,

JSi · μ̂i =
(

(ηi · ρi) − 1
2
η2

i

)
tf + (biηi − bimic1(B) + miρi) · JB (6.4)

+
1
2
m2

i c1(B) · JB − miηi · JB

for i = 1, 2, where all intersection numbers are computed on B. Now the
walls can be found by substituting equations (6.4) into (6.3). In general we
will obtain a fairly complicated cubic equation for the Kähler parameters.
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The spin factor can be computed from

〈Γ1, Γ2〉 = r1r2S1 · S2 ·
[((

b2 − 1
2m2

) − (
b1 − 1

2m1

))
σ

+ π∗ (
ρ2 − ρ1 − 1

2 (η2 − η1)
)]

. (6.5)

In order to simplify the computations let us specialize the discussion to
the case B = P

2. Let h denote the hyperplane class of B. Then we can write

JB = tbh, ηi = nih, ρi = aih

for some positive integers ni ∈ Z and ai ∈ Q, i = 1, 2. Equations (6.4)
become

J2
Si

= mit
2
b + 3nit

2
f + 2nitbtf ,

JSi · μ̂i = −1
2
ni(ni − ai)tf +

(
nibi + (ai − 3bi − ni)mi +

3
2
m2

i

)
tb.

(6.6)

Substituting into (6.3), we obtain the following cubic equation:

−1
2n1(n1 − a1)x +

(
n1b1 + (a1 − 3b1 − n1)m1 + 3

2m2
1

)

3n1x2 + 2n1x + m1

=
−1

2n2(n2 − a2)x +
(
n2b2 + (a2 − 3b2 − n2)m2 + 3

2m2
2

)

3n2x2 + 2n2x + m2
, (6.7)

where x = tf/tb.

Marginal stability walls will correspond to positive real solutions of equa-
tion (6.7). This yields several conditions on the Chern classes which can in
principle be satisfied because we have many free parameters (mi, ni, ai, bi),
i = 1, 2. In order to obtain a more tractable equation, let us make a further
simplification taking the component S1 to be the section of the elliptic fibra-
tion, i.e., m1 = 1, n1 = 0. We will also set b1 = 0. Then n2 = n, we obtain
the quadratic equation

3nx2 + n

(
2 +

n − a2

2a1 + 3

)
x + m2 − 2nb2 + 2(a2 − 3b2 − n)m2 + 3m2

2

2a1 + 3
= 0,

(6.8)
if a1 �= −3/2, and the linear equation

1
2n(n − a2)x =

(
nb2 + (a2 − 3b2 − n)m2 + 3

2m2
2

)
, (6.9)

if a1 = −3/2.
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Now it is clear that these equations will have positive real solutions in
a certain range of the parameters (n, m2, a1, a2, b2). For each such solution
the corresponding wall is a straight line in the Kähler cone.

An interesting special case is m = 1. In this case, all divisors in a linear
system of the form |σ + π∗η| are reducible if η �= 0. The generic divisor has
two components — a horizontal component in class S1 = σ and a vertical
component in class S2 = π∗η. Let us take

μ2 = b2σ + cf,

where f is an elliptic fiber class of the vertical component Σ2. Note that this
is not a generic divisor class obtained by restriction from X as in the previous
example. We will keep b1 = 0. Repeating the previous computations we
obtain

J2
S1

= J2
B,

J2
S2

= (η · c1(B))t2f + 2(η · JB)tf ,

JS1 · μ̂1 = μ1 · JB +
1
2
c1(B) · JB,

JS2 · μ̂2 = −1
2
η2tf + b2(η · JB) + ctf .

(6.10)

Specializing again to the case B = P
2 we obtain the quadratic equation

3nx2 +
(

2n +
n2 − 2c

2a1 + 3

)
x − 2nb2

2a1 + 3
= 0 (6.11)

assuming again a1 �= −3/2. If a1 = −3/2 are left again with a linear equation
(
n2 − 2c

)
x = 2nb2.

To conclude this section let us briefly translate the above wall crossing
predictions into similar statements for torsion-free sheaves on X using the
Fourier–Mukai transform [1,2,5,14,15,24,25]. According to [5,25] reducible
spectral covers correspond to bundles constructed by extensions.

More precisely, suppose the spectral data consist of two smooth irre-
ducible divisors Σ1, Σ2 equipped with spectral line bundles L1, L2, and an
isomorphism L1|Σ1∩Σ2 � L2|Σ1∩Σ2 as in Section 5 of [5]. The intersection
(Σ1 ∩ Σ2) is assumed transverse and smooth. Let F1, F2 be the holomorphic
bundles on X corresponding to the spectral data (Σ1, L1), (Σ2, L2), respec-
tively. Then the corresponding bundle F on X is obtained by an elementary
modification of the form

0 −→ F −→ F1 ⊕ F2 −→ Q −→ 0, (6.12)
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where Q is a torsion coherent sheaf on X supported on the vertical divisor
D = π−1(π(Σ1 ∩ Σ2))). Q is essentially the Fourier–Mukai transform of the
sheaf L1|Σ1∩Σ2 .

The previous computations predict that bundles of the form (6.12) will
become unstable as we cross certain walls of marginal stability whenever
equation (6.7) admits real positive solutions. In certain cases, such elemen-
tary modifications can be equivalently described as extensions. For example
suppose that Q = jD∗(F1|D) where jD : D ↪→ X is the embedding of D in
X. Then F is isomorphic to an extension of the form

0 −→ F1(−D) −→ F −→ F2 −→ 0. (6.13)

In these cases, the extensions become unstable when crossing the wall, yield-
ing a higher dimensional analog of the decays studied in the previous sec-
tions.

It is very interesting to consider the case m = 1 from this point of view. In
this case, the spectral data consists of a horizontal component Σ1 identified
with the canonical section, and a vertical component Σ2. We also have line
bundles which agree on the intersection as above. Using equations (6.10),
(6.8) it is not hard to produce concrete examples of marginal stability walls
for such configurations.

As shown in Section 5 of [37], the Fourier–Mukai transform of this spec-
tral data is a rank one torsion free sheaf of the form IZ ⊗ L where Z is a
codimension two subscheme of X and L is a line bundle on X. Note that
the ideal sheaf IZ ⊗ L fits in an exact sequence

0 −→ IZ ⊗ L −→ L −→ OZ ⊗ L −→ 0.

Then our prediction is that IZ ⊗ L will become unstable across the wall, and
it will decay into L and OZ ⊗ L. This leads to an apparent contradiction
since rank one torsion-free sheaves are known to be stable for any values of
the Kähler moduli. Here we predict non-trivial wall-crossing behavior even
for trivial B-field, generalizing the examples found in [12]. Although such
decays are impossible in the abelian category of coherent sheaves on X, they
are very natural from the point of view of Π-stability in the derived category
of X [3,21,22]. Indeed, the Fourier–Mukai transform is related to T -duality
in the physical setup, and hence the Kähler class of the fiber will not be
large. Accordingly one cannot neglect worldsheet instanton corrections and
one must use Π-stability. It would be interesting to study this in detail
using the rigorous methods developed in [6]. Similar decays of ideal sheaves
as well as applications to enumerative geometry are being considered in [38].
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6.2 Bundles on X: D6 −→ D6 + D6

Suppose E −→ X is a general torsion free sheaf on X. We set

Γ = ch(E)
√

Td(X) := r + ch1(E) + ĉh2(E) + ĉh3(E). (6.14)

For decays of a D6 to a pair of D6 branes, the marginal stability wall will
be a subset of the vanishing locus of

Im(Z1Z2) =
J3

12

(
r2J

2ch1(E1) − r1J
2ch1(E2)

)
+

J3

6
(r1ĉh3(E2) − r2ĉh3(E1))

(6.15)

+
1
2
J2ch1(E2)J ĉh2(E1) − 1

2
J2ch1(E1)J ĉh2(E2) (6.16)

+ J · ĉh2(E2)ĉh3(E1) − J · ĉh2(E1)ĉh3(E2), (6.17)

where we have set B = 0 for simplicity. The spin is computed from:

〈Γ1, Γ2〉 = r1r2

(
μ1 · ĉh2(E2) − μ2ĉh2(E1) +

ĉh3(E1)
r1

− ĉh3(E2)
r2

)
. (6.18)

Suppose now that r, r1, r2 > 0 and suppose that in some region of Kähler
moduli space a sheaf E1 of rank r1 destabilizes E . That is, we can write

0 → E1 → E → E2 → 0. (6.19)

Then the standard slope-stability wall is

J2ch1(E1)
r1

=
J2ch1(E2)

r2
(6.20)

and the walls given by the vanishing of (6.15) indeed asymptote to this
wall, but again, different distributions of D0D2 charge between the two
constituents lead to distinct walls which all asymptote to a common slope-
stability wall. Therefore our formula for ΔΩ(x, y) gives us some information
on the Hodge polynomials of the cohomology classes that are lost and gained
across this wall.

6.3 D4 −→ D6 + D6

One special case of particular interest, which played an important role in [12],
occurs when r = r1 + r2 = 0. That is, the decay of a D4D2D0 system into
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a D6D6 system. Here, for B = 0 we have:

Im(Z1Z2) =
r2J

3

12
J2ch1(E) − r2J

3

6
ĉh3(E) +

1
2
J2ch1(E2)J ĉh2(E1)

− 1
2
J2ch1(E1)J ĉh2(E2) + · · · . (6.21)

Since ch1(E) is an effective class (being Poincaré dual to the cycle where
the D4 wraps) the wall cannot extend to infinity, at least not with B = 0.
However, for large D0 charge ĉh3(E) the wall can be brought to the regime
of large J where our approximations apply.

7 Discussion

In this paper, we have shown that the physical wall-crossing formula applies
in a more general context than was used in [12]. In particular, combining
it with the description of D-branes in terms of coherent sheaves leads to
rather non-trivial agreement with wall-crossing formulae in the mathematics
literature. Moreover, this discussion suggests some interesting expectations
for a future theory of the moduli space of stable objects in the derived
category.

One point which should be stressed is the following. The decays discussed
in Section 6.1 have a potentially important implication for the OSV conjec-
ture [36], since one can arrange that the D4 branes wrap surfaces S, S1, S2

all of which are ample, and yet the decay wall is in the Kähler cone.12 This
means that

lim
J−→∞

Ω(Γ; B + iJ) (7.1)

is not well-defined, even for D4D2D0 systems where the D4-brane wraps and
ample divisor! The wall-crossing formula shows that the jumps in ΔΩ are
corrections potentially just as large as the world-sheet instanton corrections
in the refined version of the OSV conjecture described in [12]. We defer a
careful examination of this possibility to future work.

There is one aspect of our discussion which is quite unsatisfactory. This
becomes apparent upon a more detailed examination of which states decay
as one crosses the wall. To focus the discussion let us return to the case

12Note that in the examples studied in Section 5 S is not ample. Examples where an
ample D4 decays into a pair of ample D4’s have been independently discovered in [13].
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r = 2 where bundles are destabilized by exact sequences such as (4.7). Let
us assume for simplicity that the destabilizing subspaces V1,2 = P1,2 in equa-
tions (4.10) and (4.11).

In the mathematical description the change of moduli space is given by
a simultaneous blow-down of CPK21−1 and blow-up of CPK12−1. In other
words, we lose K12 states and gain K21 states for a net change of I12 =
K12 − K21 = 〈Γ1, Γ2〉 states. In the physical description, on the other hand,
a spin 1

2(|I12| − 1) multiplet of BPS states moves off to infinity in fieldspace
along a Coulomb branch.

These are very different pictures of what happens to the space of BPS
states as t crosses the wall, although both pictures agree on the net change
of BPS states. Resolving this puzzle is beyond the scope of the present
paper, but we believe the resolution will be important and might have a
significant impact upon our understanding of the relation between D-branes
and constructions in algebraic geometry.
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