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Abstract

The moduli space of multiply connected Calabi–Yau threefolds is shown
to contain codimension-one loci on which the corresponding variety devel-
ops a certain type of hyperquotient singularity. These have local descrip-
tions as discrete quotients of the conifold, and are referred to here as
hyperconifolds. In many (or possibly all) cases such a singularity can be
resolved to yield a distinct compact Calabi–Yau manifold. These consid-
erations therefore provide a method for embedding an interesting class of
singularities in compact Calabi–Yau varieties, and for constructing new
Calabi–Yau manifolds. It is unclear whether the transitions described
can be realized in the string theory.

1 Introduction

Calabi–Yau threefolds have played a central role in string theory compacti-
fications since the seminal work [1]. A vast number of these manifolds have
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now been constructed, the best-known classes of which are the complete
intersections in products of projective spaces (CICYs), and hypersurfaces in
weighted P

4 or more general toric fourfolds [2–5].

In order to obtain semi-realistic heterotic compactifications, it is usually
necessary to consider multiply connected Calabi–Yau manifolds, on which
discrete Wilson lines can be used to help break unwanted gauge symmetries.
Two of the best-known examples are the heterotic model on Yau’s “three
generation” manifold [6–8], with fundamental group Z3, and the models
constructed on a manifold with fundamental group Z3×Z3 [9–12]. Recent
progress has been made on calculating the spectra of many heterotic models
on these types of spaces, opening up new realistic model-building possibili-
ties [13, 14]. Several such multiply connected manifolds were known in the
early days of string phenomenology [1,15,16], and recently a number of new
examples with various fundamental groups have been constructed in [17].
Any such manifold necessarily arises as a quotient of a simply connected
covering space by a freely acting discrete group.

Smooth Calabi–Yau manifolds are not the only ones relevant to string
theory. The moduli spaces of families of smooth Calabi–Yau manifolds have
boundaries corresponding to singular varieties, and these are moreover at
a finite distance as measured by the moduli space metric [18]. Even more
remarkable is that moduli spaces of topologically distinct families can meet
along such singular loci, and in fact it has been speculated that the moduli
space of all Calabi–Yau threefolds is connected in this way [19]. It was shown
soon after that this was true for almost all known examples, and suggested
that the associated string vacua may also be unified as a single physical mod-
uli space [20, 21]. A series of beautiful papers in the 1990s established that
type II string theories can indeed pass smoothly through singular geometries,
realizing spacetime topology change via so-called “flops” and “conifold tran-
sitions” [22–24]. Conifold transitions can also be used as a tool for finding
new Calabi–Yau manifolds, as in [17,25].

The most generic singularities which occur in threefolds are ordinary dou-
ble points, or nodes, which are usually referred to as conifold singularities
in the physics literature. The purpose of this paper is to point out that
for multiply connected threefolds, there are worse singularities which are
just as generic, in that they also occur on codimension-one loci in moduli
space. Specifically, if the moduli are chosen such that the (generically free)
group action on the covering space actually has fixed points, these turn out
always to be singular points, generically nodes. The singularities on the quo-
tient are therefore quotients of the conifold, and, as we will see, have local
descriptions as toric varieties. Standard techniques from toric geometry are
therefore utilized throughout; the reader unfamiliar with these ideas can
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consult one of several reviews in the physics literature [22, 26, 27] or the
textbook [28].

Quotients of hypersurface singularities were dubbed “hyperquotients” by
Reid. We will refer to the particular examples considered herein as “hyper-
conifolds,” or sometimes G-hyperconifolds to be explicit about the quotient
group G. Although the toric formalism allows us to find local crepant resolu-
tions (i.e., resolutions with trivial canonical bundle) of these singularities in
each case, the important question is whether these preserve the Calabi–Yau
conditions when embedded in the compact varieties of interest. In partic-
ular, the existence of a Kähler form is a global question. For most of the
examples we can argue that a Calabi–Yau resolution does indeed exist for
all varieties containing the singularities of interest, and furthermore we can
calculate the Hodge numbers of such a resolution. This therefore gives a
systematic way of constructing new Calabi–Yau manifolds from known mul-
tiply connected ones. By analogy with conifold transitions, the process by
which we pass from the original smooth Calabi–Yau through the singular
variety to its resolution will be dubbed a “hyperconifold transition”. Like
a conifold transition, the Hodge numbers of the new manifold are different,
but unlike flops or conifold transitions, the fundamental group also changes.

Quotients of the conifold have been considered previously in the physics
literature, mostly in the context of D3-branes at singularities (e.g. [29–33]),
although the most-studied group actions in this context have fixed-point
sets of positive dimension. The most simple example in this paper, the
Z2-hyperconifold, has however appeared in numerous papers (e.g. [34–37],
and recently in the context of heterotic theories with flux [38]), while the Z3

case appears in an appendix in [39]. To the best of my knowledge hyper-
conifold singularities have not before been explicitly embedded in compact
varieties. This paper gives a general method to find compactifications of
string/brane models based on these singularities.

The layout of the paper is as follows. In Section 2, the Z5 quotient of the
quintic is presented as an example of a compact Calabi–Yau threefold which
develops a hyperconifold singularity. The toric description of such singulari-
ties is also introduced here. Section 3 contains the main mathematical result
of the paper. It is demonstrated that if one starts with a family of threefolds
generically admitting a free group action, then specialises to a sub-family for
which the action instead develops a fixed point, then this point is necessarily
a singularity (generically a node). The quotient variety therefore develops
a hyperconifold singularity; the toric descriptions of these are given, and
their topology described. In Section 4 Calabi–Yau resolutions are shown to
exist for many of these singular varieties, and the Hodge numbers of these
resolutions are calculated. In Section 5 a few initial observations are made
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relating to the possibility of hyperconifold transitions being realised in string
theory.

The notation used throughout the paper is as follows:

• ˜X is a generic member of a family of smooth Calabi–Yau threefolds
which admit a free holomorphic action of the group G.

• X is the (smooth, Calabi–Yau) quotient ˜X/G.
• ˜X0 is a (G-invariant) deformation of ˜X such that the action of G is no

longer free.
• X0 is the singular quotient space ˜X0/G. This can be thought of as

living on the boundary of the moduli space of smooth manifolds X.
• ̂X will denote a crepant resolution of X0, with projection π : ̂X → X0.

We will denote by E the exceptional set of this resolution.

2 A Z5 example

We will begin with a simple example to illustrate the idea. Consider a quintic
hypersurface in P

4, and denote such a variety by ˜X. Take homogeneous
coordinates xi for the ambient space, with i ∈ Z5, so that such a hypersurface
is given by f = 0, where

f =
∑

Aijklm xi xj xk xl xm. (2.1)

If we denote by g5 the generator of the cyclic group G ∼= Z5, we can define
an action of this group on the ambient P

4 as follows:

g5 : xi → ζixi, where ζ = e2πi/5,

˜X will be invariant under this action if Aijklm is zero except when i + j +
k + l + m ≡ 0 mod 5. It is easy to see that for a general such choice of these
coefficients, the Z5 action on ˜X has no fixed points, so the quotient variety,
denoted X, is smooth. For special choices of complex structure though, the
hypersurface given by f = 0 will contain fixed points, and it is this case
which will interest us here.

Consider the fixed point1 [1, 0, 0, 0, 0] ∈ P
4, and take local affine coor-

dinates ya = xa/x0, a = 1, 2, 3, 4 around this point. Then the Z5 action is

1The analysis is the same for any of the five fixed points of the Z5 action.
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given by
ya → ζaya

and an invariant polynomial must locally be of the form

f = α0 + y1 y4 − y2 y3 + higher-order terms

where α0 := A00000 is one of the constant coefficients in (2.1) and we have
chosen the coefficients of the quadratic terms by rescaling the coordinates.2

If we make the special choice α0 = 0 (which corresponds to a codimension
one locus in the moduli space of invariant hypersurfaces), we obtain a variety
˜X0 on which the action is no longer free.

But now we see what turns out to be a general feature of this sort of situ-
ation: when α0 = 0 we actually have f = df = 0 at the fixed point, meaning
it is a node, or conifold, singularity on ˜X0. This means that on its quotient
X0 we get a particular type of hyperquotient singularity. We will now study
this singularity by the methods of toric geometry.

2.1 The conifold and Z5-hyperconifold as toric varieties

We will take the conifold C to be described in C
4 by the equation

y1y4 − y2y3 = 0. (2.2)

This is a toric variety whose fan consists of a single cone, spanned by the
vectors

v1 = (1, 0, 0), v2 = (1, 1, 1),

v3 = (1, 1, 0), v4 = (1, 0, 1).
(2.3)

We can see that the four vertices lie on a hyperplane; this is equivalent to
the statement that the conifold is a non-compact Calabi–Yau variety.

We can also give homogeneous coordinates for the conifold, following the
prescription for toric varieties originally described by Cox: C =

(

C
4 \ S)

/∼,
where the excluded set is given by S = {z1 = z2 = 0, (z3, z4) �= (0, 0)} ∪

2The quadratic terms correspond to some quadratic form η on C
4. Assuming that η is

non-degenerate, it will always take the given form in appropriate coordinates. For general
choices of coefficients in (2.1), η will indeed by non-degenerate.
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Figure 1: The toric diagram for the Z5-hyperconifold.

{z3 = z4 = 0, (z1, z2) �= (0, 0)}, and the equivalence relation is

(z1, z2, z3, z4) ∼ (λz1, λz2, λ
−1z3, λ

−1z4) for λ ∈ C
∗. (2.4)

The explicit isomorphism between this representation and the hypersurface
defined by (2.2) is given by

y1 = z1z3, y2 = z1z4, y3 = z2z3, y4 = z2z4. (2.5)

The Z5-hyperconifold singularity is obtained by imposing the equivalence
relation (y1, y2, y3, y4) ∼ (ζ y1, ζ2 y2, ζ3 y3, ζ4 y4), where ζ = e2πi/5. Using
the above equations we can express this in terms of the z coordinates as

(z1, z2, z3, z4) ∼ (z1, ζ
2z2, ζz3, ζ

2z4).

This equivalence relation must be imposed in addition to the earlier one.3

The resulting variety is again a toric Calabi–Yau variety; the intersection
of its fan with the hyperplane on which the vertices lie is drawn in figure 1.
The singularity could easily be resolved by sub-dividing the fan, but we will
postpone a discussion of resolution of singularities until later. First, we want
to prove that the example presented here is far from unique.

3 Local hyperconifold singularities in general

The above discussion can be generalized to many other families of multiply
connected Calabi–Yau threefolds. To this end consider a CY threefold ˜X
which, for appropriately chosen complex structure, admits a free holomor-
phic action by some discrete group G. Then there exists a smooth quotient

3Note that the power of ζ multiplying z1 can always be chosen to be trivial by simul-
taneously applying a rescaling from (2.4).
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X = ˜X/G, the deformations of which correspond to G-invariant deforma-
tions of ˜X. For simplicity I will herein consider only the case in which G
is cyclic, G ∼= ZN . This is not a great restriction, since there seem to be
very few free actions of non-Abelian groups on Calabi–Yau manifolds, and
in any case, every non-Abelian group has Abelian subgroups, to which the
following discussion applies.

As we have seen for the Z5-symmetric quintic, it may be that for special
choices of the complex structure of X (generally on a codimension-one locus
in its moduli space) the action of ZN on ˜X will no longer be free. One might
expect the resulting singularities on X to be simple orbifold singularities,
locally of the form C

3/ZN . In the case of the quintic though, we actually
obtained a quotient of the conifold. We now demonstrate that this is a
general phenomenon.

3.1 Analysis of fixed points

Let gN denote the generator of ZN , suppose that ˜X is locally determined by
k equations f1 = · · · = fk = 0 in C

k+3, on which some ZN action is given,
and let P0 ∈ C

k+3 be a fixed point of this action. Then we can choose local
coordinates x1, . . . , xk+3 at P0 such that the action of gN is given by xi →
ζqixi, where ζ = e2πi/N and qi ∈ {0, . . . , N − 1}. Let I be the set of fixed
points of this action, and order the coordinates such that I is given locally
by xdim I+1 = · · · = xk+3 = 0. This is equivalent to q1 = · · · = qdim I = 0 and
qi �= 0 for i > dim I.

By taking linear combinations of the polynomials if necessary, we can
assume that gN · fa = ζQafa. What we mean by this is that fa(gN · P ) =
ζQafa(P ) for P ∈ C

k+3. This immediately implies that if Qa �= 0, then
we must have fa|I ≡ 0. But since by assumption ˜X does not generically
intersect I, at least dim I + 1 of the polynomials must be non-trivial when
restricted to I, so that they have no common zeros. We conclude that at
least dim I + 1 of the polynomials must be invariant under the group action.

Now suppose that we choose special polynomials such that the corre-
sponding variety ˜X0 intersects I at a point, and identify this point with P0

above: I ∩ ˜X0 = {P0}. The expansion of an invariant polynomial fa (i.e.,
Qa = 0) around P0 is then

fa =
dim I
∑

i=1

Ca,i xi + O(x2).



972 RHYS DAVIES

Now we can see what goes wrong. At P0 we have

∂fa

∂xi
=

{

Ca,i, i ≤ dim I,

0, i > dim I,

so the matrix ∂fa/∂xi, for fa ranging over invariant polynomials, has max-
imal rank dim I. But since, as argued above, there are at least dim I + 1
invariant polynomials, at the point P0 we get fa = 0 for all a and

df1 ∧ · · · ∧ dfdim I+1 = 0, and hence df1 ∧ · · · ∧ dfk = 0.

So the variety ˜X0 is singular at this point, and in fact generically it will
have a node, or conifold singularity. This means that the quotient vari-
ety X0 develops a worse local singularity: a quotient of the conifold by a
ZN action fixing only the singular point. This is what we will now call a
ZN -hyperconifold.

It should be noted that there is no reason for any other singularities to
occur on X0, and indeed it can be checked in specific cases that only one
singular point develops.

3.2 The hyperconifolds torically

We now want to give explicit descriptions of the types of singularities whose
existence in compact Calabi–Yau varieties we demonstrated above. There
are known Calabi–Yau threefolds with fundamental group ZN for N = 2,
3, 4, 5, 6, 7, 8, 10, 12, and all cases except N = 7 occur as quotients of
CICYs [16, 17, 40, 41]. For these we can perform analyses similar to that
presented earlier for the Z5 quotient of the quintic, and obtain singular
varieties containing isolated hyperconifold singularities. Each of these has
a local toric description, which will be presented below. Since they are all
toric Calabi–Yau varieties, the vectors generating the one-dimensional cones
of their fans lie on a hyperplane; figures 2 and 3 are collections of diagrams
showing the intersection of the fans with this hyperplane. It should be noted
that from the diagrams it is obvious that each singularity admits at least
one toric crepant resolution. However, we are only interested in those which
give Calabi–Yau resolutions of the compact variety in which the singularity
resides. Determining whether such a resolution exists requires more work,
which we defer to Section 4.
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Figure 2: The toric diagrams for the ZN -hyperconifolds, where N = 2, 3, 4,
5, 6 and 8.
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Figure 3: The toric diagrams for the Z10 and Z12-hyperconifold singularities.
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Z2 quotient

Note that, as discussed above, the only point on the conifold fixed by the
group actions we are considering will be the singular point itself. As such,
there is only a single possible action of Z2:

(y1, y2, y3, y4) → (−y1,−y2,−y3,−y4).

In terms of the homogeneous coordinates this gives the additional equiva-
lence relation

(z1, z2, z3, z4) ∼ (z1, z2,−z3,−z4).

The resulting singularity is one which has appeared in the physics literature,
as mentioned earlier. The difference here is that we have given a prescription
for embedding this singularity in a compact Calabi–Yau variety, in such a
way that it admits both a smooth deformation and, as we will see later, a
resolution.

Z3 quotient

Similarly to the Z2 case, there is only a single action of Z3 on the conifold
with an isolated fixed point:

(y1, y2, y3, y4) → (ζ y1, ζ y2, ζ2 y3, ζ2 y4),

where ζ = e2πi/3. In terms of the homogeneous coordinates this leads to

(z1, z2, z3, z4) ∼ (z1, ζ z2, ζ z3, ζ z4).

Z4 quotient

The group Z4 has a Z2 subgroup, which must also act non-trivially on
each coordinate ya, so again there is a unique action consistent with this:

(y1, y2, y3, y4) → (i y1, i y2, −i y3, −i y4).

In terms of the homogeneous coordinates this implies

(z1, z2, z3, z4) ∼ (z1, −z2, i z3, i z4).

Z5 quotient

This is the first case where there are two actions of the group on the
conifold which fix only the origin. This is true for Z5 and several of the
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larger cyclic groups discussed below, but in each case only one of the actions
actually occurs in known examples. For Z5 it is

(y1, y2, y3, y4) → (ζ y1, ζ2 y2, ζ3 y3, ζ4 y4), (3.1)

where ζ = e2πi/5. We have already seen this in our original example of
the quintic. In terms of the homogeneous coordinates the new equivalence
relation is

(z1, z2, z3, z4) ∼ (z1, ζ2 z2, ζ z3, ζ2 z4).

Z6 quotient

For Z6 we can once again find the action by general arguments. If we
require all elements of the group to act with only a single fixed point, there
is only one possibility:

(y1, y2, y3, y4) → (ζ y1, ζ y2, ζ5 y3, ζ5 y4),

where ζ = eπi/3. The identification on the homogeneous coordinates is there-
fore

(z1, z2, z3, z4) ∼ (z1, ζ4 z2, ζ z3, ζ z4).

Z8 quotient

As in the Z5 case, there are multiple actions of Z8 on the conifold, which fix
only the origin, but only one is realised in the present context. The only free
Z8 actions I know on compact Calabi–Yau threefolds are the one described
in [16] and those related to it by conifold transitions [40, 42]. These can be
deformed to obtain a local conifold singularity with the following quotient
group action:

(y1, y2, y3, y4) → (ζ y1, ζ3 y2, ζ5 y3, ζ7 y4),

where ζ = expπi/4. The equivalence relation on the homogeneous coordi-
nates is therefore

(z1, z2, z3, z4) ∼ (z1, ζ4 z2, ζ z3, ζ3 z4).

Z10 quotient

Several free actions of Z10 on Calabi–Yau manifolds were described in [17].
If we allow one of these to develop a fixed point, the resulting action on the
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conifold is

(y1, y2, y3, y4) → (ζ y1, ζ3 y2, ζ7 y3, ζ9 y4),

where ζ = expπi/5. The corresponding equivalence relation on the homo-
geneous coordinates is

(z1, z2, z3, z4) ∼ (z1, ζ6 z2, ζ z3, ζ3 z4).

Z12 quotient

The largest cyclic group known to act freely on a Calabi–Yau manifold is
Z12, and this was discovered only recently [41]. The resulting action on the
conifold is

(y1, y2, y3, y4) → (ζ y1, ζ5 y2, ζ7 y3, ζ11 y4),

where ζ = expπi/6. The corresponding equivalence relation on the homo-
geneous coordinates is

(z1, z2, z3, z4) ∼ (z1, ζ6 z2, ζ z3, ζ5 z4).

3.3 Topology of the singularities

Topologically, the conifold is a cone over S3×S2. It would be nice to relate
the group actions described herein to this topology. Evslin and Kuper-
stein [43] have provided a convenient parametrisation of the base of the
conifold for just this sort of purpose, which I will use here:

Parametrize the conifold as the set of degenerate 2×2 complex matrices

W =
(

y1 y2

y3 y4

)

, det W = 0, (3.2)

and identify the base with the subset satisfying Tr(W †W ) = 1. Now identify
S3 with the underlying topological space of the group SU(2), and S2 with the
space of unit two-vectors modulo phases. Then we map the point (X, v) ∈
S3×S2 to

W = X v v†. (3.3)
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This is shown to be a homeomorphism in [43]. The actions of Z2, Z3, Z4 and
Z6, described in Section 3.2, are all realized in this description by

W →
(

ζ 0
0 ζ−1

)

W, (3.4)

where ζ = e2πi/N , N = 2, 3, 4 and 6, respectively. We see from (3.3) that
this can be considered as an action purely on the S3 factor of the base,
the quotient by which is the lens space L(N, 1). Topologically then, the
singularity is locally a cone over L(N, 1)×S2. In fact these same spaces
were considered in [44].

The more complicated cases of Z5, Z8, Z10 and Z12 quotients do not have
such a straightforward topological description, but could be analysed along
the lines of [43].

4 Global resolutions

In the preceding section we have described the local structure of the hyper-
conifolds using toric geometry; now we want to address the question of their
resolution. Certainly if we consider each case as a non-compact variety, they
can all easily be resolved using toric methods. The interesting question is
whether or not the compact varieties containing these singularities can be
resolved to yield new Calabi–Yau manifolds.

4.1 Blowing up a node

It will be useful to first consider blowing-up an ordinary node, and only
then turn to its quotients. Again we take the conifold C to be given in C

4

by (2.2):

y1y4 − y2y3 = 0.

The singularity lies at the origin, and we can resolve it by blowing up
this point. To do so we introduce a P

3 with homogeneous coordinates
(t1, t2, t3, t4), and consider the equations yitj − yjti = 0 in C

4×P
3. This

has the effect of setting (t1, t2, t3, t4) ∝ (y1, y2, y3, y4) when at least one yi is
non-zero, but leaving the t’s completely undetermined at the origin. In this
way, we “blow up” a single point to an entire copy of P

3, and have a natural
projection map π, which blows it down again. The blow-up of the conifold
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is then defined to be the closure of the pre-image of its smooth points:

̂C = π−1(C\{0}).

Therefore, ̂C is isomorphic to C away from the node, but the node itself is
replaced by the surface in P

3 given by

t1t4 − t2t3 = 0,

which is in fact just P
1×P

1. This is called the exceptional divisor of the blow-
up, and we will denote it by E. Another important piece of information is
the normal bundle N

E|̂C to E inside ̂C. If O(n, m) denotes the line bundle,
which restricts to the nth (resp. mth) power of the hyperplane bundle on
the first (resp. second) P

1, then in this case the normal bundle is O(−1,−1).
This can be verified by taking an affine cover and writing down transition
functions, but the toric formalism, to which we turn shortly, will let us see
this much more easily. In any case, with this information we can demonstrate
that ̂C is not Calabi–Yau. To see why, recall the adjunction formula for the
canonical bundle of the hypersurface E in terms of that of ̂C

ωE = ω
̂C
∣

∣

∣

E
⊗N

E|̂C . (4.1)

Therefore, if ω
̂C were trivial, we would have ωE

∼= N
E|̂C

∼= O(−1,−1), but

it is a well-known fact that ωE = O(−2,−2), so we conclude that ̂C has a
non-trivial canonical bundle. This is why the blow-up of a node does not
generally feature in discussions of Calabi–Yau manifolds. We will see soon
why it becomes relevant once we want to consider quotients.

The final important point is that the blowing-up procedure automatically
gives us another projective variety (i.e. a Kähler manifold if it is smooth),
since the blow-up is embedded in the product of the original space with a
projective space.

4.2 The toric picture and the Z2-hyperconifold

We can also blow up the node on the conifold using toric geometry. Recall
that the fan for C consists of a single cone spanned by the four vectors
given in (2.3), plus its faces. To this set of vectors we want to add v5 =
v1 + v2 = v3 + v4, and sub-divide the fan accordingly. The result is shown
in figure 4. We now have five homogeneous coordinates and two independent
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v1

v2

v3
v4

v5

v1

v2

v3

v4

v5

Figure 4: The fans for the blow-up of the conifold at its singular point and
its Z2 quotient.

rescalings (we won’t explicitly describe the set to be removed before taking
the quotient — this can be read from the fan).

(z1, z2, z3, z4, z5) ∼ (λ z1, λ z2, μ z3, μ z4, λ
−1μ−1z5) λ, μ ∈ C

∗. (4.2)

From this data we can easily see that (z1, z2) parametrize a P
1, as do (z3, z4),

and z5 is a coordinate on the fibre of O(−1,−1). When z5 �= 0, we can choose
μ = λ−1 z5, and we obtain the isomorphism to C\{0}. The remaining points
are on the toric divisor given by z5 = 0, and it is clear that this is isomorphic
to P

1×P
1. So this toric variety is indeed the blow-up of C at the origin. The

toric formalism makes it clear that the resolution is not crepant, since the
new vector does not lie on the same hyperplane as the others.

We now turn our attention to the Z2-hyperconifold, which was described
in Section 3.2, and which we will denote by C2. In this case, the blow-
up of the singular point is obtained by adding a vector that lies on the
same hyperplane as the first four, meaning that the resulting resolution ̂C2

is also Calabi–Yau. Its fan is shown in figure 5. The relations are now
2v5 = v1 + v2 = v3 + v4, and the five vectors can be taken to be

v1 = (1,−1, 0), v2 = (1, 1, 0),
v3 = (1, 0,−1), v4 = (1, 0, 1),

v5 = (1, 0, 0).
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Figure 5: The toric diagram for the resolution of the Z2-hyperconifold.

The resulting equivalence relations on the homogeneous coordinates are

(w1, w2, w3, w4, w5) ∼ (λ w1, λ w2, μ w3, μ w4, λ
−2μ−2w5) λ, μ ∈ C

∗. (4.3)

This is very similar to (4.2), but in this case w5 is seen to be a coordinate
on O(−2,−2) rather than O(−1,−1). As such, the adjunction formula (4.1)
says that the canonical bundle of ̂C2 restricts to be trivial on the exceptional
divisor, consistent with ̂C2 being Calabi–Yau.

There is another nice way to think about the resolution of C2. We begin
by noticing that the blown-up conifold ̂C is actually a ramified double cover
of ̂C2, with the explicit map being given by

wi = zi, for i = 1, 2, 3, 4, w5 = (z5)2. (4.4)

This deserves some elaboration. It is clear from (4.4) that the map is two-to-
one everywhere except along the exceptional divisor given by z5 = 0. In fact,
it can be thought of as an identification z5 ∼ −z5 on the fibres of O(−1,−1)
over P

1×P
1. Since the fixed point set of the involution z5 → −z5 is of

complex codimension one, taking the quotient actually does not introduce
any singularity (which is clear here since ̂C2 is manifestly smooth). So, we
can think of the resolution of C2 in two ways: either we blow up the singular
point of C2, or we blow up the node on the covering space, and then take
the Z2 quotient.

Note that the procedure described above is completely local (we blew
up a point), and therefore can be performed inside any compact Calabi–
Yau variety X0 in which the singularity C2 occurs, to yield a new compact
Calabi–Yau manifold. This should be compared to the small resolution
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of the conifold, which involves blowing up a sub-variety which extends “to
infinity” in C (in fact the variety given by y1 = y2 = 0), so that the existence
of the Calabi–Yau resolution depends on the global structure.

4.3 The Z2M-hyperconifolds

Having demonstrated the existence of crepant projective resolutions (i.e.,
Calabi–Yau resolutions) for Calabi–Yau varieties containing the singularity
C2, we can easily do the same for the quotients of the conifold by all cyclic
groups of even order. This is achieved by breaking the process down into
several steps.4

The unique Z2 subgroup of Z2M fixes exactly the singular point, and we
can blow this up by adding the ray through the point v5 = 1

4(v1 + v2 + v3 +
v4) and sub-dividing the fan accordingly. Alternatively, we can think of
this as first taking the quotient by Z2 ⊂ Z2M , blowing up the resulting C2

singularity, and then taking the quotient by the induced action of Z2M/Z2
∼=

ZM . Either way, we obtain a variety with only ZM orbifold singularities.
There are then two cases:

• If M is odd, it turns out that there is a unique way to further sub-
divide the fan to obtain a smooth variety. In [45], it is shown that for
a projective threefold with only orbifold singularities, one obtains a
global projective crepant resolution by choosing an appropriate crepant
resolution on each affine patch. If there is a unique choice for each,
we therefore automatically obtain the projective resolution, so we are
done.

• If M is even, then ZM contains a unique Z2 subgroup, and the fixed
point set of this subgroup is a pair of disjoint curves, which are toric
orbits (this follows from inspecting the diagrams case-by-case). These
are given by two-cones, spanned by vi, vj , and in each case the vector
1
2(vi + vj) is integral, so can be added to the fan to blow up the fixed
curve (in fact this is just the well-known resolution of the A1 surface
singularity, fibred over the curves). We iterate this process until we
are left with ZM ′ orbifold singularities for M ′ odd, and the fan then
has a unique smooth sub-division.

Note that I am not claiming that the resolutions obtained are the unique
Kähler ones. Several of the hyperconifolds admit multiple resolutions differ-
ing by flops, and it is possible that more than one of these corresponds to a
projective resolution.

4The following argument is partly due to Balázs Szendrői.
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The preceding prescription is easy to understand in particular cases, as
we will now illustrate with the complicated Z12-hyperconifold. We begin
with the fan in figure 3, and blow up the singular point, which adds a ray
through the geometric centre of the top-dimensional cone, and divides it
into four (see figure 6). The result is a fan for a variety containing a chain of

Figure 6: The three steps involved in resolving the Z12-hyperconifold sin-
gularity. First, we blow up the singular point, then the two curves fixed
by Z2 ⊂ Z6, and finally we perform the unique maximal sub-division of the
resulting fan.
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Figure 7: The fans for the Kähler crepant resolutions of the Z2M hyperconi-
fold singularities, where M = 2, 3, 4 and 5.

four genus zero curves meeting in points. Two of these are curves of C2/Z2

orbifold singularities, and the other two of C2/Z3 singularities. The four
points of intersection are locally C3/Z6 orbifold singularities. We can blow
up the (disjoint) Z2 curves by bisecting the corresponding two-cones and
sub-dividing the fan accordingly. This leaves us with eight top-dimensional
simplicial cones, each of which has a unique crepant sub-division, giving us
the final smooth, crepant, Kähler resolution of the singularity.

We can perform the same analysis for each Z2M -hyperconifold, obtaining
the fans in figure 7. The reader may find it amusing to follow the steps
in each case, and verify the resulting fans. At present I can provide no
argument that varieties containing the Z3- and Z5-hyperconifolds also admit
Kähler crepant resolutions, but one is naturally drawn to conjecture that
this is the case. The following comments would then apply to these cases too.
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It is easy to obtain certain topological data about these resolutions. From
the toric diagrams we see that in each case the exceptional set E is simply
connected, which is the case for any toric variety whose fan contains a top-
dimensional cone. Therefore, the resolution of X0 is simply connected, even
though the smooth Calabi–Yau X, of which X0 is a deformation, had fun-
damental group ZN . This contrasts with the case of a conifold transition,
where the fundamental group does not change.

We can also simply read off the diagram that the exceptional set of the res-
olution of the ZN -hyperconifold has Euler characteristic χ(E) = 2N , since
χ is just the number of top-dimensional cones in the fan. We can therefore
calculate χ( ̂X) quite easily. Topologically, ˜X0 is obtained from ˜X by shrink-
ing an S3 to a point P0, so χ( ˜X0) = χ( ˜X) + 1. We delete P0, quotient by
ZN , then glue in E, so

χ( ̂X) = χ( ˜X)/N + χ(E) = χ(X) + 2N. (4.5)

Finally, the resolution of the ZN -hyperconifold introduces N − 1 new divisor
classes, so we can actually calculate all the Betti numbers of ̂X in terms of
those of X:

b1( ̂X) = b5( ̂X) = 0, b2( ̂X) = b4( ̂X) = b2(X)+N −1, b3( ̂X) = b3(X)−2.
(4.6)

5 Hyperconifold transitions in string theory?

A natural question to ask is whether the “hyperconifold transitions” described
in this paper can be realized in string theory, as their cousins flops and
conifold transitions can. At this stage I will merely make some suggestive
observations.5

Consider type IIB string theory on a Calabi–Yau manifold X with funda-
mental group ZN , and vary the complex structure moduli until we approach
a singular variety X0. We have seen (at least in the simplest cases) that topo-
logically this looks like shrinking a three-cycle L(N, 1) to a point. There-
fore, just as in the conifold case, there will be D3-brane states becoming
massless [23]. This manifests in the low-energy theory as a hypermulti-
plet charged under a U(1) gauge group coming from the R–R sector, and
although it becomes massless there is still a D-term potential preventing
its scalars from developing a VEV. However, these D-brane states are not

5The following is superceded by the follow-up paper [46].
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necessarily the only ones becoming massless at the hyperconifold point —
there are N − 1 twisted sectors coming from strings wrapping non-trivial
loops on L(N, 1), and these strings attain zero length at the singular point. It
is therefore conceivable that these twisted sectors give rise to a new branch of
the low-energy moduli space, and that moving onto this branch corresponds
to resolving the singularity of the internal space. Since there are N − 1 new
divisors/Kähler parameters on the resolution, there must be N − 1 new flat
directions.

The conjecture then is that in the low-energy field theory at the hyper-
conifold point, there is a new (N − 1)-dimensional branch of moduli space
coming from the twisted sectors in the string theory. The new flat directions
correspond to Kähler parameters on the resolution of the singular variety,
and giving them VEVs resolves the singularity. It would be interesting to
try to verify this picture.
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