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Abstract

Gravitational greybody factors are analytically computed for static,
spherically symmetric black holes in d-dimensions, including black holes
with charge and in the presence of a cosmological constant (where a
proper definition of greybody factors for both asymptotically de Sitter
and anti-de Sitter (Ads) spacetimes is provided). This calculation includes
both the low-energy case — where the frequency of the scattered wave
is small and real — and the asymptotic case — where the frequency of
the scattered wave is very large along the imaginary axis — address-
ing gravitational perturbations as described by the Ishibashi-Kodama
master equations, and yielding full transmission and reflection scattering
coefficients for all considered spacetime geometries. At low frequencies a
general method is developed, which can be employed for all three types
of spacetime asymptotics, and which is independent of the details of
the black hole. For asymptotically de Sitter black holes the greybody
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factor is different for even or odd spacetime dimension, and proportional
to the ratio of the areas of the event and cosmological horizons. For
asymptotically Ads black holes the greybody factor has a rich struc-
ture in which there are several critical frequencies where it equals either
one (pure transmission) or zero (pure reflection, with these frequencies
corresponding to the normal modes of pure Ads spacetime). At asymp-
totic frequencies the computation of the greybody factor uses a technique
inspired by monodromy matching, and some universality is hidden in the
transmission and reflection coefficients. For either charged or asymptot-
ically de Sitter black holes the greybody factors are given by non-trivial
functions, while for asymptotically Ads black holes the greybody factor
precisely equals one (corresponding to pure blackbody emission).
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1 Introduction and discussion

Hawking radiation lies at the frontier between classical general relativity and
quantum field theory, and may be a key towards unlocking the mysteries of
a theory of quantum gravity. Classical macroscopic black holes in general
relativity obey laws that are parallel to the laws of thermodynamics [1]. As
one sets out to describe quantum fields in black hole backgrounds, or, more
generally, in the vicinity of any horizon, this similarity to thermodynamics
becomes an exact connection as one unveils that black holes have a temper-
ature and an entropy associated to them [2,3]. Thermal radiation, sourced
at the black hole event horizon, is emitted into the surrounding space with
the consequence that the semi-classical black hole slowly looses its mass
and eventually evaporates. At the precise location of the event horizon the
Hawking radiation is blackbody radiation. However, this radiation still has
to traverse a non-trivial, curved spacetime geometry before it eventually
reaches an observer and is detected (e.g., an observer located at asymptotic
infinity in an asymptotically flat spacetime). The surrounding spacetime
thus works as a potential barrier for the radiation, giving a deviation from
the blackbody radiation spectrum as seen by an asymptotic observer. The
relative factor between the asymptotic radiation spectrum and the spectrum
of blackbody radiation is dubbed the greybody factor.

The famous calculation of Hawking radiation [2] uses a semi-classical
approximation to show that black holes have an exact thermal spectrum,
where the expectation value (n(w)) for the number of particles of a given
species, emitted in a mode with frequency w, is given by

) = 2L (1)
eTs +1

where Ty is the Hawking temperature, the plus (minus) sign describes
fermions (bosons), and where y(w) is the greybody factor, i.e., the proba-
bility for an outgoing wave, in the w-mode, to reach infinity. This coincides,
as we shall see, with the absorption probability, i.e., the probability for an
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incoming wave, in the w-mode, to be absorbed by the black hole. If one inte-
grates this expression over all spectra it leads to the total black hole emission
rate. Observe that, should v(w) be a constant, the black hole emission spec-
trum would be exactly that of a blackbody. It is the non-triviality of v(w),
the greybody factor, which leads to deviations of blackbody emission and
the consequent greybody radiation.

Early calculations of these greybody factors were done in [4,5]. The set-up
of the computation is very simple to understand, although extracting exact
results may be of some difficulty. Scattering of particles off black holes is
described via linearized wave equations, which describe the “particle per-
turbation” to the black hole geometry (see, e.g., [6] for a review). In this
work we shall consider gravitons. Such linear perturbation theory to black
hole geometries was first studied, in a four-dimensional context, in [7-9]
and such framework has recently been extended to d-dimensions! , and for
any spherically symmetric black hole (with or without charge and with or
without a cosmological constant), in [10,11]. The resulting equation describ-
ing gravitational perturbations to black hole geometries, in this spherically
symmetric context, can always be written as a one-dimensional Schrodinger-
like equation, where the one-dimensional coordinate is the so-called tortoise
coordinate (describing the spacetime geometry outside the black hole) and
where the potential describes both the black hole geometry and which type
of perturbation one is addressing (which type of particle, or, in the present
case of considering gravitons, which type of gravitational perturbation: ten-
sor, vector, or scalar, as described by their tensor properties on the S92
sphere [10,11]).

In general, the potentials are extremely complicated and an exact solution
to the Schrédinger problem (with the appropriate boundary conditions for
the scattering problem) is out of reach: one always needs to rely on some
numerical work, or some approximation schemes, as the ones first set out
in [4,5]. Some notable exceptions appear in string theory, when studying
the scalar-wave absorption cross-section of the non-dilatonic extremal D3-
brane, or the extremal D1D5-system, where one can obtain exact solutions
in terms of Mathieu functions [12,13].

In terms of the associated Schrodinger problem the absorption probability
v(w) may be written as y(w) = |T(w)|?, where T'(w) is the transmission coef-
ficient in the considered spacetime geometry, i.e., the transmission coefficient
for the considered potential (we shall be more specific on this precise relation
in the following). In this parlance, the greybody factor is the tunnelling

In this work, it is always the case that d > 3.
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probability for the barrier described by the given potential. It is the goal of
this paper to compute v(w) for a wide variety of situations.

In an asymptotically flat spacetime, a quantity that is closely related to
the greybody factor is the absorption cross-section, o(w), which follows from
application of the optical theorem as (see, e.g., [14])

o(w) = v(w)[T(w). (1.2)

In here, ¥(w) is the projection of the incoming spherical wave-function into
the asymptotic plane-wave. It is important to point out that such a result
can only hold in asymptotically flat spacetimes: indeed only in this case
can one define incoming and outgoing asymptotic particle states, and thus
an S-matrix. When dealing with either asymptotically de Sitter (dS) or
asymptotically anti-de Sitter (AdS) spacetimes, there is no good notion of an
S-matrix and thus one cannot define an absorption cross-section. This is also
related to the question of what are the good perturbative quantum gravity
observables in these spaces: while in asymptotically dS spacetimes this is
a subtle question [15], in asymptotically AdS spacetimes it is well known
that the observables are not associated to an S—matrix but to boundary
correlation functions, as shown via the AdS/CFT correspondence [16]. As
such, our focus in this paper precisely lies with greybody factors, whose
notion we shall extended to both asymptotically dS and AdS spacetimes.

In this work, we shall address the calculation of greybody factors (or
absorption probabilities) for static, spherically symmetric black holes in
d-dimensions. This naturally includes charged black holes and a possible
cosmological constant. We consider scalar and gravitational perturbations?
(of tensor, vector, and scalar type) as described by the Ishibashi-Kodama
(IK) master equations [10,11], and will compute the full transmission and
reflection coefficients of the associated Schrodinger problem for all consid-
ered spacetime geometries, in certain specific regimes of the frequency, w.
As we have said before, exact solutions are virtually impossible to obtain.
Here, we choose to focus on two approximations that have provided for inter-
esting results in the past: scalar field perturbations in the low-energy case
(which originated in the work of [5]) and gravitational perturbations in the
asymptotic case (which originated in [17]).

In the low-frequency approximation w < 131 and wRp < 1, with Ry the
radius of the event horizon, there is a universal result for asymptotically flat
black holes [18]: the absorption cross-section for the s-wave of a minimally

2The interest on gravitational perturbations is clear, as gravitational-wave astronomy
becomes a reality in the near-future.
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coupled massless scalar field is given by the area of the event horizon,
o = Ag. When considering the sub-leading contributions to the scattering
(i.e., the higher partial-waves), where the wave angular-momentum compo-
nent has ¢ > 0 (and which is the case for gravitational perturbations), the
result for the cross-section changes although universality is maintained. In
this paper, we first give a simple but general derivation of the leading contri-
bution to the absorption cross-section for scalar waves of asymptotically flat
black holes which are static and spherically symmetric. This goes beyond
the results of [18], which is only concerned with Schwarzschild black holes
(for a general number of spacetime dimensions). As in [18], our derivation
gives the universal result that the cross-section is o = Ag.

We subsequently use our analysis of asymptotically flat black holes in
order to study the leading s-wave contribution to the greybody factor for
black holes in both asymptotically dS and asymptotically AdS spacetimes.
As we shall discuss later, the literature concerning greybody factors for
black holes in non-asymptotically flat spacetimes, such as dS or AdS, is
rather sparse, and this problem has not been fully considered in the past
literature. We shall fill such a gap in the present paper, by devising a general
computational method, which can be applied for all three types of spacetime
asymptotics.

For dS black holes we find the greybody factor for low frequencies w <« Ty
and wRy <« 1. This is done in the case of small dS black holes, i.e., with
the horizon radius Ryg being much smaller than the distance-scale set by the
cosmological horizon. This approximation is necessary in order to separate
the region near the event horizon from the asymptotic region where we are
approximately in dS spacetime. We obtain the non-trivial result

Y(w) = 4h(w)—. (1.3)

Here Ay and Ac are the areas of the event and cosmological horizons, respec-
tively, while h(®) is a non-linear function of & (which is the frequency mea-
sured in units of the scale set by the cosmological constant). The function
h(w) has a different expression for even or odd spacetime dimension, but in
both cases is a monotonically increasing function of @, within its region of
validity, with h(0) = 1. As we shall see later, the function h(&) generalizes
a result for d-dimensional Schwarzschild dS black holes previously obtained
in [19]. The result for the greybody factor (1.3) is obtained for scalar waves
and is valid for all static and spherically symmetric asymptotically dS black
holes.
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For AdS black holes, we find the greybody factor in two different regimes.
One is the regime of low frequencies and small black holes: w < Ty and
wRy < 1, and with Ry much smaller than the distance—scale set by the
cosmological constant. The other regime is with w < Ty, and with w much
smaller than the energy-scale set by the cosmological constant. To better
explain our results let us introduce here @ as the frequency measured in units
of the scale set by the cosmological constant, and Ay as the area of the black
hole measured in units of the scale set by the cosmological constant. We
find, in both regimes, that for 042 « Ay we have

(Dd—Q

V(@) o i (1.4)

This holds in particular for large AdS black holes (with Ag > 1) when © <
1. For small AdS black holes (with Ay < 1) we find a rather rich structure
for the greybody factor «(&). For @92 ~ Ay, there is a critical frequency
such that v(w) = 1, corresponding to pure transmission of radiation. For
w=2n+d-1, with n € {0,1,2,...}, we find v(&) =0 corresponding to
pure reflection of the radiation. Interestingly enough, these frequencies
precisely correspond to the normal frequencies of scalar wave perturbations
in the pure AdS spacetime [20]. Finally, for (2n +d — 1 — @)? ~ Ay, we find
other critical points where v(w) = 1. These results for the greybody factor
are obtained for scalar waves and are valid for all static and spherically
symmetric asymptotically AdS black holes. The rich structure displayed by
the greybody factor for AdS black holes is particularly interesting in view
of the AdS/CFT correspondence, which relates AdS black hole phenom-
ena — such as the above — to thermal gauge theory (see, e.g., [16]). We
expect that this structure will also appear in the dual gauge-theory thermal
correlation-functions, and it would be rather interesting to further pursue
this question in the future.

In the asymptotic limit, where the frequency is very large along the imag-
inary axis w — +ico (more precisely |Ryw| > 1), there are no simple uni-
versal results for the greybody factors (but we will return to this point
in the following). However, it is interesting to observe that [17], for the
Schwarzschild black hole, v(w) is such that the expectation value for the
number of emitted gravitons becomes

(n(w)) = ——. (1.5)
et + 3

This led [17] to an interesting conjecture. To understand the conjecture
of [17], let us first go back to [21] (see [22] as well, for some related work),
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where it was shown that — for certain five-dimensional black holes — the
greybody factors act in such a way that the black hole spectroscopy at
asymptotic infinity mimics the excitation spectrum of the microscopic string,
i.e., for the asymptotic observer the greybody black hole radiation looks like
a microscopic string, at least at small energies. This means that greybody
factors actually carry some information on what concerns the quantum struc-
ture of black holes! One may now return to [17] which, based on the low-
frequency results of [21], speculates whether one may likewise be able to infer
on the microscopical description of the black hole, at asymptotic frequen-
cies, by analysing the above greybody factors. If this would be the case, the
black hole microscopics at asymptotic frequencies would have to involve new
degrees of freedom with rather exotic statistics, at least for the Schwarzschild
black hole (further studies along similar lines were later pursued in [23]).

What our asymptotic results show is that, for the Reissner—Nordstréom
(RN) or the asymptotically dS cases (with or without charge), these new
microscopic degrees of freedom would have to involve even more exotic sta-
tistics than in the Schwarzschild case (see the relevant formulae in the main
body of the text). However, for the asymptotically AdS case, and for both
neutral and charged AdS black holes, v(w) is such that the expectation value
for the number of emitted gravitons at asymptotic frequencies becomes

() = —— (1.6)
eTe —1
This is pure blackbody radiation. It would be rather interesting to further
study the microscopic dual of AdS black holes, at large imaginary frequencies.
It may just be that these are very simple degrees of freedom, as suggested
by the result above.

In order to discuss universality of greybody factors in the asymptotic limit
one first needs to review some basics of black hole scattering theory. As it
turns out, universality in the asymptotic limit is hidden in some transmission
and reflection scattering coefficients. As we have said, gravitational pertur-
bations are described by a one-dimensional Schrodinger-like equation, with
some potential V (z) associated to the background spacetime geometry and

to each type of perturbation. Here, x is the tortoise coordinate dx = f‘%:)

with f(r) = —goo the radial function in the metric. Explicit formulae for
black hole metrics and for the potentials associated to tensor, vector and
scalar type perturbations may be found in the appendices of [20]. Now, let
®,, be the solution of this Schrodinger-like equation,

RL

Tt V(z)®, = w’d,, (1.7)
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with complex frequency w € C, which describes the scattering of an incoming
wave originating at x = +oo (i.e., spatial infinity for asymptotically flat
black holes or the cosmological horizon for asymptotically dS black holes).
Therefore, one has

®, ~ e+ Re T g — to0,

d, ~Te¥? 1 — —o0, (1.8)

where R(w) and T'(w) are the reflection and transmission coefficients, respec-
tively. Note that ®_,, solves the exact same equation as ®,,, but now satisfies

O~ o lwz _i_ﬁeiwx’ T — +00,
d_, ~Te @z — —o0, (1.9)

for some other reflection and transmission coefficients, R(w) and T(w). In
these conditions, it is easy to check that the flux

1 d®,, dd_,,
=—(d_, —®, 1.1
J 21 ( dz dx > (1.10)

does not depend on x. Evaluating it at both £ — +oo then yields
RR+TT = 1. (1.11)
If w € R then clearly ®_,, = ®*, and hence R = R* and T = T*. Conse-

quently, we obtain the familiar formula |R|? 4 |T|> = 1. So far, this is all
elementary quantum mechanics.

Now let ®/, be the solution of the Schrodinger-like equation with com-
plex frequency w € C, which describes the scattering of an outgoing wave
originating at x = —oo (i.e., the outer black hole horizon). Then we must
have

/ / —i
(I)wae 1wx, xr — 400,

P ~e T L R 1 —o0, (1.12)

where T"(w) and R'(w) are the transmission and reflection coefficients. But
since the space of solutions of the Schrodinger-like equation has dimension 2,
®/ must be a linear combination of ®,, and ®_,. In fact,

R 1
@l - *?q)w + ?®7w, (113)

w
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and consequently

T =T. (1.14)

Note that if w is real then |R'| = |R|, but this does not have to hold for
complex w. However, it is always true that 7" = T'. Finally, note that ",
still solves the Schrodinger-like equation, satisfying

O~ T'e“ 2 — +oo,

'~ et Re o 1 —o0, (1.15)

for yet some other reflection and transmission coefficients R'(w) and T"(w).
Again, since the space of solutions of the Schrodinger-like equation has
dimension 2, ®’  must be a linear combination of ®, and ®_,, and one

may easily check that

1 R
@Lw - Téw - T(p_w. (116)
Consequently,

T =T. (1.17)

Therefore, we have both T7 = T'T" and RR = R'R. The greybody
factors, for generic complex frequency w € C, are naturally defined as vy(w) =
T(w)T (w), generalizing the real frequency formula v(w) = |T'(w)|?. In par-
ticular, it turns out that the greybody factors for the two scattering problems
are precisely the same.

The results above hold for asymptotically flat or asymptotically dS space-
times. The case of asymptotically AdS spacetimes is a bit more involved.
We present here some brief comments, and will return to this point in the
main body of the paper. For asymptotically AdS spacetimes, the tortoise
coordinate varies from —oo at the horizon to a fixed constant at spatial infin-
ity, which we shall choose to be zero. For x ~ 0 one finds the asymptotic
expansion [20]

O(x) ~ CoV2rwx Jj (wx) + C_V21wr J_ju (wx), (1.18)

2 2
where joo =d—1,d — 3,d — 5 for tensor type, vector type and scalar type
perturbations, J, is a Bessel function of the first kind, and C1 are (complex)



GREYBODY FACTORS 737

integration constants (for most of the conventions in this paper, we refer the
reader to [20]). This means that if Re(w) > 0 then for z < —1, we have the
asymptotic expansion

B(z) ~ <C’+eiﬂ+ + c_eiﬁ—) oW 4 (c+e*if‘+ + c_e*iﬂ—) e T (1.19)

where B+ = 7(1 £ joo) (again, see [20] for further details). We can then use
this expansion in order to define the transmission and reflection coefficients
at infinity, in terms of the coefficients of the Bessel functions. For example,
for incoming waves one has

(eeii; eef;—> (%) - <Jf> - (1.20)

We will actually only need to use the fact that the solution at infinity has
the plane-wave expansion (1.19) for z < —1.

One may now return to the question concerning universality of greybody
factors in the asymptotic limit. As we have advertised earlier, universality
in the asymptotic limit is hidden in some of the transmission and reflection
scattering coeflicients, which were defined above. Indeed, what our results
show is that, for all considered spacetime geometries, it is the case that T'=1
and thus v(w) = T(w). Moreover, for all the asymptotically flat spacetime
geometries

R= —2icos<7T2‘7> , (1.21)

where j is a parameter such that j =0 (j = 2‘2;_%) corresponds to tensor and
scalar-type gravitational perturbations of uncharged (charged) black holes
and j =2 (5 = %) corresponds to vector-type gravitational perturbations
of uncharged (charged) black holes. Still, for all asymptotically flat cases,
we find that it is also the case that

T=1+2 cos<7;7> R, (1.22)

resulting in the universal relation for the asymptotic greybody factor
~ _ j
Y(w) =T(w)T(w) =1+ 2icos 5 R(w). (1.23)

While asymptotically dS spacetimes do not show a great deal of universality,
besides the T' =1 coefficient, the same does not happen in asymptotically
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AdS geometries, which show universality in both scattering coefficients and
the greybody factor. Indeed, for all the AdS geometries, we find that T=1
and T = 1, resulting in the universal greybody factor of v = 1. Moreover, it
is also the case that R = 0 and

R= Qicos<7;]>, (1.24)

with j as above. It is interesting to observe the similarity with the asymp-
totically flat case. We leave a deeper understanding of these observed traces
of universality for future research on these matters.

There is a vast literature on greybody factors and absorption
cross-sections, natural consequences of the study of scattering by black holes
(see [6] for a review). Let us here briefly review some recent research, with
direct relevance for the present work. Black holes in asymptotically flat
d-dimensional spacetimes, such as the Schwarzschild and the RN solutions,
have been rather well understood, at least on what concerns scalar field
emission. Starting with the Schwarzschild solution, some recent interest has
arisen via so-called brane-world scenarios. In this context, some studies
have focused on brane black holes, and greybody factors have been com-
puted: [24,25] uses the matching-solutions technique of [5] at low frequen-
cies Ryw < 1 in order to study scalar, spinor and vector particle emission,
both brane localized or into the bulk; a topic that was further explored
in [26,27]. An open issue in the previous papers concerns graviton emis-
sion. One would want a full analysis of this situation as well, specially
as gravitational-wave astronomy becomes a reality in the near-future. The
study of graviton emission from d-dimensional Schwarzschild black holes has
recently been addressed in a couple of papers [28-34], again in the Ryw < 1
regime. We should point out that the analysis in [31], for the low-frequency
greybody emission of the Schwarzschild black hole, is very close to the one
we do in this paper. On what concerns the RN solution, much less work
has been done in the literature. An exception is [35], which studies scalar
emission from d-dimensional RN black holes, in the usual Ryw < 1 regime.
Part of the goal of the present work is to hopefully fill in some of the gaps
in the literature, regarding gravitational greybody factors for d-dimensional
spherically symmetric black holes.

On what concerns black holes in non-asymptotically flat spacetimes, such
as dS or AdS black holes, the literature is much sparser. Black holes
in asymptotically dS spacetime were first studied in [36], focusing on the
Schwarzschild dS black hole. However, it was not until [19] that greybody
factors for these black holes were studied, in a fully d-dimensional context.
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This work focused on emission of scalar fields, computing both greybody
factors and differential energy-emission rates on a brane and on the bulk.
The regime of initial interest was the low-frequency regime of Rpyw < 1,
but the authors of [19] did not use the standard matching-solutions tech-
nique of [5]. Instead, they chose to focus on the strict w — 0 limit, find-
ing that, unlike the simpler Schwarzschild case, the absorption probability
of the Schwarzschild dS black hole goes to a constant — and not to zero
— as the frequency vanishes. This is also what we find in this paper, as
we extend the calculation beyond the strict w — 0 limit by employing the
matching techniques of [5], which we have generalized to non-asymptotically
flat spacetimes. Furthermore, the authors of [19] claimed that this results
in an divergent cross-section as w — 0. As we have mentioned before, an
S-matrix exists only in flat space, as it requires asymptotic particle states
to be defined, and thus one cannot talk about cross-section in an asymptot-
ically dS spacetime. Indeed, in [19] the authors make use of the flat space
optical theorem to define the cross-section in terms of the greybody factor,
an expression which clearly can not be applied to non-asymptotically flat
spacetimes.

On what concerns black holes in asymptotically AdS spacetimes, these
were first studied in [37], focusing on the Schwarzschild AdS black hole,
but to date no reasonable greybody calculations for these black holes have
been performed in a d-dimensional context. The only exception is [38],
which however focused on the geometrical optics approximation (i.e., in the
very high-energy regime, at real frequencies). The present work thus hopes
to fill in the gaps in the literature, on what concerns greybody factors for
d-dimensional black holes in non-asymptotically flat spacetimes.

On the technical side, our computation at low frequencies is very much
based on the matching-solutions technique which was first introduced in [5].
We do present some important improvements on this method, as we extend
it to non-asymptotically flat spacetimes, and we believe the description we
present — still based on the basic idea of matching solutions far and near
the black hole horizon — is one of the simplest approaches in the literature.
On what concerns asymptotic frequencies, the technique for computing grey-
body factors in asymptotically flat spacetimes was first developed in [17],
very much based on the monodromy methods introduced in [39]. Here
we generalize those methods also for non-asymptotically flat spacetimes,
again very much based on monodromy methods, this time around mon-
odromy techniques which were first introduced in [20,40]. In both frequency
regimes we shall briefly review the simple and well-known Schwarzschild
case, for both completeness and pedagogical purposes. A reader who seeks
further details on the techniques we use may also consult the aforementioned
references.
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At very high and real frequencies, the greybody factor must approach the
geometrical-optics limit, a result that is independent of the emitted parti-
cle’s spin. It would certainly be of interest if future work could provide for
a full classification of greybody factors — as we do in this paper — also in
this geometrical optics regime. This would greatly enhance our knowledge of
generic black hole greybody factors in arbitrary dimension®. Another point
of interest would be to really test the conjectures in [17] (which were further
refined in [23]). Focusing on the more stringy cases, from the full list we
provide in this paper, one could envisage actually obtaining new results for
the microscopics of specific black holes in the asymptotic frequency regime.
Two particularly promising cases are the extremal RN black hole, which has
been well studied in the string theoretic framework, and the AdS black hole,
which seems to point towards pure blackbody radiation in the large imag-
inary frequency regime. Still on what concerns the asymptotic frequency
regime, we should note that recent work [42] has shown that standard quan-
tum mechanical perturbation theory methods allow for a perturbative study
of imaginary frequency regimes, coming back from infinity. This is a very
interesting calculation and it would certainly be of great interest in future
research also to extend it to the greybody calculation we perform in this
paper. Another natural extension of all the calculations in this work deals
with the consideration of scalar, spinor or vector fields, both massless and
massive. Such extensions would provide for a very complete and detailed
knowledge of Hawking emission from d-dimensional spherically symmetric
black holes. One other generalization of our results deals with the extension
of the present results to higher-derivative corrected black holes in string
theory. Some preliminary steps along these directions have been recently
taken in [43,44], and it would certainly be of interest to further proceed
along these lines. Finally, one last but still very promising venue of future
research, deals with applications of our results for AdS black holes in the
context of the AdS/CFT correspondence [16]. Indeed, our results shed new
light, at both small and large frequencies, on the behaviour of thermal cor-
relation functions in the dual gauge theory, and it would be of great interest
to provide an explicit calculation of the correlation function dual to the
greybody factor we have computed.

2 Asymptotically flat spacetimes

We begin with the study of asymptotically flat spacetimes, considering both
the Schwarzschild and the RN solutions for d-dimensional black holes (we
refer the reader to the appendices of [20] for a complete description of

3See [41] for such a calculation in asymptotically flat spacetimes.
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Figure 1: Penrose diagram for the Schwarzschild spacetime, along with the
schematics of the emission problem in the region covered by the tortoise
coordinate. The solid line represents emission from the black hole event
horizon. The dot represents the scattering of the emitted wave in the space-
time geometry. The symbol H™ represents the past black hole event horizon
while H™ represents the future black hole event horizon.

Figure 2: Potential for Schwarzschild scalar field and tensor-type perturba-
tions in dimension d = 6. Plot is in the radial coordinate from the black
hole event horizon to asymptotic infinity, with ¢ = 0,2, 4, respectively.

these geometries). The boundary conditions for the scattering process which
computes greybody factors in asymptotically flat spacetimes are very sim-
ple to understand and are schematically depicted in figure 1. Blackbody
radiation is produced at the black hole horizon, with part of this radiation
traveling all the way to infinity, and the rest being reflected back to the black
hole due to the interaction with the non-trivial spacetime geometry outside
of the black hole. This non-trivial geometry translates to the potential in the
Schrodinger-like equation, and these potentials have been described in [11]
(again, we refer the reader to the appendices of [20] for a complete listing of
all these potentials). We plot the potential for scalar field and tensor-type
gravitational perturbations in the Schwarzschild geometry in figure 2.

An important point to have in mind concerns the stability of black holes
in asymptotically flat spacetimes to tensor, vector and scalar perturbations,
as discussed in [11]. For black holes without charge, all types of pertur-
bations are stable in any dimension. Working in generic dimension d we
are guaranteed to always have a stable solution. For charged black holes,
tensor and vector perturbations are stable in any dimension. Scalar per-
turbations are stable in four and five dimensions but there is no proof of
stability in dimension d > 6. As we work in generic dimension d we are thus
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not guaranteed to always have a stable solution. Our results will apply if
and only if the spacetime under consideration is stable.

2.1 Greybody factors at low frequency

We begin our calculations by considering the greybody factor and the absorp-
tion cross-section for the d-dimensional Schwarzschild black hole. This
is done in a suitably general fashion that can be readily generalized not
only to other asymptotically flat black holes, such as the RN solution,
but also to asymptotically dS and AdS black holes, as we shall consider
below in Sections 3 and 4. In the following, we shall consider the derivation
of the greybody factor in complete generality, and only when considering
the asymptotic region we shall reduce our considerations to the specific
asymptotically flat case.

For black holes in asymptotically flat spacetime, the greybody factor or
absorption cross-section is well known for most cases [5,18,24,25]. Nonethe-
less, we shall go through the derivation in the following, in part to set
up the subsequent analysis for the non-asymptotically flat cases, but also
because our derivation is rather simple and general, treating all static and
spherically symmetric black holes at the same time, and thus making uni-
versality of the greybody factor manifest from scratch. The analysis we
present is mainly based in the methods first presented in [5] for the four-
dimensional Schwarzschild black hole and later discussed in [18], where
higher-dimensional Schwarzschild black holes were considered.

The process we shall study in the following is that of the absorption of
a scalar wave by a black hole. Therefore, we study scalar waves in a given
black hole spacetime. The scalar wave propagates from infinity throughout
spacetime, is partly reflected by the potential barrier of the black hole, and
near the horizon the transmitted radiation appears as purely incoming radi-
ation into the black hole. As described in the introduction, the greybody
factor for low frequency scattering is identical to the absorption probabil-
ity of a given black hole, since the scattering and absorption processes are
reverse to each other and since, at low energy, we consider real frequencies.
The specific physical process that is measured with the greybody factor is
the emission of radiation from the black hole, which gets partly reflected
by the potential barrier just outside of the black hole horizon, and where
the transmitted radiation will appear as purely outgoing radiation in the
asymptotic region of spacetime. Thus, finding the absorption cross-section
is equivalent to finding the greybody factor, in the case of low frequencies.
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We begin by considering a general, static and spherically symmetric,
d-dimensional black hole metric of the form

g=—f(r)dt@dt+ f(r) " dr @ dr +r2dQ3_,. (2.1)

All the black holes considered in this paper have a metric of this form, and
due to spherical symmetry f(r) is a function of the radial coordinate r only.
We now write

£) = fulr) + fulr). 22)
Here, fo(r) is the asymptotic part of f(r). In this paper, we shall con-
sider three choices of f,(r), corresponding to asymptotically flat spacetime,
asymptotically dS spacetime and asymptotically AdS spacetime. The func-
tion fr(r) instead contains the physics which is specific to the black hole.
As we shall see in the following, the precise form of fj,(r) turns out not
to be important — meaning, for instance, that charge does not play a role
in the low energy greybody factor. One naturally defines the asymptotic
region to be the region where f,(r) > f,(r). The horizon region is instead
the region near the black hole where one has f,(r) ~ fn(r), i.e., where the
two functions are of the same order. We moreover define the horizon radius
Ry to be the largest value of r, in the horizon region, for which f(r) = 0.

Near the horizon r ~ Ry one can write

f(r) ~2ky(r — Ry), ku= =f(Rn). (2.3)

DN |

Here kg is related to the Hawking temperature Ty of the black hole by

i

Tqg = —.
H27T

(2.4)

Another physical quantity of the horizon that will be relevant in the following
is the area Ay of the event horizon, given by

A =Qq oRG? = — R (2.5)

This formula is quite general as it follows from the general form of the
metric (2.1).

In the following, we consider the propagation of a scalar wave in the back-
ground of the black hole spacetime (2.1). This scalar wave just corresponds
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to a scalar field of the form
O(t,r, Q) = eiwt¢w7g(r)nm(9), (2.6)

where w is the frequency of the wave and the Yy, () are the spherical
harmonics on the (d — 2)-dimensional sphere. We can write the scalar wave
equation in the black hole background (2.1) as

d—2
Or(r2f (1) 0, ) + w2 =

o) Dy —L(l+d—3)rTD,; =0. (2.7

If one now defines the tortoise coordinate = = x(r) by

dr
dx = )’ (2.8)

one may write the scalar wave equation (2.7) in the form of a standard
Schrédinger-like wave equation

2

d _
5w - V(r)} (r%qw) —0, (2.9)

with V(r) being the potential, given in terms of f(r) by

Vi) = @2 S0P 42 JORIE) |y )T

(2.10)

Let us now consider the low frequency limit for the scalar wave (2.6)
w< Ty, wRp<l. (2.11)

Notice that the first inequality can also be as written as w < ky. The fact
that we are in the low frequency limit, as defined by (2.11), enables us to
match the behavior of the Schrodinger wave-function across broad regions
of spacetime with a very high degree of accuracy, since the low frequency
limit precisely means that the wave—length of the scalar wave is much larger
than any of the characteristic scales associated with the black hole. In order
to find the greybody factor, we find it convenient to split up the spacetime
in three regions:

e Region I: The region near the event horizon, defined by r ~ Ry and
V(r) < w?
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e Region II: The intermediate region, between regions I and III, i.e.,
between the horizon region and the asymptotic region. This region is
defined by V(r) > w?.

e Region III: The asymptotic region. This region is defined by r > Ry.

We shall then match the behaviour of the wave-function (2.6) between these
regions.

The leading contribution to the greybody factor, in the low frequency
limit (2.11), comes from the ¢ = 0 mode. Therefore, we shall set £ =0 in
the following computation of the greybody factor. This makes it significantly
easier to solve the wave equation in region II. We will write, in the following;:

Dy (1) = Pue=o(r), (2.12)

as a short-hand notation for the radial part of the wave-function (2.6).

At this stage there is one important thing to point out: observe that
the scalar wave fulfills equivalent equations to those for tensor-type pertur-
bations of gravitational waves. However, one cannot directly employ our
results below, and those in Sections 3.1 and 4.1, for the scalar-wave absorp-
tion probability to the absorption probability for tensor-type gravitational
perturbations, since s-wave perturbations are not available in this case. One
would instead have to consider higher wave-modes with non-trivial angular
dependence. This caveat will not exist in the asymptotic case.

Region I: the horizon region

We define Region I as the region in which » ~ Ry and V(r) < w?. In this
case, the potential (2.10) near the horizon may be written as

Vi) = 2(d - 2) Zlf{(r—RH). (2.13)

We can thus re-write the horizon region condition V(r) < w? as

r— RH w2
— 2.14
B S (2.14)

thus defining region I. Note that (2.14) together with w < ky implies that
r— Ry <€ Ry.
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Since we can neglect the potential V(r) as compared to the frequency
squared, the scalar equation (2.9) in Region I reduces to

d2
[de + wz] (rd_z/Q@w) ~0. (2.15)

Clearly, the general solution for a purely incoming wave can thus be written

r o\ 12/2 .
— D, = Aje“?. 2.16
<RH) He (2.16)

Furthermore, since we have that r — Ry < Ry, it is evident that one may
also write .

D, = Are”. (2.17)
To measure the flux near the horizon, associated to the solution above,
one only needs to notice that, in terms of the tortoise coordinate x, one
is effectively considering an one-dimensional Schriodinger-like equation with
zero potential. Therefore, the flux per unit area is simply

1 dd dd}
Jhor = 5= <(I)* “ - D, w) = UJ|AI|2- (218)

2\ ¢ dr dx
The total flux near the event horizon is therefore
Jnor = Anw|Ar]?, (2.19)
where Ay is the area of the horizon given in equation (2.5).

From (2.3) we now see that in Region I we have

1 - R
x ~ —log (r Bn H> . (2.20)

Let us now consider the case of being slightly away from the horizon, in such
a manner that

P B oo (2.21)

This is consistent with being in Region I as defined by (2.14) since combining
these two conditions gives

w2
e /v « = (2.22)
kH

which follows from having w < kpy and is thereby a consequence of the low
frequency approximation (2.11). Using (2.17) we therefore obtain that the
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scalar wave—function in the region defined by (2.14) and (2.21) becomes

L w r — Ry
b, =Ar |1 1 . 2.2
I[ +12k¢H Og< Ry ﬂ (2.23)

where we have used (2.20). Below, and in the process of computing the
greybody factor, we shall match (2.23) to a general solution of the scalar
wave equation in Region II.

Region II: the intermediate region

Region II is defined as the region where V(r) > w?. The scalar wave
equation (2.7) then reduces to

o (ri=2f(r) 0,®,) = 0. (2.24)

The most general solution to this equation is

O, (r) = Anr + B G(r), (2.25)
with
G(r) = /T gcz:), g(r) =r72f(r). (2.26)

For r ~ Ry, we get from (2.3) that

1 r— Ry
G(r) ~ lo . 2.27
A ) 227

Since this is the part of Region II which is closest to Region I, we should
now match this solution to the wave-function (2.23) of Region I. Doing this
yields the matching

Ap = A1, Bn=iwR{?A; (2.28)

Now, for r > Ry, we have instead

T d,r,/
G(r) ~ —_—— 2.29
0= [ T (2:29)
so that in the end one obtains the final expression of

B, (r) = Ap <1+in§—2£Wi%M), (2.30)
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for r > Ry, in the region with w? < V(r). This expression for the wave-
function, (2.30), is what we shall use in the following in order match to a
general solution for the scalar wave equation in the final asymptotic region
(i.e., Region III). It is important to point out that, up to this stage, we
have been completely generic on which type of black hole we are considering
(allowing for both charge and a cosmological constant). Furthermore, the
analysis in Regions I and II is completely insensitive to the inclusion of
charge. Next, we shall do the matching in the asymptotic region for the
case of an asymptotically flat spacetime, while in Sections 3.1 and 4.1, we
shall do it for the cases of asymptotically dS and AdS spacetimes.

Region I1I: the asymptotic region in the flat Spacetime case

The asymptotic region is defined by r > Ry. Here f(r) ~ f,(r) and, for the
case of an asymptotically flat black hole spacetime, one simply has

Ja(r) =1. (2.31)

The general solution of the flat space wave equation, for £ = 0, is given by
_ 1 2

B, = 2 [01 H 3 n(0) + C2HY 5 1 (0)|, (2.32)

with p =rw and where Hﬁl)(p) = Ju(p) +iN,(p) and ngl)(p) = Ju(p) —
iN,(p) are the Hankel functions, here given in terms of the Bessel func-
tions J,(p) and N,(p). We can match this solution to the wave-function of
region II, when p < 1. In this limit, we get for the expression above

D (452) 212

i3

=T o) (o) - )

T (41)24-3/2 [1+O(p)]-

(2.33)

On the other hand, from the wave-function (2.30) in Region II, one has

D, (r) = A (1 - MR%_QW”) : (2.34)

Matching the Region III wave-function (2.32) to the Region II wave-function
(2.34), we finally get

d—1

d—QRd72
Ci+Cy=T ( 2 ) 217324y, C1—Cy= ks H

(d—3)T (452) 24-3/2
(2.35)

Aj.
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In matching (2.33) and (2.34), we are using the fact that wRy < 1, from
(2.11), since we are just considering matching in the region Ry < r < 1/w.
This is, furthermore, also why any terms of higher order in p = rw can be
ignored in N4_3)/2(p), when matching (2.33) and (2.34), since it is simple to
observe that it follows from wRy < 1 that |C7 — Cy| < |C 4+ Co| in (2.35).

The total incoming flux for the general wave-function solution (2.32) is

_ 1 dd,, Ao}
Jasy = ’r’d 2Qd72£ (q}wdr — (I)w dT‘ > = Jin - Jouta (236>
where
2 _ 2 _
Jin = %Qddw?’ Y12, Jow = ;Qdfzw3 40y%, (2.37)

are the incoming and outgoing fluxes, respectively. Using now (2.35) we see
that

Jasy = w|A1]*Qq_oRE2. (2.38)
Therefore, comparing with (2.19), we get that

Jhor = Jasy = Jin — Jout- (2.39)
This expresses the fact that the flux is preserved from the horizon to the

asymptotic region.

Greybody factor and absorption cross-section

The greybody factor y(w) is given by Jyor/Jin. Using (2.37) and (2.39) along
with (2.35), we see that
|C2|2 - 401 — (s 47de72RgI_2

Jhor
_ e g 1O _ 2.40
W=7 Ci2 = "Ci Gy 2d2r(Lhp (2.40)

This is the greybody factor in the low-frequency limit (2.11) for asymptot-
ically flat black holes.

To find the absorption cross-section, we need to project a plane-wave
wave-function e“? onto an ingoing spherical s-wave " (r¢=2Qq_o)~ /2.
This gives [18]

(27r)d72

U=
’ ’ wd_QQd_Z

(2.41)

With this, we can write the absorption cross-section as
o(w) = 7(w) 2. (2.42)
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Therefore, we get the absorption cross-section
o(w) = Ag, (2.43)

where Ay is the area of the horizon given by (2.5). Thus, we see from (2.43)
that the absorption cross-section, for asymptotically flat black holes and in
the low-frequency limit (2.11), is universal, since it is precisely equal to the
area of the black hole event horizon.

2.2 Greybody factors at asymptotic frequency

2.2.1 The Schwarzschild solution

For the Schwarzschild geometry, the asymptotic greybody factors in arbi-
trary dimension d were computed in [17], using the monodromy matching
technique first introduced in [39]. While this monodromy technique was
originally developed to compute asymptotic quasinormal modes, in different
spacetime geometries, it is not a difficult exercise to extend it in order to
compute asymptotic greybody factors. In fact, the most significant change
between computing asymptotic quasinormal modes and asymptotic grey-
body factors, using monodromy matching, is the change in boundary condi-
tions. The monodromy technique of [39] was later applied in the calculation
of Schwarzschild asymptotic quasinormal modes for all types of gravitational
perturbations, as classified by the IK master equations [11], in [20]. In the
present paper, we shall obtain the Schwarzschild gravitational greybody
factors by taking the limit Rc — 400 in the Schwarzschild dS solution,
where R¢ is the dS cosmological horizon. As such, we postpone the details
of the monodromy calculation for a couple of sections. Let us also point out
that it is not always true that valid spacetime limits translate to valid asymp-
totic quasinormal mode or asymptotic greybody factor limits (e.g., one
cannot use a similar approach to compute asymptotic quasinormal modes
or asymptotic greybody factors for the extremal RN black holes — see a
full discussion on this issue in [20]). The Schwarzschild greybody factors
at asymptotic frequency, as originally computed in [17] and as reproduced
later by our own calculations, are given by

+9i
R= zﬂil
ekfn 43
27w
efn —1
T=T=——,
efn 4+ 3
2w
+9i <eﬁ —1)
/
R=—1_ 7/ (2.44)

efn +3
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where the plus (minus) sign corresponds to tensor and scalar (vector)-type
perturbations (we are here assuming Re(w) > 0). In here, kg denotes the
surface gravity at the event horizon. One may also re-write the expressions
above, making use of the equality

9 = 2 cos<7;]>, (2.45)

where 7 = 0 corresponds to tensor and scalar-type perturbations, and where
j = 2 corresponds to vector-type perturbations. As we have said, we will
later obtain these transmission/reflection coefficients by taking the limit
R¢ — 400 in the Schwarzschild dS solution. One may further compute
T =1 and

R=-2 cos<7;7>. (2.46)

These very same coefficients will appear again throughout our calculations.
The greybody factor finally follows as

—, (2.47)

whose poles precisely correspond to the asymptotic quasinormal frequencies
for this geometry [20].

2.2.2 The RN solution

In the case of the RN geometry, asymptotic greybody factors have been
computed in dimension d = 4 in [17], again using the monodromy technique
introduced in [39]. As in the situation with the Schwarzschild geometry,
we shall here obtain the fully d-dimensional RN asymptotic gravitational
greybody factors by taking the limit Rgc — 400 in the RN dS solution.
One could instead start by generalizing the original d = 4 calculation of
[17], following a similar procedure to the one in [20] for the calculation of
asymptotic quasinormal modes. The RN greybody factors at asymptotic
frequency are given by

21cos<%j) (1 + e_zk%w)
R =

2w _ 21w )

ekt 4+ (1+2cos(mj)) + (24 2cos(mj))e” »~
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27w
T=T = et =1

_ 2mw )

oo + (14 2cos(mj)) + (2 + 2cos(mj))e” *~

R 2i cos<%j) (e%w — 1) (2.48)

2w )

ot + (1 4+2cos(mj)) + (2+2cos(mj))e *=

where j satisfies j = 2‘2;_35
%:g for vector-type perturbations (we are assuming Re(w) > 0). In here,
k* are the surface gravities at inner and outer horizon (see, e.g., [20] for
a complete description of the RN geometry). As we have said, we will
later obtain these transmission/reflection coefficients by taking the limit

Rc — 400 in the RN dS solution. One may further compute 7" =1 and

for tensor and scalar-type perturbations, and j =

R=—2i cos(?). (2.49)

These two coefficients are exactly the same as in the Schwarzschild case, only
the definition of j changes. We shall find them again in later calculations.
The greybody factor finally follows as

9(w) = T(@)T(w) = . -

ew/Ti 4+ (14 2cos(mj)) + (2 + 2cos(mj))e ™

—~

2.50)

whose poles precisely correspond to the asymptotic quasinormal frequencies
for this geometry [20].

3 Asymptotically dS spacetimes

We shall now proceed with the study of asymptotically dS spacetimes,
considering both the Schwarzschild dS and the RN dS solutions for
d-dimensional black holes (we refer the reader to the appendices of [20]
for a complete description of these geometries). The quantization of a scalar
field in dS space was first addressed in [36]. While these authors found
that the cosmological event horizon is stable, they also found that there is
an isotropic background of thermal radiation. The emitted particles are,
however, observer dependent, as is the “cosmological sphere” of dS. The
boundary conditions for the scattering process, which computes greybody
factors in asymptotically dS spacetimes are simple to understand and are
schematically depicted in figure 3. Blackbody radiation is produced at the
black hole horizon, with part of this radiation traveling all the way to the
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Figure 3: Penrose diagram for the Schwarzschild dS spacetime, along with
the schematics of the emission problem in the region covered by the tortoise
coordinate. The solid line represents emission from the black hole event
horizon, while the dashed lined represents emission from the cosmological
event horizon. The dots represent the scattering of the emitted waves in the
spacetime geometry. The symbol H™ represents the past black hole horizon,
H™ represents the future black hole horizon, and the symbol H¢ refers to
the cosmological horizon.

Figure 4: Potential for Schwarzschild—de Sitter scalar field and tensor-type
perturbations in dimension d = 6. Plot is in the radial coordinate from the
black hole horizon to the cosmological horizon, with £ = 0, 2, 4, respectively.

cosmological horizon, and the rest being reflected back to the black hole due
to the interaction with the non-trivial spacetime geometry outside of the
black hole. At the same time, blackbody radiation is produced at the cos-
mological event horizon, with part of this radiation travelling all the way to
the black hole horizon, and the rest being reflected back to the cosmological
horizon due to the interaction with the non-trivial spacetime geometry. In
the following, 7" and R’ are the scattering coefficients associated to black
hole emission, while T" and R are the scattering coefficients associated to
cosmological horizon emission. Interestingly enough, the greybody factor is
the same for the emission from both horizons. The spacetime non-trivial
geometry translates to the potential in the Schrédinger-like equation, and
these potentials have been described in [11] (again, we refer to reader to the
appendices of [20] for a complete listing of all these potentials). Observe
that, due to the linearity of the Schrodinger equation describing the scat-
tering process, one may study each of these “types” of emission, scattering
and absorption, from either black hole horizon or cosmological horizon, in
separate. We also plot the potential for both scalar field and tensor type
gravitational perturbations in the six-dimensional Schwarzschild dS geome-
try in figure 4.



754 TROELS HARMARK, JOSE NATARIO AND RICARDO SCHIAPPA

An important point to have in mind concerns the stability of black holes
in asymptotically dS spacetimes to tensor, vector and scalar perturbations,
as discussed in [11]. For black holes without charge, tensor and vector
perturbations are stable in any dimension. Scalar perturbations are stable
up to dimension six but there is no proof of stability in dimension d > 7.
For charged black holes, tensor and vector perturbations are stable in any
dimension. Scalar perturbations are stable in four and five dimensions but
there is no proof of stability in dimension d > 6. As we work in generic
dimension d we are not guaranteed to always have a stable solution* . Our
results will apply if and only if the spacetime in consideration is stable.

3.1 Greybody factors at low frequency

In this section, we shall find the greybody factor, at low frequencies, for black
holes in asymptotically dS spacetimes. We do this in the approximation
where we take the cosmological horizon to be far away from the event horizon
of the black hole, in order to decouple the behaviour of the wave-function in
the near horizon region from its behaviour in the asymptotic region. This
approximation also corresponds to considering small dS black holes, i.e.,
considering black holes whose size is much smaller than the distance-scale
set by the cosmological constant. Greybody factors for Schwarzschild dS
black holes have previously been considered in [19]. As we shall further
comment below, the methods that we employ are different, but the results
that we find match the ones presented in [19] in the strict zero-frequency
limit.

The class of black hole solutions that we consider have a metric of the
form (2.1) with the function f(r) of the form (2.2), i.e., we have f(r)=
fn(r) + fa(r) where, in here, f,(r) is now given by

fa(r)=1-— K22, (3.1)

such that setting f(r) = fu(r) in the metric (2.1) corresponds to a dS geom-
etry with the cosmological horizon located at » = 1/k. As mentioned above,
we need to assume that we can separate the near-horizon region from the
asymptotic region, so that we need to assume

kR < 1, (3.2)

where 7 = Ry is the location of the event horizon (i.e., we have f(Ryg) = 0).
From this, it is clear that we will have that fj,(r) < fa(r) for r > Ry. This

“See however [45].
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also means that we have the cosmological horizon located at r = 1/, since
the shift due to the f;(r) contribution to f(r), for r > Ry, is negligible.

To compute the leading order greybody factor at low frequencies (2.11),
we consider in the following an ¢ = 0 scalar wave propagating in the back-
ground of an asymptotically dS black hole spacetime, and satisfying (3.2).
The wave equation is given by (2.9) with £ = 0 and with the potential V' (r)
given in terms of f(r) by (2.10). Note that the tortoise coordinate z is still
defined in terms of f(r) by (2.8).

The assumption (3.2) means that we are able to define an intermediate
region, Ry < r < 1/k, in between the near-horizon region and the asymp-
totic region. This region overlaps with region II, earlier defined in section
2.1 as the region where V (r) < w?. By combining (2.30) with (3.1) we learn
that, for r > Ry, kr < 1 and rw < 1, the wave-function behaves as

W d—2
®,(r) = A <1 - iﬁ%) : (3.3)

In the following, we shall match the wave—function solved in the asymptotic
region of the dS geometry, i.e., region III as originally defined in Section
2.1, to the behavior (3.3) of the wave-function in region II. Just like for
asymptotically flat spacetimes, this will allow for a direct evaluation of the
greybody factors.

Scalar waves in dS spacetime

For r > Ry, i.e., in region III, the tortoise coordinate x as defined by (2.8)
becomes

kx = arctanh(kr), (3.4)
so that xkr = tanh(kz). The potential V(r), defined in (2.10), is then

_ —/{27“2 A /4,27“2
v = [4=20 4:2@1 41— di?r?) 5

If we now define the coordinate

z = K242, (3.6)
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we can write the wave equation (2.9) as

42(1 — z)QZig +2(1 — 4z + 322)%
N <@2_ (d—2)(1—z)(d—4—dz))gzo’ (3.7)
4z
where we have defined
w= %, gzr%éw. (3.8)

—j, ==
2 2 27 2

z} . (3.9)

where oF; [a, b; c| z] is the standard hypergeometric function. Alternatively,
we may also write the general solution as

~ Lo v d—1 L
g=Cy 27241 — 2)7129,F, [—12, — - ig; 1—ie|1— z]
= d-2 il wd—1 .
+Crz 7 (1—2)2%F, 1§,T+1§;1+1w 1—=z|. (3.10)

Using standard relations for the hypergeometric functions, one can easily
see that the relations between the coefficients above are

C b1 bi2 Ch
e = 3.11
(C2> <b21 b22><C’2)’ (3.11)

with
T (=0T (i T (=T (ia
b = d( 1-2+i“) (lwiA » b= 3 d(—&—i% REC iw)’ (3.12)
r(es)r(y) o r(eE) (g
T d—1 T (—id r 5—d T (—ic
byt — d(12r) ( Mi)A - 32?) ( lw)iA . (3.13)
r(es)r(-y) o r(esE)r-g)
For use below, we further note the important identities
bo1 = b1y, baa = bjy, bi1ba — b12bor = —i (3.14)

20
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Using (3.9) we see that for z — 0, or kr < 1, we have

3 02 H4fd/2
(I)u) = Cl I‘id 2/2 + 71(17—3 (315)
Using instead (3.10), we see that for z — 1, or kx > 1, we have
B, = Cy k12297 i0glor | O 3% glbgiwe, (3.16)

From these expressions it is simple to obtain that total the flux, for r — oo,
is given by

1 [, dd, dor
Jasy = ACZ < w% - @w d:]j > — Jl Jout, (317)
where
Jin = Acwr®2|C11?,  Jous = Acwr?2|Col? (3.18)

are the incoming and outgoing fluxes, respectively. In order to obtain the
total flux we have multiplied with the area of the cosmological horizon Ac
above, which is given by

Qq_
Ac =42 (3.19)
K
Making further use of (3.14), it is easily seen that one may write
~ 0 im0 . N d—3 N «
’01’ — ’CQ‘ = (b11b22 — b12b21)(0102 — Cl CQ) = —1%(0102 — Cl CQ),
(3.20)

and so, in terms of C and Cy, the total flux (3.17) of the wave-function for
T — 00 is

d—3

Jasy = TACﬁd_l(Clcék — CTCQ) (3.21)

We now proceed to find the coefficients C; and Cs. This we can do by
matching the behaviour (3.15) of the wave-function for xr < 1 in Region
ITI, to the behaviour (3.3) for r > Ry in Region II. A simple calculation
yields the result

Rd—2
CL = k22 Ay, Oy = —ind=4/2 % Ar. (3.22)
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Inserting this result in (3.21), we obtain the following total flux in the asymp-
totic region,

Jasy = (kRu)* 2wl A1 Ac. (3.23)
Comparing this with (2.19), we get
Jnor = Jasy = Jin — Jout- (3.24)

This expresses the fact that the total flux is conserved from the horizon to
the asymptotic region x — oo near the cosmological horizon.

The greybody factor

The greybody factor vy(w) is given by Jyor/Jin. Using (3.18) and (3.24) along
with (3.11), we get that
b1 |?

|2
LG _ b
b11

_ Jhor

bi1bas — bisbar Ca|?
Jin 1C )2 '

b11b21 Cy

V(W) (3.25)

Using now (3.14) and (3.22), we obtain that the greybody factor is given by
An

Y(w) = 4h(@)(kRr)*? = 4h (@) 1 (3.26)
C
where we defined the function h(®) by
ho) = (3.27)
w) = . .
4|b11]?
For even d > 4, we have
d—2
2 o2
h(w) = 1+ —= .
@-11 ( e 1)2> , (3.28)
while for odd d > 5, we have instead
d—3
mw 7w\ 1 o2
h(w) = — coth | — 1 . .
i) (S

Equation (3.26), along with (3.28) and (3.29), gives the leading contribution
to the greybody factor, in the low frequency limit (2.11), for small asymp-
totically dS black holes (3.2). Note that h(w) — 1 as @ — 0, for both even
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and odd spacetime dimensions. We also see from (3.26) that the greybody
factor retains a high degree of universality in that it only depends on @ and
f‘—g, and not on details of the black hole, such as whether it is charged or not.
Still, it displays new features as compared to asymptotically flat geometries.

Comparing our result to the results of [19], we find that our final expres-
sion for the greybody factor matches the one in [19] in the strict w — 0
limit, and in the case of small black holes. This is a nice consistency check
on both calculations. However, it is important to notice that the authors
of [19] claimed that the absorption cross-section for Schwarzschild dS black
holes diverged as w — 0. As we have alluded to before, there is no good
notion of absorption cross-section in non-asymptotically flat spacetimes, as
one cannot define an S-matrix. As such, there are no divergences of any
physical quantities. The divergence found in [19] stems from the fact that
the authors defined the dS cross-section using the flat space optical theorem,
a relation that no longer holds in non-asymptotically flat spacetimes.

3.2 Greybody factors at asymptotic frequency

3.2.1 The Schwarzschild dS solution

On what concerns the Schwarzschild dS geometry, asymptotic greybody
factors have not been considered in the past literature, and we fill such
a gap in the present paper. We shall compute d-dimensional asymptotic
gravitational greybody factors for the Schwarzschild dS geometry, using
the monodromy—matching technique first developed in [20,40]. Indeed,
and as we have alluded to before, it is not a difficult exercise to extend
such monodromy-matching technique from its original quasinormal mode
application to the present calculation of asymptotic greybody factors — in
some sense, all that is required is an appropriate change in the boundary
conditions. This is what we do in the present section, as we shall now explain
how to compute the greybody factors at large imaginary frequencies for the
Schwarzschild dS black hole. The following calculation heavily relies on [20],
where any missing details may be found.

We consider solutions of the Schrédinger-like equation in the complex
r-plane. Near the singularity r» = 0, these solutions behave as

O(x) ~ ByV2nwz J% (wz) + B_V2rwzx J_; (wx), (3.30)

.

where z is the tortoise coordinate, .J, represents a Bessel function of the
first kind and By are (complex) integration constants. The parameter j
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Im | Stokes line

Figure 5: Stokes line for the Schwarzschild dS black hole in the case of
dimension d = 6.

is left generic for the time being, but will ultimately be set equal to j =0
for tensor and scalar-type perturbations and equal to j = 2 for vector type
perturbations.

Our monodromy calculation must be carried out along the Stokes line
Re(z) = 0, which is sketched in figure 5. Starting at point A, our solution
can be approximated in the limit Im(w) > Re(w) by

®(z) ~ (Bre ' 4+ B_e ) " 4 (Bie'* + B_el) e ", (3.31)

where ar = §(1£j). The main difference between this calculation and
the calculation of the asymptotic quasinormal frequencies in [20] is that,
unlike the quasinormal modes, our solutions in here will have well defined
monodromy only around one of the horizons. For this reason, we will have
to consider the two scattering problems corresponding to both incoming or
outgoing waves in order to perform the full computation.

Consider the problem of an incoming wave first. In this problem, ® has

well defined clockwise monodromy e*u around the black hole horizon Ry,
where ky is the surface gravity of the black hole horizon. As one rotates
from point A to point B near the origin, the approximate expression for ®
changes to

O(x) ~ (BJFe?’io‘+ + B_e?’io‘*) @ 4 (B+eia+ -+ B_eia*) e W, (3.32)
and further rotating to point C yields

q,(x) ~ (B+e3ia+ + B_GSia’) eiwaz + (B+651a+ + B_e5io¢,) e—iwa:. (3_33)
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Consider the contour obtained by starting at point B, rotating to point C
near the origin and returning to point B along the Stokes line. The coefli-
cient of e'“* does not change along this contour, and hence this term already

has the appropriate monodromy. On the other hand, the monodromy of the
—iwzx

term in e will have to match the monodromy of ® around Ry:
B e5ia+ 4 B_GSia, _w Tw
+ e B =eku, (3.34)

B+eia+ + B_ela—

Since Re(z) < 0 near Ry, we see that for Im(w) > Re(w) the term e“? is
exponentially bigger than the term e™“?*. Since ®(x) ~ T ¢“® near Ry, we
must have

Biedo+ 4 B M- =T (3.35)
On the other hand, Re(z) > 0 near the cosmological event horizon R, and
therefore e~“? exponentially dominates e“? in this region. Since ®(x) ~
e@? 4 Re“" near Rc, we must also have

Byel% 4 B_el% = R. (3.36)
Consequently,

Bye¥o+ 4 B_e¥e- T
Bidw 1 Bdv R (8:37)

Seen as a linear system for (B, B_), equations (3.34) and (3.37) can only
have non-trivial solutions if

Siot _ o elor  gdlas _ o hir plo
—0, (3.38)
e3ia+ _ %eia+ e3ia, _ %eia,
which yields
T 1/ 2mw
Lo xl(em 1) : 3.39
R~ 2 <e (3.39)

where the minus (plus) sign corresponds to j = 0 (j = 2) and tensor or scalar
(vector)-type perturbations.

Let us now consider the problem of an outgoing wave. In this problem, ®

has well defined clockwise monodromy e *c around the cosmological horizon
Rc, where k¢ is the (negative) surface gravity of the cosmological horizon.
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Again as one starts out at point A the solution ® has the approximate
expression

®(z) ~ (Ble ' + B e ) e 4 (B ™ + B e ) e . (3.40)
As one rotates from point A to point B near the origin, this changes to
g
(I)(SC) ~ (B;€3ia+ + BLe3ia,> eiw:v + (Bjreicur + BLeia,) efiwm. (341)

To compute the monodromy of ® around R¢ we must follow a contour which
encloses only this singularity. Therefore, we proceed to point C' along the
branch of the Stokes line, which goes around Ry. As we do this, = increases

by l%;’ and consequently at point C' one has

(I)(x) ~ (Cg_e_iaJr + Cl_e_ia*) eiw(x_’ii}n + (Cg_eia+ + Cl_eia,) e—iw(z—é—;)

— (C;efia_;_ + CLefia_) e%eiwx + (ereia_;_ + Cieia_) e_%efiwx'
(3.42)

Further rotating to point D yields

D(z) ~ (Cle¥ir + O e¥r) e el | (Cl e 4 Cel*r) .
(3.43)
Closing the contour by returning to point A along the Stokes line, we see
that the coefficient of e7“? does not change along this contour, and hence
this term already has the appropriate monodromy. On the other hand, the
monodromy of the term in €% will have to match the monodromy of ®
around Rc:

c’ e3ia+ e e3ia, Tw  Tw rw
il ———ekuelc =e *c. (3.44)
Bf‘_e—lcur + B! e—ia-

Since ®(z) ~ e~ “? 4 R'el“” near Ry, we must have

B e¥*r + B’ M- = R (3.45)
Since ®(z) ~ T'e™'“* near Rc, we must also have

B et + B e =T (3.46)
Consequently,

Bi’_eBioH_ + BI_GSia_ R
Bg_ei‘“ + B’ ela- o F

(3.47)
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Finally, the approximate expressions for ¢ at points B and C must be
matched, yielding

B e’ + Bl ¥ = Cﬁre_i‘“e% + C’/_e_ia*e%, (3.48)
Bﬁreio“f + B el = Cﬁrei‘”e*% + C’_eio‘*efﬁ. (3.49)

Seen as a linear system for (B, , B’ ,C",,C" ), equations (3.44), (3.47), (3.48),
and (3.49) can only have non-trivial solutions if

. . . Tw | 27w . Tw | 27w
el e la— e3101_;_ekH kC eSla_ekH e
iy _ R oy 3ia_ _ R _ia_
e — z5e e — =€ 0 0
3i 7 3i Tl . w . mw =0,
ediat edia— e~ i+ ok e~ la—oky
. . . _Tw . _ 7w
elo+ elo— el®+e” ky el®— ™ by
(3.50)
which yields
2w | 27w
74_7
R ehc TR — 1
F = :':2 1—27rw s (3.51)
ekc —1

where the minus (plus) sign corresponds to j = 0 (j = 2) and tensor or scalar
(vector)-type perturbations.

To close the system, and end the calculation, we must now consider an
incoming wave in the limit —Im(w) > Re(w). In this limit, the solution of
the Schrodinger-like equation near the origin is approximated by

O(x) ~ (§+eio‘+ + E,eia*) e 4 (§+e_ia+ + E,e_io‘*> e T (3.52)

in the branch of the Stokes line containing point A. As one rotates to point
B near the origin, the approximate expression for ® changes to

O(x) ~ (§+ei°‘+ + E_eia*) el 4 <§+e?’i°‘+ + E_e?’io‘*) e T (3.53)

Since Re(z) < 0 near Ry, we see that for —Im(w) > Re(w) the term e™“% is
exponentially bigger than the term e“*. However, since ®(x) ~ Te“” near
Ry, we must have

Byedr 4 B oMo — (3.54)

and consequently the term in e7“% is not present. We can therefore match

the coefficient of the term in €“?, yielding

Byel% 4+ B_el% =T. (3.55)
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On the other hand, Re(x) > 0 near Rq, and therefore e exponentially
dominates e in this region. Since ®(x) ~ e“* + Rel“” near R¢, we must
also have

B,el% 4 B_el%- =1, (3.56)

Consequently, T = 1. This equation, together with

RR+TT =1,
R_ R
T T
T =T, (3.57)

closes the system, as we now have 6 equations for the six unknowns R, T, R,
T R and T. These are readily solved to yield

+2ie~™/ku ginh <Z—“’)
C
3 cosh (% ) + cosh <—H - %)
—2sinh ( > sinh ( c)
T=T =

3 cosh (% + %) + cosh (% — %)

221 (/b0 — 1) cosh (32 + )

W TW ’
3 cosh (E ) + cosh (—H — %)

R=—

R =

(3.58)

where the plus (minus) sign corresponds to j = 0 (j = 2) and tensor or scalar
(vector)-type perturbations.

Note that the poles of these coefficients are the frequencies of the asymp-
totic quasinormal modes (see [20] for further details), as it should be. On
the other hand, the limit Rg — 400, which is to say k¢ — 07, assuming
Re(w) > 0, yields the Schwarzschild coefficients

+9i
= e2mw/kn + 3’
T e27rw/k:H -1
- - eZmu/ch + 3’
+9i (e2m/kn _ 1
R ), (3.59)

e2mw/kn +3
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where the plus (minus) sign corresponds to j = 0 (j = 2) and tensor or scalar
(vector)-type perturbations, and as we have advertised for before (these were
also obtained in [17]).

The calculation above changes slightly in the case d =5, as explained
in [20]. The end result is

+2ie~ ™/ cogh (2—“’)
C

R=-— :
3sinh (2 + 72) — sinh (£2 - 72)
—2sinh (%) cosh (%)
T=T = :
3sinh (2 + 72) —sinh (72 - 72)
+2i (e?™/k — 1) sinh (’,;—“’ + g—“’)
R = L (3.60)

3sinh (% n %) _ sinh (% _ %)

where the plus (minus) sign corresponds to j = 0 (j = 2) and tensor or scalar
(vector)-type perturbations. Again, note that the poles of these coefficients
are the frequencies of the asymptotic quasinormal modes [20], as it should
be. Again the limit Rc — +o0 yields the Schwarzschild coefficients in d = 5.

3.2.2 The RN dS solution

As in the previous case of the Schwarzschild dS geometry, the RN dS black
hole asymptotic greybody factors have not been considered in the past liter-
ature, and we fill such a gap in this paper. We shall compute d-dimensional
asymptotic gravitational greybody factors for the RN dS geometry, using the
monodromy-matching technique first developed in [20]. Again, the main dif-
ference with respect to the calculation in [20] is an appropriate change in the
boundary conditions, from quasinormal to greybody boundary conditions.
This is what we do in the present section, as we shall now explain how to
compute the greybody factors at large imaginary frequencies for the RN
dS black hole. The following calculation relies heavily on [20], where any
missing details may be found.

We consider solutions of the Schrodinger-like equation in the complex
r-plane. Near the singularity r» = 0, these solutions behave as

®(x) ~ ByV2rwax J% (wx) + B_V2nwz J_; (wz), (3.61)

J
2

where z is the tortoise coordinate, .J, represents a Bessel function of the
first kind and By are (complex) integration constants. The parameter j
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Stokes line

\ =)
&

Figure 6: Stokes line for the RN dS black hole in the case of dimension
d=6.

satisfies j = 2651;—35 for tensor and scalar-type perturbations and j = % for

vector-type perturbations.

Our monodromy calculation must be carried out along the Stokes line
Re(x) = 0, which is sketched in Figure 6. Starting at point A, our solution
can be approximated in the limit Im(w) > Re(w) by

(I)(.CC) ~ (B+efia+ + B_efia_) eiwz + (B+eia+ +B_eia_) efiwz’ (362)

where at+ = 7 (14 7). The main difference between this calculation and the
calculation of the asymptotic quasinormal frequencies in [20] is that, unlike
the quasinormal modes, our solutions will here have well-defined monodromy
only around one of the horizons. For this reason we will have to consider
the two scattering problems corresponding to incoming or outgoing waves
in order to perform the full computation.

Consider the problem of an incoming wave first. In this problem, ® has
well defined clockwise monodromy e+ around the black hole outer horizon
R, where k™ is the surface gravity of the black hole outer horizon. As one
rotates from point A to point B near the origin, the approximate expression
for ® changes to

®(z) ~ (Bre¥*t 4+ B_e¥* ) " + (Bpel*t + B_e!* ) e, (3.63)
and further rotating to point C yields

q,(x) ~ (B+e3ia+ + B_GSia’) eiwaz + (B+651a+ + B_e5io¢,) e—iwa:. (3.64)
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To compute the monodromy of ® around the black hole outer horizon R,
we must follow a contour which encloses only this singularity. Therefore,
we start at point B, rotate to point C' near the origin and proceed to point
D along the branch of the Stokes line, which goes around the inner horizon
R_. As we do this, z increases by li—’i, where k£~ is the (negative) surface
gravity of the black hole inner horizon, and consequently at point C' one has

O(x) ~ (C+eia+ + C_eio‘*) eiw(ﬂ«“*}%) + (C+e_i0‘+ + C_e_ia*) eiiw(xfki%)

= (Cyel 4 O el ) er e 4 (Cye 0 4 e ) e ke 7,
(3.65)

Further rotating to point F yields

D(z) ~ (Cye™ + C_e™) eh et 4 (CyeTior 4 C_e™") e keI,
(3.66)
Closing the contour by returning to point B along the Stokes line, we see
that the coefficient of €“? does not change along this contour, and hence
this term already has the appropriate monodromy. On the other hand, the
monodromy of the term in e7“? will have to match the monodromy of ®
around R,:

W

C+ e3ia+ +C_ e3ia,

B oo + B o e ke Tkt = ekt (3.67)
Since ®(z) ~ €“* + Re™ " near Rc, we must have
B,el%+ + B_¢l*- =R, (3.68)
Since ®(z) ~ Te“® near Ry, we must also have
Biedio+ 4 B edlo- =T (3.69)
Consequently, . _
B et + B_e'%- _ E (3.70)

Bic¥or £ B odio- T

Finally, the approximate expressions for ® at points B and C must be
matched, yielding

B,edo+ 4 B edlo- = Ciel ei= + C_e® ei (3.71)

ByePe+ £ B oe- — Cie e kb 4+ C e @ e i, (3.72)
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Seen as a linear system for (B, B_,Cy,C_), equations (3.67), (3.70), (3.71)
and (3.72) can only have non-trivial solutions if

. . . _mw 27w . _mw _ 27w
el ela— e31a+e e e?)la_ e kT
elar Ee31a+ elo— _ Ee?)la_ 0 0
3i T 3i T : Tw : Tw
ediat edia— el g ) el gk
. . . w . w
eBlour eSla, e ot e*;(T e~ ia—g™ ;rf
=0, (3.73)

which yields

. —27Tw
2icos (X)) (1+ e *—
R (%) ( )
ert —1

Let us now consider the problem of an outgoing wave. In this problem, ®

has well defined clockwise monodromy e *c around the cosmological horizon
R, where k¢ is the (negative) surface gravity of the cosmological horizon.
Again as one starts out at point A the solution ® has the approximate
expression

D(z) ~ (Ble ' + Bl e )" + (B el + Bl e )e . (3.75)
As one rotates from point A to point B near the origin, this changes to
®(x) ~ (B ¥ + B &% )el“” 4 (B et + B el )e v, (3.76)

In order to compute the monodromy of ® around Rc we must follow a
contour that encloses only this singularity. Therefore, we proceed to point
E along the branch of the Stokes line, which goes around R;. As we do

this, x increases by ,;—i + ,i%, and consequently at point E one has

i i

O(x) ~ (C’ﬁre_io‘+ + O el )eiw(x_kj_kf) + (C'ﬁreia+ + O )
% e—iw(:c—k—_,_—k—_)
— (Cﬁre*iOH— + Cle*ia‘)eﬁe%eiwx + (C;eia+ + CLeia_)

Tw s

x e kte ke 9T, (3.77)
Further rotating to point F' yields

D(a) ~ (CLe¥ 4 CLeM Yok oi o  (Chel™ 4 CLe)

X e ke ko e W (3.78)
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Closing the contour by returning to point A along the Stokes line, we see
that the coefficient of e % does not change along this contour, and hence
this term already has the appropriate monodromy. On the other hand, the
monodromy of the term in e“? will have to match the monodromy of ®
around Rc:

Cg_eSiaJr _{_C/_eiﬁioa, ERE _gﬁw

Bl + B/_e_io_ek+ ek—ekc = ¢ ko, (3.79)

Since ®(z) ~ e “? + R'el“® near Ry, we must have
B et + Bl M- = R (3.80)
Since ®(x) ~ T'e™“? near R¢, we must also have
Be* + B e =T (3.81)
Consequently,
Bl e+t + Bl P~ R
Bl elot 4+ B elo- T

Finally, the approximate expressions for ¢ at points B and C must be
matched, yielding

(3.82)

B o3t | B ¢3lae _ of o=i0t oiF i 1 () e 1% okt ek 3.83
et + Ble =Cle "terter +Cle “erfer, (3.83)
B/ iag B/ i C/ iog *% -2 C/ io_ 7% e 3.84
Let Bl =CleYe kte k- +Cle e ke k. (3.84)

Seen as a linear system for (B’ , B.,C" ,C’ ), equations (3.79), (3.82), (3.83)
and (3.84) can only have non-trivial solutions if

. . . mw | mw 27w . mw | mw | 27w
e—lOH, e—107 e310&+ek+ — ch eBla,ek+ k— kC
. ;o . ;o
ediat _ %ela+ edia— _ %ela_ 0 0
3i 3icy i T e i @4 Tw
el e e M ert Th e % mert Tk
. . : Tw _ mw . _mw _ mw
elo+ elov— el o™t Tk =T Tk
=0, (3.85)

which yields
4 2mw | 21w | 2mw
R —2icos (%) (e e Tt e 4 1)

Ty 27w
T efc —1

(3.86)

To close the system, and end the calculation, we must now consider an
incoming wave in the limit —Im(w) > Re(w). In this limit, the solution of
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the Schrodinger-like equation near the origin is approximated by
B(z) ~ (Bye®t + B_e®)e® + (Bye ' + B_e 1% )e @7 (3.87)

in the branch of the Stokes line containing point A. As one rotates to point
B near the origin, the approximate expression for ® changes to

(I)(SC) ~ (§+eia+ + Eieia, )eiwm + (§+e3i°‘+ + Eiei’)ia,)e—iwm‘ (388)

Since Re(x) < 0 near R, we see that for —Im(w) > Re(w) the term e™“% ig
exponentially bigger than the term e“”. However, since ®(z) ~ Te“” near
Ry, we must have

Bye¥or 4 B efie- =, (3.89)
and consequently the term in Q*i“’x is not present. We can therefore match
the coefficient of the term in €“?| yielding

B,el% 4 B_el% =T. (3.90)

On the other hand, Re(z) > 0 near R¢, and therefore ¢“* exponentially

W in this region. Since ®(z) ~ e“? + Re“" near Rc, we

dominates e~
must also have
B, + B_el%- =1. (3.91)

Consequently, T = 1. This equation, together with

RR+TT =1,
R __R
T T
T =T, (3.92)

closes the system, as we now have six equations for the six unknowns
R, T,R,T',R and T. These are readily solved to yield

—2icos < ) (1 +e 21?5) ¢kt sinh <Z—‘”>
R= °
cosh (— - %) + (1 4+ 2 cos(mj)) cosh (Z—Zﬁ + %)

+ (2 + 2cos(mj)) cosh (2k7rﬁ" +F+ k‘c)
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T=T =

—2sinh ( ) sinh (%)
cosh (— — %) + (1 4 2cos(mj)) cosh

+ (2 + 2cos(mj)) cosh (2]:—_“’ e

21w

2icos ( 23) N <exT+ — 1) cosh (;Lj 4 ;;w + %>
h

R =
cosh (— - %) + (1 + 2cos(myj)) cos

+
+ (2 + 2 cos(mj)) cosh (27“" + &+ %)

Note that the poles of these coefficients are the frequencies of the asymp-
totic quasinormal modes (see [20] for further details), as it should be. On
the other hand, the limit Rc — 400, which is to say kc — 07, assuming
Re(w) > 0, yields the RN coefficients

2w !

P 2ICOS< )(l—i—e 2157%) _

o + (14+2cos(mj)) + (24 2cos(mj))e” k-
2Tw

ekt —1

T=T =

_ 21w )

ot + (14+2cos(mj)) + (2+2cos(mj)) e &=

R = ne (7;]> (ei"—r - 1> (3.94)

21w )

ert 4 (14 2cos(mj)) + (2 + 2cos(mf)) e *

which can also be obtained by an easy generalization of the calculation for
d=4in [17].

The calculation above changes slightly in the case d =5, as explained
in [20]. The end result is

—2icos e i+ cosh =
Sy (3 - g;f)) ((1 + 26082 7)) sinh (ﬂ<~; +);;w)
+ (2 + 2 cos(rj)) sinh (QW +oe 4T )
~2sinh (£2) cosh (2
sinh (2 — 7 ) + (1 + 2cos(nj)) sinh (72 + 72 )

+ (24 2cos(7j)) sinh (2,:,“’ + 75+ k‘c)

T=T =




772 TROELS HARMARK, JOSE NATARIO AND RICARDO SCHIAPPA
21‘305(2])@“ (e%w —1> cosh (,T“’+ —1—”“’)
sinh (—C — g—f) (14 2cos(mj)) ( + Zl)

+ (2 + 2cos(mj)) sinh (2’“" k—“’)

R =

(3.95)

with j = % for tensor and scalar type perturbations and j = 2 — % for vector
type perturbations. Notice that the poles of these coeflicients are the fre-
quencies of the asymptotic quasinormal modes [20], as it should be. Again
the limit Rc — 400 yields the RN coefficients in d = 5.

4 Asymptotically AdS spacetimes

This final section is dedicated to the study of asymptotically AdS space-
times, considering both the Schwarzschild AdS and the RN AdS solutions
for d-dimensional black holes (we refer the reader to the appendices of [20]
for a complete description of these geometries). The quantization of a scalar
field in AdS was first addressed in [46], where considerable attention was
given to the question of what are the AdS boundary conditions. In fact, in
AdS, light rays can reach spatial infinity and return to the origin in finite
time, as measured by the observer at the origin (crossing AdS within half
the natural period). As it turns out, the only sensible boundary condi-
tion to impose on quasinormal modes is the usual incoming waves at the
black hole event horizon and the new requirement of vanishing of the wave-
function at infinity. These boundary conditions were explored in [20] to
compute asymptotic quasinormal modes. The boundary conditions for the
scattering process which computes greybody factors in asymptotically AdS
spacetimes are a bit more subtle than in the previous cases (asymptotically
flat and asymptotically dS) and are schematically depicted in figure 7. Black
holes in AdS are in thermal equilibrium with their environment; the radia-
tion which is produced at the black hole horizon is all reabsorbed. This is
clear from figure 7, where blackbody radiation is produced at the black hole
horizon, with part of this radiation traveling all the way to spatial infinity,
and the rest being reflected back to the black hole due to the interaction
with the non-trivial spacetime geometry outside of the black hole. But in
AdS, the radiation which reaches spatial infinity is reflected back, with part
of this radiation traveling all the way through to the black hole horizon,
and the rest being reflected back to spatial infinity due to the interaction
with the non-trivial spacetime geometry, and so on ad infinitum. This is
the physical picture which ensures thermal equilibrium. In the following,
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Figure 7: Penrose diagram for the Schwarzschild AdS spacetime, along with
the schematics of the emission problem in the region covered by the tortoise
coordinate. The solid line represents emission from the black hole event
horizon, while the dots represent the scattering of waves in the spacetime
geometry. After each reflection at the spacetime boundary, there is a new
interaction of the emitted wave with the spacetime geometry.

T" and R’ are the scattering coefficients associated to black hole emission,
while T and R are the scattering coefficients associated to “emission” of
the reflected wave at spatial infinity. Interestingly enough, the greybody
factor is the same regardless of which process one considers. The back-
ground non-trivial geometry translates to the potential in the Schrodinger—
like equation, and these potentials have been described in [11] (as usual, we
refer the reader to the appendices of [20] for a complete listing of all these
potentials). Observe that, due to the linearity of the Schrodinger equation
describing the scattering process, one may study each of the infinite series of
reflections/interactions in separate. We shall explore such linear properties
in the following. We also plot the potential for both scalar field and tensor
type gravitational perturbations in the six-dimensional Schwarzschild AdS
geometry in figure 8.

An important point to have in mind concerns the stability of black holes in
asymptotically AdS spacetimes to tensor, vector and scalar perturbations,
as discussed in [11]. For black holes without charge, tensor and vector
perturbations are stable in any dimension. Scalar perturbations are stable
in dimension four but there is no proof of stability in dimension d > 5.
For charged black holes, tensor and vector perturbations are stable in any
dimension. Scalar perturbations are stable in four dimensions but there is
no proof of stability in dimension d > 5. As we work in generic dimension
d, we are thus not guaranteed to always have a stable solution. Our results
will apply if and only if the spacetime in consideration is stable.
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Figure 8: Potential for Schwarzschild AdS scalar field and tensor-type
perturbations in dimension d = 6. Plot is in the radial coordinate from the
black hole horizon to asymptotic infinity, with £ = 0,2 and 4, respectively.

4.1 Greybody factors at low frequency

In this section, we turn to the greybody factor, at low frequencies, for black
holes in asymptotically AdS spacetimes. We do this in two different approx-
imations. In one approximation we consider black holes of arbitrary size,
but we focus on the case where the frequency of the emitted radiation is
much smaller than the scale set by the cosmological constant. In the other
approximation, we consider small AdS black holes, i.e., black holes whose
size is much smaller than the distance-scale set by the cosmological constant.
Reliable computations of greybody factors for black holes in AdS geometries,
in the low frequency approximation, do not seem to have been previously
performed in the literature. For high frequencies, however, greybody factors
have been considered in [38], in a geometrical optics approximation.

The class of black hole solutions that we consider have a metric of the
form (2.1) with the function f(r) of the form (2.2), i.e., we have f(r) =
frn(r) + fo(r) where, in here, f,(r) is given by

fa(r) =1+ K22, (4.1)

such that setting f(r) = fo(r) in the metric (2.1) corresponds to an AdS
geometry.

To compute the leading order greybody factor at low frequencies (2.11),
we shall consider in the following an ¢ = 0 scalar wave propagating in the
background of an asymptotically AdS black hole spacetime. The wave equa-
tion is given by (2.9) with ¢ = 0 and with the potential V' (r) given in terms
of f(r) by (2.10). Note that the tortoise coordinate x is still defined in terms

of f(r) by (2.8).
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Consider the general scalar wave equation (2.9) for £ = 0. When r > Ry,
the tortoise coordinate x, defined in (2.8), can be written as

x = — arctan(kr). (4.2)
K

In particular, this expression tells us that 2 < g-. The potential V(r),
defined in (2.10), is now given by

(d—2)(1 + &*r2)(d — 4 + dr*r?)

Vir) = 4r?

. (4.3)

In the following, we shall find it useful to work in terms of a dimensionless
variable for the frequency. We therefore define

7€

(4.4)

w

In addition, it will also be useful to consider the dimensionless quantities T—Ff‘
and xkRy.

Measurement of asymptotic flures

Before proceeding with the determination of the greybody factor for black
holes in AdS, we first consider how to measure the incoming and outgo-
ing fluxes in an asymptotically AdS spacetime. This has also been briefly
discussed in the introduction.

The scalar equation (2.9), with V(r) given by (4.3), has the following
general solution for kr > 1:

Dy(u) =uT (6’1}19)1 (u) + CoHP, (u)) , (4.5)
2 2
where
w

It is apparent from (4.5) that we can identify H(l,)1 (u) as the outgoing

2
part and H & (u) as the incoming part of the wave-function ®,,. Now, we

2
have that x ~ - — = for k7 > 1. Therefore, the asymptotic region kz — 3
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corresponds to w — 0. In this region (4.5) reduces to
27 (1)

™

d, =

G+ Ch ( w (4.7)

d—1 P
% ) +i(Cy — Ch)

2
Using the fact that d/dx ~ —wd/du for kr > 1, we see that the total asymp-

totic flux is then given by

d®,, dd*
— P,
du

d—2 %
Jasy = _Qd—QT Z < ::E

> = Jin - Jouta (48)

with the incoming and outgoing fluxes given by the following expressions:

. 2Qd,2wd*

1 -1
Jin = 1Cl?, Jous = |C1)?. (4.9)

Tr2d—14

One may alternatively write the total asymptotic flux as

Qd_gwd_l

Jasy =~ 55 (C2 = C1)(CT + C5) + (Cr + Co)(C5 = C7)], (410
an expression that will be of some use in our subsequent analysis.
Greybody factor for w < K

We shall begin by considering the case of computing greybody factor for
AdS black holes such that w < k. Naturally, this requirement must also
be supplemented with the usual low-frequency requirement, w < Ty, since
we have made use of this condition when matching regions I and II earlier.
To summarize, we shall consider the greybody factor in the specific regime
where

N 4 : S

w <K - < L (4.11)
Here we used the rescaled frequency defined in (4.4). An obvious interest
in this particular regime is that it also includes large AdS black holes, as
these are characterized by having kK Ry > 1. We shall comment more on this
point below.

Considering Region III, which is the standard asymptotic region where
r > Ry, we have that the potential V (r) is simply given by (4.3). From this
expression it is immediate to realize that, in the regime (4.11), we have

V(r) > 2(d — 2)% > W2, (4.12)

when r > Ry. Thus, we see that Region III is now included in Region II,
a region that was defined in section 2.1 as the region where V(r) > w?.
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Therefore, it follows from (2.30) and (4.1) that the wave-function, for r >
Ry, is given by

D, (r) = Al (1 +iwR{? /oo ()2 (1er — (r,)2)> : (4.13)

and in the particular limit where kr > 1, this expression becomes

iwR42
o= (1= ) o

From this, we may now easily determine both 62 — 6’1 and 61 + 6’2 by
comparison with equation (4.7), which also is valid for xkr > 1, with the
result that

~ T
Cy—C1 =~ ﬁAlv
2= (%)
R R . . 2 d—2
Cy+Cy = —i2%°T <d21) (“ fH> Ar (4.15)

Inserting this result in the expression for the total asymptotic flux (4.10), it
is simple to obtain

Jasy = Anw| A1, (4.16)

where Ap is the area of the black hole event horizon, defined in (2.5). Com-
paring this expression with (2.19), we find

Jhor = Jasy = Jin - Jout7 (417)

which expresses the fact that the total flux is preserved from the horizon to
the asymptotic region.

Let us now define the quantity

C,—C
2(0) = =—2 (4.18)
C1+ 02
In terms of z(w), one can write the greybody factor v(©) as
~ Jhor ‘61’2 '1 _Z(aj) 2
_ =1-—=1-|—Z 4.19
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where we made use of (4.9) and (4.17). On the other hand, using (4.15) in
(4.18), we obtain

T d)d—Z

22N (<Ri) T2

(4.20)

2(@) =

Inserting this result in (4.19), we have fully computed the greybody factor for
asymptotically AdS black holes, in the low-frequency regime (4.11). Observe
that since z(@) > 0 we always have 0 < (@) < 1.

One interesting feature to notice is that we can define a critical frequency,
W, by the equation

2(&0) = 1. (4.21)

N
—
—
U

2ol |
—
~—

a

|
N

Ge= 2 LRy (4.22)

Td—2

What one learns from this result is that, since from (4.19) v(&c) = 1, there
is no reflection of radiation at the critical frequency @, i.e., the black hole
absorbs all of the radiation which is sent towards it. Equivalently, in the
reverse process, in which there is emission of radiation from the black hole,
it means that all of the emitted radiation will reach the asymptotic region.
Moreover, from (4.22) we see that having @ = &. implies @ ~ KRy, and
since from (4.11) we have @ < 1, we obtain that kRy < 1. This result just
means that we are dealing with a small AdS black hole. Therefore, we may
conclude that only for small AdS black holes one can achieve the critical
frequency w., at least when working in the specific regime (4.11).

If we now consider frequencies much lower than the critical frequency,
w < W, we find that

T d)d72

2020 (45H)]2 (R Ru)®2

v(@) =4z(w) = (4.23)

In this case the greybody factor is inversely proportional to the area of the
black hole, whereas it is proportional to w? 2. We thus see that & < @ is
equivalent to @ < kRy. In other words, we have that large AdS black holes,
with kRyg > 1, are always in a regime such that © < @..
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Considering instead frequencies much higher than the critical frequency,
@ > W, we now find that

d=2[](d=1Y]2 (). Ryr)d—2
(@) = Z(i) 2 [F; el gfj)z . (4.24)

In this case, the greybody factor is proportional to the area of the black
hole, whereas it is instead inversely proportional to w% 2. We thus see that
W > Q¢ is equivalent to @ > kRy. Since from (4.11) we have © < 1, one
may infer that the condition @ > @, is only possible for small AdS black
holes with kRy < 1.

What we learn from the above results is that, both for & <« & and for @ >
we, the greybody factor behaves in a remarkably different fashion from the
case of an asymptotically flat black hole (2.40). Indeed, for an asymptotically
flat black hole we found that y(w) ~ w? 2Ay. This is quite contrary to
the behavior of (&), which we now find for AdS black holes, both for
w K we and @ > w.. It is furthermore also quite different from the case of
asymptotically dS black holes, for which v(®&) ~ A /Ac, see equation (3.26).

Finally, one may ask whether the condition @ < Ty /k in (4.11) is consis-
tent with the above considerations concerning the critical frequency w.. In
the particular case of a neutral AdS black hole, the temperature is given by

Tu d—3+(d—1)(kRn)*
— = ) 4.25
K 4k Ry ( )

Now, for a small AdS black hole, this implies Ty /k ~ (kRy)~!. Therefore
© < Ty /k is equivalent to & < (kRy)~!. Having & = &, means that & ~
KRy, and thus it is clearly possible to have both @ < Ty /k and & = &, for
a small AdS black hole. For a large AdS black hole, we have instead Ty/k ~
kRy. Therefore, ©® < Ty /k implies that @ < xRy, which is equivalent to
W <K We. We conclude that the bound @ < Ty /k is indeed consistent with
the above considerations.

Greybody factor for small AdS black holes

We finally turn to the case of small black holes in AdS, i.e., black holes with
kRy < 1. Combining this condition with the low-frequency requirement
(2.11), we see that we are considering the regime where

~ ~

w <K — WK KRy < 1. (4.26)

KRy’
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Since kR < 1, we may consider an intermediate region defined via Ry <
r < 1/k. This region overlaps with Region II, which was previously defined
in Section 2.1 as the region where V(r) < w?. By combining (2.30) with
(4.1) we learn that, for r > Ry, rw < 1 and kr < 1, the wave-function
behaves as

w d—2
,(r) = A (1 - i(d-%ﬁ—fﬁ) . (4.27)

In the following, we shall match the wave-function solved in the asymptotic
region of the AdS geometry, i.e., Region III as originally defined in Section
2.1, to the behaviour (4.27) of the wave-function in region II. Just like in the
earlier cases, this will allow for a direct evaluation of the greybody factors.
At this stage, it is useful to rewrite the scalar wave equation (2.9) in terms
of some more appropriate variables. To this end, let us define the coordinate

2,2
2 = sin®(kz) = ﬁ (4.28)
In this case, the scalar wave equation (2.9) becomes
d%g dg  40%2(1 —2) — (d —2)(d — 4 + 42)
4z(1 —2)—5 +2(1 — 22)— =0
A z)sz + 2 i 42(1 - 2) =5
(4.29)
where we have defined
a—2
g=1r 2 D, (4.30)

The general solution to (4.29) is the familiar hypergeometric solution,

d=2 2-d w w d-—1
g=C1z % (1—2)7 oF [—2,2; 5 z]
- ’ v d+1
Oy T (1 - 2)1,F, {1—;,14—;;;'1—2]. (4.31)

Let us start by considering the z — 0 limit. This limit corresponds to
having kr < 1, which implies that f, ~ 1. Thus, in this limit, the wave
equation reduces to that of flat spacetime. Moreover, in this same limit,
we also have that z ~ x%7? and we thus see from the general solution (4.31)
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that the wave-function @, (r) becomes

_ B (e e=3 1
(I)wzclfi%-FCQ/ﬁ% d( 2 ) ( 2 )
INE=

(4.32)

[Nl Ll

for kr <« 1. Next, consider instead the z — 1 limit. This corresponds to
having xr > 1, implying that f, ~ x?r?. Thus, in this limit, we have that
1 — 2z~ 1/(k?r?) and we obtain from the general solution (4.31) that the
wave-function @, (r) becomes

(4.33)

when xr > 1. We can find the C; and Cy coefficients by matching (4.32)
with (4.27) in region II, since both these expressions are valid in the regime
where Ry < r < 1/k and r < 1/w. This gives

o d dea Iw(dflﬂiz)r(dflf@) wRde
Ci=r2 A Co=—ik 2 2 2 H Ay 4.34
1=k 2 Aj, 2 1Kk 2 F(%)F(%) d—3 I ( )

Inserting this in the expression (4.33) for the wave-function for xkr > 1, we
can read off C; and C by (4.7), obtaining

G Crm i ),
2o 1 Ao\ dl—ay
22 I(=5=)I(=5)
. . T d—1+0 T d—1—-0 2 d—2
Cl + 02 = —12% ( 21-\(21$) 2 ) (H fH> AI- (435)
2

At this point we note that (4.35) reduces to (4.15) for @ < 1. This is a good
consistency check since both regimes (4.11) and (4.26) are valid for w < Ty,
wRp <1, kRg < 1 and 0 < 1.

Inserting the result (4.35) into (4.10) we can now find the total asymptotic
flux

Jasy = Anw| A1, (4.36)
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with Ap being the area of the event horizon, defined in (2.5). Comparing
this result with (2.19), we again find that the flux is conserved

Jhor = Jasy = Jin — Jout- (437)

Finally turning to the greybody factor, we obtain from (4.35) that the quan-
tity z(w), defined in (4.18), is given by

z(w) =

(4.38)

Thus, the greybody factor (&) is given in terms of z(®) by (4.19). From
(4.26) we moreover have that the greybody factor which we hereby have
computed is accurate as long as @ < 1/(kRy).

Analysing z(&) in (4.38) as a function of w, and for fixed xRy, we find
that z(w) =0 for © =2n+d — 1 with n € {0,1,2,...}. Therefore, we see
from (4.19) that one has

y(@)=0, for o=2n+d-1, with ne{0,1,2,...}. (4.39)

Thus, at these critical frequencies, we find that the greybody factor vanishes.
This implies, for the specific absorption process that we are considering,
that the radiation that we are sending towards the black hole is completely
reflected. In the reverse process, where one considers emission of radiation
from the black hole, it instead means that at these critical frequencies the
radiation cannot overcome the potential barrier. Note that the values of the
critical frequencies precisely match the values of the normal frequencies of
scalar wave perturbations in pure AdS spacetime, as computed in [20]. It
would be interesting to understand this match both in light of black hole
physics, as what we study in the present paper, as well as in light of using
our techniques in order to compute dual correlation functions via AdS/CFT.

In addition to the critical values of @ for which (&) =0, we also find
critical frequencies for which (&) = 1. These critical frequencies are, as
above, solutions to the equation z(w) = 1. We can write this equation as

d)d—Q 2d—2 i
FEENEREP ~ argop o )

For small @, we find that @, given by (4.22) is a solution, in accordance
with the results above for the regime (4.11). However, there are also other
solutions to (4.40). By (4.26), we see that the right-hand side is required
to be small. On the other hand, the left-hand side precisely vanishes for
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Figure 9: The greybody factor v(w) for d = 4 and KRy = 0.05.

w=2n+d-—1,withn € {0,1,2,...}. This means that, for sufficiently small
KRy, there can be several solutions to equation (4.40). In detail, these solu-
tions occur for (2n +d — 1 —&)? ~ (kRy)% 2. Therefore, there are several
possible critical frequencies, allowed at small xRy, for which we have that
the greybody factor is v = 1. This is consistent with the fact that the smaller
values of KRy we have, the larger values of @ we can consider, as we see
from (4.26). In order to illustrate the behaviour of v(w) we have depicted
it in figure 9 for d =4 and kR = 0.05. As one can see in this figure, for
every critical value of @ with (&) = 0, we have two critical values for which

Y(@) = 1.

Let us end this section with one last comment concerning AdS/CFT.
As we have discussed earlier, the greybody factor is a useful quantity also
to compute physical observables, such as emission rates of particles off a
black hole. In the particular case of an asymptotically flat spacetime, these
observables are associated to the concept of an S-matrix, and as such the
primary quantity to extract out of the greybody factor is the absorption
cross—section. As has become clear in recent years (see, e.g., [16]), the good
physical observables for perturbative quantum gravity in an asymptotically
AdS spacetime are the boundary correlation functions of the dual gauge
theory. As such, the AdS greybody factor we have just computed is a first
step in order to evaluate these thermal correlators (one still needs to adapt
the calculation in order to allow boundary insertions of arbitrary gauge
theory operators), and such a calculation should be considered in the future,
both in the present case of low frequency as well as in the case of asymptotic
frequencies which we shall consider in the following.
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4.2 Greybody factors at asymptotic frequency

4.2.1 The Schwarzschild AdS solution

For the Schwarzschild AdS geometry, asymptotic greybody factors have not
been considered in the past literature, and we fill such a gap in this paper.
We shall compute d-dimensional asymptotic gravitational greybody-factors
for the Schwarzschild AdS geometry, using the monodromy-matching tech-
nique first developed in [20,40]. We already know from the previous sec-
tions that it is not a difficult exercise to extend the monodromy-matching
technique from its original quasinormal mode application to the present cal-
culation of asymptotic greybody factors, by paying special attention to the
appropriate change in the boundary conditions. This is, however, a sub-
tle issue in asymptotically AdS geometries, but one which we shall resolve
in the following. In the present section, we shall explain how to compute
the greybody factors at large imaginary frequencies for the Schwarzschild
AdS black hole. The following calculation relies heavily on [20], where any
missing details may be found.

We consider solutions of the Schrédinger-like equation in the complex
r-plane. Near the singularity r = 0, these solutions behave as

®(x) ~ ByV2rwx J% (wx) + B_V2nwz J_; (wz), (4.41)

s,

where z is the tortoise coordinate, .J,, represents a Bessel function of the
first kind and By are (complex) integration constants. The parameter j
is left generic for the time being, but will ultimately be set equal to j =0
for tensor and scalar-type perturbations and equal to j = 2 for vector-type
perturbations.

Our monodromy calculation must be carried out along the standard con-
tour in figure 10. Starting at point B, our solution can be approximated in
the limit Im(w) > Re(w) by

O(x) ~ (B+efia+ + B_e*ia—) et 4 (B+eia+ + B_e'*") e T (4.42)
where ax = 7 (14 j). This is to be matched to

®(z) ~ e“? 4 Re™w? (4.43)
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Figure 10: Stokes line for the Schwarzschild AdS black hole, along with the
chosen contour for monodromy matching, in the case of dimension d = 6.

for an incoming wave at infinity. As one rotates from point B to point A
near the origin, the approximate expression for ® changes to

O(x) ~ (BJre_iO‘+ + B_e_io‘*) elwT | (B+e—3i0<+ + B_e_?’io‘*) omiwE

(4.44)
which is to be matched to the expression for ® near the horizon,
O (x) ~ T, (4.45)
Therefore, we have the system
Bie o+ £ B e7la- =1,
Byel% + B_el% =R,
Bie % 4 B _e7lo- =T,
Bie %%+ £ B_e739- =, (4.46)
from which T"'=1 and
R = 2icos (”;) = +9i, (4.47)

where the plus (minus) sign corresponds to j = 0 (j = 2) and tensor or scalar
(vector)-type perturbations.

In this case, it is important to point out that the quasinormal modes are
not the poles of the coefficients, as the boundary condition at infinity is



786 TROELS HARMARK, JOSE NATARIO AND RICARDO SCHIAPPA

different from the asymptotically flat or asymptotically dS case. They can,
however, be obtained by matching the approximate expression at r ~ oo

D(z) ~ <C+ei’6+ + CLew*) elwl@=20) 4 (C+e—iﬁ+ + C,e_iﬁ*) o—iw(@—20)

(4.48)
(see [20] for further details) to
®(z) ~ " 4 Re w7, (4.49)
and requiring C_ = 0. The resulting condition,
eHwro =20t — R, (4.50)

is easily seen to yield the asymptotic quasinormal frequencies in [20)].

In the limit Im(w) > Re(w), our solution can be approximated at point
B by

®(z) ~ (Bye'™ + B_e'®") e“" + (Bie '™ + B_e ' )e ¥ (4.51)
which is to be matched to
D(z) ~ e“® 4 Re w7, (4.52)

As one rotates from point B to point A near the origin, the approximate
expression for ® changes to

®(z) ~ (Bre ™ + B_e %) " + (Bre '™ + B_e %) e, (4.53)

which is to be matched to .
O(x) ~ Te". (4.54)

Therefore, we have the system

B,e% 4 B_¢el%= =1,

Bie % 4 B_eT = R,

Bie dio+ 4 B_e78ia- — T,
Bie % 4 B_eTio- =, (4.55)

from which T'= 1 and R = 0. Note that we have the consistency check

RR+TT = 1. (4.56)
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These very same coefficients will appear again in the RN AdS calculation.
The greybody factor finally follows as

Y(w)=T(w)T(w) = 1. (4.57)

4.2.2 The RN AdS solution

As in all non-asymptotically flat spacetime geometries, the RN AdS black
hole asymptotic greybody factors have not been considered in the past
literature, and we fill such a gap in the present paper. We shall compute
d-dimensional asymptotic gravitational greybody-factors for the RN AdS
geometry, using the monodromy-matching technique first developed in [20].
As usual, the main difference with respect to the calculation in [20] is an
appropriate change in the boundary conditions, from quasinormal to grey-
body boundary conditions, a subtle issue in asymptotically AdS geometries,
but one which we shall resolve in the following. This is what we do in the
present section, as we shall now explain how to compute the greybody fac-
tors at large imaginary frequencies for the RN AdS black hole. The following
calculation heavily relies on [20], where any missing details may be found.

We consider solutions of the Schrédinger-like equation in the complex
r-plane. Near the singularity r» = 0, these solutions behave as

®(x) ~ ByV2rwex J% (wx) + B_V2mwz J_; (wz), (4.58)

J
2

where « is the tortoise coordinate, J, represents a Bessel function of the
first kind and By are (complex) integration constants. The parameter j
satisfies j = 2‘1(1%35 for tensor and scalar-type perturbations and j = %:g for

vector-type perturbations.

Our monodromy calculation must be carried out along the standard con-
tour in figure 11. Starting at point B, our solution can be approximated in
the limit Im(w) > Re(w) by

®(z) ~ (Bre ™ + B_e ) " + (Byel + B_e®) e ", (4.59)
where a+ = 7 (1 £ j). This is to be matched to

®(z) ~ e 4 Re " (4.60)
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Im .

L]

Figure 11: Stokes line for the RN AdS black hole, along with the chosen
contour for monodromy matching, in the case of dimension d = 6.

for an incoming wave at infinity. As one rotates from point B to point A
near the origin, the approximate expression for ® changes to

®(z) ~ (Bre ' 4+ B_e ) " 4 (Bie Y 4 B_e to) e l”

(4.61)
which is to be matched to the expression for ® near the horizon,
() ~ Te?. (4.62)
Therefore, we have the system
Bie i+ 4 B e7lo- =1,
B.el% 4 B_el% =R,
Bie % 4 B e7lo- =T,
Bie 3+ 4 B_e 8- =, (4.63)
from which T'=1 and
R = 2icos (7;‘]) . (4.64)

In this asymptotically AdS case it is important to point out that the
quasinormal modes are not the poles of the scattering coefficients, as the
boundary condition at infinity is different from the asymptotically flat or
asymptotically de Sitter case. They can, however, be obtained by matching
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the approximate expression at r ~ oo

P(x) ~ (C+eiﬁ+ + Cfew*> ew(@=zo) 4 (C+e—iﬁ+ + C,e—iﬁ*) o—iw(@—=0)

(4.65)
(see [20] for further details) to
®(z) ~ e 4 Re™? (4.66)
and requiring C_ = 0. The resulting condition,
eHwro =2 — R, (4.67)

is easily seen to yield the asymptotic quasinormal frequencies in [20].

In the limit Im(w) > Re(w), our solution can be approximated at point
B by

®(z) ~ (Bre!™ + B_el®) " + (Bye 't + B_e ") e T, (4.68)
which is to be matched to
®(z) ~ T 4 Re™w7, (4.69)

As one rotates from point B to point A near the origin, the approximate
expression for ® changes to

(I)(x) ~ (B+e73a+ + B_efSa_) eiwx + (B+efia+ + B_efia_) efiwa:, (470)
which is to be matched to

O () ~ Tel”, (4.71)

Therefore, we have the system

B, + B_elo- =1
Bye ' + B_eT % =R
Bye 8+ | B e 8ia- — T,
Bie %+ 4 B el =, (4.72)
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from which 7' = 1 and R = 0. Notice that we have the consistency check
RR+TT =1. (4.73)

Incidentally, this is the exact same result as for the Schwarzschild AdS solu-
tion. This result shows that, for asymptotically AdS spacetimes, the scat-
tering coefficients are universal. The same thing happens for the greybody
factor, which finally follows as

y(w) = T(w)T(w) = 1. (4.74)

Acknowledgments

The work of JN and RS was partially supported by the Fundacdo para
a Ciéncia e a Tecnologia (Portugal) through the Program POCI/2010/
FEDER and the Project POCI/MAT/58549/2004. The work of TH is
partially supported by the European Community’s Human Potential Pro-
gramme under contract MRTN-CT-2004-005104 “Constituents, Fundamen-
tal Forces and Symmetries of the Universe”. TH would like to thank the
Carlsberg Foundation for support.

References

[1] J. M. Bardeen, B. Carter and S. W. Hawking, The four laws of black
hole mechanics, Commun. Math. Phys. 31 (1973), 161.

[2] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys.
43 (1975), 199.

[3] S. W. Hawking, Black holes and thermodynamics, Phys. Rev. D 13
(1976), 191.

[4] D. N. Page, Particle emission rates from a black hole: massless particles
from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976), 198.

[5] W. G. Unruh, Absorption cross section of small black holes, Phys. Rev.
D 14 (1976), 3251.

[6] N. Andersson and B. P. Jensen, Scattering by black holes, arXiv:gr-qc/
0011025.

[7] T. Regge and J. A. Wheeler, Stability of a schwarzschild singularity,
Phys. Rev. 108 (1957), 1063.

[8] F. J. Zerilli, Gravitational field of a particle falling in a Schwarzschild
geometry analyzed in tensor harmonics, Phys. Rev. D 2 (1970), 2141.



GREYBODY FACTORS 791

[9]

F. J. Zerilli, Perturbation analysis for gravitational and electromagnetic
radiation in a Reissner—Nordstrom geometry, Phys. Rev. D 9 (1974),
860.

A. Ishibashi and H. Kodama, A master equation for gravitational per-
turbations of mazimally symmetric black holes in higher dimensions,
Prog. Theor. Phys. 110 (2003), 701, arXiv:hep-th/0305147.

A. Ishibashi and H. Kodama, Master equations for perturbations of
generalized static black holes with charge in higher dimensions, Prog.
Theor. Phys. 111 (2004), 29, arXiv:hep-th/0308128.

S. S. Gubser and A. Hashimoto, Fzact absorption probabilities for the
D3-brane, Commun. Math. Phys. 203 (1999), 325, arXiv:hep-th/
9805140.

M. Cvetic, H. Lu, C. N. Pope and T. A. Tran, Fzact absorption proba-
bility in the extremal six—dimensional dyonic string background, Phys.
Rev. D 59 (1999), 126002, arXiv:hep-th/9901002.

S. S. Gubser, Can the effective string see higher partial waves?, Phys.
Rev. D 56 (1997), 4984, arXiv:hep-th/9704195.

E. Witten, Quantum gravity in de Sitter space, arXiv:hep-th/
01061009.

O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large
N field theories, string theory and gravity, Phys. Rep. 323 (2000), 183,
arXiv:hep-th/9905111.

A. Neitzke, Greybody factors at large imaginary frequencies,
arXiv:hep-th/0304080.

S. R. Das, G. Gibbons and S. D. Mathur, Universality of low energy
absorption cross—sections for black holes, Phys. Rev. Lett. 78 (1997),
417, arXiv:hep-th/9609052.

P. Kanti, J. Grain and A. Barrau, Bulk and brane decay of a (4 +n)—
dimensional Schwarzschild—de Sitter black hole: scalar radiation, Phys.
Rev. D 71 (2005), 104002, arXiv:hep-th/0501148.

J. Natéario and R. Schiappa, On the classification of asymptotic quasi-
normal frequencies for d—dimensional black holes and quantum gravity,
Adv. Theor. Math. Phys. 8 (2004), 1001, arXiv:hep-th/0411267.

J. M. Maldacena and A. Strominger, Black hole greybody factors and
D-brane spectroscopy, Phys. Rev. D 55 (1997), 861, arXiv:hep-th/
9609026.

I. R. Klebanov, World volume approach to absorption by non—dilatonic
branes, Nucl. Phys. B 496 (1997), 231, arXiv:hep-th/9702076.



792 TROELS HARMARK, JOSE NATARIO AND RICARDO SCHIAPPA

[23]

[28]

[29]

[30]

K. Krasnov and S. N. Solodukhin, Effective stringy description of
Schwarzschild black holes, Adv. Theor. Math. Phys. 8 (2004), 421,
arXiv:hep-th/0403046.

P. Kanti and J. March-Russell, Calculable corrections to brane black
hole decay I: the scalar case, Phys. Rev. D 66 (2002), 024023, arXiv:
hep-ph/0203223.

P. Kanti and J. March-Russell, Calculable corrections to brane black
hole decay II: greybody factors for spin 1/2 and 1, Phys. Rev. D 67
(2003), 104019, arXiv:hep-ph/0212199.

C. M. Harris and P. Kanti, Hawking radiation from a (44 n)-
dimensional black hole: exact results for the Schwarzschild phase, J.
High Energy Phys. 10 (2003), 014, arXiv:hep-ph/0309054.

E. Jung and D. K. Park, Bulk versus brane emissivities of photon fields:
For the case of higher-dimensional Schwarzschild phase, Nucl. Phys. B
766 (2007), 269, arXiv:hep-th/0610089.

A. S. Cornell, W. Naylor and M. Sasaki, Graviton emission from a
higher—dimensional black hole, J. High Energy Phys. 02 (2006), 012,
arXiv:hep-th/0510009.

V. Cardoso, M. Cavaglia and L. Gualtieri, Black hole particle emission
in higher-dimensional spacetimes, Phys. Rev. Lett. 96 (2006), 071301,
arXiv:hep-th/0512002.

V. Cardoso, M. Cavaglia and L. Gualtieri, Hawking emission of gravi-
tons in higher dimensions: non-rotating black holes, J. High Energy
Phys. 02 (2006), 021, arXiv:hep-th/0512116.

S. Creek, O. Efthimiou, P. Kanti and K. Tamvakis, Graviton emission
in the bulk from a higher-dimensional Schwarzschild black hole, Phys.
Lett. B 635 (2006), 39, arXiv:hep-th/0601126.

D. K. Park, Emissivities for the various graviton modes in the back-
ground of the higher-dimensional black hole, Phys. Lett. B 638 (2006),
246, arXiv:hep-th/0603224.

D.-C. Dai, N. Kaloper, G. D. Starkman and D. Stojkovic, Fvaporation
of a black hole off of a tense brane, Phys. Rev. D 75 (2007), 024043,
arXiv:hep-th/0611184.

E. Jung and D. K. Park, Bulk versus brane in the hawking radia-
tion of graviton: black holes radiate mainly into the bulk when n > 3,
arXiv:hep-th/0612043.

E. Jung and D. K. Park, Absorption and emission spectra of a higher-
dimensional Reissner—Nordstrém black hole, Nucl. Phys. B 717 (2005),
272, arXiv:hep-th/0502002.



GREYBODY FACTORS 793

[36]
[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

G. W. Gibbons and S. W. Hawking, Cosmological event horizons, ther-
modynamics and particle creation, Phys. Rev. D 15 (1977), 2738.

S. W. Hawking and D. N. Page, Thermodynamics of black holes in
anti-de Sitter space, Commun. Math. Phys. 87 (1983), 577.

S. Hemming and E. Keski-Vakkuri, Hawking radiation from AdS black
holes, Phys. Rev. D 64 (2001), 044006, arXiv:gr-qc/0005115.

L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies,
Adv. Theor. Math. Phys. 7 (2003), 307, arXiv:hep-th/0301173.

V. Cardoso, J. Natario and R. Schiappa, Asymptotic quasinormal fre-
quencies for black holes in non—asymptotically flat spacetimes, J. Math.
Phys. 45 (2004), 4698, arXiv:hep-th/0403132.

N. Sanchez, Scattering of scalar waves from a Schwarzschild black hole,
J. Math. Phys. 17 (1976), 688.

F.-W. Shu and Y.-G. Shen, Perturbative calculation of quasinormal
modes of d—dimensional black holes, J. High Energy Phys. 08 (2006),
087, arXiv:hep-th/0605128.

J. Grain, A. Barrau and P. Kanti, Fzact results for evaporating black
holes in curvature-squared lovelock gravity: Gauss—Bonnet greybody fac-
tors, Phys. Rev. D 72 (2005), 104016, arXiv:hep-th/0509128.

F. Moura and R. Schiappa, Higher-derivative corrected black holes: per-
turbative stability and absorption cross—section in heterotic string the-
ory, Class. Quantum Gravity 24 (2007), 361, arXiv:hep-th/0605001.

R. A. Konoplya and A. Zhidenko, Stability of multidimensional black
holes: complete numerical analysis, Nucl. Phys. B 777 (2007), 182,
arXiv:hep-th/0703231.

S. J. Avis, C. J. Isham and D. Storey, Quantum field theory in anti—de
Sitter space, Phys. Rev. D 18 (1978), 3565.






