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Abstract

We analyze the quantum ground state structure of a specific model
of itinerant, strongly interacting lattice fermions. The interactions are
tuned to make the model supersymmetric. Due to this, quantum ground
states are in one-to-one correspondence with cohomology classes of the
so-called independence complex of the lattice. Our main result is a com-
plete description of the cohomology, and thereby of the quantum ground
states, for a two-dimensional square lattice with periodic boundary con-
ditions. Our work builds on results by Jonsson, who determined the
Euler characteristic (Witten index) via a correspondence with rhombus
tilings of the plane. We prove a theorem, first conjectured by Fendley,
which relates dimensions of the cohomology at grade n to the number of
rhombus tilings with n rhombi.
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1 Introduction

The motivation for the work presented in this paper is multi-faceted. On
the physics side, the motivation stems from the need to understand the
electronic properties of materials where electrons are free to move but sub-
ject to strong (repulsive) interactions. Even at the level of relatively simple
model Hamiltonians, the behavior of such systems is notoriously difficult
to analyze. The model studied in this paper has been chosen such that
it enjoys a property called supersymmetry [1]. The benefit of this has
turned out to be two-fold. First, the supersymmetry leads to a consid-
erable degree of analytic control, allowing the rigorous derivation of quite a
few results, in particular on quantum ground states. Second, the supersym-
metric model turns out to have remarkable properties, both in dimension
D = 1, where the model is quantum critical and described by a supercon-
formal field theory [1–3], and in dimension D = 2, where the model displays
extensive ground state entropy [4–6] and where indications of quantum crit-
ical behavior were found [7].

On the mathematics side the study of supersymmetric lattice models has
led to interesting results on the cohomology of independence complexes of
lattices and graphs, 2D grids in particular [8–14]. The two sides are con-
nected by the observation that quantum ground states of the supersymmet-
ric lattice model are in one-to-one correspondence with the elements of the
cohomology of an associated independence complex.

The supersymmetric model on a 2D square lattice has turned out to be
particularly interesting. Numerical results for the Witten index (Euler char-
acteristic) in torus geometry led to remarkable conjectures for the depen-
dence of this quantity on the two periods of the torus [15]. These conjectures
were then proven by Jonsson [8], using a connection with specific rhombus
tilings of the plane. In the present paper, we complete the analysis by provid-
ing a direct characterization of the elements of the cohomology and thereby
of the quantum ground states for the square lattice wrapped around a torus.
We prove a theorem, first conjectured by Fendley, which relates dimensions
of the cohomology at grade n to the number of rhombus tilings with n
rhombi. Since the number of rhombus tilings grows exponentially with the
linear dimensions of the system, our result implies that the quantum model
has a sub-extensive ground state entropy.

The presentation in this paper is organized as follows. In Section 2, we
introduce the model and briefly summarize the main results presented in the
literature so far. The focus in this section will be on the physics of the model.
We then turn to the mathematics side in Section 3. We relate the Hilbert
space of the supersymmetric lattice model to an independence complex and
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show that the quantum ground states of the model are in one-to-one cor-
respondence with the elements of the cohomology of this complex. At the
end of this section, we resume the “tic-tac-toe” lemma of [16], which plays
a central role in the rest of the paper. In Section 4, we state the main result
of this paper; a theorem that relates the dimensions of the cohomology at
grade n to the number of rhombus tilings with n rhombi. We briefly discuss
how this theorem relates to Jonsson’s work [8,9] and what the implications
for the physics of the model are. The remainder of the paper (Section 5)
is dedicated to the proof of this theorem. Unfortunately, the proof is quite
involved and consists of several steps. A detailed outline of these steps can
be found at the start of Section 5.

2 Physics connection: supersymmetry and lattice fermions

In this section we will introduce the model and briefly state the main results
obtained for this model with a focus on the physics interpretation.

2.1 Supersymmetry

An N = 2 supersymmetric quantum mechanical theory is constructed from
a basic algebra, defined by two nilpotent supercharges Q and Q† (complex
conjugation is implied) [17],

{Q, Q} = {Q†, Q†} = 0

and the Hamiltonian given by

H = {Q†, Q}.

It satisfies

[H, Q] = [H, Q†] = 0.

The eigenvalues and eigenvectors of the Hamiltonian give the energy spec-
trum and the corresponding quantum states. The definition of the
Hamiltonian has some immediate consequences for the energy spectrum.
First of all, it is positive definite:

〈ψ|H|ψ〉 = 〈ψ|(Q†Q + QQ†)|ψ〉
= |Q|ψ〉|2 + |Q†|ψ〉|2 ≥ 0
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for all choices of the quantum state |ψ〉. Second of all, the fact that both Q
and Q† commute with the Hamiltonian, gives rise to a two-fold degeneracy
in the energy spectrum. In other words, all eigenstates of the Hamiltonian
with an energy Es > 0 form doublet representations of the supersymmetry
algebra. A doublet consists of two states, |s〉 and Q|s〉, such that Q†|s〉 = 0.
The states |s〉 and Q|s〉 are said to be superpartners. Finally, all states with
zero energy must be singlets: Q|g〉 = Q†|g〉 = 0 and conversely, all singlets
must be zero energy states [17]. In addition to supersymmetry our models
will also have a particle-number symmetry generated by the operator F with

[F, Q†] = −Q† and [F, Q] = Q. (2.1)

Consequently, F commutes with the Hamiltonian. Furthermore, this tells us
that superpartners differ in their fermion number by one (let F |s〉 = fs|s〉,
then F (Q|s〉) = Q(F + 1)|s〉 = (fs + 1)(Q|s〉)).

An important issue is whether or not supersymmetric ground states at
zero energy occur, that is, whether there are singlet representations of the
algebra. For this one considers the Witten index

W = tr
[
(−1)F e−βH

]
, (2.2)

where the trace is over the entire Hilbert space. Remember that all excited
states come in doublets with the same energy and differing in their fermion
number by one. This means that in the trace all contributions of excited
states will cancel pairwise, and that the only states contributing are the zero
energy ground states. We can thus evaluate W in the limit of β → 0, where
all states contribute (−1)F . It also follows that |W | is a lower bound to the
number of zero energy ground states.

2.2 Lattice fermions

We now make the model more concrete by defining the supercharges in terms
of lattice particles. The particles we will consider are spin-less electrons,
also called spin-less fermions. Their key property is that the wavefunction
is antisymmetric under the exchange of two fermions. It follows that the
operator c†

i that creates a fermion on site i in the lattice and the operator
cj that annihilates a fermion on site j in the lattice, satisfy the following
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anti-commutation relations:

{c†
i , cj} = δij ,

{ci, cj} = {c†
i , c

†
j} = 0.

The particle-number operator for fermions is defined as F =
∑

i c
†
ici, where

the sum is over all lattice sites. This operator counts the total number of
particles in a state. A simple choice for the supercharges would be Q =

∑
i c

†
i

and Q† =
∑

i ci. It is readily verified that both obey the nilpotency condition
and that the commutation relations with F (2.1) are satisfied. However, this
choice leads to a trivial Hamiltonian: H = L, where L is the total number of
sites of the lattice. To obtain a non-trivial Hamiltonian, we dress the fermion
with a projection operator: P<i> =

∏
j next to i(1 − c†

jcj), which requires all
sites adjacent to site i to be empty. We can now formulate the supercharges
in terms of these hard-core fermions: Q =

∑
c†
iP<i> and Q† =

∑
ciP<i>.

Again the nilpotency condition and the commutation relations (2.1) are
satisfied, but now the Hamiltonian of these hard-core fermions reads

H = {Q†, Q} =
∑

i

∑
j next to i

P<i>c†
icjP<j> +

∑
i

P<i>.

The first term is a nearest-neighbor hopping term, that is, the fermions can
hop from site j to site i as long as i and j are connected by an edge and
provided that the neighboring sites are empty. The second term contains a
next-nearest-neighbor repulsion, a chemical potential and a constant. The
details of the latter terms will depend on the lattice we choose.

2.3 Results and physics interpretation

This lattice Hamiltonian constitutes a particular instance of an itinerant-
fermion system, where all the interactions are fine tuned by the supersym-
metry. Over the last few decades, numerous studies of itinerant-fermion
systems in two spatial dimensions have been presented, however, exact solu-
tions are few and far between. The model presented here does allow for
exact results and turns out to exhibit quite remarkable features. First of
all, the supersymmetric model on the chain can be solved exactly through a
Bethe ansatz [1]. In the continuum limit one can derive the thermodynamic
Bethe ansatz equations. The model has the same thermodynamic equations
as the XXZ chain at Δ = −1/2, so the two models coincide (the mapping
can be found in [2]). The continuum limit is described by the simplest field
theory with N = (2, 2) superconformal symmetry with central charge c = 1,
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which implies that the model is quantum critical. For a periodic chain with
length L = 3n the model has a twofold degenerate zero-energy ground state
with f = n fermions.

This ground state degeneracy turns out to be a generic feature of the
model. In fact, in two spatial dimensions the ground state entropy SGS
typically grows exponentially with the system size. This characteristic of
having an extensive ground state entropy goes under the name of superfrus-
tration [4]. Numerical studies of the Witten index have shown that even
this lower bound is typically extensive [5]. Exact results for the number of
ground states were obtained for various lattices [4]. For example, for the
martini lattice, which is formed by replacing every other site on a hexagonal
lattice with a triangle, the number of zero-energy ground states eSGS was
found to equal the number of dimer coverings of the hexagonal lattice. For
large systems (L → ∞) this gives

SGS

L
=

1
π

∫ π/3

0
dθ ln[2 cos θ] = 0.16153 . . . .

A heuristic way of understanding the superfrustration is from the “three-
rule”: to minimize the energy, fermions prefer to be mostly three sites apart
(with details depending on the lattice). For generic two-dimensional lattices
the three-rule can be satisfied in an exponential number of ways.

For certain two-dimensional lattices it was proven that zero-energy ground
states exist at various fillings. The filling is defined as the number of particles
per lattice site. For the square, triangular and hexagonal lattice there exist
zero-energy ground states for all rational fillings ν within the range [1/5, 1/4],
[1/7, 1/5] and [1/4, 5/18], respectively [9].

The square lattice turns out to be a special case. Here the Witten index
is subextensive and for periodic boundary conditions in two directions (i.e.,
the square lattice wrapped around the torus) it grows exponentially with the
linear dimensions of the system [8,15]. In this paper we prove that the total
number of ground states also grows exponentially with the linear dimensions
of the system. In fact, this proof establishes a direct relation between ground
states and tilings of the plane with two types of rhombi (see Section 4 for
details), which were first introduced by Jonsson. In [7] we presented numer-
ical studies of various ladder realizations of the square lattice with doubly
periodic boundary conditions. These studies, together with the correspon-
dence between ground states and tilings, strongly indicate the existence of
critical edge modes in these systems. It is compelling to infer that, if a
subextensive systems accommodates edge criticality, a truly extensive sys-
tem, like the triangular lattice, will allow for bulk criticality. On another
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speculative note, the ground state-tiling correspondence for the square lat-
tice on the torus suggests the possible existence of topological order in some
of the many ground states.

3 Math connection: independence complex and
cohomology theory

In this section we will establish the relation between particle configura-
tions of hard-core fermions and independent sets, on the one hand, and
between zero energy ground states and cohomology elements on the other.
At the end of this section we state the “tic-tac-toe” lemma for double com-
plexes, which plays a central role in the proof of the main result of this
paper.

3.1 Independence complex

An independent set on a graph is a subset of the vertex set of the graph
with the property that no two vertices are adjacent. Since hard-core fermions
cannot occupy adjacent sites, it is clear that each allowed configuration of
hard-core fermions forms an independent set. In the following, we will use
the term lattice (i.e., a grid) instead of the more general term graph, since
in the physics context it is most natural to study fermions on a lattice.
However, the correspondences we establish in this section hold for graphs in
general. The family of independent sets of a lattice forms the independence
complex Σ of the lattice. We can define the partition sum in the asymptotic
(thermodynamic) limit for the independence complex Σ as

Z(Σ, z) ≡
∑
σ∈Σ

z|σ|, (3.1)

where z is called the activity. Until recently there were essentially no exact
results for independence complexes on two dimensional lattices, with one
important exception. Baxter [18] gave an analytic expression for the par-
tition sum of the independence complex on the triangular lattice with pos-
itive activity in the thermodynamic limit. This is also referred to as the
exact solution for hard hexagons (hard-core fermions on the triangular lat-
tice can, in this context, be viewed as hexagons that share, at most, a side or
a corner).
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Now observe that the coefficient of zk in (3.1) is the number of sets in Σ
with size k or, in other words, the number of configurations with k hard-
core fermions. Consequently, Z(Σ, 1) gives the dimension of the full Hilbert
space H; the space spanned by all possible hard-core fermion configurations.
What is even more interesting, however, is that Z(Σ,−1) coincides with the
Witten index (2.2)

Z(Σ,−1) =
∑
σ∈Σ

(−1)|σ| = tr(−1)F .

Recently, Jonsson expressed precisely this quantity (Z(Σ,−1)) for hard
squares on a torus, i.e., with doubly periodic boundary conditions, in terms
of rhombus tilings on the torus [8] (see Section 4 for details). This quantity
coincides with the Witten index for hard-core fermions on the square lattice.
For the square lattice the condition that two particles cannot occupy two
adjacent sites readily translates to the hard square condition if we define the
squares to be tilted by 45◦ and to have a particle at their center. It follows
that the squares cannot overlap; however, they can have a corner or a side
in common.

3.2 Cohomology and homology theory

It should be clear from the previous that the Hilbert space is a graded
vector space, where the grading is defined by the particle-number operator
F . That is, the Hilbert space can be written as H = ⊕Cn, where Cn is a
subspace spanned by all the possible configurations with n particles. From
the definitions of F and Q and their commutation relations (2.1) it is clear
that Q is a map from Cn to Cn+1. Since Q squares to zero, we can define
its cohomology. On the other hand, Q† is a map from Cn to Cn−1 and also
nilpotent, so we can define the homology of Q†.

C0

Q
−→
←−
Q†

C1

Q
−→
←−
Q†

C2

Q
−→
←−
Q†

C3 . . .

It turns out that the zero-energy ground states of the model are in one-to-
one correspondence with the non-trivial classes of the cohomology of Q and
the homology of Q†. Remember that all states with zero energy must be
singlets: Q|g〉 = Q†|g〉 = 0 and conversely, all singlets must be zero-energy
states. Clearly, all singlets, and thus all (zero-energy) ground states, are in
the kernel of Q: Q|g〉 = 0 and not in the image of Q, because if we could
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write |g〉 = Q|f〉, then (|f〉, |g〉), would be a doublet. Equivalently, we can
say that a ground state with n fermions is a cycle but not a boundary in
Cn. This is precisely the definition of an element of the nth cohomology
of Q, H

(n)
Q = ker Q/Im Q within Cn. Two states |s1〉 and |s2〉 are said to

be in the same cohomology class if |s1〉 = |s2〉 + Q|s3〉 for some state |s3〉.
Since a ground state is annihilated by both Q and Q†, different (i.e., lin-
early independent) ground states must be in different cohomology classes
of Q.1 Finally, the number of independent ground states is precisely the
dimension of the cohomology of Q and the fermion number of a ground state
is the same as the grade of the corresponding cohomology class. Thus the
ground states of a supersymmetric theory are in one-to-one correspondence
with the cohomology of Q. With the same line of reasoning we may also
conclude that the ground states are in one-to-one correspondence with the
homology of Q†. Finally, the Euler characteristic, defined in cohomology
theory as

χ ≡
∑

n

[
(−1)ndim H

(n)
Q

]
,

is precisely the Witten index.

3.3 The “tic-tac-toe” lemma

Central to the proof presented in this paper is the “tic-tac-toe” lemma of [16].
Let us decompose the lattice S into two sublattices S1 and S2 = S \ S1 and
we write Q = Q1 + Q2, where Q1 and Q2 act on S1 and S2, respectively.
We can then consider the double complex ⊕nCn = ⊕n ⊕p+q=n Kp,q, where
p (q) is the size of the vertex set on S1 (S2). Equivalently, if we define fi as
the number of particles on Si, we have f1 = p and f2 = q. Finally, we have
Q1 : Kp,q → Kp+1,q and Q2 : Kp,q → Kp,q+1. The “tic-tac-toe” lemma now
tells us that the cohomology of Q, HQ, is the same as the cohomology of
Q1 acting on the cohomology of Q2, i.e., HQ = HQ1(HQ2) ≡ H12, provided
that H12 has entries only in one row. That is, H12 is non-vanishing only for

1Let |s1〉 and |s2〉 be two linearly independent ground states. It follows that
Q|s1〉 = Q|s2〉 = Q†|s1〉 = Q†|s2〉 = 0. If we now write |s1〉 = |s2〉 + Q|s3〉, we find that
Q†|s1〉 = Q†|s2〉 + Q†Q|s3〉 and thus Q†Q|s3〉 = 0. From this we find 〈s3|Q†Q|s3〉 =
|Q|s3〉|2 = 0 and thus Q|s3〉 = 0. With this we obtain |s1〉 = |s2〉, which contradicts our
assumption that |s1〉 and |s2〉 are linearly independent, so we conclude that |s1〉 and |s2〉
must be in different cohomology classes.
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one value of q (or f2).

...
...

...
↑ Q2 ↑ Q2 ↑ Q2

K0,2
Q1
−→ K1,2

Q1
−→ K2,2

Q1
−→ · · ·

↑ Q2 ↑ Q2 ↑ Q2

K0,1
Q1
−→ K1,1

Q1
−→ K2,1

Q1
−→ · · ·

↑ Q2 ↑ Q2 ↑ Q2

K0,0
Q1
−→ K1,0

Q1
−→ K2,0

Q1
−→ · · ·

4 Statement of main result

The main result of this paper can be formulated both in the physics and
mathematics context. We prove the result in the mathematics context,
namely we find the dimensions of the cohomology for the independence com-
plex on the square lattice wrapped around a torus. In the physics context
this translates to the statement that we found the total number of ground
states for the supersymmetric model on the square lattice wrapped around
a torus. As we mentioned at the end of Section 2, the solution is found
by relating ground states, or equivalently elements of the cohomology, to
tilings of the plane with two types of rhombi. As was mentioned before,
this relation is inspired by the work of Jonsson [8, 9]. He first introduced
the rhombi when he related the partition sum of hard squares with activity
z = −1 to these rhombus tilings. This is precisely the Witten index for our
model on the square lattice, and also the Euler characteristic of HQ. The
Witten index is a lower bound to the number of ground states. The result
we obtain in this paper gives us, not just this bound, but the total number
of ground states with their respective fermion number in terms of rhombus
tilings. A rhombus tiling is obtained by tiling the plane with the rhombi
depicted in figure 1, such that the entire plane is tiled and the rhombi do
not overlap (they can have only a corner or a side in common). We call the
tiles with area four diamonds and the ones with area five squares. We can
now state the main result of this paper.

Theorem 4.1. For the square lattice with periodicities 	v = (v1, v2),
v1 + v2 = 3p with p a positive integer and 	u = (m,−m), we find for the
cohomology HQ

Nn = dimH
(n)
Q = tn + Δn, (4.1)
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Figure 1: The diamonds on the left and squares on the right.

where Nn is the number of zero-energy ground states with n fermions, tn is
the number of rhombus tilings with n tiles, and

Δn =
{

Δ ≡ −(−1)(θm+1)pθdθd∗ if n = [2m/3]p,
0 otherwise,

(4.2)

with [a] the nearest integer to a. Finally, d = gcd(u1 − u2, v1 − v2),
d∗ = gcd(u1 + u2, v1 + v2) and

θd ≡
{

2 if d = 3k, with k integer,
−1 otherwise. (4.3)

As an immediate consequence of this theorem, we obtain for the Euler
characteristic (=Witten index = Z(Σ,−1))

χ ≡
∑

n

[
(−1)ndim H

(n)
Q

]
=

∑
n

(−1)n(tn + Δn).

which is precisely the result obtained by Jonsson for the hard squares at
activity z = −1 [8].

Another direct consequence follows from the area of the tiles. The dia-
monds have area 4, and thus a tiling with solely diamonds will contain L/4
tiles. This corresponds to an element in the (L/4)th cohomology and a
ground state with L/4 particles. Conversely, a tiling consisting of squares
only corresponds to an element in the (L/5)th cohomology and a ground
state with L/5 particles. Continuing this argument for general tilings with
the diamonds and squares, we find on the infinite plane that for all ratio-
nal numbers r ∈ [15 , 1

4 ] ∩ Q the cohomology at grade rL is non-vanishing, or,
equivalently, there exists a zero-energy ground state with rL particles. This
result was obtained independently by Jonsson [9] for the homology of Q†. In
fact, he found that for each tiling there is a so-called cross-cycle, which is a
representative of the homology of Q†. However, he could not prove that these
cross-cycles are independent, i.e., in different homology classes, nor that they
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constitute a basis. A comparison with our result, Theorem 4.1, suggests that
the cross-cycles are indeed independent and span the full homology with the
exception of Δn elements at the nth grade.

Finally, the theorem provides insight in the growth behavior of the number
of ground states, since this is now directly related to the growth behavior of
the number of tilings. In [10] various results on the number of tilings on the
doubly periodic square lattice are reported. Here we mention two of these
results for the case that 	u = (m,−m) and 	v = (k, k).

1. For m and k such that gcd(m, k) = 1, there are no rhombus tilings
that satisfy the periodicities given by 	u and 	v.

2. For m = 3μr and k = 3λr, with μ and λ positive integers and r large,
the total number of rhombus tilings t grows as

t ≡
∑

n

tn ∼ 9
2

4μr+λr

πr
√

μλ
.

In the first case it follows that the number of ground states with n par-
ticles is given by Δn, which is non-zero only for n = [2m/3]p given that
2k = 3p. In the second case the number of ground states will show the same
growth behavior as the number of tilings. This number turns out to be dom-
inated entirely by the number of tilings with 2L/9 tiles. Furthermore, it is
noteworthy that the number of tilings grows exponentially with the linear
dimensions, instead of the area, of the system. It follows that, eventhough
the system is highly frustrated, this leads only to a sub-extensive ground
state entropy. This is in contrast with results obtained for the triangular,
hexagonal and martini lattices, for which the ground state entropy was found
to be extensive [4, 5].

5 Proof of main result

In this section we present the proof of Theorem 4.1. Unfortunately, the proof
is quite involved and consists of several intermediate steps. Here we will give
a brief outline of these steps. In Section 3.3 we resumed the “tic-tac-toe”
lemma which plays a crucial role in the proof. The lemma relates HQ to
HQ1 and HQ2 when Q is written as Q1 + Q2. This is achieved by writing
the lattice S as S1 ∪ S2 and letting Qi act solely on Si. The crucial step is
to choose the right sublattices. It turns out that for the square lattice one
should pick a set of disconnected points for S1 and a set of (disconnected)
chains for S2 (for the details see Definition 5.2).
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First, in Section 5.1, we will discuss the cohomology results for a single
chain with various boundary conditions. These results are crucial in the first
step of the “tic-tac-toe” lemma, i.e., computing the cohomology of Q2, since
Q2 acts on a set of chains.

Second, in Section 5.2, we consider the square lattice on the plane and
on the cylinder, to illustrate the power of the “tic-tac-toe” lemma for a
relatively simple case. We choose the boundary conditions in such a way
that HQ2 is non-vanishing only for one value of f1 and f2. Consequently,
H12 and HQ are trivially obtained from HQ2 .

Finally, we wrap the square lattice around the torus. We then apply the
same strategy as in Section 5.2, and HQ2 is easily obtained. Unfortunately,
however, it has entries in several rows and columns of the double complex
and computing H12 is highly non-trivial.

As a first step (Section 5.3.1), we compute H12 for a thin torus, such that
the S2 sublattice consists of one chain only. For this case, we then show that
HQ = H12, even though H12 has entries in multiple rows. The final step for
this simple case is to relate the elements of HQ to periodic sequences of tiles
and identify the elements that give rise to the small number Δ in (4.1).

In the last step (Section 5.3.2), we finally present the proof of Theorem
4.1. Here the sublattice S2 consists of an arbitrary number of chains. We
proceed as in Section 5.3.1 to obtain H12 and each step will be similar, but
slightly more involved. Again we find that H12 does not have entries only
in one row. In contrast to the thin torus case, however, we find that here
HQ is contained in but not equal to H12. Using the “tic-tac-toe” procedure,
we reduce H12 to obtain HQ. What we find is that all the elements of HQ

can be obtained by concatenating so-called building blocks and in the final
step we map each building block to a sequence of tiles. It follows from this
mapping, that the elements of HQ map to all possible tilings, again with a
small discrepancy Δ, which is computed in the very last step.

5.1 The cohomology of Q on the chain

In the following sections, we will often use the cohomology results for the
supersymmetric model on the chain. These results can be found in [1, 2],
but will be restated here for completeness.

Definition 5.1. An open chain of length L is the graph G(V, E) with
vertices V = {vj |j ∈ N, j ≤ L} and edges E = {(vj , vj+1)|j ∈ N, j < L}. A
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periodic chain of length L is a cycle defined by the graph G(V, E′) where
E′ = E ∪ {(vL, v1)}.

In the following, j ∈ N (j can also be zero as long as the number of sites
L is positive).

Theorem 5.1. The cohomology of Q on the periodic chain with L sites has:

• two non-trivial cohomology classes with j fermions if L = 3j,
• one non-trivial cohomology class with j fermions if L = 3j ± 1.

The cohomology of Q on the open chain with L sites has:

• one non-trivial cohomology class with j fermions if L = 3j or
L = 3j − 1,

• zero non-trivial cohomology classes if L = 3j + 1.

Proof. We prove this result for the periodic chain with L = 3j sites. We
take S2 to be every third site and the remaining sites S1. Remember that
fi is the number of fermions on sublattice Si. Consider a single site on S2.
If both of the adjacent S1 sites are empty, HQ2 is trivial: Q2 acting on the
empty site does not vanish, while the filled site is Q2 acting on the empty
site. So the empty site does not belong to the kernel of Q2, whereas the
filled site belongs to the image of Q2. This leads to a vanishing HQ2 , unless
every site on S2 is forced to be empty by being adjacent to an occupied site.
There are only two such configurations:

|α〉 ≡ · · · • � ◦ •� ◦ •� ◦ •� ◦ •� ◦ •� ◦ •� ◦ . . .

|γ〉 ≡ · · · ◦ � • ◦� • ◦� • ◦� • ◦� • ◦� • ◦� • . . . (5.1)

where the square represents an empty site on S2. Both states |α〉 and
|γ〉 belong to H12: they are closed because Q1|α〉 = Q1|γ〉 = 0, and not
exact because there are no elements of HQ2 with f1 = f − 1 fermions, where
f = L/3 = j. By the “tic-tac-toe” lemma, there must be precisely two dif-
ferent cohomology classes in HQ, and therefore exactly two ground states
with j fermions. �

The proofs for the other cases are completely analogous. In the main
proof we will need the representatives of the non-trivial cohomology classes
of Q on the open chain. We will use the following notation: to denote a
configuration with fermions on sites a, b, c, etc. we write |a, b, c . . . 〉.
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Lemma 5.1. A representative of the non-trivial cohomology classes of Q
on the open chain with L = 3j or L = 3j − 1 sites is

|φ〉 ≡ |2, 5, 8 . . . 3j − 1〉, (5.2)

where on the dots the numbers always increase by three.

Proof. From Theorem 5.1 we know that the representative has j fermions.
In the case that L = 3j it follows that |φ〉 is the only configuration with j
fermions that belongs to the kernel of Q. Since the dimension of HQ is one,
|φ〉 must be a representative of the non-trivial cohomology class.

When L = 3j − 1 there are two configurations that belong to the kernel
of Q: |1, 4, 7 . . . 3j − 2〉 and |2, 5, 8 . . . 3j − 1〉, however the dimension of HQ

is again just one. It follows that a linear combination of these two config-
urations will be in the image of Q. In general, two states |s1〉 and |s2〉 are
in the same cohomology class if one can write |s1〉 = |s2〉 + Q|s3〉 for some
state |s3〉. In that case both |s1〉 and |s2〉 are good representatives of the
cohomology class. Since |φ〉 itself is not in the image of Q it is thus a good
representative. �

5.2 The cohomology of Q on the square lattice. Part I: Tilted
rectangles and cylinders

Let us define R(M, N) with M, N ≥ 1 as the subset of Z2 given by the points
(x, y) such that

y ≤ x ≤ y + M − 1 and −y + 1 ≤ x ≤ −y + N. (5.3)

This defines a tilted rectangular part of the square lattice. We can also define
R̃(M, N) with M, N ≥ 1 as the subset of Z2 given by the points (x, y) such
that

y ≤ x ≤ y + M − 1 and −y ≤ x ≤ −y + N − 1. (5.4)

Whereas R̃(M, N) contains the point (0, 0), it is excluded in R(M, N). The
lattice R̃(M, N) can be mapped to a lattice of the former type except when
M and N are both odd. Finally, for M even the cylindrical version Rc(M, N)
can be obtained from R(M + 1, N) by identifying the vertices (i, i) and
(i + M/2, i − M/2).

For the lattices R(M, N), R̃(M, N) and Rc(M, N) the full cohomology
problem has been solved using Morse theory [12]. These cases can also be
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Figure 2: Sublattice S1 is indicated by circles and sublattice S2 is indicated
by the fat lines. The bounding lines of R(M, N) defined in (5.3) are drawn
for various values of M and N . For the cylinder M should be even, but for
the rectangle it can be odd as well. One easily checks that the length of the
S2 chain is M . Note that for N = 3n + 1 only half of the upper-right S2
chain is included in R(M, N).

solved using the “tic-tac-toe” lemma. The crucial step is to choose the right
sublattices. We take a set of disconnected sites for S1 and a set of (open or
periodic) chains for S2 (see figure 2).

Definition 5.2. More formally, for R(M, N) S1 is the set of points (x, y)
that satisfy

y ≤ x ≤ y + M − 1 and −y ≤ x ≤ −y + N − 1

and x = −y + 3s, (5.5)

with 3 ≤ 3s ≤ N − 1 and S2 is the set of points (x, y) that satisfy

y ≤ x ≤ y + M − 1 and −y ≤ x ≤ −y + N − 1

and −y + 3p + 1 ≤ x ≤ −y + 3p + 2, (5.6)

with 0 ≤ 3p ≤ N − 3. The sublattices can be defined similarly for R̃(M, N).

To solve HQ2 we start from the bottom-left chain. If a site on S1 directly
above this chain is occupied, we are left with an isolated site on the bottom-
left chain (see figure 3), leading to a vanishing HQ2 (see Section 5.1). It
follows that all sites directly above the bottom-left chain must be empty.
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Figure 3: A site directly above the bottom-left chain is occupied. This
generates an isolated site on the bottom-left chain.

Continuing this argument for subsequent chains one finds that all sites on
S1 must be empty. However, in the case that N = 3l + 1 we have a set of
disconnected sites at the top-right that belong to S2. From the previous
argument we obtained that the sites of S1 directly below the top-right sites
of S2 have to be empty. This implies that for N = 3l + 1 HQ2 vanishes.
When N �= 3l + 1 we find that all elements in HQ2 have all sites in S1 empty,
thus computing HQ1(HQ2) is a trivial step. The dimension of HQ is related
to the number of ground states, or equivalently, the number of non-trivial
cohomology classes of Q on the chains that constitute S2. Note that the
length of these chains is M both for the tilted rectangles as well as for
the cylinder. In the first case the chains have open boundary conditions,
whereas in the latter the chains are periodic. Now, the number of non-trivial
cohomology classes of Q for all these cases can be found in Theorem 5.1.

It follows that for the tilted rectangles, R(M, N) and R̃(M, N), with
N �= 3l + 1 we have

(i) no non-trivial cohomology classes for M = 3p + 1 and
(ii) one non-trivial cohomology class for M �= 3p + 1.

For the cylinder, Rc(M, N), with N �= 3l + 1 and M even we have

(i) one non-trivial cohomology class for M = 3p ± 1
(ii) 2K non-trivial cohomology classes for M = 3p, with K the nearest

integer to N/3.

For N = 3l + 1 the non-trivial cohomology vanishes for both the rectangle
and the cylinder.

5.3 The cohomology of Q on the square lattice. Part II: The torus

We now define the doubly periodic lattices via two linearly independent
vectors 	u = (u1, u2) and 	v = (v1, v2). We wrap the square lattice around
the torus by identifying all points (i, j) with (i + ku1 + lv1, j + ku2 + lv2).
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The main result of this paper is that we find the full cohomology of Q
on the square lattice with doubly periodic boundary conditions defined
by 	u = (m,−m) and 	v = (v1, v2) such that v1 + v2 = 3p. In particular, we
obtain a direct relation between elements of HQ and tiling configurations.
This relation allows us to prove Theorem 4.1, that was first conjectured by
Fendley and is strongly inspired by the work of Jonsson [8,9]. It is restated
here for convenience.

For the square lattice with periodicities 	v = (v1, v2), v1 + v2 = 3p with p
a positive integer and 	u = (m,−m), we find for the cohomology HQ

Nn = dimH
(n)
Q = tn + Δn

where Nn is the number of zero energy ground states with n fermions, tn is
the number of rhombus tilings with n tiles, and

Δn =
{

Δ ≡ −(−1)(θm+1)pθdθd∗ if n = [2m/3]p,
0 otherwise,

with [a] the nearest integer to a. Finally, d = gcd(u1 − u2, v1 − v2),
d∗ = gcd(u1 + u2, v1 + v2) and

θd ≡
{

2 if d = 3k, with k integer,
−1 otherwise.

Computing the cohomology for these tori is far from trivial. First of all,
computing HQ2 does not imply that all sites on S1 are empty, instead there
are many allowed configurations on S1. Secondly, because of this, computing
HQ1(HQ2) becomes much more involved. Finally, we will see that, generally,
HQ will be contained in H12, but not equal to H12.

We will divide the proof into two parts. We start by proving the theorem
for a specific torus, defined by 	u = (m, −m) and 	v = (1, 2). This proof will
already contain many steps that we use in the proof for the more general
case, however, it will be deprived of certain complications. For instance,
here we will find HQ = H12. As we said, this is not true in general, and
in the second part of the proof a substantial part will be concerned with
obtaining HQ once we have found H12.

5.3.1 A special case: S2 consisting of one chain

In this section we consider the case where 	v = (1, 2) and 	u = (m,−m). It
follows that S2 consists of exactly one periodic chain (see figure 4).
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Figure 4: The square lattice is wrapped around the torus by imposing peri-
odicities 	v and 	u. Here 	v = (1, 2) and 	u = (m,−m), consequently S2 consists
of one chain. On the right we have drawn the cylinder, where periodicity in
the 	u-direction is still implied.

The proof of Theorem 4.1 for this case will consist of four steps:

1. We compute HQ2 .
2. We compute H12 = HQ1(HQ2) and show that its elements can be con-

structed from a finite number of building blocks, called motifs. A
motif is characterized by a certain configuration on a finite number of
subsequent S1 sites.

3. We show that HQ = H12.
4. We relate the elements of HQ to tiling configurations by relating each

motif to a small series of tiles.

Step 1. First we compute HQ2 and we find the following:

Lemma 5.2. The cohomology of Q2 consists of all possible configurations on
S1 except for configurations with a multiple of three S1 sites empty between
two occupied S1 sites.

Proof. The proof is relatively simple. First note that when a site on S1
is occupied, it blocks four subsequent sites on the S2 chain (see figure 4).
By occupying sites on S1 the periodic S2 chain is cut into smaller pieces
of chain with open boundary conditions. Consequently, HQ2 vanishes when
at least one of these smaller pieces has length 3p + 1. This happens when
the number of empty sites between two occupied sites on S1 is a multiple
of three. We conclude that all configurations on S1 are allowed except for
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configurations with a multiple of three sites empty between two occupied
sites. �

Step 2. This step in the proof is the most involved. In the next section,
where we prove Theorem 4.1 in all generality, we will often refer back to the
results obtained in this step. In this step we compute HQ1(HQ2), where HQ2

was obtained in the previous step. Let us define f1 and f2 as the number
of fermions on S1 and S2, respectively. Furthermore, we shall adopt the
following notation: an empty site on S1 is denoted by 0 and an occupied site
is denoted by 1. A configuration on S1 can then be written as a series of 1’s
and 0’s. In the following, we shall consider all possible types of configurations
on S1 that belong to HQ2 and we shall investigate if they also belong to H12.

If we consider a configuration on S1, we note that there have to be at
least two adjacent, empty S1 sites to allow for f2 > 0. This is because two
adjacent empty sites leave an open chain of two sites unblocked on S2 and
this has an element in HQ2 with f2 = 1. A typical configuration will thus
consist of alternating segments, where a segment is a sequence of S1 sites.
The segments are characterized by the number of fermions on the part of the
S2 chain corresponding to the segment, this is either zero or greater than
zero. In a segment with f2 > 0 all S1 sites are empty and it contains at
least two sites. On the other hand, a segment with f2 = 0 can have empty
sites on S1, but the empty sites cannot be adjacent. Finally, a segment with
f2 = 0 will always start and end with an occupied S1 site. We will call this
pair of occupied sites a pair of bounding sites. Note that a segment with
f2 = 0 can consist of a single occupied site, in that case the bounding sites
fall on top of each other and the pair of bounding sites is just this one site.

Example 5.1. Consider the configuration “1101101010000100”, there are
two segments with f2 = 0, formed by the first nine sites and the 14th site,
respectively. There are also two segments with f2 > 0 constituted by the
rest of the sites. Finally, the first and the ninth site form a pair of bounding
sites.

First, we consider the segments with f2 > 0.

Lemma 5.3. Q1 acting on a segment with f2 > 0 gives zero within HQ2.

Proof. Suppose this segment between a pair of bounding sites consists of
l empty S1 sites. The corresponding S2 chain then has length L = 2l − 2.
Since l = 3k ± 1, we find L = 6k or L = 6k − 4. For these chain lengths the
elements of the cohomology of Q2 have 2k and 2k − 1 fermions, respectively.
We now distinguish two cases: (a) Q1 acts on a site at the boundary of the
segment and (b) Q1 acts on a site away from the boundary.
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(a) In this case the length of the S2 chain in the new configuration is
L′ = L − 2. Thus L′ = 6k − 2 or L′ = 6k − 6. On the new chain there are
still 2k or 2k − 1 fermions, respectively. However, Theorem 5.1 states that
the cohomology for chain length 6k − 2 (6k − 6) vanishes at all fermion
numbers except f = 2k − 1 (f = 2k − 2). Thus the new configuration does
not belong to HQ2 and it follows that this action of Q1 within HQ2 gives
zero.

(b) In this case the action of Q1 cuts the S2 chain into two smaller chains of
lengths L′

1 and L′
2. Their total length is L′

1 + L′
2 = L − 4, since the occupied

S1 site now blocks four sites on the S2 chain. For L = 6k we have L′
1 = 3k1

and L′
2 = 3k2 + 2 or L′

1 = 3k1 + 1 and L′
2 = 3k2 + 1, where in both cases

k1 + k2 = 2k − 2. For the latter case HQ2 vanishes at all grades. In the first
case HQ2 is non-vanishing only for f = k1 + k2 + 1 = 2k − 1. However, the
number of fermions on the S2 chains in the new configuration is f = 2k and
thus is does not belong to HQ2 . Similarly, one finds that for L = 6k − 4, the
new configuration does not belong to HQ2 . Again we obtain that this action
of Q1 within HQ2 gives zero.

Finally, if the segment with f2 > 0 extends over the entire system, we are
always in the case considered under (b). However, the original chain length
can now also be L = 6k − 2 with 2k − 1 fermions on it. Under the action of
Q1 we obtain a new chain of length L′ = 6k − 6, which has a non-vanishing
cohomology if and only if f = 2k − 2. So also in this case we find that the
action of Q1 gives zero within HQ2 . �

Second, we consider the segments with f2 = 0.

Lemma 5.4. HQ1(HQ2) vanishes when the number of S1 sites between any
pair of bounding sites in a segment with f2 = 0, is 3p + 1 and it contains
one element otherwise.

Example 5.2. Consider a configuration with one empty site between a pair
of bounding sites: “101,” this is not an element of HQ1(HQ2), since Q1
on this configuration gives “111,” which is also in HQ2 . Now consider two
sites between a pair of bounding sites. Then there are two configuration
with one empty site: “1011” and “1101” and one configuration with all sites
occupied “1111” (remember that the configuration “1001” does not have
f2 = 0). It follows that Q1 acting on (“1101” − “1011”) gives 2“1111,”
whereas Q1 acting on (“1101” + “1011”) gives zero.2 Consequently, we find

2Note that the fermionic character of the particles is reflected in the sign here: Q1

acting on “1011” gives −“1111,” whereas Q1 acting on “1101” gives +“1111”. In the first
case the particle is created on position 2 and has to hop over the particle at position 1,
this gives a minus sign, in the second case the new particle is created at position 3 and
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that HQ1(HQ2) consists of one element: the sum of the configurations with
f1 = 3.

Proof. We can solve HQ1(HQ2) for an arbitrary number of sites between a
pair of bounding sites, by realizing that this problem can be mapped to
the normal chain. For the normal chain no two fermions can be adjacent,
whereas here no two empty S1 sites can be adjacent. So we can map empty
S1 sites to fermions on the chain and occupied S1 sites to empty sites in
the normal chain. Finally, Q1 is mapped to Q† on the normal chain. For
the chain HQ† (which has the same dimension as HQ) vanishes when the
length of the chain is 3p + 1 and it contains one element otherwise. So here
we have that HQ1(HQ2) vanishes when the number of sites between two
occupied sites is 3p + 1 and it contains one element otherwise. �

For a segment with f2 = 0, let us denote the representative of HQ1(HQ2)
by the pair of bounding sites with dots in between, for example we denote
(“1101” + “1011”) by “1 · ·1.” Even though, this is now a sum of configu-
rations, we will still refer to this simply as a configuration. It follows that,
for a segment with f2 = 0, two types of configurations are allowed. The two
types can be distinguished by containing 3s − 1 dots or 3s dots. Examples
of the first type are: “1”, “1 · ·1”, “1 · · · · · 1,” etc. Note that the configura-
tion with s = 0, and thus with −1 dots between the pair of bounding sites,
is “1.” Examples of the second type are: “11,” “1 · · · 1,” “1 · · · · · ·1,” etc.

Combining Lemmas 5.3 and 5.4, we find that HQ1(HQ2) is spanned by all
configurations that can be formed by concatenating the following motifs:
“000”,
“1 ·3s−1 100”,
“1 ·3s 100”,
“1 ·3s−1 10000”,
“1 ·3s 10000”,
where ·3s means 3s dots and, as before, “1 ·3s−1 1” with s = 0 means “1”.

Finally, one can also have all zeroes for any length and all dots for any
length. Note that if the number of S1 sites is a multiple of three, that both
the configuration with all zeroes and the one with all dots account for two
linearly independent elements of H12. This is because the cohomology of Q
acting the periodic chain with length a multiple of three has dimension two
(see Theorem 5.1).

thus has to hop over two particles, giving rise to no overall sign change. Also note that
the states are not properly normalized, but this is not important for the argument.
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Example 5.3. As an example, suppose we have 	v = (1, 2) as always and
	u = (10,−10). This implies that S1 consists of ten sites and with the defined
motifs it follows that the following 12 elements belong to H12: “1100000000,”
“1100000100,” “1100100000,” “1100100100,” “1100110000,” “1100 1 · ·100,”
“1 · · · · · ·100,” “1 · · · 100 000,” “1 · · · 100 100,” “1000010000,”
“0000000000” and “· · · · · · · · ··.” Note that the first nine motifs have peri-
odicity 10 and thus account for ten elements of H12 each, whereas the motif
“1000010000” has periodicity 5 and the last two motifs have periodicity 1.
For each element one can easily compute the number of fermions and it fol-
lows that the first nine motifs have nine fermions, the motif “1000010000”
has six fermions and the last two motifs have again seven fermions. So in
total we have 92 elements in H12 with seven fermions and five elements with
six fermions.

Step 3. In the previous step we have obtained H12 for 	v = (1, 2). In this
step we show that in this case this is equal to the cohomology of Q. We do
this via the “tic-tac-toe” procedure [16]. That is, we act on a configuration,
say |ψ〉, with Q. The Q2 part will automatically give zero, but the Q1
part not necessarily, since we no longer restrict ourselves to the subspace
HQ2 . If it does give zero, we know that the configuration belongs to the
kernel of Q. The configuration will thus belong to HQ unless it also belongs
to the image of Q. In that case, another configuration will map to this
configuration at the end of the “tic-tac-toe” procedure. So we continue with
the configurations, |ψ0〉, that do not belong to the kernel of Q1. Since the
image of |ψ0〉 does not belong to HQ2 and it does belong to the kernel of
Q2, it must also belong to the image of Q2. So we can write Q|ψ0〉 = Q2|φ〉,
for some configuration |φ〉. Now let us define a new state |ψ1〉 ≡ |ψ0〉 − |φ〉.
It then follows that Q|ψ1〉 = −Q1|φ〉. If this is zero, we have found that the
state |ψ1〉 belongs to the kernel of Q. If it is non-zero we proceed as before:
we try to find a configuration |χ〉, such that Q1|φ〉 = Q2|χ〉 and define a new
state |ψ2〉 ≡ |ψ0〉 − |φ〉 + |χ〉, etc. This procedure ends, either when we have
found a state |ψn〉 such that Q|ψn〉 = 0, or when Q|ψn〉 = |ψ̃〉 with |ψ̃〉 an
element of HQ1(HQ2). In the latter case, we say |ψ0〉 maps to |ψ̃〉 at the
end of the “tic-tac-toe” procedure and we conclude that neither |ψ0〉 nor |ψ̃〉
belong to HQ.

For the case we consider in this section, we will show that for each element
|ψ0〉, there is an element |ψn〉 that belongs to the kernel of Q. So for each
element in H12 we can find a corresponding element in HQ, thus we obtain
HQ = H12. In the next section, however, we will see that this is not true for
general boundary conditions. We will then find that after several steps in
the “tic-tac-toe” procedure we map certain configurations in H12 to other
configurations in H12. It follows that the first do not belong to the kernel
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of Q and the latter belong to the image of Q. In that case HQ is strictly
smaller than H12.

Lemma 5.5. HQ = H12 for 	v = (1, 2) and 	u = (m,−m).

Proof. For the segments with f2 = 0, we found that Q1 vanishes if we choose
the states represented by the dots such that they are ground states of the
normal chain with empty and occupied sites exchanged (see Lemma 5.4).
For the segments with f2 > 0, we know from Lemma 5.3 that the new con-
figuration always belongs to the image of Q2. That is, Q1|ψ0〉 = Q2|φ〉, for
some configuration |φ〉 if Q1 acts on a segment with f2 > 0. So we can define
a new configuration |ψ1〉 ≡ |ψ0〉 − |φ〉, such that Q|ψ1〉 = −Q1|φ〉. Now Q1
either acts on a different segment with f2 > 0, in which case the new con-
figuration again belongs to the image of Q2, or it acts on the same segment.
In the latter case, the new configuration is cancelled by the same configura-
tion in which the two S1 sites are occupied in the reverse order due to the
fermionic character of the particles. It thus follows that the “tic-tac-toe”
procedure always gives zero after as many steps as there are segments with
f2 > 0. �

Step 4. In this final step we will show that the dimension of HQ (and
the fermion number of each state) can be computed by counting all tiling
configurations (and the number of tiles per configuration) with the four
types of tiles depicted in figure 1. For the boundary conditions we consider
here, the tilings reduce to a single layer sequence of only two types of tiles.
Namely, the two tiles that respect the boundary condition 	v = (1, 2). These
tiles have two edges parallel to (1, 2) and then the diamond has the other
two edges parallel to (1,−2) whereas the square has the other edges parallel
to (2,−1) (see figure 5(a)). Given the sublattices S1 and S2 there are three
types of vertices: the ones that belong to S1, the lower left sites of the S2-
chain and the upper right sites of the S2 chain. It follows that the diamond
has one of three types of edges along the (1,−2) direction and a matching
type of edge along the (1, 2) direction, the square can have one of three
different types of edges along the (2,−1) direction and a matching type of
edge along the (1, 2) direction. We conclude that we have six types of tiles,
depicted in figure 5(b).

To establish Theorem 4.1 we map each of the motifs obtained in step 2
to a unique sequence of tiles. The mapping for the four basis motifs, “100,”
“1100,” “10000” and “110000,” is shown in figure 6. Remember that each
motif is modulo the addition of three zeroes and modulo the insertion of
three dots. In terms of tilings, we find that each basis motif can be followed
by an arbitrary repetition of the tiling corresponding to the three zeroes
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Figure 5: Types of tiles we use to tile the square lattice with periodicities
	v = (1, 2) and 	u = (m,−m). (a) Shows the diamond and square that respect
	v = (1, 2). (b) Shows the three types of diamonds and squares given the
sublattices S1 and S2.

Figure 6: The four basis motifs and the corresponding sequences of tiles.

(see figure 7(a)). On the other hand, insertions of multiples of three dots
correspond to inserting multiples of the tiling shown in figure 7(a) at the
dotted line along the (1, 2) direction in the basis motifs. Some examples
are shown in figure 7(b). Note that here we cannot easily write the motif
of dots directly in the tiles (see figure 7(b)), however, the mapping is still
unambiguous.

Let us determine the number of fermions per motif. First of all, in a
segment with f2 > 0, the number of fermions is determined by the length
of the corresponding S2 chain. It is easily verified, that for a segment with
n empty S1 sites the corresponding chain has length 2n − 2. Moreover,
from Theorem 5.1, we know that an element in the cohomology of Q on a
chain with length L = 2n − 2 contains [(2n − 2)/3] fermions, where [a] is the
nearest integer to a. Similarly, we find that a segment with k dots contains
[2k/3] fermions. Thus a segment with f2 = 0, consisting of k dots and a the
pair of bounding sites, contains [2k/3] + 2 fermions. From these formulae
we find for the four basis motifs “100,” “1100,” “10000” and “110000,” that
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Figure 7: On the left we show the sequences of tiles that correspond to the
motifs with three zeroes (top) and three dots (bottom). The addition of
three zeroes to a basis motif corresponds to attaching the sequence of tiles
corresponding to the three zeroes to the sequence of tiles corresponding to
the basis motif. An insertion of three dots in a basis motif corresponds to
inserting the sequence of tiles corresponding to the three dots at the dotted
line along the (1, 2) direction in the sequence of tiles corresponding to the
basis motif. The insertions of three dots in each of the four basis motifs
and the corresponding tiling are shown on the right as examples. From
these examples it is clear that we cannot write the three dots directly in the
corresponding sequence of tiles. However, the mapping is still unambiguous.

they contain two, three, three and four fermions, respectively. Furthermore,
an insertion of three zeroes, corresponds to increasing n by 3, and thus
increasing the number of fermions, [(2n − 2)/3], by 2. Equivalently, inserting
three dots corresponds increasing k by 3, and thus again increasing the
number of fermions, [2k/3], by 2. If we compare this to the number of
tiles in the tilings that correspond to these motifs, we find that they exactly
agree. Furthermore, the number of sites in a motif is given by three times the
number of S1 sites in a motif, since there are two S2 sites for every S1 site.
On the other hand, for the tiles we find that the area of the diamond is 4
and the area of the square is 5. It is now easily verified that the number of
fermions per site for the motifs is the same as the number of tiles per area
for the corresponding tiling. Thus we find that, not only is the number of
elements in the cohomology of Q directly related to the number of tilings
with the two tiles of figure 5(a), but also the number of fermions for each
element corresponds to the number of tiles in the corresponding tiling.
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One can verify that with these sequences of tiles, and the rules for con-
catenating them, one can obtain every possible tiling. Each tile can be
preceded by a certain type of square and diamond and it can be followed
by another type of square and diamond. In total this gives four possibilities
for the surrounding neighbors. It can be checked that for each tile all four
possibilities can be constructed with the given sequences of tiles and the
rules for concatenating them.

Finally, the configurations with all zeroes or all dots account for the extra
term in (4.1) in Theorem 4.1 repeated here for convenience:

Δi ≡
{

−(−1)(θm+1)pθdθd∗ if i = [2m/3]p,
0 otherwise.

(5.7)

Remember that

θd ≡
{

2 if d = 3k with k integer,
−1 otherwise (5.8)

and with 	v = (1, 2) and 	u = (m,−m) we have p = 1, d = gcd(u1 − u2,
v1 − v2) = gcd(2m, −1) = 1 and d∗ = gcd(u1 + u2, v1 + v2) = gcd(0, 3) = 3.
It follows that the extra term is −2 for m = 3n and +2 otherwise.

Let us consider the configuration with all zeroes, which clearly has peri-
odicity 1. If the number of zeroes is a multiple of three, i.e., m = 3n, the
configuration accounts for two ground states, otherwise it accounts for one
ground state. The number of fermions in this configuration is i = [2m/3],
i.e. the nearest integer to 2m/3. From the mapping (figure 7(a)) it is clear
that the configuration corresponds to a tiling with periodicity 3 if m = 3p. If
m �= 3p, however, there is no corresponding tiling. Exactly the same holds
for the configuration with all dots. It follows that for m = 3p the tilings
overcount the number of ground states by 2 and for m �= 3p the tilings fail
to count 2 ground states.

Note that the choice of sublattices S1 and S2 has increased the number
of tilings unrelated by a lattice symmetry by a factor of three (see figure 5).
Indeed when computing the number of ground states with the motifs given
in step 2 it turns out that one discovers each tiling three times (given that
the tiling is not completely uniform, that is all diamonds or all squares).

Example 5.4. Let us consider the case of Example 5.3 again. So we have
	v = (1, 2) and 	u = (10,−10). One possibility is to cover the lattice with six
squares. This tiling has a unit cell of size 5 and thus this tiling accounts
for five ground states. The number of tiles is six and thus the ground states
will have six fermions. We can also cover the lattice with two squares and
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Figure 8: The square lattice with periodicities 	v = (1, 2) and 	u = (10,−10)
can be tiled with two squares and five diamonds. One of these tilings, with
the two squares adjacent is shown on the left. The choice of sublattices splits
this tiling into three tilings. These three tilings and their corresponding
motifs are shown on the right.

five diamonds. The two squares can be placed between the diamonds in
three independent ways. Each of these three tilings has a unit cell of size 30
and consists of seven tiles, so they account for 90 ground states with seven
fermions.

We compare this with the 12 configurations found in example 5.3. The
motif “1000010000” has periodicity 5 and accommodates six fermions, so
this corresponds to the uniform tiling with all squares. The configurations
with all zeroes and all dots account for two ground states with seven fermions
and have no corresponding tiling. Finally, there are nine configurations with
periodicity 10 and seven fermions, which account for 90 ground states. Using
the mapping given in figure 6, we find that these configurations can be split
into three groups of three, each group corresponding to one of the tilings
with two squares and five diamonds. For example the motifs “1100000100,”
“1100110000” and “1100 1 · ·100” correspond to the tiling where the two
squares are adjacent. They can be distinguished by considering for example
the first of the two squares. In each motif it will be of a different type, where
the three types are given in figure 5(b) (see figure 8).

5.3.2 The general case: S2 consisting of p chains

In the previous section we had 	v = (1, 2). In this section we relax this
condition to 	v = (v1, v2) with v1 + v2 = 3p with p a positive integer. It
follows that we get p S2 chains with their accompanying S1 sites stacked on
top of each other. For this situation we will prove Theorem 4.1. The proof
consists of five steps:

1. We compute HQ2 .
2. We compute H12 = HQ1(HQ2).
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Figure 9: A configuration is shown where an occupied S1 site is surrounded
by empty sites. This sites isolates a site on the S2 chains directly below and
above the site.

3. We compute HQ starting from H12 via the “tic-tac-toe” procedure.
4. We relate the elements of HQ to tiling configurations by relating each

motif to a small series of tiles.
5. We compute Δi.

Step 1. As in the previous section we shall start by computing the cohomol-
ogy of Q2. We will define two types of configurations that do not belong to
HQ2 and then find that HQ2 consists of all configurations except these two
types.

Lemma 5.6. A configuration that contains an occupied site (k, l) on the S1
lattice, such that the sites (k + 1, l + 2) and (k + 2, l + 1) and/or the sites
(k − 1, l − 2) and (k − 2, l − 1) are empty, does not belong to HQ2.

Proof. It is easily verified (see figure 9) that in this configuration the S2
sublattice contains the isolated site(s) (k + 1, l + 1) and/or (k − 1, l − 1).
This site can be either occupied or empty, which leads to a
vanishing HQ2 . �

Note that in the previous section this situation never occurred because
for each occupied site (k, l), the sites (k + 1, l + 2) and (k − 1, l − 2) were
automatically occupied due to the boundary condition set by 	v = (1, 2).
The second type of configuration that does not belong to HQ2 follows from
a generalization of Lemma 5.2. Remember that occupying S1 sites causes
the S2 chains to break into smaller open chains. The length of these open
chains now depends on the number of empty S1 sites directly below and
above the S2 chain. For an example see figure 10.
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Figure 10: Part of a configuration is shown. The number of empty S1 sites
directly below and above the S2 chain is 12. The S2 sublattice thus contains
an isolated chain of length 10. Consequently, this configuration does not
belong to HQ2 .

Lemma 5.7. If, for a certain configuration, the sum of the number of empty
S1 sites directly below and above an open S2 chain is 3s, the configuration
does not belong to HQ2.

Proof. It is easily verified that the open S2 chain corresponding to the 3s
empty S1 sites has length 3(s − 1) + 1. This leads to a vanishing HQ2 . �

A configuration does not belong to HQ2 if it contains one or more iso-
lated open chains on the sublattice S2 with length 3p + 1. It is easy to see
that all such configurations fall into the class of configurations described in
Lemma 5.6, or Lemma 5.7, or both. It follows that all configurations that
do not fall into either of these classes belong to HQ2 .

Step 2. As in the previous section, we will now compute H12 = HQ1(HQ2).

Definition 5.3. Define a row of S1 sites as the set of S1 sites directly above
one S2 chain.

Note that the configurations in HQ2 again contain segments where f2, the
number of fermions on the S2 sublattice, is zero and segments where it is
non-zero.

Lemma 5.8. Lemma 5.4 for H12 holds for each row of S1 sites.

That is, in the segments where f2 = 0, the cohomology of Q1 vanishes
when the number of S1 sites between any pair of bounding sites is 3p + 1 and
it contains one element otherwise. The proof can be found in the previous
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Figure 11: Part of a configuration is shown.

section. It follows that, in the segments where f2 = 0, two types of configu-
rations on a row of S1 sites are allowed. Using the notation of the previous
section, the two types can be distinguished by containing 3s − 1 dots or 3s
dots.

Lemma 5.9. The configurations in H12 have spatially separated columnar
segments where f2 = 0 and segments where f2 > 0. The width of a column in
a segment where f2 = 0 can vary between 3s + 1 and 3s + 2 S1 sites, whereas
the width of a column in a segment where f2 > 0 can vary between 3p − 1
and 3p + 1 S1 sites. In the latter case, two consecutive rows never both have
width 3p and the difference in their widths is at most 1 (or −1).

Proof. This follows from combining Lemmas 5.6–5.8. �

An example is shown in figure 11. From Lemma 5.9 it follows that we only
have to consider columns of width varying between 1 and 2 in the segments
where f2 = 0 separated by columns of width varying between 2 and 4 in the
segments where f2 > 0. All other configurations can be obtained from these
configurations by inserting multiples of three dots in the segments where
f2 = 0 over the entire height of the columns, and, similarly, by inserting
multiples of three zeroes in the segments where f2 > 0 over the entire height
of the columns.
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We now turn to the segments where f2 > 0. Remember that in the pre-
vious section this step was easy because all S1 sites in the segment where
f2 > 0 were blocked by fermions on the S2 chain. Here, however, that is not
the case. The first thing we note in this case is the following.

Lemma 5.10. The S1 sites within a column marking a segment where
f2 > 0 have to be empty if they are away from the boundaries with adja-
cent columns marking a segment where f2 = 0.

Proof. This follows directly from Lemma 5.6. �

From this lemma it follows that we only have to consider the S1 sites on
the boundary between a segment where f2 > 0 and a segment where f2 = 0.
In fact, we will argue that we only have to consider the boundary where the
segment with f2 > 0 is to the right of a segment with f2 = 0 (and not the
boundary on the other side).

First, however, we introduce a new notation where a configuration is
fully characterized by the boundaries between the two types of segments
(f2 = 0 and f2 > 0). From Lemma 5.6 it follows that these boundaries are
an arbitrary sequence of steps of +(2, 1) and +(1, 2). However, in the new
notation we shall tilt the lattice by −45◦, such that the rows of S1 sites are
horizontal. If we then draw the boundary as a collection of vertical lines
between two S1 sites that are to the left and to the right of the boundary,
we find that the boundaries have a zigzagged shape. The segments where
f2 > 0 will be white and the segments where f2 = 0 will be gray. For an
example see figure 12.

Figure 12: Part of a configuration is shown with a mapping to the new
notation.
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Suppose for a moment that we would have a completely disconnected
graph, that is, just a collection of disconnected vertices. Then each site
can be both empty and occupied. It is clear that each configuration with
a least one empty site does not belong to the kernel of Q, whereas each
configuration with at least one occupied site belongs to the image of Q. It
follows that HQ vanishes at all grades. Here we do not have a disconnected
graph, however, it turns out that the division in gray and white regions is
similar to disconnecting the graph.

We define a special notation for a site that can be both empty and occu-
pied. If this site is to the right of a gray region we shall denote this site with
a dot, whereas when it is to the left of a gray region the site will be shaded.
That is, suppose there are two configurations that both belong to HQ2 and
obey Lemma 5.9, such that these two configurations differ by one site only.
Then we can summarize these two configurations in one picture by denoting
this particular site by a dot if it is to the right of a gray region or by shading
the site if it is to the left of a gray region. For an example see figure 13.
Moreover, we can summarize 2n configurations in one picture if the picture
contains n sites with dots or shaded sites. We make a distinction between
sites to the left and to the right of the grey region, because we will argue
that the configurations with a site with a dot do not belong to H12. Clearly
this is a choice, we could also have chosen to argue that the configurations
with a shaded site do not belong to H12.

Figure 13: The big brackets indicate how the configurations at the top can
be summarized using the notation introduced in the text. The two left-most
configurations at the top differ by one site in the right-most boundary of the
gray region, they can therefore be summarized by the left-most picture at
the bottom by denoting this site with a dot. The middle two configurations
at the top differ by one site in the left-most boundary of the gray region, they
can therefore be summarized by the middle picture at the bottom by shading
this site. Finally, all four configurations at the top can be summarized by
the right-most picture at the bottom.
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Figure 14: In three steps we find that there are eight possible configurations
with a site with a dot in a boundary that separates a gray segment on the
left from a white segment on the right: (a) It follows from Lemma 5.6 that
a site with a dot must have occupied sites to the upper left and lower left
and empty sites to the upper right and lower right. (b) There are four
possibilities for the left-most boundary of the gray segment, following from
the two shaded sites being empty or occupied. (c) There are two possibilities
for the right-most boundary of the white segment.

Let us consider a boundary that separates a grey segment on the left from
a white segment on the right. There are only a few such configurations that
may have a site on the boundary with a dot.

Lemma 5.11. There are eight possible configurations with a site with a dot
in a boundary that separates a gray segment on the left from a white segment
on the right. The configurations are depicted in figure 14(c).

Proof. The first restriction follows from Lemma 5.6. That is, both when the
site is empty as well as when it is occupied, the configuration should satisfy
the lemma. This restriction is depicted in figure 14(a). Then the second
restriction follows from Lemma 5.8, that is, the width of a grey column
varies between 1 and 2 modulo 3. It follows that next to the site with
the dot there can only be one gray site (modulo 3). Combining this again
with Lemma 5.6, we find four possibilities for the left boundary of the gray
segment. The four possibilities can be summarized in one picture with the
notation defined above, see figure 14(b), the shaded sites can be both empty
and occupied. Finally, it follows from Lemma 5.7 that there are only two
possible right-most boundaries for the white segment, each modulo columns
of width 3, see figure 14(c). �

From Lemma 5.11 it follows that if there is more than one site with a
dot in the same boundary, they are sufficiently far away to be independent.
That is, each of these sites can be both empty and occupied independent
of the configuration of the other dotted sites. Also note that if we select
one of the eight configurations with a dot from figure 14(c), the rest of the
system can take on any configuration independent of the configuration of
the dotted site. Note that this resembles a disconnected graph.
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We are now ready to solve HQ1(HQ2).

Lemma 5.12. All configurations that contain a boundary between a gray
segment to the left and a white segment to the right, such that this boundary
contains one or more sites with a dot, do not belong to HQ1(HQ2).

Proof. A site with a dot can be either empty or occupied. Suppose the site is
empty and we act with Q1 on the configuration. If Q1 can act non-trivially
only on the site under consideration we are done, since the configuration in
which the site with the dot is empty does not belong to the kernel of Q1 and
the configuration in which it is occupied belongs to the image of Q1. This
proves the lemma for this case.

If, however, Q1 can act non-trivially also on other sites, there are four
scenarios: (a) The other site is in the same boundary. (b) The other site is
in the left boundary of the gray region under consideration. (c) The other
site is in the right boundary of the white region under consideration. (d) The
other site is further away from the region under consideration than the first
three cases.

For scenario (a), we know that the other site is also a site with a dot.
It follows that the configuration with both dotted sites empty does not
belong to the kernel of Q1. The sum of the configurations with one of
the dotted sites empty belongs to the image of Q1. The difference of the
configurations with one of the dotted sites empty does not belong to the
kernel of Q1, because it maps to the configuration with both dotted sites
occupied. Clearly, the latter configuration belongs to the image of Q1. So
for this scenario the lemma is proven.

For scenario (b) we distinguish two cases. First, the other site and the
dotted site can be occupied simultaneously. In this case we can prove the
lemma via the same argument as we did for scenario (a). Second, the other
site and the dotted site cannot be occupied simultaneously. This only hap-
pens when the other site is in the same row as the dotted site. In this case
the sum of the configurations with one of them occupied is in the image of
Q1, but the difference belongs to the kernel of Q1 and does not belong to the
image of Q1. The latter is thus an element of HQ1(HQ2). However, we have
the freedom to decide to keep only the configuration in which the other site
is occupied and the dotted site is empty as a representative of this element.
At this point it becomes clear why we only consider configurations with a
site with a dot, and not configurations with a shaded site.

For scenario (c) we can again distinguish two cases. In the first case,
the configuration of the other site and the dotted site are independent and
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the lemma is proven as for scenario (a). In the second case, the other site
and the dotted site cannot be occupied simultaneously. There are again
three configurations under consideration. The configuration with both sites
empty does not belong to kerQ1, the sum of the configurations with one
of the two sites occupied belongs to Im Q1 and, finally, the difference again
is an element of HQ1(HQ2). And as under (b), we choose to represent this
element with the configuration where the dotted site is empty and the other
site occupied.

Finally, for scenario (d) it is clear that the configuration of the other site
and the dotted site are always independent and the lemma is proven as for
scenario (a).

In the four scenarios we considered, there was just one other site on which
Q1 acts non-trivially. If there are more sites on which Q1 acts non-trivially,
the lemma clearly holds when these sites can again be empty or occupied
independent of the dotted site. However, if they are not all independent,
the proof is more lengthy, but analogous to the proofs of the second case in
scenarios (b) and (c).

�
Lemma 5.13. All the configurations that belong to HQ1(HQ2) are a sequence
of alternating gray and white columns subject to the conditions in Lemma
5.9, such that the left-most boundary of all the white columns does not con-
tain any sites with a dot.

Proof. This is a direct consequence of Lemma 5.12. �

As an example we consider the case where 	v = (6, 6) and 	u = (m,−m),
that is, we stack four rows of m S1 sites separated by four S2 chains. All
configurations in H12 can be obtained by concatenating the configurations
depicted in figure 15, with eventual insertions of grey and/or white columns
of width 3, such that the boundary conditions are satisfied.3 That is, each
row should in the end have width m or, equivalently, the right-most bound-
ary should fit with the left-most boundary. Finally, there is a configuration
with all zeroes (one entirely white segment) and a configuration with all
dots (one entirely grey segment).

Step 3. In the previous step we have determined H12. According to the
“tic-tac-toe” lemma, the cohomology of Q is equal to or contained in H12:

3These configurations are obtained as follows. First consider all possible white segments
satisfying the boundary condition in the �v-direction, then construct all possibilities for the
gray segments to the left of these white segments.
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Figure 15: Building blocks of the configurations spanning HQ1(HQ2) for
	v = (6, 6) and 	u = (m, −m), modulo insertions of grey and white columns
of width 3.

HQ ⊆ H12. In the previous section we found that for 	v = (1, 2), we have
HQ = H12. For general 	v, however, this is not the case. That is, within
H12, there are configurations that are not in the kernel of Q and there are
configurations that are in the image of Q. To find out which configurations
do not belong to HQ, we follow the “tic-tac-toe” procedure [16] as described
in step 3 of Section 5.3.1.

In the previous section, we found via the “tic-tac-toe” procedure that
we could find for each element |ψ0〉, that belongs to H12, but not to kerQ,
an element |ψn〉 that does belong to kerQ. In this section, however, we
will find that for some elements |ψ0〉, the “tic-tac-toe” procedure leads to a
corresponding element |ψ̃〉, that also belongs to H12. We then say that |ψ0〉
maps to |ψ̃〉 at the end of the “tic-tac-toe” procedure and we conclude that
neither |ψ0〉 nor |ψ̃〉 belong to HQ.

We now prove some rules for the “tic-tac-toe” procedure specific to the
configurations we obtained in the previous step.

Lemma 5.14. Let Q act on an empty S1 site (k, l), such that for the preced-
ing S1 sites on that row we have: (k − 1, l + 1) and (k − 3s − 2, l + 3s + 2)
are occupied and the intermediate sites are dotted. Then the new configura-
tion with (k, l) occupied, is also the image of Q1 acting on the configuration
with (k, l) occupied and one less fermion in the preceding sites (k − 1, l + 1)
to (k − 3s − 1, l + 3s + 1).

Proof. For general s we can denote the original configuration as “1 ·3s 10,”
the new configuration is then “1 ·3s 11.” From Lemma 5.4 we know that,
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if the number of S1 sites between a bounding pair is 3s + 1, HQ1 vanishes.
Consequently, each configuration that is in the kernel of Q1 is also in the
image of Q1. Now, since the configuration “1 ·3s 11” is in the kernel of Q1
and the number of S1 sites between the bounding pair is 3s + 1, it must also
be in the image of Q1. Thus, there is a configuration with one less fermion
between the bounding pair that maps to this configuration under the action
of Q1. �

Example 5.5. For s = 0 this is easily understood: the original configuration
will have “110” on the S1 sites (k − 2, l + 2) through (k, l). Acting on this
with Q gives “111,” however, this can also be obtained by acting with Q
on −“101.”

Lemma 5.15. Acting with Q on a white segment away from the boundary,
gives zero.

Proof. The proof is analogous to the proof of Lemma 5.3. The length of
the S2 chains in the white region is L = 3k or L = 3k − 1 each containing k
fermions. If Q1 acts on a site above this chain and away from the boundary,
it will cut the S2 chain into three pieces. One of length 1 and two of lengths
L′

1 and L′
2, such that L′

1 + L′
2 = L − 3. We will now argue that the new

configuration with the smaller S2 chains, always belongs to Im Q2. This
implies that we can always continue to the next step in the “tic-tac-toe”
procedure.

If the chain of length 1 contains a fermion, the new configuration clearly
belongs to Im Q2. If it is empty there are k fermions on the other two chains.
For L = 3k their combined length is L′

1 + L′
2 = 3(k − 1), so L′

1 = 3k1 and
L′

2 = 3k2 or L′
1 = 3k1 + 1 and L′

2 = 3k2 − 1, where in both cases k1 + k2 =
k − 1. For the second case the cohomology vanishes for all fermion numbers
because of the length L′

1. For the first case the cohomology is non-vanishing
only if f = k1 + k2 = k − 1, however, there are k fermions. So for both cases
the new configuration belongs to ImQ2 (since it belongs to ker Q2 and not to
HQ2). For L = 3k − 1 we find L′

1 = 3k1 and L′
2 = 3k2 − 1 or L′

1 = 3k1 + 1
and L′

2 = 3k2 − 2, where in both cases k1 + k2 = k − 1. The rest of the
argument is the same as before.

From the above it follows that we can always continue with the next
step in the “tic-tac-toe” procedure. Now suppose that in this next step
we act with Q1 on the same row as in the first step. Since there are no
fermions between these two S1 sites, this configuration will cancel against
the configuration where the two S1 sites are occupied in the reverse order.
It follows that we only have to consider acting with Q1 on each row just
once.
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It is now easily verified that, since there are as many S2 chains as there
are S1 rows, we can always continue the “tic-tac-toe” procedure until we
get zero. �

In this lemma we restricted ourselves to Q acting on S1 sites away from
the boundary. We will see in the following that if we allow Q to act on sites
at the boundary, the “tic-tac-toe” procedure can map one configuration in
H12 to another configuration in H12. The crucial point is that, when we
act with Q1 on a site at the boundary, the length of at least one of the
S2 chains below and above this site is reduced by 1. If the original length
was 3k, the new length is 3k − 1 and both have non-vanishing cohomology
for f = k. In that case we cannot use this S2 chain to write the new con-
figuration as Q2 of some other configuration. It follows that to continue
the “tic-tac-toe” procedure, we have to use the other S2 chain. However, if
this chain was already used in a previous step, the “tic-tac-toe” procedure
could end. Before we continue with an example that illustrates this point,
we will argue that it is enough to consider Q acting only on sites at the
boundary. This follows from Lemma 5.9; if the “tic-tac-toe” procedure ends
because we have obtained a configuration that does not belong to ImQ2
(nor to ImQ1), this configuration must belong to H12. From Lemma 5.9
we know that configurations in H12 have spatially separated columnar gray
and white segments that do not branch. It follows that we can only map
one configuration in H12 to another by either creating a new gray column
in a white column, or by (locally) increasing the width of a gray column.
Since the first possibility is excluded by Lemma 5.15, we conclude that we
can restrict Q to act only on sites at the boundary. As in step 2 we will
restrict ourselves to the left-most boundary to avoid overcounting.

Let us consider an example of a configuration that does belong to H12,
but does not belong to HQ, i.e., it maps to another configuration in H12 at
the end of the “tic-tac-toe” procedure.

Example 5.6. Consider the configuration shown on the left in figure 16. We
label the three S2 chains (not shown explicitly) between the four S1 rows;
chain 1, chain 2 and chain 3 (c1, c2 and c3) from top to bottom. Similarly,
we label the S1 rows; row 1 to row 4 (r1 to r4) from top to bottom. The S2
chains have lengths Lc1 = 6, Lc2 = 5 and Lc3 = 3 and thus contain 2, 2 and
1 particle, respectively. Now consider the left-most, empty S1 sites in the
middle two rows. Occupying the left-most, empty S1 site on row 2 reduces
the length of c1 from 6 to 5. There will still be two particles on c1 and
since the chain of length 5 has non-vanishing cohomology at grade 2, the
configuration on this chain will in general not belong to ImQ2. Occupying
the left-most, empty S1 site on row 3 reduces the length of c3 from 3 to 2.
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Figure 16: On the left we depict the configuration that does belong to H12,
but not to HQ, since it does not belong to the kernel of Q. Instead it maps
to the configuration depicted on the right under the “tic-tac-toe” procedure.
This configuration also belongs to H12, but not to HQ, since it belongs to
Im Q. The configuration on the left has four particles on sublattice S1 and
five particles on sublattice S2, divided as 2, 2, 1 over the S2 chains from top
to bottom. The configuration on the right has one more particle in total;
it has six particles on S1 and it has four particles on S2, divided as 2, 1, 1
over the S2 chains from top to bottom.

Again the configuration on this chain will not belong to ImQ2, since the
chain of length 2 has non-vanishing cohomology at grade 1. It follows that
if we occupy either of these S1 sites in the “tic-tac-toe” procedure, we have to
use c2 to write the new configuration as Q2 of some other configuration. By
definition this is always possible in the first step of the procedure. However,
also by definition, we can do this only once since Q2 = 0. It follows that,
after two steps in the “tic-tac-toe” procedure, we obtain a new configuration
(see figure 16 on the right) that has 2, 1 and 1 particles on the S2 chains
from top to bottom and belongs to H12. Consequently, both the original
as well as the final configuration do not belong to the cohomology of Q,
although they do belong to H12.

As we anticipated, the crucial point in this example is that the length of
an S2 chain is reduced from 3k to 3k − 1, since this limits the options to
continue the “tic-tac-toe” procedure. In fact, in the “tic-tac-toe” procedure,
we can only reach a configuration that is not in the image of Q2 if the length
of an S2 chain is reduced from 3k to 3k − 1. To find the configurations in
H12 that map to another configuration in H12 under the action of Q in the
most efficient way,4 we will start the “tic-tac-toe” procedure by occupying
an S1 site, such that this happens. It follows that we can then only use the
other S2 chain to continue the procedure. We will then, again for efficiency,
continue the procedure by again occupying an S1 site such that there is just
one S2 chain that we can use to continue the procedure. This means that we

4By “the most efficient way” we mean the shortest sequence of occupying S1 sites in
the “tic-tac-toe” procedure that maps one configuration in H12 to another. This is the
most efficient way, because as soon as this happens, we know that both configurations do
not belong to HQ, independent of all the other terms created under the action of Q.
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Figure 17: The possible boundaries of a white segment are shown, such that
the left-most boundary contains a critical reducer site. That is, occupying
this site reduces the length of at least one of the adjacent S2 chains from 3k
to 3k − 1.

will act with Q1 on consecutive rows, either moving upwards or downwards
along the boundary.

In the previous step we constructed all possible configurations with a
site with a dot in the left-most boundary of a white segment. Here we will
construct all possible configurations with a site in the left-most boundary
of a white segment, such that occupying this site reduces the length of an
S2 chain from 3k to 3k − 1. We shall call such sites “critical reducer sites.”
We start with the white segment and obtain the configurations depicted in
figure 17. For these configurations occupying the left-most site of the middle
row reduces the length of at least one of the adjacent S2 chains from 3k to
3k − 1. For the two configurations on the left, occupying this site reduces
the length of both S2 chains to 3k − 1. It follows that the new configuration
must belong to Im Q1 (see Lemma 5.14), otherwise it was a site with a dot
in the previous step. So we do not have to consider these two configurations.
This same reasoning tells us that the gray region to the left of the middle
row should have width 1 modulo 3, otherwise the new configuration would
belong to Im Q1. This leads to the 12 possibilities in figure 18.

Figure 18: The 12 possible configurations such that the left-most site of the
middle row is a critical reducer and occupying this site does not lead to a
configuration that is in ImQ1.
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Figure 19: If the critical reducer site (the left-most site of the middle row)
is occupied in the first step of the “tic-tac-toe” procedure, the procedure
should be continued in one direction only, as explained in the text. This
direction is indicated by the arrow.

Note that, indeed, occupying the critical reducer site at the boundary,
leads to reducing the length of one of the S2 chains from 3k to 3k − 1, for all
these configurations. For efficiency we continue the “tic-tac-toe” procedure
either upwards or downwards, such that at every step in the procedure
there is just one S2 chain that we can use to continue the procedure. The
direction we should follow, is indicated by the arrow in figure 19. Note that
we dropped the two configurations for which the grey segment had width 2,
because of Lemma 5.14.

It is now clear that if we stack a configuration for which the “tic-tac-
toe” procedure goes downwards on top of a configuration for which it goes
upwards, the “tic-tac-toe” procedure ends. In particular, it maps the old
configuration to a new configuration that is also in H12. We can increase the
number of steps necessary in the “tic-tac-toe” procedure by stacking rows
for which the grey segment has width 1 modulo 3 and the width of the white
segment alternates between 3 and 4 modulo 3 (see figure 20). Examples of
the stacked configurations and the configurations they map to are shown
in figure 21. Here the sites with connected dots can be either all empty
or all occupied. The configuration with all the sites empty maps to the
configuration with all the sites occupied under the “tic-tac-toe” procedure.
However, if the configurations on the left in figure 19 are not combined
with one of the configurations on the right in figure 19, the “tic-tac-toe”

Figure 20: Stacking these configurations with the configurations of figure 19,
increases the number of steps in the “tic-tac-toe” procedure.
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Figure 21: Some examples are shown of configurations that do belong to
H12, but not belong to HQ. Here the sites with connected dots can be
either all empty or all occupied.

procedure will end with a state that is in the kernel of Q (as long as we only
let the sites on the left-most boundary participate).

At this point we have identified a certain set of configurations that does
belong to H12, but does not belong to HQ. However, we have to make a
final step before we can identify all configurations in HQ with tiling config-
urations. This is due to the fact that certain parts of configurations seem to
belong to HQ, but they do not respect the boundary conditions. Note that,
at this point, we have reduced all possible motifs to the following set:
“100”
“1100”
“10000”
“110000”
which can be separated by single insertions of the motifs:
“1000”
“11000”
all modulo insertions of three dots and three zeroes along an entire column.
Each of the four basis motifs, comes with two directions, determined by
whether the boundaries between the gray and white segments follows the
direction (−1,−2) or (−2,−1).

Definition 5.4. We assign a letter to each of the four basis motifs:

Ai ≡ “100”

Bi ≡ “1100”

Ci ≡ “10000”

Di ≡ “110000”

where the subscript i is 1 or 2 when the direction of the motif is (−1,−2)
or (−2,−1), respectively.
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Figure 22: At the top, we show, from left to right, motif A1 followed by
the motifs A2, B1 and C2. On the bottom-left, we see that a configuration
in which A1 is followed by B2 contains a site with a dot in the left-most
boundary of the white segment. The other two configurations on the bottom,
show that configurations in which A1 followed by C1 or Di do not belong to
HQ. Here we used the notation of figure 21.

Note that the direction of a motif is not defined if neither the motif directly
above it nor the motif directly below it is the same. We will start, however,
by considering cases in which this does not happen. At the end of step 4 we
will encounter a case where this point needs some attention.

We now want to study whether a vertical sequence of a certain motif can
be followed by a sequence of a different motif, eventually, with a insertion
of one of the motifs with three zeroes: “1000” or “11000.”

Example 5.7. As an example let us start with a sequence of motif A1. This
sequence could be followed by motifs A2, B1 and C2. However, it cannot
be followed by motif B2, because it would not belong to H12. Nor can it
be followed by motifs C1 or Di, because it would not belong to HQ (see
figure 22).

Similarly we find the following:

• motif B1 can only be followed by motif C2;
• motif C2 can only be followed by motif B1;
• motif Ai can be followed by motifs Aj , B1 and C2;
• motif Di can be followed by motifs Dj , B1 and C2;
• motif B2 can only follow after motif C1;
• motif C1 can only follow after motif B2.

Finally, we know from Lemmas 5.7 and 5.8 that gray and white columns
cannot branch or have end points, since their width always oscillates between
1 and 2 modulo 3 or 2, 3 and 4 modulo 3 for the gray and white segments,
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respectively. Consequently, gray and white columns may wind around the
torus several times, but they will always close to form a loop.

Let us combine this observation with the rules we found for stacking
motifs. Consider, for example, motif A1, which can be followed by motifs
A2, B1 and C2. However, motifs B1 and C2 can only be followed by C2 and
B1, respectively. Consequently, if motif A1 is followed by either of these two
motifs, we can never fulfill the boundary conditions, because the column
cannot be closed to form a loop. Thus configurations in which motif A1 is
followed by motifs B1 and C2 do not belong to HQ. In this same spirit we
obtain the following lemma.

Lemma 5.16. For configurations that belong to HQ the following holds:

• motif B1 can only be followed by motif C2 and vice versa;
• motif A1 can only be followed by motif A2 and vice versa;
• motif D1 can only be followed by motif D2 and vice versa;
• motif B2 can only be followed by motif C1 and vice versa.

For motifs Ai and Di the width of the white segment does not change,
thus the motif with direction 1 can follow directly below or above this same
motif with direction 2. For the motifs Bi and Ci, however, there is an
intermediate motif of the type “1000” or “11000.” Which of the two can
be determined via the “tic-tac-toe” procedure. If we read the motifs of
the rows from top to bottom, we find that a sequence of B1 motifs will
be followed by “1000,” to be followed by a sequence of C2 motifs. Then
the C2 motifs will be followed by “11000,” which is then to be followed
by another sequence of B1 motifs. On the other hand, a sequence of B2
motifs will be followed by “11000,” followed directly by a sequence of C1
motifs. Finally, the C1 motifs will be followed by “1000,” followed directly
by another sequence of B2 motifs (see figure 23). It is readily checked that
any other choice gives a configuration that does belong to H12, but not
to HQ.

Step 4. We are now ready to make the identification with the tiles. For
the four basis motifs A1 through D1 the identification is shown in figure 24
and A2 through D2 are identified with a tiling in figure 25. Note that to
distinguish motif X1 from X2, where X = A, B, C or D, one has to consider
also the motif on the row above or below this motif. These motifs can be fol-
lowed by an arbitrary threefold of zeroes. Let us define the motif E ≡ “000.”
For this motif we can also distinguish a direction, because its boundary will
follow the left-most boundary of the white segment it is attached to. From
figures 24 and 25 it is clear that the motifs Xi can be followed by motif Ei,



688 LIZA HUIJSE AND KARELJAN SCHOUTENS

Figure 23: Two configurations are shown in which motif Bi is followed by
motif Cj (where i �= j) and vice versa, with the correct intermissions of the
motifs “1000” and “11000” (indicated by the arrows).

Figure 24: The motifs X1 and the corresponding tilings. Note that this
mapping was already found in Section 5.3.1 (see figure 6).

Figure 25: The motifs X2 and the corresponding tilings.

where the i should be the same. For the motifs B1 and C2 there is an excep-
tion: when the motif above these motifs is “11000” and “1000,” respectively,
they are followed by E2 and E1, respectively.

There can also be insertions of multiples of three dots in the four basis
motifs. How this translates into tilings is shown in figure 26. More precisely,
note that each basis motif X1 contains a dotted line, connecting two S1 sites
along the direction 1 (black) and equivalently, all basis motifs X2 contain
a dotted line with direction 2 (blue). An insertion of three dots in a basis
motif corresponds to an insertion of two tiles, shown in figure 27, at this
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Figure 26: On the left the motifs E1 (on the left) and E2 (on the right)
and the corresponding tilings. On the right the tilings corresponding to
insertions of three dots into the motifs X1 (on the left) and X2 (on the
right).

Figure 27: On the top (bottom), insertions of three dots into the motifs X1
(X2) and the corresponding tilings are shown.

dotted line. Note that here we cannot easily write the motif of dots directly
in the tiles, however, the mapping is still unambiguous.

Finally, we have the motifs “1000” and “11000.” Which tilings these
motifs correspond to depends on whether they occur between the motifs
B1 and C2 or the motifs B2 and C1. In fact, in the first case, “1000” will
correspond to the same sequence of tiles as B1 and “11000” to the same
tiling as C2. Similarly, in the latter case, “1000” and B2, on the one hand,
and “11000” and C1, on the other hand, correspond to the same tilings. For
an example see figure 28.

With these identifications there is one ambiguity, but it is easily dealt
with. If there is a column in which the motifs alternate indefinitely between
“1100” and “11000,” we cannot determine whether the motif “1100” is of
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Figure 28: On the left (right), we show a configuration in which motifs C2
and B1 (C1 and B2) alternate with the corresponding tilings. Note that the
motifs “1000” and “11000” correspond to different tilings on the left than
on the right.

type B1 or B2. The same happens when the motifs “10000” and “1000”
alternate indefinitely: the motif “10000” could be of type C1 or C2. Note
that if we choose to identify the first with B1 and the second with C2, the
corresponding tilings would be indistinguishable. This also happens when
we choose B2 and C1. So we conclude that we should either choose B1 and
C1 or B2 and C2. The ambiguity is thus lifted by simply deciding that we
will always choose, say, B1 and C1.

Finally, we note that again the number of fermions in a certain configura-
tion is the same as the number of tiles in the corresponding tiling. For the
four basis motifs and the motifs with three zeroes or three dots, this follows
from the arguments in Section 5.3.1. For the motifs “1000” and “11000,”
we should look at figure 28. If the motif “1000” sits between motifs B1 and
C2, the number of fermions in these three rows is 3 ∗ 3 and the number of
sites is three times the number of S1 sites: 3 ∗ (2 ∗ 4 + 5). So nine fermions
on 39 sites. Compare this with the corresponding tiling: it contains two
times three tiles of area 4 and once three tiles of area 5. So nine tiles with
total area 39. Similarly, if the motif “11000” sits between motifs B1 and
C2, the number of fermions in these three rows is 3 ∗ 3 and the number of
sites is 3 ∗ (2 ∗ 5 + 4). The corresponding tiling contains two times 3 tiles of
area 5 and once three tiles of area 4. For the corners between motifs B2 and
C1 the comparison is slightly more subtle. Following the same arguments
as above, we find that in this case the number of fermions in the motifs
“1000” and “11000” do not agree with the number tiles in the correspond-
ing tiling. However, the discrepancy is minus one in one case and plus on
in the other, and since the boundary conditions dictate that the number
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of “1000”-motifs equals the number of “11000”-motifs, the discrepancies
exactly cancel.

Step 5. The final step concerns the small correction Δ in equation (4.1).
With the four basis motifs, horizontal insertions of multiples of three dots
and three zeroes and vertical insertions of the motifs “1000” and “11000,”
we can represent all elements in HQ. With the mappings given in the previ-
ous step, we find a corresponding tiling for each of these elements. On the
other hand, each possible tiling can be constructed with the small sequences
of tiles given in the previous step. Thus we find that for each possible tiling
there is a corresponding element in HQ. Furthermore, we found that the
number of fermions and the number of tiles agree. So we find Ni = ti, that
is, the number of elements in HQ with i fermions equals the number of
tilings of the square lattice with i tiles. However, there is a small discrep-
ancy in this one-to-one relation for the configurations with all zeroes or all
dots. For 	u = (m,−m) and v1 + v2 = 3p, it is readily verified that these
configurations contain i = [2m/3]p fermions. In the following we will first
compute the number of elements of HQ that these configurations account
for. We shall call this N (a), where a stands for anomalous. We will then
compute t(a), the number of tilings consisting only of the tiles that corre-
spond to either all zeroes or all dots (see figure 26). Combining these results
we obtain Δ ≡ N (a) − t(a). Finally, since we found a one-to-one correspon-
dence between tilings and elements of HQ for i �= [2m/3]p, Theorem 4.1 will
then be established with Δi as in equation (4.2).

As we discussed in Section 5.3.1 for 	v = (1, 2), the configurations with all
dots and all zeroes actually correspond to multiple elements of the coho-
mology if there is a multiple of 3 S1 sites per row, that is if 	u = (3n, −3n).
This is a direct consequence of Theorem 5.1, which says that a periodic
chain with length 3j has two ground states. In fact, these configurations
account for 2p elements each, where p = (v1 + v2)/3 is the total number of
S1 rows or, equivalently, of S2 chains. On the other hand, for 	u = (m,−m)
with m �= 3n they each represent one element of the cohomology. So we find
N (a) = 2p+1 for m = 3n and N (a) = 2 otherwise.

Now, let us look at the corresponding tilings. For 	u = (m,−m) with
m �= 3n there is no corresponding tiling, thus there is a discrepancy of 2
between the number of tilings and the number of elements in the coho-
mology. That is Δ ≡ N (a) − t(a) = 2 for m �= 3n. For 	u = (3n, −3n) there
are tilings corresponding to the configurations with all zeroes or all dots.
Along the 	u direction these tilings have periodicity 3. The periodicity in the
other direction is more involved. Given the boundary condition 	v = (2r + s,
r + 2s) the tiling makes r steps in the (2,1) direction and s steps in the (1,2)
direction, in arbitrary order. However, because of the periodicity of 3 in
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the 	u direction one can also end at (2r + s + 3l, r + 2s − 3l), that is, r + 3l
steps in the (2,1) direction and s − 3l steps in the (1,2) direction, again in
arbitrary order. Thus we find

t(a) = 2 ∗ 3
∑

l≥−r/3

(
r + s

r + 3l

)
.

If we define r = 3k + c, where c ∈ 0, 1, 2, we can write t as:

t(a) = 6
∑
l=0

(
r + s

c + 3l

)

= 6
∑
l=0

[(
r + s − 2
c + 3l − 2

)
+ 2

(
r + s − 2
c + 3l − 1

)
+

(
r + s − 2

c + 3l

)]

= 6
∑
l=0

[(
r + s − 2

l

)
+

(
r + s − 2
c + 3l − 1

)]

= 6 ∗ 2r+s−2 + 6
∑
l=0

[(
r + s − 2
c + 3l − 1

)]
.

Repeating these steps d times, such that 2d ≤ r + s, we find

t(a) = 6
d∑

l=1

2r+s−2l + 6
∑
l=0

(
r + s − 2d

c + 3l − d

)

=
2d−1∑
l=0

2r+s−l + 6
∑
l=0

(
r + s − 2d

c + 3l − d

)

=

{
2r+s+1 − 2 + 6

∑
l=0

( 0
c+3l−d

)
if r + s = 2d,

2r+s+1 − 4 + 6
∑

l=0
( 1
c+3l−d

)
if r + s = 2d + 1.

For the last term we find

6
∑
l=0

(
0

c + 3l − d

)
=

{
6 if d = 3b + c,

0 otherwise.

6
∑
l=0

(
1

c + 3l − d

)
=

{
0 if d = 3b + c + 1,

6 otherwise.
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We now compare the expression for t(a) with the expression for the num-
ber of elements in the cohomology represented by the configurations with
all zeroes and all dots, N (a). For 	v = (2r + s, r + 2s) this is N (a) = 2 ∗
2(v1+v2)/3 = 2r+s+1. So we finally find

Δ = N (a) − t(a) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−4 if r + s = 2d and r − s = 6b,

2 if r + s = 2d and r − s = 6b ± 2,

4 if r + s = 2d + 1 and r − s = 6b + 3,

−2 if r + s = 2d + 1 and r − s = 6b ± 1.

Combining this with the result Δ = 2 for 	u = (m,−m) with m �= 3n, this
can be cast in the compact form of equation (4.2).
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