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Abstract

We investigate the analog of holomorphic vector bundles in the context
of Sasakian manifolds.

1 Introduction

Just as the contact manifolds serve as substitutes for symplectic manifolds
in odd dimensions, the Sasakian manifolds are the odd-dimensional counter-
parts of Kähler manifolds. Although they are around for quite some time, in
recent years they were extensively studied. This resurgence is substantially
influenced by the recently found relevance of Sasakian manifolds in string
theory. Boyer and Galicki published a series of papers investigating various
differential geometric aspects of Sasakian manifolds (see [4] and references
therein). Sasakian manifolds appeared in string theory through the work of
Maldacena [8]; see the papers of J. Sparks and references therein for more
details.

e-print archive: http://lanl.arXiv.org/abs/0809.3892
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Our aim here is to investigate the analog of holomorphic vector bundles in
the context of Sasakian manifolds, reflecting the rich theory of holomorphic
vector bundles on Kähler manifolds, more precisely, the theory of moduli
for stable Sasakian holomorphic vector bundles. We show the existence of
the moduli space in the category of reduced complex spaces, and construct
a Kähler structure on it.

Necessary prerequisites include a Hodge theory related to both the
Sasakian and the holomorphic aspects. We arrive at a notion of a Hermite–
Einstein connection. Every stable Sasakian holomorphic vector bundle pos-
sesses a unique such connection. The variation of the Hermite–Einstein
structures in a holomorphic family is closely related to infinitesimal defor-
mations of the Sasakian holomorphic structures. We introduce an intrinsic
Kähler metric on the moduli space, and show that, up to a numerical con-
stant, it is equal to the Chern form of a determinant line bundle equipped
with a Quillen metric.

2 Sasakian manifolds

Let (X, g) be a connected oriented smooth Riemannian manifold of dimen-
sion 2n + 1, where n is a nonnegative integer. Denote by ∇ the Levi–Civita
connection. We recall the following definition.

Definition 2.1 ([4, Definition-Theorem 10]). The pair (X, g) is called a
Sasakian manifold if any of the following three equivalent conditions hold:

(i) There is a Killing vector field ξ on X of unit length such that the
section

Φ ∈ C∞(X, TX ⊗ (TX)∗) (2.1)

defined by Φ(v) = −∇vξ satisfies the identity

(∇vΦ)(w) = g(v, w)ξ − g(ξ, w)v (2.2)

for all v, w ∈ TxX and all x ∈ X.
(ii) There is a Killing vector field ξ on X of unit length such that the

Riemann curvature tensor R of (X, g) satisfies the identity

R(v, ξ)w = g(ξ, w)v − g(v, w)ξ

for all v and w as above.
(iii) The metric cone (R+ × X, dr2 ⊕ r2g) is Kähler.
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A Killing vector field ξ on X of unit length satisfies condition (i), if
and only if it satisfies condition (ii). Given a Killing vector field ξ of unit
length satisfying condition (i), the Kähler structure on R+ × X asserted in
statement (iii) is constructed as follows. Let F be the distribution of X of
rank 2n given by the orthogonal complement of ξ. The homomorphism Φ
(defined in (2.1)) preserves F , and furthermore,

(Φ|F )2 = −IdF . (2.3)

Let ˜J be the almost complex structure on R+ × X defined by the following
conditions:

˜J |F = Φ|F (2.4)

˜J

(

d

dr

)

= ξ (2.5)

˜J(ξ) = − d

dr
. (2.6)

This almost complex structure is integrable. The Riemannian metric
dr2 ⊕ r2g on R+ × X is Kähler with respect to the complex structure ˜J .

Conversely, if the metric cone (R+ × X, dr2 ⊕ r2g) is Kähler, then con-
sider the vector field on R+ × X given by J(d/dr), where J is the almost
complex structure on R+ × X. The vector field ξ on X obtained by restrict-
ing this vector field to {1} × X = X satisfies condition (i), and hence con-
dition (ii), in Definition 2.1.

We will consider the vector field ξ (or equivalently, the Kähler structure
on R+ × X) as part of the definition of a Sasakian manifold.

Let X be a smooth oriented Riemannian manifold of dimension 2n + 1
and F ⊂ TX an oriented smooth distribution of rank 2n. The quotient map

TX −→ TX/F =: N

defines a smooth one form on X

ω ∈ C∞(X, T ∗X ⊗ N) (2.7)

with values in the line bundle N . Since X is oriented, the orientation of F
induces an orientation of the normal bundle N . Therefore, N has a canonical
smooth section given by the positively oriented vectors of unit length in the
fibers of N . Consequently, the form ω in (2.7) gives a nowhere vanishing
smooth one form on X. This one form will also be denoted by ω. The
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distribution F is said to be a contact structure on X if the (2n + 1)-form
(dω)n ∧ ω is nowhere vanishing.

Remark 2.1. The distribution F is integrable, if it satisfies the Frobenius
condition which says that the one-forms ω satisfy the condition (dω) ∧ ω = 0.
Therefore, a contact structure F is not integrable unless n = 0.

Now let (X, g, ξ) be a Sasakian manifold. The distribution F on X of
rank 2n given by the orthogonal complement of the Killing vector field ξ
defines a contact structure on X. We note that the corresponding one-form
ω is the dual of ξ with respect to the metric g. From the condition that
(dω)n ∧ ω is nowhere vanishing it follows that the restriction of dω to F is
fiberwise nondegenerate.

Lemma 2.1. For all x ∈ X and all v, w ∈ Fx,

dω(v, w) = −g(Φ(v), w), (2.8)

where Φ is defined in (2.1).

Proof. From the definition of Φ,

−g(Φ(v), w) = g(∇vξ, w).

Since ξ is a Killing vector field,

g(∇vξ, w) + g(∇wξ, v) = 0. (2.9)

Extend v and w to smooth sections ṽ and w̃ of F . Since w̃ is orthogonal
to ξ,

g(∇vξ, w) = −g(ξ,∇vw̃).

Using (2.9),

g(∇vξ, w) = −g(∇wξ, v) = g(ξ,∇wṽ)

because ṽ is also orthogonal to ξ. Therefore,

−g(Φ(v), w) =
1
2
(−g(ξ,∇vw̃) + g(ξ,∇wṽ)) = −1

2
g(ξ, [ṽ, w̃]).

But −1
2
g(ξ, [ṽ, w̃]) = dω(v, w) because both ṽ and w̃ are orthogonal to ξ. �
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The line subbundle of TX generated by ξ will be denoted by N .

A compact connected Sasakian manifold (X, g, ξ) is called quasi-regular
if all the orbits of the unit vector field ξ are closed.

3 Holomorphic vector bundles

3.1 Differential forms and Hodge type decomposition

Let (X, g, ξ) be a Sasakian manifold. Let E be a C∞ complex vector bundle
over X.

Definition 3.1. A locally defined complex differential form α of class C∞

on X will be called transversal if

iξα = 0 and iξdα = 0,

where iξ is the contraction with the Killing vector field ξ.

Since d2 = 0, it follows immediately that for any transversal differential
form α also dα is transversal.

Let Lξ denote the Lie derivative with respect to ξ. Since

Lξα = diξα + iξdα,

we conclude that α is transversal, if and only if

iξα = 0 = Lξα.

Let α be a locally defined transversal complex d-form. Take any point x ∈ X.
Since iξα = 0, the evaluation of α(x) on

∧d TxX ⊗R C is determined by the
evaluation of α(x) on the subspace

∧d
Fx ⊗R C ⊂

∧d
TxX ⊗R C,

where Fx as before is the orthogonal complement of the line ξ(x) ⊂ TxX.



546 INDRANIL BISWAS AND GEORG SCHUMACHER

We recall that
(Φ|Fx)2 = −IdFx (3.1)

(see (2.3)). Let

ΦC

x := Φ|Fx ⊗R C : Fx ⊗R C −→ Fx ⊗R C

be the complexification of the automorphism Φ|Fx . From (3.1) it follows
that the eigenvalues of ΦC

x are ±
√

−1. We have a decomposition

Fx ⊗R C = F 1,0
x ⊕ F 0,1

x ,

where F 1,0
x and F 0,1

x are the eigenspaces for the eigenvalues
√

−1 and −
√

−1,
respectively.

Now, for p, q ≥ 0, define

F p,q
x :=

(

∧p
F 1,0

x

)

⊗
(

∧q
F 0,1

x

)

⊂
∧p+q

Fx ⊗R C.

Therefore, we have a decomposition

∧d
Fx ⊗R C =

d
⊕

i=0

F i,d−i
x (3.2)

for all d ≥ 0.

Take a transversal complex d-form α defined over an open subset U ⊂ X
such that α is nonzero at some point. We will say that α is of type (a, d − a),
if the evaluation of α on F i,d−i

x vanishes for all i �= a and all x ∈ U .

Let F i,d−i denote the C∞ subbundle of the vector bundle
∧d F ⊗R C

defined by the condition that the fiber of F i,d−i over each point x ∈ X

is F i,d−i
x . The pointwise decomposition in (3.2) gives the following C∞

decomposition into a direct sum of vector bundles

∧d
F ⊗R C =

d
⊕

i=0

F i,d−i. (3.3)

Now the decomposition TX = F ⊕ (R · ξ) induces a decomposition

∧d
TX ⊗R C =

∧d
Fx ⊗R C ⊕

(

ξ ⊗
∧d−1

Fx ⊗R C

)
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for each d ≥ 0. Combining this decomposition with the decomposition in
(3.3), we have

∧d
TX ⊗R C =

d
⊕

i=0

F i,d−i ⊕

⎛

⎝ξ ⊗

⎛

⎝

d−1
⊕

j=0

F j,d−j−1

⎞

⎠

⎞

⎠ . (3.4)

Consider the projection

∧d
TX ⊗R C −→ F i,d−i

obtained from the decomposition in (3.4). Its dual is an injective
homomorphism

fd,i : (F i,d−i)∗ −→
∧d

T ∗X ⊗R C, (3.5)

for each d ≥ 0 and i ≤ d. A nonzero transversal complex d-form α is of
type (a, d − a), if and only if α is of the form fd,a(α′) for some section α′ of
(F a,d−a)∗, where fd,a is the injective homomorphism in (3.5).

For any i with 0 ≤ i ≤ d, consider the inclusion of F i,d−i ↪→
∧d TX ⊗R C

in (3.4). Its dual is a projection

φd,i :
∧d

T ∗X ⊗R C −→ (F i,d−i)∗. (3.6)

Let α be a transversal differential form on X of degree d. Take any i with
0 ≤ i ≤ d. Let

αi := fd,i ◦ φd,i(α) (3.7)

be the differential form on X, where fd,i and φd,i is constructed in (3.5) and
(3.6), respectively.

Lemma 3.1. The differential form αi in (3.7) is transversal.

Proof. From the construction of αi is follows immediately that iξαi = 0.

To prove that Lξαi = 0, consider the identity in (2.2). In it, set v = ξ, and
set w to be a smooth section of F = ξ⊥. The identity in (2.2) immediately



548 INDRANIL BISWAS AND GEORG SCHUMACHER

implies that
(∇ξΦ)(w) = 0. (3.8)

The automorphism Φ acts on T ∗X ⊗R C. From (3.8) it follows that the
bundles consisting of eigenvectors associated to the action of Φ are preserved
by ξ. In particular,

Lξ(f1,0 ◦ φ1,0) = 0 = Lξ(f1,1 ◦ φ1,1)

because f1,0 ◦ φ1,0 and f1,1 ◦ φ1,1 are projections to the eigenbundles for the
eigenvalues

√
−1 and −

√
−1, respectively. Since fd,j ◦ φd,j are constructed

from f1,0 ◦ φ1,0 and f1,1 ◦ φ1,1, we now have,

Lξ(fd,j ◦ φd,j) = 0 (3.9)

for all j. In other words, the decomposition

Id =
d

⊕

j=1

fd,j ◦ φd,j

is preserved by the flow on X defined by ξ.

From (3.9) we have

Lξ(fd,i ◦ φd,i(α)) = fd,i ◦ φd,i(Lξα).

But Lξα = 0, because α is transversal. This completes the proof of the
lemma. �

Using the trivialization of N given by ξ, the N -valued one-form ω becomes
a real-valued one form on X. Now we consider the nowhere degenerate form
dω|F . Using the orthogonal projection TX −→ F , this defines a two form
on X which is d-closed, but not exact in general. Then form dω|F is clearly
transversal. Now Lemma 2.1 has the following corollary:

Corollary 3.1. The transversal form dω|F is of type (1, 1).

The formal adjoint of the multiplication operator

L : (F p,q)∗ −→ (F p+1,q+1)∗

η �−→ η ∧ (dω|F )

is denoted by

Λω : (F p+1,q+1)∗ −→ (F p,q)∗. (3.10)
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3.2 Partial connections

Let

S ⊂ TX ⊗R C (3.11)

be a subbundle of positive rank, which is integrable. In other words, smooth
sections of S are closed under the operation of the Lie bracket. Let E be a
C∞ complex vector bundle over X. Let

qS : T ∗X ⊗R C = (TX ⊗R C)∗ −→ S∗ (3.12)

be the dual of the inclusion map of S in TX ⊗R C.

A partial connection on E in the direction of S is a C∞ differential
operator

D : E −→ S∗ ⊗ E (3.13)

satisfying the Leibniz condition. The Leibniz condition says that for a
smooth section s of E and a smooth function f on X,

D(fs) = fD(s) + qS(df) ⊗ s

holds, where qS is the projection in (3.12).

The condition that D satisfies the Leibniz condition immediately implies
that the order of the differential operator D is exactly one. We recall that
the symbol of a C∞ differential operator

D′ : A −→ B

of order one is a C∞ section of A∗ ⊗ B ⊗ (TX ⊗R C).

Let D be a partial connection on E in the direction of S. The symbol
of the first-order differential operator D coincides with IdE ⊗ q̂S , where q̂S

is the smooth section of S∗ ⊗ TX ⊗R C given by qS in (3.12). Indeed, this
follows immediately from the fact that D satisfies the Leibniz identity.

Since the distribution S is integrable, smooth sections of ker(qS) are closed
under the exterior derivation. Therefore, we have an induced exterior deriva-
tion on the smooth sections of S∗

̂d : S∗ −→
∧2

S∗, (3.14)

which is a differential operator of order one.
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Let D be a partial connection on E in the direction of S. Consider the
differential operator

D1 : S∗ ⊗ E −→
(

∧2
S∗

)

⊗ E

defined by

D1(θ ⊗ s) = ̂d(θ) ⊗ s − θ ∧ D(s),

where ̂d is constructed in (3.14). The composition

E
D−→ S∗ ⊗ E

D1−→
(

∧2
S∗

)

⊗ E (3.15)

is C∞(X)-linear. Therefore, the composition in (3.15) defines a C∞ section

K(D) = C∞
(

X,
(

∧2
S∗

)

⊗ E ⊗ E∗
)

= C∞
(

X,
(

∧2
S∗

)

⊗ End(E)
)

.

(3.16)

The section K(D) in (3.16) is called the curvature of D. If

K(D) = 0,

then the partial connection D is called flat.

3.3 Holomorphic hermitian vector bundles

Let (X, g, ξ) be a Sasakian manifold. Let

˜F 0,1 := F 0,1 ⊕ (ξ ⊗R C) ⊂ TX ⊗R C (3.17)

be the distribution, where F 0,1 is constructed in (3.3).

Lemma 3.2. The distribution ˜F 0,1 in (3.17) is integrable.

Proof. Let v and w be smooth sections of F . Then from (2.2),

(∇vΦ)(w) = g(v, w)ξ.

In particular, this is a section of ˜F 0,1. Using this and (3.8) it follows that
the distribution ˜F 0,1 is integrable. �
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Definition 3.2. A Sasakian complex vector bundle on the Sasakian manifold
(X, g, ξ) is a pair (E, D0), where E is a C∞ complex vector bundle on X,
and D0 is a partial connection in the direction ξ.

Since N is a foliation on X of dimension one, any partial connection in
the direction N is automatically flat.

Note that the vector field ξ is contained in the foliation distribution ˜F 0,1

in (3.17). Therefore, any partial connection D on E in the direction of ˜F 0,1

defines a partial connection on E in the direction of N .

Definition 3.3. A holomorphic vector bundle on the Sasakian manifold
(X, g, ξ) is a pair ({E, D0}, D), where (E, D0) is a C∞ Sasakian complex
vector bundle on X, and D is a flat partial connection on E in the direction
of ˜F 0,1 (constructed in (3.17)) satisfying the compatibility condition that
D0 coincides with the partial connection on E, in the direction of ξ, defined
by D.

Definition 3.4. Let ({E, D0}, DE) and ({E′, D′
0}, DE′) be two holomorphic

vector bundles on (X, g, ξ). A fiberwise C-linear C∞ map

Ψ : E′ −→ E′′

is called holomorphic, if Ψ intertwines DE and DE′ .

Remark 3.1. Let ({E, D0}, D) be a Sasakian holomorphic vector bundle on
X. Then the dual E∗ also has a natural structure of a Sasakian holomorphic
vector bundle. If ({E′, D′

0}, D′) is another Sasakian holomorphic vector
bundle, then E ⊗ E′ also has the structure of a Sasakian holomorphic vector
bundle. In particular, End(E) := E ⊗ E∗ carries a natural structure of a
Sasakian holomorphic vector bundle.

Definition 3.5. A hermitian structure on a Sasakian complex vector bun-
dle (E, D0) is a C∞ hermitian structure on the complex vector bundle E
preserved by the partial connection D0.

So a hermitian structure on a Sasakian holomorphic vector bundle induces
a hermitian structure on the dual Sasakian holomorphic vector bundle. Sim-
ilarly, hermitian structures on two Sasakian holomorphic vector bundles
induce a hermitian structure on their tensor product.

Let ({E, D0}, D) be a Sasakian holomorphic vector bundle on X equipped
with a hermitian metric h. Let D′ be a connection on E preserving h such
that the partial connection on E in the direction of ξ induced by D′ coincides
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with D0. Let s and t be two locally defined smooth sections of E which are
flat with respect to the partial connection D0. We have

φ1,1(d(h(s, t))) = h(φ1,1(D′(s)), t) + h(s, φ1,1(D′(t))), (3.18)

where φi,j is defined in (3.6). Since

F ⊗R C = F 0,1 ⊕ F 1,0 = F 0,1 ⊕ F 0,1,

it follows from (3.18) that there is a unique connection ∇ on the complex
vector bundle E satisfying the following two conditions:

• ∇ preserves h, and
• the partial connection on E in the direction of ˜F 0,1 induced by ∇

coincides with D.

Let K(E, h) := K(∇) be the curvature of the above-mentioned connec-
tion ∇. We observe that K(D) is a section of (F 1,1)∗ ⊗ E ⊗ E∗.

The Chern forms cj(E, h) of the Sasakian holomorphic hermitian vector
bundle are defined using K(E, h) in the usual way. More precisely,

det
(

idE +
√

−1
2π

K(E, h)
)

=
∑

i≥0

ci(E, h).

We note that each ci(E, h) is a closed form of degree i, and ci(E, h) is of
type (i, i).

Henceforth, all Sasakian manifold considered will be assumed to be
compact.

Definition 3.6. A Sasakian holomorphic, hermitian vector bundle (E, h) is
called Hermite–Einstein, if

√
−1ΛωK(E, h) = λ idE (3.19)

for some constant real number λ.
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The constant λ is determined a priori. We define

vol(X) :=
∫

X
(dω)n ∧ ω.

Then

1
2π

λ rkE vol(E) =
∫

X
c1(E, h)(dω)n ∧ ω =: degω(E, h),

where dim X = 2n + 1, is actually independent of the choice of h.

3.4 Stable Sasakian holomorphic vector bundles

We are in a position to define the stability of a Sasakian holomorphic vector
bundle with respect to the contact form ω. Stability is defined in terms of
coherent subsheaves. We first define the structure sheaf OX to be the sheaf
of smooth functions f with the property that df lies in the image of f1,1,
where f1,1 is constructed in (3.5).

Definition 3.7. A coherent sheaf on a Sasakian manifold X is a sheaf of
OX -modules, which is locally the cokernel of a morphism of Sasakian vector
bundles of the form

O⊕a
X −→ O⊕b

X

(see Definition 3.4).

Given a coherent Sasakian sheaf E , there is a Sasakian holomorphic line
bundle det(E) associated to it. Given any local resolution

0 −→ Vn −→ Vn−1 −→ · · · −→ V0 −→ E −→ 0

over some open subset U, where each Vi is a Sasakian holomorphic vector
bundle for, and all the homomorphisms are morphisms of Sasakian vector
bundles, the restriction of det(E) to U is identified with ⊗n

i=0 det(Vi)(−1)i
.

These locally defined line bundles patch together in a natural way to define
the line bundle det(E) over X.

The degree deg E of a torsionfree coherent Sasakian sheaf is defined to be

deg E :=
∫

X
c1(det(E))(dω)n−1 ∧ ω

(recall that X is compact).
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Definition 3.8. Let E = ({E, D0}, D) be a Sasakian holomorphic vector
bundle, and E the associated locally free OX -module. The bundle E is called
stable if for any Sasakian coherent subsheaf E ′ ⊂ E such that the quotient
E/E ′′ is torsionfree of positive rank, the inequality

deg(E ′)
rk(E ′)

<
deg(E)
rk(E)

holds.

The bundle E is called semistable, if

deg(E ′)
rk(E ′)

≤ deg(E)
rk(E)

.

3.5 Sasakian Hermite–Einstein metrics and applications

Let (X, g, ξ) be a quasi-regular Sasakian manifold. From now onwards we
will assume quasi-regularity.

Recall that F = N⊥ ⊂ TX is the orthogonal complement of the one-
dimensional foliation generated by the Killing vector field ξ. We will call F
the horizontal distribution. In (2.3) we noted that Φ preserves the horizontal
distribution.

The closedness of the ξ-orbits amounts to an action of the circle group

S
1 = {z ∈ C | |z| = 1}

on X. However, the non-integrability of the contact structure defined by
the horizontal distribution F means that we can just consider local slices
transversal to ξ, which defines a complex orbifold structure on the quotient
X/S

1. The Sasakian holomorphic structure for complex vector bundles dis-
cussed in Section 3.3 now can be studied locally. This is actually sufficient
to show the existence of Hermite–Einstein metrics on stable bundles.

Existence of Hermite–Einstein structures. Let (X, g, ξ) be a compact
quasi-regular Sasakian manifold, and let ({E, D0}, D) be a stable
Sasakian holomorphic vector bundle on it. Then there exists a Hermite–
Einstein structure on E. Furthermore, the corresponding connection is
uniquely determined.

We indicate, why the now standard methods of Donaldson [5] and
Uhlenbeck and Yau [9] are applicable.
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Given an initial hermitian metric h0 on E in the sense of Definition 3.5, we
consider the heat equation for a one-parameter family {ht}t≥0 of Sasakian
hermitian metrics with curvature K(ht)

∂ht

∂t
h−1

t = Λω

√
−1K(ht) − λ idE. (3.20)

This equation is not parabolic on X. We note that the two-form (dω)|F
as well as the Riemannian metric g are S

1-invariant. Hence, the contrac-
tion operation Λω in (3.10) is invariant under the action of S

1. With the
restriction on hermitian metrics in Definition 3.5, the above heat equation
is S

1-invariant, and it exists as a parabolic equation on any slice. The max-
imum principle is applicable because of the compactness of X. The usual
C0—estimates for the pointwise norm of the curvature follow from

d

dt
|ΛK(ht)|2 = �|ΛK(ht)|2 − |∇ΛK(ht)|2,

where � must be defined in the sense of the horizontal distribution F . The
existence of solutions for all t ≥ 0 is provided. It follows that

d

dt

∫

X
|ΛK(ht)|2(t) = −

∫

X
|∇ΛK(ht)|2(t),

and integration over t yields the existence of a sequence tj → ∞ such that

∫

X
|∇ΛK(ht)|2(tj) −→ 0.

The final step, following Uhlenbeck and Yau [9], of finding suitable gauge
transformations such that the transformed hermitian metrics converge to a
Sasakian Hermite–Einstein metric is based upon purely local arguments. In
our case, it can be carried through on the local slices transversal to ξ.

Now we need the notion of a holomorphic family of holomorphic Sasakian
vector bundles.

Let (X, g, ξ) be a compact quasi-regular Sasakian manifold, and let S
be a parameter space, which will be a complex manifold (later we will also
consider reduced complex spaces). We equip S with the flat Kähler form. We
extend the Killing field ξ to a vector field on X × S using the decomposition
of T (X × S), and denote it by ξS . Extend the horizontal distribution F to
a distribution FS on X × S of codimension one by taking the direct sum of
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F with TS. Like in Section 3.1 we can now define ΛpFS and F p,q
S . As in

(3.17) define

˜F 0,1
S := F 0,1

S ⊕ ξS ⊗R C. (3.21)

Definition 3.9. Let (X, g, ξ) be a compact quasi-regular Sasakian manifold.

(i) A family {(Es, D0,s)}s∈S of Sasakian complex vector bundles
parameterized by S is given by a complex vector bundle E of class C∞

over X × S together with a partial connection D0,E in the direction of
ξ. For s ∈ S, we define (Es, D0,s) := (E , D0,E)|X×{s}.

(ii) A holomorphic family of Sasakian vector bundles is a family of Sasakian
complex vector bundles {(Es, D0,s)}s∈S (as in (i)) together with a flat
partial connection D on E in the direction on ˜F 0,1

S (defined in (3.21))
satisfying the following condition: for all s ∈ S, the partial connection
on Es in the direction of ξ defined by D coincides with D0,s. The
restriction of D to Es will be denoted by Ds.

We observe that the complex orbifold structure on X/S
1 guarantees that

for holomorphic families of Sasakian holomorphic vector bundles, the
Schlessinger conditions of deformation theory hold, in particular we have
universal deformations for simple bundles rather than semi-universal ones.
A Sasakian holomorphic vector bundle is called simple, if all of its automor-
phisms are constant scalar multiplications. (In the above setting, the base
was assumed to be smooth. The usual approach would be to consider dif-
ferentiable families of complex vector bundles first, and use the integrability
condition for the holomorphic structures, which defines the base space S as
a subset of a smooth local ambient space, in the last step. In this way all
relevant differential operators exist on the ambient space of the base [6].)

Theorem 3.1. Let (X, g, ξ) be a compact quasi-regular Sasakian manifold.
Then there exists the moduli space of stable, Sasakian holomorphic vector
bundles on X in the category of Hausdorff complex spaces.

Proof. Since X is compact and quasi-regular, any section of OX (defined
earlier) is a constant function. Therefore, all the eigenfunctions of an endo-
morphism of a holomorphic Sasakian vector bundle on X are constant func-
tions. By this argument any stable Sasakian holomorphic vector bundle
is simple. So the universal deformations of stable Sasakian holomorphic
vector bundles exist. The local patching of the base spaces S of universal
deformations yields a (reduced) complex space. Over these we are given
holomorphic families of Sasakian holomorphic vector bundles equipped with
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Hermite–Einstein metrics, which can be chosen to depend in a C∞ way on
the parameter.

The Hausdorff property follows from the existence and uniqueness of
Hermite–Einstein connections:

Let S and S′ be reduced complex spaces, and let {Es, hs}s∈S and
{E′

s, h
′
s}s∈S′ be families of Sasakian holomorphic Hermite–Einstein bundles.

The functor

IsomS×S′(E × S′, S × E′) −→ ((Sets)),

which assigns to any space R −→ S × S′ the set of holomorphic isomor-
phisms of the bundles pulled back to R (and whose morphisms are defined
in the obvious way) is representable by a complex space

ψ : I −→ S × S′

together with a universal object. The fibers of ψ are either empty or torsors
for C

∗. Because of stability, ψ defines a C
∗-bundle over its (closed ana-

lytic) image. Given the choice of relative Hermite–Einstein metrics for both
families, the functor of isometries is represented by

ψHE : IHE −→ S × S′,

where I ⊃ IHE −→ S × S′ is a principal U(1)-bundle. Let

Γ = {(s, s′) ∈ S × S′, | Es ∼ E′
s′ isometrically equivalent}.

For any (s, s′) ∈ S × S′ the corresponding Hermite–Einstein metrics are
gauge equivalent. Now

Γ = ψHE(IHE) = ψ(I)

is a closed analytic subspace of S × S′, which shows the properness of the
equivalence relation given by Γ. �

Remark 3.2. Since the group of holomorphic isometries of Hermite–
Einstein bundles is connected, the moduli space is the union of deforma-
tion spaces of stable Sasakian bundles.
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3.6 Sasakian moduli metric for vector bundles

In this section we will introduce a Kähler structure on the moduli space of
stable Sasakian holomorphic vector bundles, which is constructed using a
certain determinant line bundle, equipped with a Quillen metric.

We first introduce the Sasakian moduli form. The construction will be
functorial with respect to base change.

Let {(Es, D0,s}, Ds)}s∈S be a holomorphic family of holomorphic Sasakian
vector bundles on (X, g, ξ), equipped with a C∞ family of Hermite–Einstein
metrics {hs}, amounting to a hermitian metric on the complex vector bundle
(E , D0E). Let K(E , h) be the curvature form of the unique hermitian con-
nection on E compatible with its holomorphic structure. Therefore, K(E , h)
is a smooth section of (F 1,1

S )∗ ⊗ End(E).

Definition 3.10. The Sasakian moduli form for vector bundles is defined
as the following fiber integral:

ωSB =
∫

(X×S)/S
tr

(√
−1K(E , h) ∧

√
−1K(E , h)

) (dω)n

n!
ω. (3.22)

It follows from its construction that the Sasakian moduli form is a d-closed
real (1, 1)-form on the parameter space S. Using the above arguments, one
can see that it possesses, in the case where S is reduced but possibly singular,
a local ∂∂-potential of class C∞.

We know that the curvature form of a hermitian, Sasakian holomorphic
vector bundle induces a real (1, 1)-form, with values in the endomorphism
bundle, in horizontal direction. The same holds for the curvature form of a
hermitian vector bundle over X × S, which defines a family of such objects.
For this reason, we are in a position to carry over the methods from [3]
literally to the orbifold case of Hermite–Einstein orbifold vector bundles
over the orbifold X/S

1 (cf. also [1]). We arrive at the following:

Theorem 3.2. The Sasakian moduli form for holomorphic vector bundles
ωSB is a Kähler form on the moduli spaces of Sasakian holomorphic stable
vector bundles. It possesses local ∂∂-potentials of class C∞ (with respect to
ambient smooth spaces).

Let M be a complex projective manifold and L a very ample line bundle
over M . Fix a positive hermitian structure on L. Let ω denote the Kähler
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form on M given by its curvature. Define

X := {v ∈ L | ‖v‖ = 1}.

The group S
1 has the natural multiplication action on X. The hermitian

connection on L gives a splitting of TX. We define a Riemannian structure
on X by assigning the ω in the horizontal direction; the metric in the vertical
direction is given by the standard metric on S

1. It is easy to see that the
Riemannian manifold X equipped with the vector field ξ that is given by
the action of S

1, is a Sasakian manifold. We note that the embedding

M ↪→ P (H0(M, L)∗)

given by the linear system lifts to a diffeomorphism

X −→ H0(M, L)∗

which is an isometry in the horizontal direction.

Definition 3.11. A Sasakian manifold (X, g, ξ) is called of projective type
if it possesses a holomorphic hermitian Sasakian line bundle (LS , hS) whose
Chern form is a positive hermitian form on F 1,0.

Now we construct the determinant line bundle λ on the base of a universal
deformation. The construction is based upon the Riemann–Roch formula for
hermitian vector bundles by Bismut et al. [2], which also holds for orbifolds
(cf. [7]).

Let (E , h) be a family of holomorphic hermitian vector bundles of rank r
over X parameterized by S. Let

π : (X/S
1) × S −→ X/S

1

be the projection. The following formula holds for Chern characters for
elements in the Grothendieck’s K-group:

χ := (r2 − ch(E ⊗ E∗, h)) · ch
(

((L, h) − (L, h)−1)⊗(n−1)
)

= 2n−1c2
1(E , h)c1(L, h)n−1 + higher order terms. (3.23)

The (1, 1)-component of the push forward π∗χ in (3.23) is the (1, 1)-
component of the fiber integral, hence it is ωSB up to a numerical constant.
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In view of the Riemann–Roch formula, [2], the corresponding determinant
line bundle is

λ := detR•π∗
(

(Or2

X/S1 − E ⊗ E−1) ⊗ (π∗L − π∗L−1)⊗(n−1)
)

. (3.24)

We indicate, how the above determinant line bundle can be computed for a
locally free sheaf F say and a proper holomorphic map π : Z −→ S: Take
the direct images Rqπ∗F first. These locally possess free resolutions. Like in
Section 3.4, we define a determinant line bundle associated to the resolution,
which only depends upon the sheaf Rqπ∗F . Finally, the tensor power of these
invertible sheaves with alternating exponent defines

λ(F) := det(F) := R•π∗F .

For a short exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0,

we have that det(F) = det(F ′) ⊗ det(F ′′). This fact allows for a generaliza-
tion of the definition of determinant line bundles. If F denotes a coherent
sheaf on Z, then F can be replaced by a locally free resolution in the alge-
braic case (and more generally by the corresponding simplicial objects in
the non-algebraic case). Furthermore, the definition can be extended to
elements of the relative K-groups. If we let F stand for an element of
the relative K-group arising from hermitian vector bundles, like in the case
under consideration, and π : Z → S is a smooth Kähler morphism with rel-
ative Kähler form induced by a closed form ωZ on the total space, the main
theorem of [2] states the existence of a Quillen metric hQ on λ(F) such that
its first Chern form equals

c1(λ(F), hQ) = −
(

∫

Z/S
td(Z/S, ωZ) · ch(F , h)

)

(1,1)

. (3.25)

In this way λ of (3.24) is being defined and equipped with a Quillen
metric. It can be verified immediately that in our case the right-hand side
of (3.25) is equal to the fiber integral of χ, which was defined in (3.23). Now
we have that the Chern form is up to a numerical constant equal to the
Sasakian moduli metric form in the sense of orbifold structures. Observe
that these arguments also hold in the case of an orbifold structure on a
singular moduli space. The necessary techniques are in [6, Appendix].
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Theorem 3.3. The Sasakian moduli metric form for vector bundles is up to
a numerical factor equal to the Chern form of the determinant line bundle.

c1(λ, hQ) � ωSB.
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