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Abstract

We use our recently developed algebraic methods for the calculation of
the heat kernel on homogeneous bundles over symmetric spaces to evalu-
ate the non-perturbative low-energy effective action in quantum general
relativity and Yang–Mills gauge theory in curved space. We obtain an
exact integral repesentation for the effective action that generates all
terms in the standard asymptotic epxansion of the effective action with-
out derivatives of the curvatures effectively summing up the whole infinite
subseries of all quantum corrections with low momenta.

1 Introduction

One of the basic object in quantum field theory is the effective action (see
[1, 9, 13, 16, 18]). It is a functional of the background fields that encodes, in
principle, all the information of quantum field theory. It determines the full
one-point propagator as well as all full vertex functions. Moreover, it gives
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the effective equations for the background fields, which makes it possible to
study the back-reaction of quantum processes on the classical background.

One of the most powerful methods for the evaluation of the effective action
is the heat kernel approach (see the books [9,15,16,18,19,21,22] and reviews
[1, 7, 8, 10, 25]). Of course, the effective action (or the heat kernel) cannot
be computed exactly. Therefore, various approximation schemes have been
developed depending on the problem one is studying. First of all, there is the
standard semi-classical expansion of the effective action in inverse powers
of a (large) mass parameter of massive quantum fields, which corresponds
to the short-time asymptotic expansion of the trace of the heat kernel in
powers of the proper time. It describes such physical effects as polarization
of vacuum of massive quantum fields by weak background fields. There has
been tremendous progress in the explicit calculation of the coefficients of this
asymptotic expansion over the last two decades (see [1,7,9,10,13,19,22,25]).
However, the applicability of this approximation is rather limited — it does
not apply to strong background fields and massless (or light) quantum fields.
Therefore, there is a need for new non-perturbative approximation schemes.

Next, one is interested in scattering processes of energetic particles. Such
processes are well described by the (essentially perturbative) high-energy
approximation. The high-energy effective action can be computed in a suffi-
ciently elaborated perturbation theory [1,8–10,13]. Although it is non-local,
it is analytic in the background fields and, therefore, can be computed simply
by expanding in powers of background fields (or their curvatures).

On the other hand, one is interested in studying the structure of the
physical vacuum (the ground state) of the theory. Such problems are well
described by the low-energy approximation. The low-energy effective action
(or the heat kernel) is a local, but highly non-trivial (non-polynomial) func-
tional of background fields and their curvatures, and, therefore, it cannot
be computed in the usual perturbation theory. There are just a few very
special cases, such as group manifolds, spheres, rank-one symmetric spaces
and split-rank symmetric spaces when one can determine the spectrum of
the Laplacian exactly and obtain closed formulas for the heat kernel in terms
of the root vectors and their multiplicities [17, 21]. The complexity of the
method crucially depends on the global structure of the symmetric space,
most importantly its rank. Therefore, to study the low-energy effective
action in the generic case one needs new essentially non-perturbative meth-
ods. The development of such methods for the calculation of the heat kernel
was initiated in our papers [2, 4] for a gauge theory in flat space, which
were then applied to study the vacuum structure of the Yang–Mills theory
in [5,7]. These ideas were first extended to scalar fields on curved manifolds
in [3, 6] and finally to arbitrary twisted spin-tensor fields in [11,12].
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In the present paper we apply these methods to study the one-loop low-
energy effective action in quantum general relativity and Yang–Mills theory
in curved space with some twisted scalar and spinor fields. We consider a
wide class of field theory models with the action

S =
∫

M
dx g1/2

{
1
k2 (R − 2Λ) +

1
8e2 trFμνFμν

+ ψ̄ [γμ∇μ + M(ϕ)]ψ − 1
2
gμν∇μϕ̄∇νϕ − V (ϕ)

}
, (1.1)

where g = | det gμν |, gμν is a metric on the spacetime manifold M , R is
the scalar curvature, k2 = 16πG is the Einstein coupling constant, G is the
Newtonian gravitational constant, Λ is the cosmological constant, Fμν is the
strength of the gauge fields Aμ taking values in the adjoint representation
of the Lie algebra of a compact simple gauge group GY M , e is a coupling
constant, ϕ and ψ are multiplets of real scalar fields and the Dirac spinor
ones, which belong to some, in general, different representations of the gauge
group, M(ϕ) is a spinor mass matrix, V (ϕ) is a potential for scalar fields,
γμ are the Dirac matrices and ∇μ is the covariant derivative in the corre-
sponding representation.

Our goal is to compute the one-loop effective action for this model assum-
ing a covariantly constant background, that is, a background metric with
covariantly constant curvature, a background gauge field with the covari-
antly constant strength tensor and also some covariantly constant back-
ground scalar fields.

This paper is organized as follows. In Section 2 we describe briefly the con-
struction of the one-loop effective action in gauge field theories. In Section
3, we describe the heat kernel method for the calculation of functional deter-
minants of elliptic partial differential operators of Laplace type. In Section
4, we describe the low-energy approximation and derive some of its conse-
quences, in particular, we present the results for the heat trace of our earlier
paper [12]. In Sections 5–7 we apply these results to evaluate the effective
action in general relativity, the Yang–Mills theory and also for the matter
(scalar and the spinor) fields. In conclusion, we summarize our results.

2 Effective action in gauge field theories

We describe briefly the construction of the one-loop effective action in gauge
field theories. Let M be a globally hyperbolic spacetime manifold with a
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(pseudo)-Riemannian metric. Let V and G be two fiber bundles over M such
that dim G < dim V. Let both bundles V and G be equipped with some
Hermitian positive-definite metrics and with the corresponding natural L2

scalar products ( , )V and ( , )G .

The sections of the bundle V are quantum (gauge) fields. The dynamics
of the quantum fields is described by the action S : C∞(V) → R. At the
linearized level it is described by the second-order differential operator, P :
C∞(TV) → C∞(TV) defined by

(h, Ph)V =
d2

dε2 S(ϕ + εh)
∣∣∣∣
ε=0

. (2.1)

If this operator is non-degenerate then the one-loop effective action is deter-
mined by its determinant [18]

Γ(1) = σ
i

2
log Det (−P ), (2.2)

where σ = +1 for bosonic fields and σ = −1 for fermionic fields. In the
following we consider the bosonic theory.

In gauge theory the operator P is degenerate. This means that the
action has some invariant flows which define a first-order differential operator
N : C∞(TG) → C∞(TV). Let N̄ : C∞(TV) → C∞(TG) be the first-order
differential operator such that for any ξ ∈ C∞(G), h ∈ C∞(TV)

(N̄h, ξ)G = (h, Nξ)V , (2.3)

and F : C∞(TG) → C∞(TG) be the operator defined by

F = N̄N. (2.4)

Finally, let L : C∞(TV) → C∞(TV) be the second-order differential opera-
tor defined by

L = −P − NN̄. (2.5)

We consider only the case when the gauge generators are linearly inde-
pendent. This means that the rank of the leading symbol of the operator N
equals the dimension of the bundle G. We also assume that the leading sym-
bols of the generators N are complete in that they generate all zero-modes
of the leading symbol of the operator P . Then the leading symbols of the
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operators L and F are non-degenerate and the one-loop effective action has
the form [9,18]

Γ(1) =
i

2

(
log Det L − 2 log Det F

)
. (2.6)

Strictly speaking, one should include the contribution, log Det γ, of the
determinant of the gauge group metric γ. However, in the cases of our
primary interest (general relativity and Yang–Mills theory) the gauge group
metric γ is a zero-order differential operator, and, therefore, its contribution
can be omitted, more precisely, it can be absorbed in the definition of the
path integral measure.

3 Heat kernel method

The effective action is determined by the functional determinants of second-
order hyperbolic partial differential operators with Feynman boundary con-
ditions. At this point we can do the analytic continuation to the imaginary
time (Wick rotation) and consider instead of hyperbolic operators the elliptic
ones. Furthermore, the most important elliptic partial differential operators
encountered in quantum field theory are so-called Laplace type operators.
That is why we concentrate below on the calculation of the heat kernel for
Laplace-type operators (see [9, 10,13,15,19]).

Let (M, g) be a smooth compact Riemannian manifold of dimension n
without boundary, equipped with a positive-definite Riemannian metric g.
We assume that it is complete simply connected orientable and spin. Let Λ
be a vector space and End (Λ) be the space of endomorphisms of Λ. Let T be
a spin-tensor bundle with fiber Λ realizing a representation of the spin group
Spin(n). It naturally defines a representation Σ : SO(n) → End (Λ) of the
orthogonal algebra SO(n) in Λ with generators Σab. The spin connection
induces a connection on the bundle T defining the covariant derivative of
spin-tensor fields.

Let GY M be a compact Lie (gauge) group and GY M be its Lie algebra.
It naturally defines the principal fiber bundle over the manifold M with the
structure group GY M . Let W be a vector space and End (W ) be the space
of its endomorphisms. We consider a representation X : GY M → End (W )
of the Lie algebra GY M in W and the associated vector bundle W through
this representation with the same structure group GY M whose typical fiber
is W . Then for any spin-tensor bundle T we define the twisted spin-tensor
bundle V via the twisted product of the bundles W and T with the fiber
V = Λ ⊗ W .
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We assume that the vector bundle V is equipped with a Hermitian metric.
This naturally identifies the dual vector bundle V∗ with V. We assume that
the connection ∇ is compatible with the Hermitian metric on the vector
bundle V. The connection is given its unique natural extension to bundles in
the tensor algebra over V and V∗. In fact, using the spin connection together
with the connection on the bundle V, we naturally obtain connections on
all bundles in the tensor algebra over V, V∗, TM and T ∗M ; the resulting
connection will usually be denoted just by ∇. It is usually clear which
bundle’s connection is being referred to, from the nature of the section being
acted upon.

Let A be a connection one form on the bundle W (called Yang–Mills
or gauge connection) taking values in the Lie algebra GY M . Then for any
section of the bundle V we have

[∇μ,∇ν ]ϕ = Rμνϕ, (3.1)

where

Rμν =
1
2
Rab

μνΣab + X(Fμν) (3.2)

is the curvature of the total connection on the bundle V, and

Fμν = ∂μAν − ∂νAμ + [Aμ,Aμ] (3.3)

is the curvature of the Yang–Mills connection. We use Greek indices to
denote tensor components in the coordinate basis. We also use Latin indices
from the beginning of the alphabet to denote the indices of an orthornomal
frame. Both group of indices range over 1, . . . , n.

The fiber inner product on the bundle V defines a natural L2 inner product
on C∞(V). The completion of C∞(V) in this norm defines the Hilbert space
L2(V). Let ∇∗ be the formal adjoint to ∇ and Q be a smooth endomorphism
of the bundle V. A Laplace-type operator L : C∞(V) → C∞(V) is a partial
differential operator of the form

L = ∇∗∇ + Q = −Δ + Q, (3.4)

where Δ = gμν∇μ∇ν is the covariant Laplacian. It is easy to show that the
Laplacian, Δ, and, therefore, the operator L, is a self-adjoint elliptic partial
differential operator [19].

For t > 0 the operators U(t) = exp(−tL) form a semi-group of bounded
operators on L2(V), the heat semi-group. Moreover, the heat semi-group
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U(t) is a trace-class operator with a well-defined L2-trace, the heat trace [19]:

Θ(t) = Tr L2 exp(−tL). (3.5)

The heat trace is well defined for real positive t. In fact, it can be analytically
continued to an analytic function of t in the right half-plane (for Re t > 0).

The heat trace determines the zeta-function,

ζ(s, λ) = μ2sTr L2(L − λ)−s =
μ2s

Γ(s)

∫ ∞

0
dt ts−1 etλΘ(t), (3.6)

where μ is a renormalization parameter introduced to preserve dimensions,
λ is a sufficiently large negative constant such that the operator (L − λ) is
positive and s is a complex parameter with Re s > n/2. The zeta-function is
a meromorphic function of s analytic at s = 0 [19], and, therefore, it enables
one to define, in particular, the zeta-regularized determinant of the operator
(L − λ), via [1, 9, 10,13]

ζ ′(0, λ) ≡ ∂

∂s
ζ(s, λ)

∣∣∣∣
s=0

= − log Det (L − λ), (3.7)

which determines the one-loop effective action in quantum field theory. The
parameter λ serves here as an infrared regularization parameter. One should
take the limit λ → 0 at the end of the calculation.

4 Low-energy approximation

Of course, it is impossible to compute the heat kernel in the generic case.
That is why, one considers various approximations. To study the struc-
ture of the ground state in quantum field theory one needs to evaluate the
heat kernel in the low-energy approximation. In this case the curvatures
are strong but slowly varying, i.e., the powers of the curvatures are more
important than their derivatives. The main terms in this approximation
are the terms without any covariant derivatives of the curvatures. We will
consider the zeroth order of this approximation which corresponds simply
to covariantly constant background

∇μRαβγδ = 0, ∇μRαβ = 0, ∇μQ = 0. (4.1)

Riemannian manifolds with parallel curvature are called symmetric spaces.
Vector bundles with parallel curvature are called homogeneous bundles.
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Thus, the most general covariantly constant background is described by
homogeneous vector bundles over symmetric spaces.

4.1 Holonomy group

A generic symmetric space has the structure M = M0 × Ms, where M0 =
R

n0 , Ms = M+ × M−, and M+ and M− are compact and non-compact sym-
metric spaces, respectively [20, 23, 26]. The components of the curvature
tensor can be presented in the form [3,6, 23]

Rabcd = βikE
i
abE

k
cd, (4.2)

where Ei
ab is a collection of p anti-symmetric matrices and βik is a symmetric

non-degenerate p × p matrix. The number p is determined by the curvature
tensor. In the following the Latin indices from the middle of the alphabet
range over 1, . . . , p and will be raised and lowered with the matrix βik and
its inverse βik. They should not be confused with the Latin indices from the
beginning of the alphabet.

Next, we define the traceless n × n matrices Di = (Da
ib), by

Da
ib = −βikE

k
cbδ

ca. (4.3)

The matrices Di are known to be the generators of the holonomy algebra,
H, i.e., the Lie algebra of the restricted holonomy group, H, [6, 23,26]

[Di, Dj ] = F k
ijDk, (4.4)

where F j
ik are the structure constants.

The holonomy algebra is a subalgebra of the orthogonal algebra SO(n)
[14, 24, 26]. The embedding of the holonomy algebra H in the orthogonal
algebra SO(n) is described as follows [12]. Let Yab be the generators of
the orthogonal algebra SO(n) in the representation Y : SO(n) → End (W )
of the orthogonal algebra SO(n) in a vector space W and let Ti be the
matrices defined by

Ti = −1
2
Da

ibY
b
a. (4.5)

Then Ti form a representation of the holonomy algebra H in W , that is,
they satisfy the commutation relations

[Ti, Tj ] = F k
ijTk. (4.6)
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Vice versa, for every representation T : H → End (W ) of the holonomy alge-
bra H in a vector space W there is a representation Y : SO(n) → End (W )
of the orthogonal algebra SO(n) in W such that the generators Ti of the
representation T are given by (4.5).

The structure constants F j
ik of the holonomy group define the p × p

matrices Fi, by (Fi)j
k = F j

ik, which generate the adjoint representation of
the holonomy algebra. The scalar curvature of the holonomy group is given
by the invariant [20,26]

RH = −1
4
βijF k

ilF
l
jk. (4.7)

4.2 Homogeneous vector bundles

Let ha
b be the projection to the subspace TxMs of the tangent space TxM

and

qa
b = δa

b − ha
b (4.8)

be the projection tensor to the flat subspace R
n0 . Since the curvature exists

only in the semi-simple submanifold Ms, the components of the curvature
tensor Rabcd, as well as the tensors Ei

ab, are non-zero only in the semi-simple
subspace Ms. Moreover, the condition (4.1) imposes strong constraints on
the curvature of the homogeneous bundle W. We decompose the Yang–Mills
curvature according to

Fab = Bab + Eab, (4.9)

where

Bab = Fcdq
c
aq

d
b, Eab = Fcdh

c
ah

d
b. (4.10)

Then, one can show [12] that if Bab is non-zero then it takes values in an
Abelian ideal of the gauge algebra GY M (that is, commutes with everyhting
else) and if Eab is non-zero then it takes values in a representation of the
holonomy algebra. More precisely, the existence of a non-zero component
Eab is possible only if the holonomy algebra H is an ideal of the gauge
algebra GY M . That is, the gauge algebra GY M must be big enough to have
a subalgebra C ⊕ H, where C is an Abelian ideal. Below we will assume that
this is the case.



318 IVAN G. AVRAMIDI

Since the curvature Eab takes values in the holonomy algebra, it has the
form [12] X(Eab) = −Ei

abTi, where Ti are the generators of the holonomy
algebra in some representation T of the holonomy algebra in the vector
space W . Since the holonomy algebra is a subalgebra of the orthogonal
algebra SO(n) it can be embedded in the orthogonal algebra SO(n) via a
representation Y : SO(n) → End (W ) of the orthogonal algebra SO(n) in
W , equation (4.5). Thus, the curvature of the homogeneous bundle W is
given by

X(Fab) = −Ei
abTi + X(Bab) =

1
2
Rcd

abYcd + X(Bab), (4.11)

where X(Bab) satisfies the commutation relations [X(Bab), X(Bcd)] = [X
(Bab), Ycd] = 0 and Yab are the generators of the orthogonal algebra SO(n)
in the representation Y .

Now, we consider the representation Σ : SO(n) → End (Λ) of the ortho-
gonal algebra SO(n) in the vector space Λ (defining the spin-tensor bundle
T ) and define the generators

Gab = Σab ⊗ IY + IΣ ⊗ Yab (4.12)

of the orthogonal algebra SO(n) in the product representation G = Σ ⊗ Y :
SO(n) → End (V ) in the vector space V = Λ ⊗ W .

Then the matrices

Ri = −1
2
Da

ibG
b
a (4.13)

form a representation R : H → End (V ) of the holonomy algebra in V and
the total curvature of the twisted spin-tensor bundle V is

Rab = −Ei
abRi + X(Bab) =

1
2
Rcd

abGcd + X(Bab). (4.14)

The Casimir operator of the holonomy group in this representation
is [12]

R2 = βijRiRj =
1
4
RabcdGabGcd. (4.15)
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4.3 Heat trace

The heat trace of the operator L was computed in [12]. It has the form

Θ(t) =
∫

M
dx g1/2 (4πt)−n/2 exp

{(
1
8
R +

1
6
RH

)
t

}

×
∫

Rn
reg

dω

(4πt)p/2 β1/2 exp
{

− 1
4t

〈ω, βω〉
}

Ψ(t, ω)

×
[
det H

(
sinh [F (ω)/2]

F (ω)/2

)]1/2

×
[
det TM

(
sinh [D(ω)/2]

D(ω)/2

)]−1/2

, (4.16)

where β = det βij , 〈ω, βω〉 = βijω
iωj and

Ψ(t, ω) = tr W

[
det TM

(
sinh(tX(B))

tX(B)

)]−1/2

× tr Λ exp
[
−t

(
R2 + Q

)]
exp [R(ω)] . (4.17)

Here D(ω), F (ω), R(ω) and B are matrices defined by D(ω) = ωiDi, F (ω) =
ωiFi, R(ω) = ωiRi and B = (Ba

b), where the matrices Di, Fi, Ri and Bab

were defined above in Sections 3.1 and 3.2. Notice that the whole structure
of this expression is the same for all vector bundles (all representations), the
only difference is in the function Ψ(t, ω).

We need to explain the meanning of the integral over ωi in (4.16). In
the derivation of this formula in [12] we used a certain regularization proce-
dure. The point is that the integrals over the holonomy group in canonical
coordinates ωi have singularities that need to be avoided (or regularized) by
deforming the contour of integration. This procedure with the non-standard
contour of integration is necessary for the convergence of the integrals since
we are treating both the compact and the non-compact symmetric spaces
simultaneously. We complexify the holonomy group by extending the canon-
ical coordinates ωi to be complex, more precisely, to take values in the
p-dimensional subspace R

p
reg of C

p obtained by rotating R
p counterclock-

wise by π/4 in C
p, that is, we replace each variable ωj by eiπ/4ωj . We also

make an analytic continuation in the complex plane of t with a cut along the
negative imaginary axis so that −π/2 < arg t < 3π/2 and consider t to be
real negative, t < 0. Remember, that, in general, the non-degenerate diago-
nal matrix βij is not positive definite. The space R

p
reg is chosen in such a way

to make the Gaussian exponent purely imaginary. Then the indefiniteness
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of the matrix β does not cause any problems. Moreover, the integrand does
not have any singularities on these contours. The convergence of the integral
is guaranteed by the exponential growth of the sine for imaginary argument.
These integrals can be computed then in the following way. The coordinates
ωj corresponding to the compact directions are rotated further by another
π/4 to imaginary axis and the coordinates ωj corresponding to the non-
compact directions are rotated back to the real axis. Then, for t < 0 all the
integrals are well defined and convergent and define an analytic function of
t in a complex plane with a cut along the negative imaginary axis.

5 General relativity

Einstein’s theory of general relativity is a gauge theory with the gauge group
G being the group of diffeomorphisms of the spacetime manifold M . The
gravitational field can be parametrized by the metric tensor of the space-
time gμν . The Hilbert–Einstein action of general relativity has the form

SGR =
1
k2

∫
M

dx g1/2 (R − 2Λ) . (5.1)

The tangent bundle to the bundle of Riemannian metrics is the bundle
T(2) = T ∗M ∨ T ∗M of symmetric covariant 2-tensors. (Here ∨ = Sym⊗ is
the symmetric tensor product.) An invariant fiber metric on the vector
bundle T(2) is defined by

Eμναβ = gμ(αgβ)ν − κgμνgαβ , (5.2)

where κ �= 1/n is a real parameter. The inverse metric is then

E−1
μναβ = gμ(αgβ)ν − κ

nκ − 1
gμνgαβ . (5.3)

The tangent bundle to the group of diffeomorphisms is the tangent bundle
TM itself. We define an invariant metric on the gauge algebra by

γμν =
k2

α
gμν , (5.4)

where α �= 0 is a real parameter.

The invariant flows of the action are the infinitesimal diffeomorphisms,
which define the first-order differential operators N : C∞(TM) → C∞(T(2))
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and N̄ : C∞(T(2)) → C∞(TM) by

(Nξ)μν = 2gλ(ν∇μ)ξ
λ, (5.5)

(N̄h)α = −2
α

k2

(
gα(ν∇μ) − κgμν∇α

)
hμν . (5.6)

Therefore, the ghost operator F̃ = N̄N : C∞(TM) → C∞(TM) is a second-
order differential operator defined by

F̃ = 2
α

k2 F, (5.7)

where

Fμ
ν = −δμ

ν Δ + (2κ − 1)∇μ∇ν − Rμ
ν . (5.8)

The second variation of the action defines a second-order partial differen-
tial operator P : C∞(T(2)) → C∞(T(2)) by

d2

dε2 SGR(g + εh)
∣∣∣∣
ε=0

= (h, Ph)T(2) , (5.9)

where

Pμν
αβ = − 1

2k2

{
−

(
δ(α

(μδβ)
ν) +

1 − 2κ

nκ − 1
gμνg

αβ

)
Δ +

1 − 2κ

nκ − 1
gμν∇(α∇β)

− gαβ∇(μ∇ν) + 2∇(μδ(α
ν)∇β) − 2Rα

(μ
β

ν) − 2δ(α
(μRβ)

ν) + Rμνg
αβ

+
4κ − 1
nκ − 1

gμνR
αβ + (R − 2Λ)δα

(μδβ
ν)

+
1

2(nκ − 1)

[
(1 − 4κ)R + 2(2κ − 1)Λ

]
gμνg

αβ

}
. (5.10)

The operator NN̄ : C∞(T(2)) → C∞(T(2)) is a second-order operator of the
form

(NN̄)αβ
μν = −4

α

k2

{
∇(μδ(α

ν)∇β) − κgαβ∇(μ∇ν)

}
. (5.11)

The graviton operator L̃ = −P − NN̄ : C∞(T(2)) → C∞(T(2)) now reads

L̃ =
1

2k2 L, (5.12)
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where

Lμν
αβ = −

(
δ(α

(μδβ)
ν) +

1 − 2κ

nκ − 1
gμνg

αβ

)
Δ +

1 − 2κ

nκ − 1
gμν∇(α∇β)

− (1 + 8ακ)gαβ∇(μ∇ν) + 2(1 + 4α)∇(μδ(α
ν)∇β) − 2Rα

(μ
β

ν)

− 2δ(α
(μRβ)

ν) + Rμνg
αβ +

4κ − 1
nκ − 1

gμνR
αβ + (R − 2Λ)δα

(μδβ
ν)

+
1

2(nκ − 1)

[
(1 − 4κ)R + 2(2κ − 1)Λ

]
gμνg

αβ . (5.13)

The most convenient choice of the parameters of the fiber metrics (gauge
parameters) is

κ =
1
2
, α = −1

4
. (5.14)

In this gauge the non-diagonal derivatives in both the operators F and L
vanish so that they both are of Laplace type

Fμ
ν = −δμ

νΔ − Rμ
ν ,

L = −Δ + Q, (5.15)

where

Qμν
αβ = −2Rμ

(α
ν
β) − 2δ(α

(μRβ)
ν) + Rμνg

αβ +
2

n − 2
gμνR

αβ

− 1
(n − 2)

gμνg
αβR + (R − 2Λ)δα

(μδβ
ν). (5.16)

In the Euclidean formulation the zeta-regularized effective action has the
form

ΓGR
(1) = −1

2
ζ ′
GR(0), (5.17)

where

ζGR(s) = ζL(s) − 2ζF (s), (5.18)

where ζL(s) and ζF (s) are the zeta functions of the graviton operator L and
the ghost operator F . Next, by using the definition of the zeta function we
obtain

ζGR(s) =
μ2s

Γ(s)

∫ ∞

0
dt ts−1etλΘGR(t), (5.19)
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where

ΘGR(t) = ΘL(t) − 2ΘF (t), (5.20)

and ΘL(t) and ΘF (t) are the heat traces of the operators L and F .

By using the results for the heat traces described above we obtain the
total heat trace

ΘGR(t) = (4πt)−n/2
∫

M
dvol exp

{(
1
8
R +

1
6
RH

)
t

}
(5.21)

×
∫

Rn
reg

dω

(4πt)p/2 β1/2 exp
{

− 1
4t

〈ω, βω〉
}

ΨGR(t, ω)

×
[
det H

(
sinh [F (ω)/2]

F (ω)/2

)]1/2 [
det TM

(
sinh [D(ω)/2]

D(ω)/2

)]−1/2

,

(5.22)

where

ΨGR(t, ω) = ΨL(t, ω) − 2ΨF (t, ω). (5.23)

Thus, all we need to compute is the functions ΨL(t, ω) and ΨF (t, ω) for the
operators L and F .

Notice that both operators L and F act on pure (untwisted) tensor bun-
dles. Therefore, there is no Yang–Mills group, that is, Fab = Eab = Bab = 0.
The generators of the orthogonal algebra SO(n) in the vector and the sym-
metric 2-tensor representation are

(
Σ(1)ab

)c

d
= 2δc

[agb]d, (5.24)
(
Σ(2)ab

)ef

cd
= −4δ

(e
[agb](dδ

f)
c) . (5.25)

Therefore, the generators of the holonomy group are

R(1)i = Di, (5.26)

R(2)i = −2Di ∨ I(1), (5.27)

which, in component language, reads

(
R(1)i

)a

b
= Da

ib, (5.28)(
R(2)i

)ab

cd
= −2D(a

i(dδ
b)

c). (5.29)



324 IVAN G. AVRAMIDI

Now, it is easy to compute the Casimir operators

(
R2

(1)

)a

b
= −Ra

b , (5.30)
(
R2

(2)

)ab

cd
= 2R(a

d
b)

c − 2δ(a
(cR

b)
d). (5.31)

The potentials for both operators are obviously read off from their definition

(QF )a
b = −Ra

b, (5.32)

(QL)ab
cd = −2R(a

c
b)

d − 2δ(a
(cR

b)
d) + Rcdg

ab +
2

n − 2
gcdR

ab

− 1
(n − 2)

gcdg
abR + δa

(cδ
b
d)(R − 2Λ). (5.33)

By substituting these expressions in the general formula (4.17) we obtain

ΨL(t, ω) = exp [−t(R − 2Λ)] tr T(2) exp (tML) exp
[
2D(ω) ∨ I(1)

]
,

ΨF (t, ω) = tr TM exp (tMF ) exp [D(ω)] , (5.34)

where the endomorphisms ML and MF are defined by

(MF )a
b = 2Ra

b, (5.35)

(ML)ab
cd = 4δ(a

(cR
b)

d) − Rcdg
ab − 2

n − 2
gcdR

ab +
1

(n − 2)
gcdg

abR. (5.36)

6 Yang–Mills theory in curved space

Let GY M be a compact simple Lie group. Yang–Mills theory is a gauge
theory with the gauge group being the group of transformations of sections
of the principal bundle over the spacetime manifold M with structure group
GY M and the configuration space being the space of all connections on this
principal bundle valued in the Lie algebra GY M of the group GY M . Let
Ad : GY M → End (WAd) be the adjoint representation of the gauge algebra
GY M in the vector space WAd and WAd be the associated vector bundle
over M with structure group GY M and the fiber End (WAd) realizing the
adjoint representation of the gauge group. The Yang–Mills gauge field can
be parametrized by the local components of the connection Aμ taking values
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in End (WAd). Then the Yang–Mills action has the form [18]

SY M =
1

8e2

∫
M

dx g1/2tr WAd
gμαgνβFμνFαβ . (6.1)

The (ghost) operator K : C∞(WAd) → C∞(WAd) and the (gluon) oper-
ator H : C∞(WAd ⊗ TM) → C∞(WAd ⊗ TM) are second-order partial dif-
ferential operators acting on scalar and vector fields valued in End (WAd).
In the minimal gauge these operators are [5, 7]

Hμ
ν = −δμ

νΔ + Rμ
ν − 2Fμ

ν , (6.2)

K = −Δ. (6.3)

Thus, the zeta-regularized one-loop effective action of quantum Yang–
Mills theory in the Euclidean formulation is given by

ΓY M
(1) = −1

2
ζ ′
Y M (0), (6.4)

where

ζY M (s) = ζH(s) − 2ζK(s), (6.5)

and ζH(s) and ζK(s) are the zeta functions of the gluon operator H and
the ghost operator K. Next, by using the definition of the zeta function we
obtain

ζY M (s) =
μ2s

Γ(s)

∫ ∞

0
dt ts−1etλΘY M (t), (6.6)

where

ΘY M (t) = ΘH(t) − 2ΘK(t), (6.7)

and ΘH(t) and ΘK(t) are the heat traces of the operators H and K.

Since both operators H and K are of Laplace type we can use the results
for the heat trace described above. We obtain the total heat trace

ΘY M (t) = (4πt)−n/2
∫

M
dx g1/2 exp

{(
1
8
R +

1
6
RH

)
t

}
(6.8)

×
∫

Rn
reg

dω

(4πt)p/2 β1/2 exp
{

− 1
4t

〈ω, βω〉
}

ΨY M (t, ω)

×
[
det H

(
sinh [F (ω)/2]

F (ω)/2

)]1/2 [
det TM

(
sinh [D(ω)/2]

D(ω)/2

)]−1/2

,

(6.9)
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where

ΨY M (t, ω) = ΨH(t, ω) − 2ΨK(t, ω). (6.10)

Thus all we have to do now is to compute the functions ΨH(t, ω) and
ΨK(t, ω) for the operators H and K.

We assume that the gauge algebra is big enough to include the holonomy
algebra as a subalgebra (as discussed above). Further, we assume that Bab

takes values in the (Abelian) Cartan subalgebra of the gauge algebra. The
other part Eab of the Yang–Mills curvature is described by a representation
YAd : SO(n) → End (WAd) of the orthogonal algebra SO(n) in WAd with
generators Y Ad

ab so that the total Yang–Mills curvature is given by (6.11)

Ad(Fab) =
1
2
Rcd

abY
Ad
cd + Ad(Bab). (6.11)

For the ghost operator K we have QK = 0 and ΣK
ab = 0. Therefore,

RK
i = −1

2
Da

ibYAd
b
a, (6.12)

R2
K =

1
4
RabcdY Ad

ab Y Ad
cd . (6.13)

Thus, we obtain

ΨK(t, ω) = tr WAd

[
det TM

(
sinh(tAd(B))

tAd(B)

)]−1/2

× exp
(
−R2

Kt
)
exp [RK(ω)] , (6.14)

where RK(ω) = RK
i ωi.

For the gluon operator H we have

(QH)a
b = Ra

b − 2Ad(Fa
b)

= Ra
b − Ra

bcdY
cd
Ad − 2Ad(Ba

b), (6.15)(
ΣH

ab

)c

d
= 2δc

[agb]d. (6.16)

Therefore,

(
RH

i

)a

b
= Da

ib + δa
bRK

i , (6.17)
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and
(
R2

H

)a

b
= −Ra

b + Ra
bcdY

cd
Ad + δa

bR2
K . (6.18)

Thus

ΨH(t, ω) = tr WAd

[
det TM

(
sinh(tAd(B))

tAd(B)

)]−1/2

exp
(
−R2

Kt
)

× exp [RK(ω)] tr TM exp [2Ad(B)t] exp [D(ω)] . (6.19)

Finally, we obtain the total function Ψ(t, ω):

ΨY M (t, ω) = tr WAd

[
det TM

(
sinh(tAd(B))

tAd(B)

)]−1/2

exp
(
−R2

Kt
)
exp [RK(ω)]

× tr TM

{
exp [2Ad(B)t] exp [D(ω)] − 2

}
.

(6.20)

7 Matter fields

Now, we assume that M is a spin manifold. Let Λspin be the spinor vector
space and End (Λspin) be the space of endomorphisms of Λspin. Let S be the
spinor bundle with fiber Λspin realizing the spinor representation of the spin
group Spin(n). It defines the spinor representation γ : SO(n) → End (Λspin)
of the orthogonal algebra SO(n) in Λspin. The spin connection induces
a connection on the bundle S defining the covariant derivative of spin-
tensor fields. Let GY M be a compact simple Lie group and GY M be its
Lie algebra. It naturally defines the principal fiber bundle over the man-
ifold M with the structure group GY M . Let Wspin be a vector space and
End (Wspin) be the space of its endomorphisms. We consider a representa-
tion Xspin : GY M → End (Wspin) of the Lie algebra GY M in Wspin and the
associated vector bundle Wspin through this representation with the same
structure group GY M whose typical fiber is Wspin. Then we define the
twisted spinor bundle Vspin via the twisted product of the bundles Wspin
and S with the fiber Vspin = Λspin ⊗ Wspin. The spin connection on the
spinor bundle and the Yang–Mills connection on the bundle Wspin define
the twisted spin connection on the bundle Vspin.

Let W0 be another associated vector bundle over M with the structure
group GY M and typical fiber W0 realizing a representation X0 : GY M →
End (W0) of the Lie algebra GY M in W0.
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The sections of the bundles W0 and Vspin are multiplets of scalar, ϕ, and
spinor, ψ, fields that we call matter fields. The action of matter fields reads

Smatter =
∫

M
dx g1/2

{
〈ψ, [γμ∇μ + M(ϕ)]ψ〉Vspin

− 1
2
gμν 〈∇μϕ, ∇νϕ〉W0

− V (ϕ)

}
, (7.1)

where 〈 , 〉Vspin
and 〈 , 〉W0

are the (Hermitian) inner products in the vector
spaces Vspin and W0, M(ϕ) ∈ End (Vspin) is an endomorphism of Vspin and
V (ϕ) is a scalar function of ϕ.

The contribution of the matter fields to the one-loop effective action has
the form [18]

Γmatter
(1) = − log Det D +

1
2

log Det L0, (7.2)

where D is the Dirac-type operator and L0 is a Laplace-type operator
defined by

D = γμ∇μ + M(φ), (7.3)

L0 = −Δ + Q0(φ), (7.4)

where φ is a background scalar field and Q0(φ) is the mass matrix of the
scalar fields. Here the background scalar fields realize the minimum of the
potential V (ϕ), and the matrix Q0 is defined by

V (ϕ) = V (φ) +
1
2

〈(ϕ − φ), Q0(φ)(ϕ − φ)〉W0
+ O((ϕ − φ)3). (7.5)

As we mentioned above it is assumed that the endomorphism Q0 is covari-
antly constant.

We also assume that the mass matrix M does not contain the Dirac
matrices or contains only even number of them, so that

[M, γμ] = 0. (7.6)

Then one can show that the spinor contribution can be expressed in terms
of the squared Dirac operator

log Det D =
1
2

log Det Lspin, (7.7)
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where

Lspin = −Δ +
1
4
R − 1

2
γabX(Fab) + M2, (7.8)

where γab = γ[aγb].

Thus, the zeta-regularized contribution of the matter fields to the one-
loop effective action in the Euclidean formulation is given by

Γmatter
(1) = −1

2
ζ ′
matter(0), (7.9)

where

ζmatter(s) = ζ0(s) − ζspin(s), (7.10)

where ζ0(s) and ζspin(s) are the zeta functions of the operators L0 and Lspin.
Next, by using the definition of the zeta function we obtain

ζmatter(s) =
μ2s

Γ(s)

∫ ∞

0
dt ts−1etλΘmatter(t), (7.11)

where

Θmatter(t) = Θ0(t) − Θspin(t), (7.12)

where Θ0(t) and Θspin(t) are the heat traces of the operators L0 and Lspin.

Since both operators L0 and Lspin are of Laplace type we can use the
results for the heat trace described above. We obtain the total heat trace

Θmatter(t) = (4πt)−n/2
∫

M
dx g1/2 exp

{(
1
8
R +

1
6
RH

)
t

}

×
∫

Rn
reg

dω

(4πt)p/2 β1/2 exp
{

− 1
4t

〈ω, βω〉
}

Ψmatter(t, ω)

×
[
det H

(
sinh [F (ω)/2]

F (ω)/2

)]1/2 [
det TM

(
sinh [D(ω)/2]

D(ω)/2

)]−1/2

,

(7.13)

where

Ψmatter(t, ω) = Ψ0(t, ω) − Ψspin(t, ω). (7.14)

Thus all we have to do now is to compute the functions Ψ0(t, ω) and Ψspin
(t, ω) for the operators L0 and Lspin.
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We assume that the gauge algebra is big enough to include the holo-
nomy algebra as a subalgebra (as discussed above). Further, we assume that
Bab takes values in the (Abelian) Cartan subalgebra of the gauge algebra
and Eab takes values in the corresponding repesentation of the holonomy
algebra. More precisely, we define two representations of the orthogonal
algebra Y0 : SO(n) → End (W0) and Yspin : SO(n) → End (Wspin) with gen-
erators Y 0

ab and Y spin
ab so that the total Yang–Mills curvature in the repre-

sentations X0 and Xspin is given by (6.11)

X0(Fab) =
1
2
Rcd

abY
0
cd + X0(Bab), (7.15)

Xspin(Fab) =
1
2
Rcd

abY
spin
cd + Xspin(Bab). (7.16)

Now, for the scalar operator L0 we have Σ0
ab = 0, and, therefore,

R0
i = −1

2
Da

ibY0
b
a, (7.17)

R2
0 =

1
4
RabcdY 0

abY
0
cd. (7.18)

Thus, we obtain

Ψ0(t, ω) = tr W0

[
det TM

(
sinh(tX0(B))

tX0(B)

)]−1/2

× exp
[
−

(
1
4
RabcdY 0

abY
0
cd + Q0

)
t

]
exp

[
−1

2
Da

ibY0
b
aω

i

]
. (7.19)

For the spinor operator Lspin we have

Qspin =
1
4
R − 1

2
γabXspin(Fab) + M2

=
1
4
R − 1

4
RabcdγabY

spin
cd − 1

2
γabXspin(Bab) + M2. (7.20)

The generators of the orthogonal algebra in the spinor representation are

Σspin
ab =

1
2
γab. (7.21)

Therefore,

Rspin
i = −1

2
Da

ib

(
γb

a + Yspin
b
a

)
(7.22)
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and

R2
spin = −1

8
R +

1
4
RabcdγabY

spin
cd +

1
4
RabcdY spin

ab Y spin
cd . (7.23)

Thus the endomorphism R2
spin + Qspin has the form

R2
spin + Qspin =

1
8
R +

1
4
RabcdY spin

ab Y spin
cd − 1

2
γabXspin(Bab) + M2. (7.24)

Finally, we obtain

Ψspin(t, ω) = exp
(

−1
8
Rt

)
tr Wspin

[
det TM

(
sinh(tXspin(B))

tXspin(B)

)]−1/2

× exp
[
−

(
1
4
RabcdY spin

ab Y spin
cd + M2

)
t

]
exp

[
−1

2
Da

ibω
iYspin

b
a

]

× tr Λspin exp
[
−1

2
(
Xspin(Ba

b)t + Da
ibω

i
)
γb

a

]
, (7.25)

where tr Λspin indicates the trace over the spinor indices. It is interesting
to note that the scalar curvature term exp(−1

8R) in the function Ψspin(t, ω)
precisely cancels the prefactor exp(1

8R) in the heat trace (7.13).

8 Conclusion

In the present paper we used the results for the heat kernel on homogeneous
bundles over symmetric spaces obtained in our recent paper [12] by using
sophisticated algebraic methods to evaluate the low-energy effective action
in quantum gravity and gauge (Yang–Mills) theory. There always exists a
minimal gauge such that both the gauge field operator and the ghost opera-
tor are of laplace type, and, therefore, the evaluation of the zeta-regularized
effective action reduces to the calculation of the corresponding heat traces.
Of course, one could try to go further and compute the functions Ψ(t; ω)
for the relevant operators by finding the eigenvalues of the corresponding
endomorphisms, etc. However, we will not do this in this paper and leave
the result in the general form it was presented above.

We would like to stress two more points here. First of all, quantum general
relativity is a non-renormalizable theory. Therefeore, even if one gets a
final result via the zeta-regularization one should not take it too seriously.
Secondly, our results for the heat kernel and, hence, for the effective action
are essentially non-perturbative. They contain an infinite series of Feynmann
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diagrams with low momenta and cannot be obtained in any perturbation
theory. One could try now to use this result for the analysis of the ground
state in quantum gravity. But this is a rather ambitious program for the
future.
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