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Abstract

The world-sheet quantum conformal invariance can be realized in the
presence of the conformal factor F by inclusion of the Liouville term.
In the background with linear dilaton field, Φ(x) = Φ0 + aμxμ, the field
F becomes a new noncommutative variable. Therefore, it is natural to
extend space–time with a new coordinate, F , in order to unify expres-
sions for noncommutativity parameter Θij of the Dp-brane space–time
coordinates xi, with the part Θi connecting noncommutativity between
coordinates xi and F . In this way we solve the problems of Dp-brane
noncommutativity in a more elegant way. The technical advantage is in
the fact that in the extended space–time the action with dilaton field can
be rewritten in dilaton free form.

We use canonical method and extend its application to the derivation
of boundary conditions. From requirement that Hamiltonian, as the time
translation generator, has well-defined derivatives in the coordinates and
momenta, we obtain boundary conditions directly in the canonical form.
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1 Introduction

In [1,2] we explained new possibility in order to realize world-sheet quantum
conformal invariance. Instead of standard requirement for vanishing
β-functions corresponding to all background fields (metric, antisymmetric
tensor, and dilaton field), βG

μν = βB
μν = βΦ = 0, we used the fact established

in [3] that condition βG
μν = 0 implies that the third one is constant, βΦ = c.

This constant contribution to the conformal anomaly has been cancelled by
adding Lioville term. Then the theory depends on arbitrary central charge
c, and the conformal invariance is realized in the presence of the conformal
factor of the world-sheet metric, F . The Liouville action brings dynamics
to the field F . So, in open string theory we should choose its boundary
condition and investigate its contribution to standard results of noncom-
mutativity without dilaton field [4–6]. It is shown in [1, 2, 7] that in the
presence of linear dilaton field, Φ(x) = Φ0 + aix

i (which initially has been
investigated in [8]), the field F is a new noncommutative dynamical variable,
while Dp-brane coordinate xc = aix

i is a commutative one.

In order to unify the expressions for noncommutativity parameters of
[1, 2, 7] we are going to treat the conformal part of the world-sheet metric
F as an additional coordinate of some extended space–time with the coor-
dinates yM = (xμ, F ) and the metric GMN depending on ordinary metric
Gμν , dilaton gradient aμ = ∂μΦ and central charge c. We will investigate the
geometry and noncommutativity features of extended Dp-brane, embedded
in the extended space–time, and parameterized by the extended coordinates
yA = (xi, F ), consisting of Dp-brane space–time coordinates xi and field F ,
with the corresponding extended metric tensor GAB. In the extended for-
mulation the starting action obtains the dilaton free form, which simplifies
all calculations. Such approach makes the previous results more transparent
and offers their geometrical interpretation.

We use notation and terminology of [2] distinguishing two descriptions
of the same open string theory. In terms of variable yA and background
field GAB, the theory is described by equations of motion and boundary
conditions. The effective theory, defined on solution of boundary conditions,
is described only by effective equations of motion. This is the string theory
on orbifolds expressed in terms of effective variables qA symmetric under
transformation σ → −σ and effective background field Geff

AB. We extend
terminology of [6] to the extended theory referring to metric GAB as closed
string metric and to Geff

AB as open string metric.

As a difference of standard Dp-brane metric Gij , which is always regular,
the extended metrics can be singular for some particular relations between
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background fields. So, we investigate three cases: (1) both closed and open
extended metrics are regular, (2) extended closed string metric GAB is sin-
gular, and (3) extended open string metric Geff

AB is singular.

The singularities of the extended metrics produce the first class con-
straints, but with different origins. In the case (2) singular GAB produce a
standard constraint of the Dirac type. In the case (3) singularity of Geff

AB
turns some second class constraints, obtained from the boundary conditions,
into the first class ones. In fact, Poisson brackets of these constraints close
on the extended effective metric Geff

AB. The singular directions of this metric
project complete set of constraints to the first class ones.

The first class constraints generate local gauge symmetries. After gauge
fixing the first class constraints and gauge conditions can be treated as sec-
ond class constraints. Solving these constraints together with the remaining
second class constraints, we obtain effective theory.

There is also an important methodological improvement. In Section 3.2
we obtain the boundary conditions purely canonically, from the require-
ment that Hamiltonian is differentiable in its canonical variables. This is
more natural approach because we intend to treat these conditions as canon-
ical constraints. The equations of motion for the momenta turn canonical
boundary conditions to the standard Lagrangian ones.

The last part of the article contains concluding remarks and two appen-
dices. Appendix A is devoted to the closed and open string metrics of
the extended space–time, and the corresponding zero central charge limit
(c = 0). In Appendix B we introduce the projectors which help us to express
the results clearly.

2 Extended Dp-brane in extended space–time

The action that describes dynamics of the open string in the presence of the
space–time metric Gμν(x), Kalb–Ramond antisymmetric field Bμν(x), and
dilaton scalar field Φ(x) is of the form [9]

S(G+B+Φ) = κ

∫
Σ

d2ξ
√

−g

{[
1
2
gαβGμν(x) +

εαβ

√−g
Bμν(x)

]

× ∂αxμ∂βxν + Φ(x)R(2)
}

. (2.1)
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We integrate in the action over the world-sheet surface Σ parameterized by
ξα = (τ, σ) [(α = 0, 1), σ ∈ (0, π)], while the D-dimensional space–time is
spanned by the coordinates xμ (μ = 0, 1, 2, . . . , D − 1). We denote intrin-
sic world-sheet metric with gαβ , and the corresponding scalar curvature
with R(2).

Three β-functions characterize the conformal anomaly of the sigma
model (2.1)

βG
μν ≡ Rμν − 1

4BμρσBν
ρσ + 2Dμaν , (2.2)

βB
μν ≡ DρB

ρ
μν − 2aρB

ρ
μν , (2.3)

βΦ ≡ 2πκ
D − 26

6
− R − 1

24BμρσBμρσ − Dμaμ + 4a2, (2.4)

where Rμν and Dμ are Ricci tensor and covariant derivative with respect to
the space–time metric Gμν , while

Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν , aμ = ∂μΦ. (2.5)

It is shown in [3], that vanishing of βG
μν and βB

μν gives constant value of
the third β-function, βΦ = c, and the non-linear sigma model (2.1) becomes
conformal field theory. Therefore, Virasoro algebra with central charge c
emerges.

From this point our approach differs from the previous one [1]. We retain
two conditions, βG

μν = 0 and βB
μν = 0, but in order to cancel the remaining

conformal anomaly we add the corresponding Wess–Zumino term to the
action (2.1). In this concrete case the role of Wess–Zumino term takes the
Liouville action

SL = − βΦ

2(4π)2κ

∫
Σ

d2ξ
√

−gR(2) 1
Δ

R(2), Δ = gαβ∇α∂β, (2.6)

where with ∇α we denote the covariant derivative with respect to the intrin-
sic metric gαβ . Note, in this approach we establish quantum conformal
invariance even in the presence of the field F . The complete action, in the
conformal gauge gαβ = e2F ηαβ , takes the form

S = κ

∫
Σ

d2ξ

[(
1
2
ηαβGμν + εαβBμν

)
∂αxμ∂βxν

+ 2ηαβaμ∂αxμ∂βF +
2
α

ηαβ∂αF∂βF

]
, (2.7)
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where we defined the parameter α as

1
α

=
βΦ

(4πκ)2
. (2.8)

The space–time with coordinates xμ(ξ) is decomposed in Dp-brane part
spanned by coordinates xi(ξ)(i = 0, 1, . . . , p), and the orthogonal ones, xa(ξ)
(a = p + 1, p + 2, . . . , D − 1), in such a way that Gμν = 0, (μ = i, ν = a).
Also we choose the case where the fields Bμν and aμ live only on the Dp-
brane: Bμν → Bij , aμ → ai.

In order to simplify the calculations and to offer geometrical unification of
noncommutativity parameters, it is useful to introduce an extended space–
time defined by the coordinates

yM = (xμ, F ) = (yA, xa), (2.9)

where an extended Dp-brane is parameterized by

yA = (xi, F ), A ∈ {0, 1, . . . , p + 1}. (2.10)

The part of the action describing the string oscillation in xa directions decou-
ples. We will analyze the rest part described by action

S = κ

∫
Σ

d2ξ
[

1
2ηαβGAB + εαβBAB

]
∂αyA∂βyB, (2.11)

where the corresponding background fields GAB and BAB are defined in
equation (A.1). Let us stress that the action in the presence of dilaton field
in extended space–time has the form of dilaton free action.

The action (2.11) can be rewritten in the form

S = κ

∫
Σ

d2ξ

[
1
2
ηαβ�GAB + εαβ BAB

]
∂α

�yA∂β
�yB, (2.12)

where the extended metric �GAB (A.5) is diagonal, and �yA = (xi, �F ) is
defined in equation (A.4). Because these two forms of metric are connected
by similarity transformation (A.3), further we will use the same notation for
both of them omitting the mark (�). The first form is useful for zero central
charge limit c = βΦ = 0 (α → ∞), where Liouville field disappears. The
advantages of the second form are diagonalization of the extended metric
and manifest separation of one variable, �F , which simplify the comparison
with results of [2].
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All nontrivial features of the model defined in equations (2.11) and (2.12)
follow from the fact that the extended metrics (GAB and the corresponding
effective one Geff

AB) are singular for some specific choices of the background
fields. It is easy to check that for A ≡ 1

α − a2 = 0 and Ã ≡ 1
α − ã2 = 0 we

have det GAB = 0 and detGeff
AB = 0, respectively.

3 Canonical analysis of open string theory

Because boundary conditions will be treated as canonical constraints, we will
derive them in terms of coordinate and momenta using canonical method. In
this section we assume that extended metric GAB is regular, while particular
cases of singular extended metrics are discussed in Section 4.

3.1 Canonical Hamiltonian in terms of currents

The momenta canonically conjugated to the fields yA are

πA = κ(GAB ẏB − 2BABy′B). (3.1)

Using the definition of the canonical Hamiltonian Hc = πAẏA − L, we obtain

Hc =
∫

dσHc, Hc = T− − T+, T± = ∓ 1
4κ

(G−1)AB j±A j±B, (3.2)

where the expression for inverse metric (G−1)AB is given in equation (A.6),
and the current is defined as

j±A = πA + 2κΠ±ABy′B (
Π±AB = BAB ± 1

2 .GAB

)
. (3.3)

From the basic Poisson bracket algebra

{
yA(τ, σ), πB(τ, σ̄)

}
= δA

Bδ(σ − σ̄), (3.4)

the current algebra directly follows

{j±A, j±B} = ±2κGABδ′, (3.5)

while all opposite chirality currents commute and for simplicity we define
δ′ ≡ ∂σδ(σ − σ̄). Consequently, the Poisson bracket between canonical



NONCOMMUTATIVITY IN SPACE–TIME 7

Hamiltonian and the current j±A is proportional to its sigma derivative

{Hc, j±A} = ∓j′
±A. (3.6)

This canonical analysis is formally equivalent to the analysis without dila-
ton field. But, because we work in extended space–time, it contains dilaton.
The components of the currents and energy-momentum tensor

jA
± = GABj±B =

(
J i

±
1
2 iF±

)
, J i

± =
(

Gij +
aiaj

A

)
j±j − ai

2A iΦ±,

iF± = − 1
A

(
aij±i − 1

2
iΦ±

)
, (3.7)

T± = ∓ 1
4κ

[
GijJ

i
±J j

± + 2(aiJ
i
±)iF± +

1
α

iF±iF±

]
, (3.8)

where

j±A =

(
j±i

iΦ±

)
=

(
πi + 2κΠ±ijx

′j ± 2κaiF
′

π ± 2κaix
′i ± 4κ

α F ′

)
, (3.9)

for c = 0 (α → ∞), are in full agreement with the corresponding ones of [10].

3.2 Hamiltonian derivation of the boundary conditions

In [5,7] the open string boundary conditions have been introduced in Lagran-
gian formalism and rewritten in terms of canonical variables. Because we
intend to treat the open string boundary conditions as canonical constraints,
we will derive them directly in Hamiltonian form.

The Hamiltonian is a generator of the time translation, so it must be
differentiable in coordinates and momenta. Varying Hamiltonian (3.2), we
obtain

δHc = δH(R)
c − γ

(0)
A δyA

∣∣∣π
0
, (3.10)

where index R denotes the regular term of the form

δH(R)
c =

∫
dσ(AAδyA + BAδπA) (3.11)
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and

γ
(0)
A = (Π−G−1)A

Bj+B + (Π+G−1)A
Bj−B. (3.12)

The Hamiltonian is properly defined canonical variable, when the bound-
ary term γ

(0)
A δyA

∣∣∣π
0

in equation (3.10) vanishes. That is automatically ful-
filled for closed strings, because they do not have endpoints. Assuming that
the variations δyA are arbitrary at the open string endpoints, we obtain the
Neumann boundary conditions in the canonical form, γ

(0)
A

∣∣∣π
0

= 0. On the

other hand, if we suppose that the string endpoints are fixed, δyA
∣∣∣π
0

= 0,
the boundary conditions are known as Dirichlet boundary conditions. We
choose the Neumann boundary conditions for variables yA. Note that beside
the Neumann boundary conditions on coordinates xi it also includes the
Neumann boundary condition on Liouville field F .

After imposing the expressions for momenta obtained on their equations
of motion, the boundary conditions reduce to the Lagrangian ones of [5, 7]

γ
(0)
A = κ(−GABy′B + 2BAB ẏB). (3.13)

Checking the consistency of the constraints, with the help of relation (3.6),
we obtain an infinite set of constraints. Using Taylor expansion, we rewrite
all the constraints at σ = 0 in a more compact σ-dependent form

ΓA(σ) =
∑
n≥0

σn

n!
γ

(n)
A (σ = 0) = (Π+G−1)A

Bj−B(σ) + (Π−G−1)A
Bj+B(−σ),

(3.14)

where

γ
(n)
A ≡

{
Hc, γ

(n−1)
A

}
= (Π+G−1)A

B∂n
σ j−B + (−1)n(Π−G−1)A

B∂n
σ j+B.

(3.15)

In the same way, we obtain similar expressions from the constraints at σ =
π. From the fact that the differences of the corresponding constraints at
σ = 0 and π are also constraints, we conclude that all positive chirality
currents and, consequently, all variables are 2π periodic functions. Because
of this periodicity the constraints at σ = π can be discarded (for more details
see [7]).
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We complete the consistency procedure finding the Poisson bracket

{Hc, ΓA} = Γ′
A, (3.16)

which means that there are no more constraints in the theory.

4 First class constraints and gauge symmetries

In order to finish canonical analysis we have to classify the constraints. The
nature of the constraints depends on the (non)singularity of the extended
metrics, GAB and Geff

AB. It turns out that, for some particular choices of
the background fields, they have vanishing determinants, which produce
the first class constraints. According to the Dirac theory for constrained
systems, the first class constraints generate gauge symmetries in the theory,
which existence enables us to fix nonphysical degrees of freedom.

4.1 Case of regular metrics (A �= 0, Ã �= 0)

For A 
= 0 we have

det GAB = 4A det Gij 
= 0, (4.1)

so that we are able to solve all velocities in terms of momenta from equation
(3.1). In that case there are no constraints of Dirac type.

The algebra of the constraints ΓA originating from boundary conditions
has a simple matrix form

{ΓA(σ), ΓB(σ̄)} = −κGeff
ABδ′, (4.2)

where Geff
AB is defined in equations (A.9) and (A.10). The determinant of

Geff
AB

det Geff
AB = 4

Ã2

A det Geff
ij (4.3)

is regular for Ã 
= 0 and A 
= 0, and all constraints are of the second class.
We use the assumption that the standard metrics are regular, detGij 
= 0
and detGeff

ij 
= 0.
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4.2 Singularity of the metric GAB (A = 0)

For A = 0 the determinant of the metric GAB (4.1) is equal to zero. This
means that extended metric GAB have one singular direction nA defined
in equation (B.4). From (3.1) it is clear, that we are not able to solve all
velocities in terms of momenta, and consequently there must be a primary
constraint. For A = 0, the current

j ≡ nAj±A = nAπA + 2κnABABy′B (4.4)

does not depend on velocities and we conclude that it is a constraint. From
the algebra of currents (3.5) we obtain that j commutes with all j±A, so it
is of the first class.

The canonical Hamiltonian is of the form

Hc =
∫

dσHc, Hc = T− − T+, T± = ∓ 1
4κ

(g−1)ABj±Aj±B, (4.5)

where (g−1)AB defined in (B.9) is the inverse of the induced metric in the
subspace orthogonal to the vector nA. In order to examine the consistency
of the constraint j we introduce the total Hamiltonian

HT = Hc +
∫

dσλ(σ)j(σ), (4.6)

where λ is a Lagrange multiplier. From the equation

{HT, j} ≈ 0, (4.7)

we conclude that there are no more constraints in the theory and the mul-
tiplier λ remains undetermined. This confirms that j is a constraint of the
first class.

The first class constraints generates the local gauge symmetry transfor-
mations of an arbitrary variable X

δX = {X, G} , G =
∫

dση(σ)j(σ). (4.8)

If we apply this to the coordinates yA and canonically conjugated momenta
πA, we get

δyA = nAη, δπA = 2κnBBBAη′. (4.9)
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From the expression

δy ≡ δ

(
nAyA

n2

)
= η, n2 = GABnAnB, (4.10)

we conclude that y = 0 is a good gauge condition. Note that

nAyA = αAaix
i, n2 = αAa2, (4.11)

are equal to zero for A = 0, but their fraction does not depend on A and,
consequently, it is finite.

Using the constraint equation j = 0 and gauge fixing y = 0 the boundary
conditions take the form

ΓA(σ) → Γ̌A = (Π+g−1)A
Bj−B(σ) + (Π−g−1)A

Bj+B(−σ), (4.12)

with the algebra

{Γ̌A(σ), Γ̌B(σ̄)} = −κǦeff
ABδ′. (4.13)

The extended effective metric has the form

Ǧeff
AB =

(
−2[(Π+g−1Π−) + (Π−g−1Π+)]AB

)∣∣∣
A=0

=
(
gAB − 4(Bg−1B)AB

)∣∣∣
A=0

, (4.14)

with the concrete expression given in equation (B.14). For ã2 
= 0 and Ã 
= 0
with the help of the relation

det Ǧeff
AB = 4αã2Ã det Geff

ij , (4.15)

we conclude that all constraints originating from boundary conditions and
remaining after gauge fixing are of the second class.

4.3 Singularity of the metric Geff
AB (Ã = 0)

From expression (4.3) we conclude that, for Ã = 0 and A 
= 0, detGeff
AB

has two zeros at Ã = 0, which means that metric Geff
AB has two singular

directions ñA
1 and ñA

2 introduced in equations (B.10) and (B.11). According
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to the algebra of constraints (4.2), for Ã = 0 and A 
= 0, the constraints

Γ1 = ñA
1 ΓA, Γ2 = ñA

2 ΓA, (4.16)

are of the first class, while the rest ones

(ΓT)A = (P̂T)A
BΓB (4.17)

are of the second class. The projector (P̂T)A
B, introduced in equation

(B.13), projects on the subspace orthogonal to directions ñA
1 and ñA

2 .

The generator corresponding to the first class constraints Γ1 and Γ2 is

G =
∫

dσ[η1(σ)Γ1(σ) + η2(σ)Γ2(σ)], (4.18)

with the same form of gauge transformation as in equation (4.8). Using the
identities

ñA
1 = 2(ñ2BG−1)A, ñA

2 = 2(ñ1BG−1)A, (4.19)

we obtain that the constraints do not depend on the coordinate yA

Γ1 = 1
2(ñA

1 + ñA
2 )πA(σ) + 1

2(ñA
2 − ñA

1 )πA(−σ),

Γ2 = 1
2(ñA

1 + ñA
2 )πA(σ) + 1

2(ñA
1 − ñA

2 )πA(−σ). (4.20)

Consequently, the gauge transformations of the momenta πA are trivial, and
we obtain

δyA = 1
2(ñA

1 + ñA
2 ) [η1(σ) + η2(σ)]

+ 1
2(ñA

2 − ñA
1 ) [η1(−σ) − η2(−σ)] , δπA = 0. (4.21)

The particular gauge transformations

δy1 = 1
2 [η2(σ) + η2(−σ)] + 1

2 [η1(σ) − η1(−σ)] ,

δy2 = 1
2 [η1(σ) + η1(−σ)] + 1

2 [η2(σ) − η2(−σ)] , (4.22)

ya ≡ ñaAyA

ñ2
a

, ñ2
a = Geff

ABñA
a ñB

a (a = 1, 2), (4.23)

enable us to choose good gauge conditions

y1 = 0, y2 = 0. (4.24)

As well as in equation (4.11) ñaAyA and ñ2
a vanish for Ã = 0, but the variable

ya is well defined.
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5 Dp-brane features

Using the solution of the second class constraints, we obtain that Poisson
brackets of some coordinates are non-zero. The effective theory, defined on
these constraints, describes string symmetric under σ-parity, which propa-
gates in new, so-called effective background. In the zero central charge limit,
c = 0, we get the full agreement with the corresponding results of [1].

5.1 Solution of constraint equations

In the case of regular metrics we solve second class constraints originating
from boundary conditions (3.14), ΓA = 0. In the cases of singular metrics,
the first class constraints and local gauge symmetry appear. After gauge
fixing we can treat the first class constraints and gauge conditions as second
class constraints. For A = 0 we solve gauge condition y = 0, first class con-
straint j = 0, and, the second class constraints Γ̌A = 0 (4.12). In the case
Ã = 0, solution of the the first class constraints, Γ1 = 0 and Γ2 = 0, and the
second class ones, (ΓT)A = 0, is equivalent to the solution of all constraints,
ΓA = 0. Then the complete set of equation consists of ΓA = 0 and the gauge
conditions, y1 = 0 and y2 = 0, (4.24).

In terms of the σ-symmetric and antisymmetric parts of coordinates and
momenta

qA(σ) = 1
2

[
yA(σ) + yA(−σ)

]
, q̄A(σ) = 1

2

[
yA(σ) − yA(−σ)

]
,

pA(σ) = 1
2 [πA(σ) + πA(−σ)] , p̄A(σ) = 1

2 [πA(σ) − πA(−σ)] , (5.1)

the constraints ΓA(σ) have the form

ΓA = 2(BG−1)A
BpB − κGeff

AB q̄′B + p̄A. (5.2)

Solving the corresponding set of equations, we obtain that the solution in
all three considered cases has the same form

yA
Dp(σ) = QA(σ) − 2ΘAB

∫ σ

0
dσ1PB(σ1), πDp

A (σ) = PA(σ), (5.3)

where

yA
Dp = (PDp)A

ByB, πDp
A = (PDp)A

BπB,

QA = (PDp)A
BqB, PA = (PDp)A

BpB. (5.4)
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Table 1: Projectors.

Case Ã 
= 0,A 
= 0 A = 0 Ã = 0

(PDp)A
B δA

B (P̌T)A
B (P̂T)A

B

The projectors (PDp)A
B are given in table 1, while the concrete expressions

for (P̌T)A
B and (P̂T)A

B are defined in equation (B.17) and (B.13), respec-
tively.

In case (1), equation (5.3) contains all components, because yA
Dp(σ) =

yA(σ), and we introduce this notation just in order to unify expressions for
all solutions.

In cases (2) and (3), corresponding to A = 0 and Ã = 0, respectively,
solution (5.3) does not contain two directions determined by the vectors ñA

1
and ñA

2 . These directions satisfy Dirichlet boundary conditions, while the
corresponding canonically conjugated momenta are equal to zero

y1

∣∣∣π
0

= 0, y2

∣∣∣π
0

= 0, π1 = 0, π2 = 0, (5.5)

where ya, (a = 1, 2) is introduced in equation (4.23).

In all cases tensor

ΘAB = −1
κ

(g−1
eff Bg−1

DpPDp)AB (5.6)

can be written in the same form and it is manifestly antisymmetric. The
corresponding metrics are given in table 2, where the particular expressions
for metrics are given in Appendix A and for projectors in Appendix B.

In case (1), when both closed and open string metric, GAB and Geff
AB, are

regular, the component form of the tensor ΘAB is

ΘAB =
(

Θij Θi

−Θj 0

)
, (5.7)

Table 2: Extended metrics.

Case Ã 
= 0,A 
= 0 A = 0 Ã = 0

(g−1
eff )AB (G−1

eff )AB (Ǧ−1
eff P̌T)AB (G−1

eff P̂T)AB

(g−1
Dp)

AB (G−1)AB (g−1)AB (G−1)AB
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where

Θij = −1
κ

(G−1
eff Π̌0

TBG−1Π̌0
T)ij , Θi =

1
2κÃ

(Bã)i, (5.8)

and

(Π̌0
T)i

j = δi
j +

aiã
j

Ã
. (5.9)

In the basis where both ordinary and effective metrics are diagonal, (5.7)
can be transformed as

�ΘAB = −1
κ

(�G−1
eff B�G−1)AB =

(
Θij 0
0 0

)
(5.10)

with the same expression for Θij as in (5.8).

The antisymmetric parameter ΘAB in cases (2) and (3) has the same form
in diagonal and nondiagonal representation

ΘAB =
(

Θij 0
0 0

)
, (5.11)

where

Θij = −1
κ

(G−1
eff ΠTBG−1ΠT)ij ,

(ΠT)i
j = δi

j − aiã
j

ã2 − 4
ã2 − a2 (Ba)i(ãB)j . (5.12)

The component form of the above results are in full accordance with the
results of [1, 2].

5.2 Noncommutativity

From the Poisson brackets of the basic string variables (3.4), we calculate
the corresponding ones of the effective variables

{QA(τ, σ), PB(τ, σ̄)} = (PDp)A
Bδs(σ, σ̄), (5.13)

where δs(σ, σ̄) = 1
2 [δ(σ − σ̄) + δ(σ + σ̄)].
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Separating the center of mass variables

(yA
Dp)cm =

1
π

∫ π

0
dσyA

Dp(σ), yA
Dp(σ) = (yA

Dp)cm + Y A
Dp(σ), (5.14)

we obtain

{Y A
Dp(σ), Y B

Dp(σ̄)} = ΘABΔ(σ + σ̄), (5.15)

where the function Δ(x) is defined as

Δ(x) =

⎧⎪⎨
⎪⎩

−1 if x = 0,

0 if 0 < x < 2π,

1 if x = 2π.

(5.16)

From the identity

α

2
Θijaj + Θi = 0, (5.17)

which holds for components defined in equation (5.8), we conclude that com-
bination F + α

2 aix
i = �F is a commutative variable. The same result follows

directly from the diagonal form of the noncommutativity parameter (5.10).

In case (1) where extended metrics are regular there are one commutative
and p + 1 noncommutative variables. In other two cases, where either ordi-
nary or effective extended metric are singular, the coordinates ya (a = 1, 2)
satisfy Dirichlet boundary conditions and decrease the number of the Dp-
brane dimensions. Because the variable �F is a commutative one, there are
p − 1 noncommutative variables in the theory. The expressions for noncom-
mutativity parameter Θij between coordinates xi, and Θi between xi and
the field F , are unified.

5.3 Effective theory

Let us introduce the effective current

j̃±A = PA ± κgeff
ABQ′B, geff

AC(g−1
eff )CB = (PDp)A

B, (5.18)

which live in subspace defined by projector (PDp)A
B playing the role of

unity. Using solution (5.3), we correlate it with corresponding one defined
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in (3.3) and get

j±A = ±2(Π±g−1
eff )A

B j̃±B. (5.19)

Substituting these relations in the canonical Hamiltonian [(3.2) or (4.5)], we
obtain an effective energy-momentum tensor and Hamiltonian

T± = ∓ 1
4κ

(g−1
eff )AB j̃±Aj̃±B ≡ T̃±, Hc = T̃− − T̃+ ≡ H̃c. (5.20)

The effective theory is defined in the phase space spanned by the coor-
dinates QA and momenta PA. The expressions T̃± satisfy Virasoro alge-
bra. Consequently, the effective theory is a string theory constrained to the
subspace defined by projector (PDp)A

B and symmetric under σ-parity but
propagating in the effective background GAB → geff

AB, BAB → 0.

5.4 Zero central charge limit c = 0 (α → ∞)

The expressions in the non-diagonal form are technically more convenient
for applying zero central charge limit c = 0 (α → ∞). All details concerning
zero central charge limit are expressed in Appendix A.2. For c = 0 we have

πA → 0πA = κ(0GAB ẏB − 2BABy′B),

j±A → 0j±A = 0πA + 2κ0Π±ABy′B, (5.21)

where 0Π±AB = BAB ± 1
2
0GAB and 0GAB is defined in equation (A.18).

Index 0 is chosen to signify the condition c = βΦ = 0.

In case (1), where both extended metrics are regular (Ã → −ã2 
= 0,A →
−a2 
= 0), the noncommutativity parameter takes the form

0ΘAB =
( 0Θij 0Θi

−0Θj 0

)
, (5.22)

where

0Θij = −1
κ

(P̃TBP 0
T)ij , 0Θi = −(Bã)i

2κã2 , (5.23)

and the projectors (P 0
T)i

j and P̃ ij
T are defined in equation (A.20).
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In cases (2) and (3) in the limit c = 0 the noncommutativity parameters
have the same form

0ΘAB =
(

0Θij 0
0 0

)
. (5.24)

For case (2) of singular 0GAB (A → −a2 = 0) the noncommutativity param-
eter is defined as

0Θij = −1
κ

(G−1
eff P 1

TBG−1P 1
T)ij , (P 1

T)i
j = δi

j − 4
ã2 (Ba)i(ãB)j , (5.25)

while in case (3) of singular effective extended metric 0Geff
AB (Ã → −ã2 = 0)

we have

0Θij = −1
κ

(G−1
eff P̂ 1

TBG−1P̂ 1
T)ij , (P̂ 1

T)i
j = δi

j +
4
a2 (Ba)i(ãB)j . (5.26)

Note that in the zero central charge limit identity (5.17) turns to identity
Θijaj = 0, so that commutative variable 1

α
�F = 1

αF + 1
2aix

i turns to aix
i.

All these results are in full correspondence with the expressions obtained
in framework without Liouville term [1].

6 Concluding remarks

In this article we considered noncommutativity properties of the space–time
extended by the conformal part of the world-sheet metric F . The field F ,
introduced by Liouville term, allows us to establish the quantum conformal
invariance without using the dilaton space–time equation of motion, βΦ = 0.
In fact, after imposing the space–time equation of motion, βG

μν = 0, the
Liouville action cancels the remaining constant anomaly, βΦ = c, and makes
the conformal part of the world sheet metric, F , dynamical variable.

So it is natural to consider the extended space–time with the coordinates
yM = (xμ, F ) and the metric GMN . An extended Dp-brane, parameterized
by extended string coordinates yA = (xi, F ) with the corresponding closed
string metric GAB, is emebedded in the extended space–time. In this way in
equation (5.6) we unified the expressions for noncommutativity parameter
Θij between Dp-brane space–time coordinates xi with the noncommutativity
parameter Θi between xi and the field F .

When the both extended metrics are regular (A 
= 0, Ã 
= 0) the analysis
in the extended formulation is completely equivalent to the dilaton free case.
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Table 3: Dp-brane features.

Case ya (PDp)A
B DDp Nnc yc

1. − δA
B p+2 p+1 �F

2. y1, y2 (P̌T)A
B p p-1 �F

3. y1, y2 (P̂T)A
B p p-1 �F

Applying known results of the dilaton free case on extended Dp-brane, we
independently derived the results of [1,2,7], in a much simpler way. We show
that both noncommutative parameters, Θij and Θi, are just components
of the extended noncommutativity parameter. One Dp-brane coordinate,
�F = F + α

2 aix
i, is commutative. Consequently, number of noncommutative

variables is the same as in the absence of dilaton field.

In case (2) the closed string metric GAB has one singular direction,
whereas in case (3) there are two singular directions of the open string
metric Geff

AB. In both cases the first class constraints appear in the theory
generating local symmetries. Fixing the gauge, the first class constraints
and gauge conditions behave like second class constraints. Solving the sec-
ond class constraints we obtain an effective theory expressed in terms of the
effective variables QA, symmetric under σ-parity transformation, and corre-
sponding effective metric geff

AB. We conclude that Dp-brane is described by
one commutative, �F , and p − 1 noncommutative coordinates.

All cases can be explained from the unique point of view. As a conse-
quence of the relation between background fields, some coordinates ya =
ñaAyA

ñ2
a

satisfy Dirichlet boundary conditions, and change the dimensional-
ity of the Dp-brane. The physical Dp-branes are defined by projections
(PDp)A

B with dimensions DDp = (PDp)A
A. The variable �F is commutative

in all three cases, yc = �F , while all other directions are noncommutative,
because yA

Dp depends on both the coordinates QA and momenta PA [see
equation (5.3)]. So, the number of commutative coordinates Nc is equal to
1, and the number of noncommutative coordinates is Nnc = DDp − 1. This
analysis is summarized in table 3.

In this article we also introduced one methodological improvement and
derived boundary conditions by canonical methods. Demanding that
canonical Hamiltonian as time translation generator is differentiable in its
canonical variables, we obtain the boundary conditions purely canonically.
We treated boundary conditions as canonical constraints, so this approach
seems to be more natural. The equations of motion for canonical momenta
give the standard Lagrangian form of the boundary condition.
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All results of this paper agree with the corresponding ones in component
notation of [1, 2, 7]. The advantage of the extended space–time approach is
to write the action in the presence of dilaton field in the dilaton free form.
In such a way we unify the expressions for noncommutativity parameters.
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Appendix A Extended space–time

In this appendix we will introduce the metrics in diagonal and nondiagonal
form, and the similarity transformation which connects them. Also we give
the expressions for metrics in the zero central charge limit c = 0 (α → ∞)
in order to compare them with the results of [1].

A.1 Extended metrics in nondiagonal and diagonal form

Let us introduce the coordinates of the extended Dp-brane yA and the cor-
responding background fields GAB and BAB

yA =
(

xi

F

)
, GAB =

⎛
⎝Gij 2ai

2aj
4
α

⎞
⎠ , BAB =

(
Bij 0
0 0

)
. (A.1)

We can diagonalize GAB applying similarity transformation to vectors

�V A = MA
BV B, �VA = [(M−1)T ]ABVB, (A.2)

where

MA
B =

⎛
⎝ δi

j 0
αaj

2
1

⎞
⎠ , (M−1)A

B =

⎛
⎝ δi

j 0

−αaj

2
1

⎞
⎠ (det M = 1). (A.3)

From transformation laws for vectors (A.2) we can derive the corresponding
ones for arbitrary tensors. Marking variables in diagonal form by (�) we
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obtain
�yA =

(
xi

�F

)
, �F = F +

α

2
aix

i, (A.4)

and

�GAB =

⎛
⎝

�Gij 0

0
4
α

⎞
⎠ , �BAB = BAB, �Gij = Gij − αaiaj . (A.5)

The inverse of the metric GAB and �GAB are of the form

(G−1)AB =

⎛
⎜⎜⎝

(�G−1)ij − ai

2A

− aj

2A
1

4A

⎞
⎟⎟⎠ , (�G−1)AB =

⎛
⎝(�G−1)ij 0

0
α

4

⎞
⎠ , (A.6)

where

(�G−1)ij = Gij +
aiaj

A , A ≡ 1
α

− a2. (A.7)

Because metrics GAB and �GAB are connected by similarity transformation,
their determinants are equal and have a form

det GAB = det �GAB = 4A det Gij . (A.8)

The corresponding effective metrics are

Geff
AB = GAB − 4(BG−1B)AB =

⎛
⎝G̃ij 2ai

2aj
4
α

⎞
⎠ , (A.9)

�Geff
AB = �GAB − 4(B �G−1B)AB =

⎛
⎝

�Geff
ij 0

0
4
α

⎞
⎠ , (A.10)

where

G̃ij = Geff
ij − 4

A(Ba)i(aB)j , (A.11)

and

�Geff
ij = Geff

ij − αaiaj − 4
A(Ba)i(aB)j = G̃ij − αaiaj . (A.12)
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The corresponding inverse ones are of the form

(G−1
eff )AB =

⎛
⎜⎜⎝

(G̃−1)ij +
ãiãj

Ã
− ãi

2Ã

− ãj

2Ã
1

4Ã

⎞
⎟⎟⎠ , (�G−1

eff )AB =

⎛
⎝(�G−1

eff )ij 0

0
α

4

⎞
⎠ ,

(A.13)
with the space–time components

(G̃−1)ij = (G−1
eff )ij +

4
Ã

(Bã)i(ãB)j ,

(�G−1
eff )ij = (G−1

eff )ij +
1
Ã
[
ãiãj + 4(Bã)i(ãB)j

]
, (A.14)

and

Ã ≡ 1
α

− ã2. (A.15)

Because of the first relation in (A.14), we can raise the index of ai with both
(G−1

eff )ij and (G̃−1)ij

ãi = (G̃−1)ijaj = (G−1
eff )ijaj , ã2 = ãiai. (A.16)

The determinants of the effective metrics are

det Geff
AB = det �Geff

AB = 4
Ã2

A det Geff
ij . (A.17)

A.2 Extended metrics in the zero central charge limit (c = 0)

In the zero central charge limit all quantities (including closed and open
string metric and projectors) in component form agree with the expressions
in the case without Liouville term (see [1])

0GAB =
(

Gij 2ai

2aj 0

)
, 0Geff

AB =
(

0G̃ij 2ai

2aj 0

)
, (A.18)
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while the inverse ones are

(0G−1)AB =

⎛
⎜⎜⎝

(G−1P 0
T)ij ai

2a2

aj

2a2 − 1
4a2

⎞
⎟⎟⎠ , (0G−1

eff )AB =

⎛
⎜⎜⎝

P̃ ij
T

ãi

2ã2

ãj

2ã2 − 1
4ã2

⎞
⎟⎟⎠ ,

(A.19)
where

(P 0
T)i

j = δi
j − aia

j

a2 , P̃ ij
T = (0G̃−1)ij − ãiãj

ã2 . (A.20)

The term 0G̃ij is defined as

0G̃ij = Geff
ij +

4
a2 (Ba)i(aB)j , (A.21)

while its inverse is

(0G̃−1)ij = (G−1
eff )ij − 4

ã2 (Bã)i(ãB)j . (A.22)

Appendix B Extended space–time projectors

In this appendix we introduce projector operators in order to separate non-
commutative and nonphysical variables on the Dp-brane as well as to express
the noncommutativity parameter.

The projectors on the subspace spanned by vectors nA
a , and on the orthog-

onal one with respect to the metric gAB are

(Π)A
B = γabnaAnB

b , (ΠT)A
B = δA

B − (Π)A
B, (B.1)

where

naA = gABnB
a , γab = nA

a gAB nB
b , γacγcb = δa

b. (B.2)

The transposed operator is

ΠA
B = gACΠC

DgDB. (B.3)
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B.1 Projectors on regular part of GAB

In both representations the extended metrics, GAB and �GAB, are singular
for A = 0. The corresponding singular directions are

nA =

⎛
⎝

ai

−αa2

2

⎞
⎠ , �nA = MA

BnB =

(
ai

0

)
, (B.4)

so that the vectors

nA ≡ GABnB = αA
(

ai

0

)
= �nA ≡ �GAB

�nB, (B.5)

vanish for A = 0.

The corresponding projectors for nondiagonal and diagonal case are

(P 0
T)A

B =

⎛
⎝δi

j − aia
j

a2
αai

2
0 1

⎞
⎠ , (�P 0

T)A
B =

⎛
⎝δi

j − aia
j

a2 0

0 1

⎞
⎠ . (B.6)

The metric in the subspace orthogonal to the vector nA is defined as

gAB = (P 0
TG)AB, (g−1)AB = (G−1P 0

T)AB. (B.7)

The concrete expressions are

gAB =

⎛
⎜⎝

Gij − αAaiaj

a2 2ai

2aj
4
α

⎞
⎟⎠ , �gAB =

⎛
⎜⎝

Gij − aiaj

a2 0

0
4
α

⎞
⎟⎠ , (B.8)

while the inverse ones have the same form in both representations

(g−1)AB =

⎛
⎜⎝Gij − aiaj

a2 0

0
α

4

⎞
⎟⎠ = (�g−1)AB. (B.9)
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B.2 Projectors on regular part of Geff
AB

There are two singular directions of the effective metric Geff
AB

ñA
1 =

(
2(ãB)i

0

)
, ñA

2 =

⎛
⎝

ãi

−αã2

2

⎞
⎠ , (B.10)

and of the corresponding one in diagonal representation �Geff
AB (A.10)

�ñA
1 =

(
2(ãB)i

0

)
, �ñA

2 =
(

ãi

0

)
. (B.11)

In both representations the vectors with lower indices

ñ1A =
Ã
A

(
2(aB)i

0

)
= �ñ1A, ñ2A = αÃ

(
ai

0

)
= �ñ2A, (B.12)

vanish for Ã = 0.

Using the second expression (B.1) we obtain the projectors on subspace
orthogonal to the vectors ñA

1 and ñA
2

(P̂T)A
B =

⎛
⎝(P̂T)i

j αai

2
0 1

⎞
⎠ , (�P̂T)A

B =
(

(P̂T)i
j 0

0 1

)
, (B.13)

where (P̂T)i
j = δi

j − αaiã
j − 4

A(Ba)i(ãB)j .

B.3 Metrics in subspace orthogonal on ñA
1 and ñA

2

Using the definition of the extended effective metric (4.14), we obtain for
non-diagonal representation

Ǧeff
AB =

⎛
⎝Ǧij 2ai

2aj
4
α

⎞
⎠ , (Ǧ−1

eff )AB =

⎛
⎜⎜⎝

(Ǧ−1)ij +
ãiãj

Ã
− ãi

2Ã

− ãj

2Ã
1

4Ã

⎞
⎟⎟⎠ , (B.14)

where

Ǧij = Geff
ij +

4
a2 (Ba)i(aB)j , (Ǧ−1)ij = (Geff)ij − 4

ã2 (Bã)i(ãB)j . (B.15)
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The corresponding expressions in diagonal form are obtained by acting with
similarity transformation (A.3)

�Ǧeff
AB =

⎛
⎝Ǧij − αaiaj 0

0
4
α

⎞
⎠ , (�Ǧ−1

eff )AB =

⎛
⎜⎜⎝

(Ǧ−1)ij +
ãiãj

Ã
0

0
α

4

⎞
⎟⎟⎠ .

(B.16)

Applying the procedure described at the beginning of this appendix, on
vectors ñA

1 and ñA
2 and on the metric Ǧeff

AB, we obtain the projectors

(P̌T)A
B =

⎛
⎝(PT)i

j αai

2
0 1

⎞
⎠ , (�P̌T)A

B =

(
(PT)i

j 0

0 1

)
, (B.17)

for non-diagonal and diagonal case, respectively, where (PT)i
j = δi

j − aiã
j

ã2 +
4
Ã(Ba)i(ãB)j .
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