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Abstract

In this paper, we study the perturbative aspects of the half-twisted
variant of Witten’s topological A-model coupled to a non-dynamical
gauge field with Kähler target space X being a G-manifold. Our main
objective is to furnish a purely physical interpretation of the equivari-
ant cohomology of the chiral de Rham complex, recently constructed
by Lian and Linshaw in [1], called the “chiral equivariant cohomology.”
In doing so, one finds that key mathematical results such as the van-
ishing in the chiral equivariant cohomology of positive weight classes,
lend themselves to straightforward physical explanations. In addition,
one can also construct topological invariants of X from the correlation
functions of the relevant physical operators corresponding to the non-
vanishing weight-zero classes. Via the topological invariance of these
correlation functions, one can verify, from a purely physical perspective,
the mathematical isomorphism between the weight-zero subspace of the
chiral equivariant cohomology and the classical equivariant cohomology
of X. Last but not least, one can also determine fully, the de Rham
cohomology ring of X/G, from the topological chiral ring generated by
the local ground operators of the physical model under study.

e-print archive: http://lanl.arXiv.org/abs/hep-th/0612164



898 MENG-CHWAN TAN

1 Introduction

The mathematical theory of the chiral de Rham complex, or CDR for short,
was first introduced in two seminal papers [3, 4] by Malikov et al. in 1998.
It aims to provide a rigorous mathematical construction of conformal field
theories in two dimensions without resorting to mathematically non-rigorous
methods such as the path integral. Since its introduction, the CDR has
found many interesting applications in various fields of geometry and rep-
resentation theory, namely mirror symmetry [5], and the study of elliptic
genera [6–8]. It is by now a fairly well-studied object in the mathematical
literature.

Efforts to provide an explicit physical interpretation of the theory of CDR
were undertaken in [9, 10]. In essence, one learns that the local sections of
the sheaf of CDR on a manifold with complex dimension n can be described
by a holomorphic N = 2 Super-Conformal Field Theory (SCFT), which is a
tensor product of n copies of the holomorphic bc-βγ system: the space of sec-
tions is simply the algebra of local operators graded by their ghost numbers
and conformal weights. Alternatively, one can also deduce this interpretation
from the mathematical definition of the sheaf of CDR on an affine space [3,4].

The CDR is also an example of what is mathematically known as a dif-
ferential vertex algebra. By synthesizing the algebraic approach to classical
equivariant cohomology with the theory of differential vertex algebras, and
using an appropriate notion of invariant theory (also known as the coset
construction in physics), Lian and Linshaw recently constructed, on any
G-manifold X, an equivariant cohomology of the CDR called the chiral
equivariant cohomology [1]. This new equivariant cohomology theory was
also developed further in a second paper [2], where several interesting math-
ematical results such as the vanishing of positive weight classes (when X is
not a point) were established.

In this paper, we explore the half-twisted A-model coupled to a non-
dynamical gauge field with gauge group G and Kähler target space X. The
main objective is to furnish a purely physical interpretation of the chiral
equivariant cohomology. In doing so, we hope to obtain straightforward
physical explanations of some of the established mathematical results, and
perhaps, even gain some novel insights into the physics via a reinterpretation
of the known mathematics.

1.1 A brief summary and plan of the paper

A brief summary and plan of the paper is as follows. In Section 2, we
will start by first reviewing the construction and relevant features of the
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perturbative half-twisted A-model on any smooth G-manifold X, where G
is a compact group of automorphisms of X which leave fix its metric and
almost complex structure.

In Section 3, we will proceed to couple the model to a non-dynamical
gauge field which takes values in the Lie algebra spanned by the vector
fields generating the associated free G-action on X. Thereafter, we will
discuss the pertinent features of the model which will be most relevant to
our paper.

In Section 4, we specialize to the case when the gauge group G is an
abelian one such as U(1)d for any d. We then study what happens in the
infinite-volume or weak-coupling limit. It is at this juncture that we first
make contact with the chiral equivariant cohomology of [1]. We then pro-
ceed to provide a straightforward physical explanation of a mathematical
result in [2] stating the vanishing in the chiral equivariant cohomology of
positive weight classes. Next, we show that one can define a set of topolog-
ical invariants on X from the correlation functions of the relevant physical
operators corresponding to non-trivial classes of the chiral equivariant coho-
mology. These correlation functions can in turn be used to furnish a purely
physical verification of the isomorphism between the weight-zero subspace
of the chiral equivariant cohomology and the classical equivariant cohomol-
ogy of X (as established in the mathematical literature in [1,2]). Moreover,
one can also determine fully, the de Rham cohomology ring of X/G, from a
topological chiral ring generated by the local ground operators of the half-
twisted gauged sigma model. Last but not least, we show that our results
hold in the large but finite-volume limit as well, that is, to all orders of
perturbation theory.

In Section 5, we conclude the paper with a discussion of some open prob-
lems that we hope to address in a future publication.

2 The half-twisted A-model on a smooth G-manifold X

In this section, we will review the construction and relevant features of the
perturbative half-twisted A-model on a smooth Kähler manifold X. For
the purpose of our paper, we will implicitly assume that X is a smooth
G-manifold. In other words, one can define a free G-action on X, which,
in our case, will be generated by a set of vector fields (on X) that furnish
a Lie algebra g of G. The review in this section is to serve as a prelude to
Section 3, where we will discuss the construction of the half-twisted gauged
A-model on X, our primary interest in this paper.
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2.1 The construction of the half-twisted A-model

To begin with, let us first recall the half-twisted variant of the A-model in
perturbation theory. It governs maps Φ : Σ → X, with Σ being the world-
sheet Riemann surface. By picking local coordinates z, z̄ on Σ, and φi,
φī on the Kähler manifold X, the map Φ can then be described locally
via the functions φi(z, z̄) and φī(z, z̄). Let K and K be the canonical and
anti-canonical bundles of Σ (the bundles of one-forms of types (1, 0) and
(0, 1), respectively), whereby the spinor bundles of Σ with opposite chirali-
ties are given by K1/2 and K

1/2. Let TX and TX be the holomorphic and
anti-holomorphic tangent bundle of X. The half-twisted variant, as defined
in [11], has the same classical Lagrangian as that of the original A-model
in [12].1 (The only difference is that the cohomology of operators and states
is taken with respect to a single right-moving supercharge only instead of
a linear combination of a left- and right-moving supercharge. This will be
clear shortly.) The action is thus given by

S =
∫

Σ
|d2z|

(
gij̄∂zφ

j̄∂z̄φ
i + gij̄ψ

i
z̄Dzψ

j̄ + gij̄ψ
j̄
zDz̄ψ

i − Rik̄jl̄ψ
i
z̄ψ

k̄
z ψjψ l̄

)
,

(2.1)

where |d2z| = idz ∧ dz̄ and i, j, k, l = 1, 2, . . . ,dimC X. Rik̄jl̄ is the curvature
tensor with respect to the Levi–Civita connection Γi

lj = gik̄∂lgjk̄, and the
covariant derivatives with respect to the connection induced on the world-
sheet are given by

Dzψ
j̄ = ∂zψ

j̄ + Γj̄
īk̄∂zφ

īψk̄, Dz̄ψ
i = ∂z̄ψ

i + Γi
jk∂z̄φ

jψk. (2.2)

The various fermi fields transform as smooth sections of the following bun-
dles:

ψi ∈ Γ (Φ∗TX) , ψī
z ∈ Γ

(
K ⊗ Φ∗TX

)
,

ψi
z̄ ∈ Γ

(
K ⊗ Φ∗TX

)
, ψī ∈ Γ

(
Φ∗TX

)
, (2.3)

Notice that we have included additional indices in the above fermi fields
so as to reflect their geometrical characteristics on Σ; fields without a z
or z̄ index transform as worldsheet scalars, while fields with a z or z̄ index
transform as (1, 0) or (0, 1) forms on the worldsheet. In addition, as reflected

1The action just differs from the A-model action in [12] by a term
∫
Σ Φ∗(K), where K

is the Kähler (1, 1)-form on X. This term is irrelevant in perturbation theory where one
considers only trivial maps Φ of degree zero.
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by the i, and ī indices, all fields continue to be valued in the pull-back of
the corresponding bundles on X.

Note that the action S in (2.1) can be written as

S =
∫

Σ
|d2z|{Q, V }, (2.4)

where

V = igij̄

(
ψi

z̄∂zφ
j̄ + ψj̄

z∂z̄φ
i − 1

2
ψj̄

zH
i
z̄ − 1

2
ψi

z̄H
j̄
z

)
, (2.5)

and δV = −iε{Q, V }, whereby δV is the variation of V under the field trans-
formations generated by the nilpotent BRST supercharge Q, which is given
by Q = QL + QR. Here, QL and QR are left- and right-moving BRST super-
charges, respectively, and the field transformations generated by the super-
charge Q are given by

δψj = 0, (2.6)

δψj̄ = 0, (2.7)

δφi = ε+ψi, (2.8)

δφī = ε̄−ψī, (2.9)

δψi
z̄ = −ε̄−H i

z̄ − ε+Γi
jkψ

jψk
z̄ , (2.10)

δψī
z = −ε+H ī

z − ε̄−Γī
j̄k̄ψ

j̄ψk̄
z , (2.11)

δH i
z̄ = Ri

kj̄lψ
kψj̄ψl

z̄ − Γi
jkψ

jHk
z̄ , (2.12)

δH ī
z = Rī

j̄lk̄ψ
j̄ψlψk̄

z − Γī
j̄k̄ψ

j̄H k̄
z . (2.13)

In the above, ε+ and ε̄− are c-number parameters associated with the BRST
supersymmetries generated by QL and QR. For notational simplicity, we
have set ε+ and ε̄− in (2.12) and (2.13) to be 1. Note that we have used
the equations of motion H i

z̄ = ∂z̄φ
i and H ī

z = ∂zφ
ī to eliminate the auxillary

fields H i
z̄ and H ī

z in our computation of (2.4), so that we can obtain S
in (2.1).

2.2 Spectrum of operators in the half-twisted A-model

As mentioned earlier, the half-twisted A-model is a greatly enriched vari-
ant in which one ignores QL and considers QR as the BRST operator [11].
Since the corresponding cohomology is now defined with respect to a single,
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right-moving, scalar supercharge QR, its classes need not be restricted to
dimension (0, 0) operators (which correspond to ground states). In fact, the
physical operators will have dimension (n, 0), where n ≥ 0. Let us verify
this important statement.

From (2.1), we find that the anti-holomorphic stress tensor takes the form
Tz̄z̄ = gij̄∂z̄φ

i∂z̄φ
j̄ + gij̄ψ

i
z̄

(
∂z̄ψ

j̄ + Γj̄

l̄k̄
∂z̄φ

l̄ψk̄
)
. One can go on to show that

Tz̄z̄ = {QR, igij̄ψ
i
z̄∂z̄φ

j̄}, that is, Tz̄z̄ is trivial in QR-cohomology. Now, we
say that a local operator O inserted at the origin has dimension (n, m) if
under a rescaling z → λz, z̄ → λ̄z, it transforms as ∂n+m/∂zn∂z̄m, that is,
as λ−nλ̄−m. Classical local operators have dimensions (n, m) where n and
m are non-negative integers.2 However, only local operators with m = 0
survive in QR-cohomology. The reason for the last statement is that the
rescaling of z̄ is generated by L̄0 =

∮
dz̄ z̄Tz̄z̄. As we noted above, Tz̄ z̄ is of

the form {QR, . . . }, so L̄0 = {QR, V0} for some V0. If O is to be admissible
as a local physical operator, it must at least be true that {QR,O} = 0. Con-
sequently, [L̄0,O] = {QR, [V0,O]}. Since the eigenvalue of L̄0 on O is m, we
have [L̄0,O] = mO. Therefore, if m �= 0, it follows that O is QR-exact and
thus trivial in QR-cohomology. On the other hand, the holomorphic stress
tensor is given by Tzz = gij̄∂zφ

i∂zφ
j̄ + gij̄ψ

j̄
zDzψ

i, and one can verify that it

can be written as Tzz = {QL, igij̄ψ
j̄
z∂zφ

i}, that is, it is QL-exact. Since we are
only interested in QR-closed modulo QR-exact operators, there is no restric-
tion on the value that n can take. These arguments persist in the quantum
theory, since a vanishing cohomology in the classical theory continues to
vanish when quantum effects are small enough in the perturbative limit.

Hence, in contrast to the A-model, the BRST spectrum of physical oper-
ators and states in the half-twisted model is infinite-dimensional. A special-
ization of its genus one partition function, also known as the elliptic genus
of X, is given by the index of the QR operator. Indeed, the half-twisted
model is not a topological field theory, rather, it is a two-dimensional (2d)
conformal field theory — the full stress tensor derived from its action is
exact with respect to the combination QL + QR, but not QR alone.

2.3 The ghost number anomaly

Let us now touch upon a particular symmetry of the action S which will
be relevant to our study. Note that S has a left and right-moving “ghost

2Anomalous dimensions under RG flow may shift the values of n and m quan-
tum mechanically, but the spin given by (n − m), being an intrinsic property, remains
unchanged.
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number” symmetry whereby the left-moving fermionic fields transform as
ψi → eiαψi and ψī

z → e−iαψī
z, while the right-moving fermionic fields trans-

form as ψī → eiαψī and ψi
z̄ → e−iαψi

z̄, where α is real. In other words,
the fields ψi, ψī

z, ψī and ψi
z̄ can be assigned the (gL, gR) left–right ghost

numbers (1, 0), (−1, 0), (0, 1) and (0,−1), respectively. However, there
is a ghost number anomaly at the quantum level, and one will need to
place some restrictions on the form that the physical operators in the QR-
cohomology can take, if there is to be a cancellation of this anomaly. As
an example, let us consider a general, dimension (0, 0) operator Opi,qi(z, z̄) =
A(φj , φj̄)k1,k2,...kpi ,l̄1,l̄2,...,l̄qi

ψk1ψk2 . . . ψkpi ψ l̄1ψ l̄2 . . . ψ l̄qi of ghost number
(pi, qi) which is in the QR-cohomology. Let the correlation function of s such
operators be Z =< Op1,q1Op2,q2 . . .Ops,qs >. Via the Hirzebruch–Riemann–
Roch theorem, we find that one must have

s∑
i=1

pi =
s∑

i=1

= qi =
∫

Σ
Φ∗c1(TX) + dimC X(1 − g) (2.14)

or Z will vanish. Here, g is the genus of the worldsheet Riemann surface
Σ. In perturbation theory, one considers only degree-zero maps Φ. Thus,
the first term on the RHS of (2.14) will vanish in our case. Since pi and qi

correspond, respectively, to the number of ψj and ψj̄ fields in the operator
Opi,qi , they cannot take negative values. Hence, in order to have a consistent
theory, we see from (2.14) that Σ must be of genus-zero. In other words, the
relevant worldsheet is a simply connected Riemann surface in perturbation
theory.

2.4 Reduction from N = 1 supersymmetry in 4d

Note that in order to untwist the A-model, one needs to restore the SO(2)
rotation generator of the 2d theory. This amounts to a redefinition of
the worldsheet spins of the fermionic fields ψj , ψj̄ , ψk

z̄ and ψk̄
z so that

they will transform as worldsheet spinors again.3 In short, one must
make the replacements ψj → ψj

−, ψj̄ → ψj̄
+, ψj

z̄ → ψj
+ and ψj̄

z → ψj̄
−, where

3To twist an N = (2, 2) supersymmetric sigma model into an A-model, we start with
the Euclidean version of the theory from the Minkowski theory by a Wick rotation of
the coordinates first. This means that the SO(1, 1) Lorentz group is now the Euclidean
rotation group SO(2)E . We then “twist” the theory by replacing the rotation generator
ME of the SO(2)E group with M ′

E = ME + FV , where FV is the generator of the vector
R-symmetry of the theory. This is equivalent to redefining the spins of the various fields
as s′ = s + qV

2 , where s is the original spin of the field, and qV is its corresponding vector
R-charge.
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the − or + subscript indicates that the corresponding field transforms as
a section of the bundle K1/2 or K

1/2, respectively, on Σ. In addition, as
before, a j or j̄ superscript also indicates that the relevant field in question
will take values in the pull-back of TX or TX. The form of the resulting,
untwisted action is similar to (2.1), and it is just the action of an N = (2, 2)
supersymmetric non-linear sigma model in two dimensions:

S′ =
∫

Σ
|d2z|

(
gij̄∂zφ

j̄∂z̄φ
i + gij̄ψ

i
+Dzψ

j̄
+ + gij̄ψ

j̄
−Dz̄ψ

i
− − Rik̄jl̄ψ

i
+ψk̄

−ψj
−ψ l̄

+

)
.

(2.15)

The supersymmetric variation of the fields under which S′ is invariant
reads as

δφi = ε+ψj
+ + ε−ψj

+, (2.16)

δφī = ε̄−ψī
+ + ε̄+ψī

−, (2.17)

δψj
− = −ε̄+∂zφ

i − ε−Γi
jkψ

j
−ψk

+, (2.18)

δψj̄
+ = −ε−∂z̄φ

ī − ε̄+Γī
j̄k̄ψ

j̄
+ψk̄

−, (2.19)

δψi
+ = −ε̄−∂z̄φ

i − ε+Γi
jkψ

jψk
z̄ , (2.20)

δψī
− = −ε+∂zφ

ī − ε̄−Γī
j̄k̄ψ

j̄ψk̄
z , (2.21)

where ε+, ε−, ε̄− and ε̄+ are the infinitesimal fermionic parameters associated
with the supersymmetries generated by the four supercharges of the N =
(2, 2) algebra Q−, Q+, Q+ and Q−, respectively.

A useful point to note at this juncture is that one can obtain the N = (2, 2)
superalgebra in two dimensions via a dimensional reduction of the N = 1
superalgebra in four dimensions. Consequently, one can obtain (2.16) to
(2.21) via a dimensional reduction of the supersymmetric field variations
that leave an N = 1 supersymmetric non-linear sigma model in four dimen-
sions invariant. In turn, by setting ε− and ε̄+ to zero in (2.16) to (2.21),4

and making the replacements ψj
− → ψj , ψj̄

+ → ψj̄ , ψj
+ → ψj

z̄ and ψj̄
− → ψj̄

z

4Upon twisting, the supersymmetry parameters must now be interpreted as different
sections of different line bundles. This is to ensure that the resulting field transformations
will remain physically consistent. In particular, the parameters ε− and ε̄+, associated
with the supercharges Q+ and Q−, are now sections of the non-trivial bundles K

−1/2

and K−1/2, respectively. On the other hand, the parameters ε+ and ε̄−, associated with
the supercharges Q− and Q+, are functions on Σ. One can therefore pick ε+, ε̄− to be
constants, and ε−, ε̄+ to vanish, so that the twisted theory has a global fermionic symmetry
generated by the scalar supercharge Q = Q− + Q+, where Q− ≡ QL and Q+ ≡ QR, as
required.
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(which, together, are equivalent to twisting the N = (2, 2) model into the
A-model), we will be able to obtain the field variations in (2.6) to (2.13) as
required (after using the equations of motion H i

z̄ = ∂z̄φ
i and H ī

z = ∂zφ
ī). In

short, for one to obtain the explicit field variations generated by the BRST
supercharge of the twisted theory, one can start off with the field variations
of the N = 1 sigma model in four dimensions, dimensionally reduce them in
two dimensions, set the appropriate infinitesimal supersymmetry parameters
to zero, and finally redefine the spins of the relevant fields accordingly. This
observation will be useful when we discuss the construction of the gauged
half-twisted model in Section 3.

3 The half-twisted gauged sigma model

We shall now proceed to couple the A-model to a non-dynamical gauge field
which takes values in the Lie algebra spanned by the vector fields generating
the associated free G-action on X. Thereafter, we will discuss the pertinent
features of the resulting model which will be most relevant to the later
sections of our paper.

3.1 Description of the G-action on X

Let us now suppose that the Kähler manifold X admits a compact,
d-dimensional isometry group G, that is, G is a compact group of auto-
morphisms of X which leave fixed its metric and almost complex structure.
The infinitesimal generators of this group are given by a set of vector fields
on X, which, we shall write as Va for a = 1, . . . , d (d being the dimension
of G). In other words, the free G-action on X is generated by the vector
fields Va.

These fields obey the following conditions. Firstly, they are holomor-
phic vector fields, which means that their holomorphic (anti-holomorphic)
components are holomorphic (anti-holomorphic) functions, that is,

∂V i
a

∂φj̄
=

∂V ī
a

∂φj
= 0. (3.1)

(Note that Va =
∑n

i=1 V i
a (∂/∂φi) +

∑n
ī=1 V ī

a (∂/∂φī) in component form,
where n = dimC X).

Secondly, the assertion that the G-action on X generated by the vector
fields Va for a = 1, . . . , d leave fixed its metric, is equivalent to the assertion
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that they obey the Killing vector equations

DiVja + DjVia = 0, DiVj̄a + Dj̄Via = 0, (3.2)

where Dj and Dj̄ denote covariant derivatives with respect to the Levi–

Civita connection on X, while Via = gij̄V
j̄
a and Vj̄a = gij̄V

i
a .

Finally, the statement that the Killing vector fields Va generate a G-action
on X implies that they realize a d-dimensional Lie algebra g of G, that is,
they obey

[Va, Vb] = fab
cVc, (3.3)

where fab
c are the structure constants of G. One can explicitly write this in

component form as

[Va, Vb]i = V j
a

(
∂V i

b

∂φj

)
− V j

b

(
∂V i

a

∂φj

)

= fab
cV i

c (3.4)

and

[Va, Vb]ī = V j̄
a

(
∂V ī

b

∂φj̄

)
− V j̄

b

(
∂V ī

a

∂φj̄

)

= fab
cV ī

c . (3.5)

3.2 Gauging by the group G

Note that we want to gauge the half-twisted supersymmetric sigma model by
the d-dimensional group G. What this means geometrically can be explained
as follows. Consider the space of maps Φ : Σ → X, which can be viewed
as the space of sections of a trivial bundle M = X × Σ. If, however, one
redefines M to be a non-trivial bundle given by X ↪→ M → Σ, then Φ will
define a section of the bundle M . In other words, φi(z, z̄) will not represent
a map Σ → X, but rather it will be a section of M . Thus, since the φi’s
are no longer functions but sections of a non-trivial bundle, their derivatives
will be replaced by covariant derivatives. By introducing a connection on M
with G as the structure group, we are actually introducing on Σ gauge fields
Aa, which, locally, can be regarded as G-valued one-forms with the usual
gauge transformation law Aa′ = g−1Aag + g−1dg, whereby g ∈ G. This is
equivalent to gauging the sigma model by G.
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3.3 Constructing the half-twisted gauged sigma model

In order to gauge the half-twisted supersymmetric sigma model by the
d-dimensional group G, one will need to introduce, in the formulation, d
gauge multiplets, each consisting of the 2d gauge field Aa, its fermionic
gaugino superpartner ψa and the complex scalar φa, with values in the Lie
algebra g and transforming in the adjoint representation of G. These fields
will appear as the components of the 2d vector superfields Va of N = (2, 2)
superspace, where each Va can be expanded as

Va = θ−θ̄−Aa
z + θ+θ̄+Aa

z̄ − θ−θ̄+φa − θ+θ̄−φ̄a + iθ−θ+(θ̄−ψ̄a
− + θ̄+ψ̄a

+)

+ iθ̄+θ̄−(θ−ψa
− + θ+ψa

+) + θ−θ+θ̄+θ̄−Da. (3.6)

Here, the θ’s are the anticommuting coordinates of N = (2, 2) superspace,
and the Da’s are real, auxillary scalar superfields which can be eliminated
from the final Lagrangian via the relevant equations of motion. Also, on
Σ, the gauge fields Aa

z and Aa
z̄ can be regarded as connection (1, 0)- and

(0, 1)-forms, the φa’s and φ̄a’s can be regarded as complex scalars, while the
(ψa

+, ψ̄a
+)’s and (ψa

−, ψ̄a
−)’s can be regarded as worldsheet spinors given by

sections of the bundles K
1/2 and K1/2, respectively.

Since our aim is to construct a half-twisted gauged sigma model, we must
also twist the above fields of the gauge multiplet, as we had done so with
the fields φi, φī, ψi

+, ψī
+, ψi

− and ψī
− of the N = (2, 2) sigma model to

arrive at the A-model. Recall from footnote 7 that in an A-twist, the spin
of each field will be redefined as s′ = s + qV

2 , where s is its original spin,
and qV is its corresponding vector R-charge. Hence, in order to ascertain
how the fields of the gauge multiplet can be A-twisted, we must first deter-
mine their vector R-charges. To this end, note that a vector R-rotation
is effected by the transformations θ± → e−iαθ± and θ̄± → eiαθ̄±, where α
is a real parameter of the rotation. Equivalently, one can see from (3.6),
that under a vector R-rotation, the fields of the gauge multiplet will trans-
form as (Aa

z , A
a
z̄ , φ

a, φ̄a) → (Aa
z , A

a
z̄ , φ

a, φ̄a), ψa
± → eiαψa

± and ψ̄a
± → e−iαψ̄a

±.
In other words, the fields (Aa

z , A
a
z̄ , φ

a, φ̄a) have qV = 0, the ψa
± have qV = 1

and the ψ̄a
± have qV = −1. This means that under an A-twist, Aa

z and Aa
z̄

will remain as connection (1, 0)- and (0, 1)-forms on Σ, while φa and φ̄a

will remain as complex scalars. However, ψ̄a
− and ψa

+ will now be complex
scalars, while ψa

− and ψ̄a
+ are (1, 0)- and (0, 1)-forms on Σ, respectively. For

clarity, we shall re-label (ψ̄a
−, ψa

+) as (ψ̄a, ψa), and (ψa
−, ψ̄a

+) as (ψa
z , ψ̄a

z̄ ), in
accordance with their properties on Σ.
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Next, let us determine the generalization of (2.6) to (2.13) in the presence
of the gauge multiplet of fields. To this end, we can extend the recipe
outlined at the end of Section 2.4 to the gauged case. Essentially, one
can begin by considering the supersymmetric field transformations which
leave an N = 1, gauged non-linear sigma model invariant (see [13, p. 50]),
dimensionally reduce them in two dimensions, and set the supersymmetry
parameters ε− and ε̄+ to zero. In doing so, we obtain the generalization of
(2.6) to (2.13) as

δφa = 0, (3.7)

δφi = ε+ψi, (3.8)

δφī = ε̄−ψī, (3.9)

δAa
z = ε̄−ψa

z , (3.10)

δAa
z̄ = ε+ψa

z̄ , (3.11)

δψj = −iε̄−φaV j
a , (3.12)

δψj̄ = −iε+φaV j̄
a , (3.13)

δψa
z = −iε+Dzφ

a, (3.14)

δψa
z̄ = −iε̄−Dz̄φ

a, (3.15)

δψi
z̄ = −ε̄−H i

z̄ − ε+Γi
jkψ

jψk
z̄ , (3.16)

δψī
z = −ε+H ī

z − ε̄−Γī
j̄k̄ψ

j̄ψk̄
z , (3.17)

where one recalls that ε+ and ε̄− are the constant parameters associated
with the scalar BRST supercharges QL and QR, respectively. Dz and Dz̄

are the covariant derivatives with respect to the connection one-forms Aa
z

and Aa
z̄ , respectively.5 In order to determine how the auxillary fields H i

z̄ and
H ī

z should transform, one just needs to insist that the field transformations
generated by Q = QL + QR are nilpotent up to a gauge transformation.
In particular, we must have (after setting ε+ and ε̄− to 1 for notational
simplicity)

δ2ψi
z̄ = −iφa(∂kV

i
a )ψk

z̄ (3.18)

and
δ2ψī

z = −iφa(∂k̄V
ī
a )ψk̄

z , (3.19)

which then means that we must have

δH i
z̄ = Ri

kj̄lψ
kψj̄ψl

z̄ + iφa(DjV
i
a )ψj

z̄ − Γi
jkψ

jHk
z̄ (3.20)

5One can explicitly write Dzφa = ∂zφa + fa
bcA

a
zφc and Dz̄φa = ∂z̄φa + fa

bcA
b
z̄φc.
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and
δH ī

z = Rī
j̄lk̄ψ

j̄ψlψk̄
z + iφa(Dj̄V

ī
a )ψj̄

z − Γī
j̄k̄ψ

j̄H k̄
z . (3.21)

Notice that since ε+ and ε̄− are constants, the fields on the LHS and RHS
of (3.7) to (3.17) have the same worldsheet spins; the twist of the gauge
multiplet fields is consistent with the field transformations (3.7) to (3.17) as
expected. Furthermore, one finds from (3.7) to (3.17) that

δ2φj = −iφaV j
a , δ2φj̄ = −iφaV j̄

a , (3.22)

δ2Aa
z = −iDzφ

a, δ2Aa
z̄ = −iDz̄φ

a, (3.23)

δ2ψa
z = −ifa

bcψ
b
zφ

c, δ2ψa
z = −ifa

bcψ
b
zφ

c, (3.24)

δ2ψj = −iφa(∂kV
j
a )ψk, δ2ψj̄ = −iφa(∂k̄V

j̄
a )ψk̄ (3.25)

and δ2φa = 0, as required of a gauged model. Hence, we are now ready
to define our gauge- and BRST-invariant Lagrangian by generalizing the
results of Section 2.1.

To obtain a gauge-invariant generalization of S in (2.1), we will need to
obtain a gauge-invariant generalization of (2.4). This can be achieved by
replacing the partial derivatives in V of (2.5), with gauge covariant deriva-
tives. Moreover, in doing so, we only introduce terms which do not modify
the overall ghost number. This means that we will be able to retain a clas-
sical ghost number symmetry as desired. Note also that we only want to
couple the sigma model to a non-dynamical gauge multiplet of fields. In
other words, we will not include a super-field-strength term for the gauge
multiplet in defining the action. Therefore, the action of our half-twisted
gauged sigma model can be written as

Sgauged =
∫

Σ
|d2z|{Q, Vgauged}, (3.26)

where

Vgauged = igij̄(ψ
i
z̄Dzφ

j̄ + ψj̄
zDz̄φ

i − 1
2
ψj̄

zH
i
z̄ − 1

2
ψi

z̄H
j̄
z ), (3.27)

such that from the field transformations in (3.7) to (3.17) and (3.20) to
(3.21), we find that

Sgauged =
∫

Σ
|d2z| (gij̄Dz̄φ

iDzφ
j̄ + gij̄ψ

i
z̄D̂zψ

j̄ + gij̄ψ
j̄
zD̂z̄ψ

i + gij̄ψ
i
z̄ψ

a
zV j̄

a

+ gij̄ψ
j̄
zψ

a
z̄V i

a − i

2
gij̄ψ

j̄
zψ

j
z̄(DjV

i
a )φa − i

2
gij̄ψ

i
z̄ψ

k̄
z (Dk̄V

j̄
a )φa

+ gij̄ψ
i
z̄Γ

j̄

l̄k̄
Aa

zV
l̄
aψk̄ + gij̄ψ

j̄
zΓ

i
lkA

a
z̄V

l
aψk −Rm̄kj̄lψ

m̄
z ψkψj̄ψl

z̄). (3.28)
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Note that we have used the equations of motion H ī
z = Dzφ

ī and H i
z̄ = Dz̄φ

i

to eliminate the auxillary fields H ī
z and H i

z̄ in our computation of Sgauged
above. Notice also that as desired, there are no kinetic terms for the non-
dynamical fields Aa

z , Aa
z̄ , ψa

z , ψa
z̄ and φa in Sgauged. However, the various

covariant derivatives in Sgauged are now given by

Dz̄φ
i = ∂z̄φ

i + Aa
z̄V

i
a , (3.29)

Dzφ
j̄ = ∂zφ

j̄ + Aa
zV

j̄
a , (3.30)

DjV
i
a = ∂jV

i
a + Γi

jlV
l
a , (3.31)

Dk̄V
j̄
a = ∂k̄V

j̄
a + Γj̄

k̄l̄
V l̄

a , (3.32)

D̂zψ
j̄ = ∂zψ

j̄ + Aa
z∂k̄V

j̄
a ψk̄ + ∂zφ

īΓj̄

īl̄
ψ l̄, (3.33)

D̂z̄ψ
i = ∂z̄ψ

i + Aa
z̄∂jV

i
aψj + ∂z̄φ

jΓi
jkψ

k. (3.34)

Under the classical ghost number symmetry of (3.28), we find that the fields
ψi, ψī

z, ψī and ψi
z̄ can be assigned the (gL, gR) left–right ghost numbers (1, 0),

(−1, 0), (0, 1) and (0,−1), respectively, as in the ungauged model, while the
fields of the gauge multiplet Aa

z , Aa
z̄ , ψa

z , ψa
z̄ and φa can be assigned the

(gL, gR) left–right ghost numbers (0, 0), (0, 0), (0, 1), (1, 0) and (1, 1).

3.4 Ghost number anomaly

As a relevant digression, let us now discuss the ghost number anomaly of
the half-twisted gauged sigma model. In this paper, we are considering the
case where G is unitary and abelian. As we will see in Section 4, this means
that ∂iV

j
a = ∂īV

j̄
a = 0. Consequently, Sgauged can be simplified to

S′
gauged =

∫
Σ

|d2z| (gij̄Dz̄φ
iDzφ

j̄ + gij̄ψ
i
z̄Dzψ

j̄ + gij̄ψ
j̄
zDz̄ψ

i + gij̄ψ
i
z̄ψ

a
zV j̄

a

+ gij̄ψ
j̄
zψ

a
z̄V i

a − i

2
gij̄ψ

j̄
zψ

j
z̄Γ

i
jlV

l
aφa − i

2
gij̄ψ

i
z̄ψ

k̄
z Γj̄

k̄l̄
V l̄

aφa

+ gij̄ψ
i
z̄Γ

j̄

l̄k̄
Aa

zV
l̄
aψk̄ + gij̄ψ

j̄
zΓ

i
lkA

a
z̄V

l
aψk −Rm̄kj̄lψ

m̄
z ψkψj̄ψl

z̄). (3.35)

In general, the non-minimally coupled terms in S′
gauged which are not part

of any covariant derivative but involve the non-dynamical fields, do not
affect anomalies. This is because anomalies are by definition what cannot
be eliminated by any choice of regularization, and in a particular choice
such as the Pauli–Villars scheme, one regularises by adding higher order
derivatives to the kinetic energy, which can be taken to be independent of
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these auxillary fields even if they appear in the classical action S′
gauged.

6 In
addition, note that in sigma model peturbation theory, the four-fermi term
Rm̄kj̄lψ

m̄
z ψkψj̄ψl

z̄ can be treated as a perturbation which does not affect the
computation of the anomaly either (just as in the case with the A-model
with action (2.1)). Since the φi and φī fields have vanishing ghost numbers,
the ghost number anomaly can then be calculated via the index theorem
associated with the Dz and Dz̄ operators acting on ψj̄ and ψi, which are
sections of the pullback bundles Φ∗(TX) and Φ∗(TX), respectively. Notice
that we have the same considerations as in the A-model. Hence, via sim-
ilar arguments to that in Section 2.3 on the non-vanishing of correlation
functions of dimension (0, 0) operators, one must have the condition

(∫
Σ

Φ∗c1(TX) + dimC X(1 − g)
)

> 0, (3.36)

where g is the genus of the worldsheet Riemann surface Σ. Note that one
will be considering degree-zero maps Φ in the perturbative limit. Therefore,
from (3.36), it is clear that for the half-twisted gauged sigma model in
perturbation theory, the relevant worldsheet will also be a genus-zero, simply
connected Riemann surface.

3.5 Important features of the half-twisted gauged sigma model

We shall now explore some important features of the half-twisted gauged
sigma model with action Sgauged given in (3.28). Classically, the trace of
the stress tensor from Sgauged vanishes, i.e., Tz̄z = 0. The other non-zero
components of the stress tensor are given by

Tzz = gij̄∂zφ
i(∂zφ

j̄ + Aa
zV

j̄
a ) + gij̄ψ

j̄
z

(
∂zψ

i + Γi
jk∂zφ

jψk
)

(3.37)

and

Tz̄z̄ = gij̄(∂z̄φ
i + Aa

z̄V
i
a )∂z̄φ

j̄ + gij̄ψ
i
z̄(∂z̄ψ

j̄ + Γj̄

l̄k̄
∂z̄φ

l̄ψk̄). (3.38)

Furthermore, one can go on to show that

Tz̄z̄ = {QR, igij̄ψ
i
z̄∂z̄φ

j̄} (3.39)

and
Tzz = {QL, igij̄ψ

j̄
z∂zφ

i}. (3.40)

6The author wishes to thank Ed Witten for helpful email correspondences on this point.
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In addition, we also have

[QR, Tzz] = −1
2

gij̄ψ
j̄
z

(
∂zφ

k(DkV
i
a )φa + 2∂zφ

aV i
a

)

�= 0 (even on-shell). (3.41)

Before we proceed further, recall that that the operators and states of the
half-twisted gauged sigma model are in the QR-cohomology. Note also that
Q2

L = Q2
R = 0, even though Q2 = 0 up to a gauge transformation only. Next,

from (3.39), we see that Tz̄z̄ is QR-exact (and thus QR-invariant) and there-
fore trivial in QR-cohomology. Also, from (3.41), we see that Tzz is not in
the QR-cohomology. Consequently, one can make the following observations
about the half-twisted gauged sigma model.

3.5.1 Spectrum of Operators and Correlation Functions

Firstly, since Tz̄z = 0, the variation of the correlation functions due to a
change in the scale of Σ will be given by 〈O1(z1)O2(z2) . . .Os(zs)Tz̄z〉 = 0.
In other words, the correlation functions of local physical operators will
continue to be invariant under arbitrary scalings of Σ. Thus, the correlation
functions are always independent of the Kähler structure on Σ and may
depend only on its complex structure.7 In addition, Tzz is holomorphic in
z; from the conservation of the stress tensor, we have ∂z̄Tzz = −∂zTz̄z = 0.

Secondly, note that the ∂z̄ operator on Σ is given by L̄−1 =
∮

dz̄ Tz̄z̄. This
means that ∂z̄ 〈O1(z1)O2(z2) . . .Os(zs)〉 will be given by

∮
dz̄〈Tz̄z̄ O1(z1)

O2(z2) . . .Os(zs)〉. This vanishes because Tz̄z̄ = {QR, . . . } and therefore,
Tz̄z̄ ∼ 0 in QR-cohomology. Thus, the correlation functions of local operators
are always holomorphic in z. Likewise, we can also show that O, as an
element of the QR-cohomology, varies homolomorphically with z. Indeed,
since the momentum operator (which acts on O as ∂z̄) is given by L̄−1, the
term ∂z̄O will be given by the commutator [L̄−1,O]. Since L̄−1 =

∮
dz̄ Tz̄z̄,

we will have L̄−1 = {QR, V−1} for some V−1. Hence, because O is physical
such that {QR,O} = 0, it will be true that ∂z̄O = {QR, [V−1,O]} and thus
vanishes in QR-cohomology.

We can make a third and important observation as follows. But first, note
that we say that a local operator O inserted at the origin has dimension
(n, m) if under a rescaling z → λz, z̄ → λ̄z, it transforms as ∂n+m/∂zn∂z̄m,
that is, as λ−nλ̄−m. Classical local operators have dimensions (n, m) where n
and m are non-negative integers. However, only local operators with m = 0

7However, as will be shown in Section 4, the correlation functions of the subset of
operators that are also in the QL-cohomology, will be independent of the metric and
complex structure of Σ and even X.
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survive in QR-cohomology. The reason for the last statement is that the
rescaling of z̄ is generated by L̄0 =

∮
dz̄ z̄Tz̄z̄. As we saw above, Tz̄ z̄ is of

the form {QR, . . . }, so L̄0 = {QR, V0} for some V0. If O is to be admissible
as a local physical operator, it must at least be true that {QR,O} = 0.
Consequently, [L̄0,O] = {QR, [V0,O]}. Since the eigenvalue of L̄0 on O is
m, we have [L̄0,O] = mO. Therefore, if m �= 0, it follows that O is QR-exact
and thus trivial in QR-cohomology. A useful fact to note at this point is that
via the same arguments, since Tzz is of the form {QL, . . . }, only operators
with n = 0 survive in QL-cohomology. These two facts will be important in
Section 4.

Also, from the last paragraph, we have the condition L̄0 = 0 for oper-
ators in the QR-cohomology. Let the spin of any operator be S, where
S = L0 − L̄0. Since after twisting, QR is a scalar BRST operator of spin zero,
we will have [S, QR] = 0. This in turn implies that [QR, L0] = 0. In other
words, the operators of the half-twisted gauged sigma model will remain in
the QR-cohomology after global dilatations of the worldsheet coordinates.

Last but not least, note that the coefficients of the mode expansion of Tzz

generate arbitrary holomorphic reparameterizations of z. Hence, since Tzz

is not QR-closed, the operators will not remain in the QR-cohomology after
arbitrary holomorphic reparameterizations of coordinates on Σ. This also
means that

∮
dz[QR, Tzz] = [QR, L−1] �= 0.8 Therefore, the operators will

not remain in the QR-cohomology after global translations on the world-
sheet.

Note that these observations are based on the fact that Tz̄z, Tz̄z̄ or Tzz

either vanishes or is absent in QR-cohomology. In perturbation theory, where
quantum effects are small enough, cohomology classes can only be destroyed
and not created. Thus, if it is true classically that a cohomology either
vanishes or is absent, it should continue to be true at the quantum level.
Hence, the above observations will hold in the quantum theory as well.

3.5.2 A holomorphic chiral algebra A

Let O(z) and Õ(z′) be two QR-closed operators such that their product is
QR-closed as well. Now, consider their operator product expansion or OPE:

O(z)Õ(z′) ∼
∑

k

fk(z − z′)Ok(z′), (3.42)

8Since we are working modulo QR-trivial operators, it suffices for Tzz to be holomorphic
up to QR-trival terms before an expansion in terms Laurent coefficients is permitted.
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in which the explicit form of the coefficients fk must be such that the scaling
dimensions and (gL, gR) ghost numbers of the operators agree on both sides
of the OPE. In general, fk is not holomorphic in z. However, if we work
modulo QR-exact operators in passing to the QR-cohomology, the fk’s which
are non-holomorphic and are thus not annihilated by ∂/∂z̄ drop out from
the OPE because they multiply operators Ok which are QR-exact. This is
true because ∂/∂z̄ acts on the LHS of (3.42) to give terms which are coho-
mologically trivial.9 In other words, we can take the fk’s to be holomorphic
coefficients in studying the QR-cohomology. Thus, the OPE of (3.42) has a
holomorphic structure. Hence, we have established that the QR-cohomology
of holomorphic local operators has a natural structure of a holomorphic chi-
ral algebra (in the sense that the operators obey (3.42), and are annihilated
by only one of the two scalar BRST generators QR of the supersymmetry
algebra) which we shall denote as A.

3.5.3 The important features of A

In summary, we have established that A is always preserved under global
dilatations and Weyl scalings, though (unlike the usual physical notion of
a chiral algebra) it is not preserved under general holomorphic coordinate
transformations and global translations on the Riemann surface Σ (since
Tzz is not in the QR-cohomology even at the classical level). Likewise,
the OPEs of the chiral algebra of local operators obey the usual relations
of holomorphy, associativity, invariance under dilatations of z and Weyl
scalings, but not invariance under arbitrary holomorphic reparameteriza-
tions and global translations of z.10 The local operators are of dimension
(n, 0) for n ≥ 0, and the chiral algebra of such operators requires a flat
metric up to scaling on Σ to be defined.11 Therefore, the chiral algebra
that we have obtained can either be globally defined on a Riemann sur-
face of genus one, or be locally defined on an arbitrary but curved Σ. We
shall assume the latter in this paper. Finally, as is familiar for chiral alge-
bras, the correlation functions of these operators may depend on Σ only
via its complex structure. The correlation functions are holomorphic in
the parameters of the theory and are therefore protected from perturbative
corrections.

9Since {QR, O} = 0, we have ∂z̄O = {QR, V (z)} for some V (z), as argued before. Hence
∂z̄O(z) · Õ(z′) = {QR, V (z)Õ(z′)}.

10However, as will be shown in Section 4.3, the correlation functions of the subset of
operators in A, that are also in the QL-cohomology, will be topological invariants of Σ
and even X.

11Notice that we have implicitly assumed the flat metric on Σ in all of our analysis
thus far.
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4 The relation to the chiral equivariant cohomology

We will now proceed to demonstrate the connection between the half-twisted
gauged sigma model in perturbation theory and the chiral equivariant coho-
mology. To this end, we shall specialize to the case where the gauge group G
is abelian. As a result of our analysis, some of the established mathematical
results on the chiral equivariant cohomology can be shown to either lend
themselves to straightforward physical explanations, or be verified through
purely physical reasoning. Moreover, one can also determine fully, the de
Rham cohomology ring of X/G, from a topological chiral ring generated by
the local ground operators of the chiral algebra A.

4.1 The half-twisted abelian sigma model at weak coupling

We shall start by discussing the theory in the limit of weak coupling or
infinite-volume of X. We will then proceed to show that the desired results
hold at all values of the coupling constant and hence, to all orders in per-
turbation theory, in the final subsection. But firstly, by an expansion of the
Lagrangian in Sgauged of (3.28), we have

Lgauged = gij̄∂z̄φ
i∂zφ

j̄ + gij̄∂z̄φ
iAa

zV
j̄
a + gij̄∂zφ

j̄Aa
z̄V

i
a + gij̄A

a
z̄V

i
aAb

zV
j̄
b

+ ψz̄j̄∂zψ
j̄ + ψz̄j̄∂zφ

īΓj̄

īl̄
ψ l̄ + ψz̄j̄A

a
z∂k̄V

j̄
a ψk̄ + ψzi∂z̄ψ

i

+ ψzi∂z̄φ
jΓi

jkψ
k + ψziA

a
z̄∂jV

i
aψj + ψz̄j̄Γ

j̄

l̄k̄
Aa

zV
l̄
aψk̄ + ψziΓi

lkA
a
z̄V

l
aψk

+ ψz̄j̄ψ
a
zV j̄

a + ψziψ
a
z̄V i

a − i

2
gjm̄ψziψz̄m̄(∂jV

i
a + Γi

jkV
k
a )φa

− i

2
gk̄mψz̄j̄ψzm(∂k̄V

j̄
a + Γj̄

k̄n̄
V n̄

a )φa − gm̄ngln̄Rm̄kj̄lψznψkψj̄ψz̄n̄,

(4.1)

where we have rewritten gij̄ψ
j̄
z as ψzi and gij̄ψ

i
z̄ as ψz̄j̄ . Next, recall from

(3.4) to (3.5) that we have the relations

[Va, Vb]i = V j
a ∂jV

i
b − V j

b ∂jV
i
a

fab
cV i

c (4.2)

and

[Va, Vb]ī = V j̄
a ∂j̄V

ī
b − V j̄

b ∂j̄V
ī
a

fab
cV ī

c . (4.3)
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If we consider G to be a unitary, abelian gauge group such as U(1)d = T d

for any d ≥ 1, then the structure constants fab
c must vanish for all a, b, c =

1, 2, . . . , d, that is, [Va, Vb]i = [Va, Vb]ī = 0. Since the generators of the U(1)’s
are unique, that is, Va �= Vb �= 0, from (4.2) to (4.3), it will mean that ∂jV

i
a =

∂j̄V
ī
a = 0 for abelian G = T d. Hence, Lgauged can be simplified to

Labelian = gij̄∂z̄φ
i∂zφ

j̄ + gij̄∂z̄φ
iAa

zV
j̄
a + gij̄∂zφ

j̄Aa
z̄V

i
a + gij̄A

a
z̄V

i
aAb

zV
j̄
b

+ ψz̄j̄∂zψ
j̄ + ψz̄j̄∂zφ

īΓj̄

īl̄
ψ l̄ + ψzi∂z̄ψ

i + ψzi∂z̄φ
jΓi

jkψ
k

+ ψz̄j̄Γ
j̄

l̄k̄
Aa

zV
l̄
aψk̄ + ψziΓi

lkA
a
z̄V

l
aψk + ψz̄j̄ψ

a
zV j̄

a + ψziψ
a
z̄V i

a

− i

2
gjm̄ψziψz̄m̄Γi

jkV
k
a φa − i

2
gk̄mψz̄j̄ψzmΓj̄

k̄n̄
V n̄

a φa

− gm̄ngln̄Rm̄kj̄lψznψkψj̄ψz̄n̄. (4.4)

Now consider the action

Lequiv = pzi∂z̄φ
i + pz̄j̄∂zφ

j̄ + ψzi∂z̄ψ
i + ψz̄j̄∂zψ

j̄ − gj̄i(pzi − Γk
ilψzkψ

l)

× (pz̄j̄ − Γk̄
j̄l̄ψz̄k̄ψ

l̄) − gm̄ngln̄Rm̄kj̄lψznψz̄n̄ψkψj̄ + gij̄∂z̄φ
iAa

zV
j̄
a

+ gij̄∂zφ
j̄Aa

z̄V
i
a + gij̄A

a
z̄V

i
aAb

zV
j̄
b + ψz̄j̄Γ

j̄

l̄k̄
Aa

zV
l̄
aψk̄ + ψziΓi

lkA
a
z̄V

l
aψk

+ ψz̄j̄ψ
a
zV j̄

a + ψziψ
a
z̄V i

a − i

2
gjm̄ψziψz̄m̄Γi

jkV
k
a φa

− i

2
gk̄mψz̄j̄ψzmΓj̄

k̄n̄
V n̄

a φa. (4.5)

From Lequiv above, the equations of motion for the fields pzi and pz̄j̄ are
given by

pzi = gij̄∂zφ
j̄ + Γk

ilψzkψ
l and pz̄j̄ = gij̄∂z̄φ

i + Γk̄
j̄l̄ψz̄k̄ψ

l̄. (4.6)

By substituting the above explicit expressions of pzi and pz̄j̄ back into (4.5),
one obtains Labelian. In other words, Labelian and Lequiv define the same
theory. Hence, we shall take Lequiv to be the Lagrangian of the half-twisted
abelian sigma model instead of Labelian. The reason for doing so is that
we want to study the sigma model in the weak-coupling regime where the
coupling tends to zero, or equivalently, the infinite-volume limit. For this
purpose, Lequiv will soon prove to be more useful.

Before we proceed to consider the infinite-volume limit, we shall discuss a
further simplification of Lequiv. Now recall that the 2d gauge field A defines a
connection one-form on some vector bundle over the Riemann surface Σ. Let
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the curvature two-form of the bundle be F . Since Σ is of complex dimension
one, it will mean that the (2, 0) and (0, 2) components of the curvature two-
form Fzz and Fz̄z̄, respectively, must be zero. Since we shall be considering
the worldsheet Σ to be a simply connected, genus-zero Riemann surface in
perturbation theory, we can consequentially write the corresponding holo-
morphic and anti-holomorphic components of the connection one-form A in
pure gauge, that is,

Az = i∂z(U †)−1 · U † (4.7)

and

Az̄ = i∂z̄U · U−1, (4.8)

where U ∈ G. Equations (4.7) and (4.8) show that either Az or Az̄ may be
set to zero by a gauge transformation, but in general not simultaneously.
However, since we considering U to be abelian and unitary, or rather, U † =
U−1, we can set both Az and Az̄ to zero in Lequiv [15]. In addition, from
varying the fields ψa

z and ψa
z̄ in Lequiv, we have the equations of motion

ψz̄j̄V
j̄
a = ψziV

i
a = 0. Hence, Lequiv can be further simplified to

Lequiv′ = pzi∂z̄φ
i + pz̄j̄∂zφ

j̄ + ψzi∂z̄ψ
i + ψz̄j̄∂zψ

j̄ − gij̄(pzi − Γk
ilψzkψ

l)

× (pz̄j̄ − Γk̄
j̄l̄ψz̄k̄ψ

l̄) − gm̄ngln̄Rm̄kj̄lψznψz̄n̄ψkψj̄

− i

2
gij̄(ψzlψz̄j̄Γ

l
ikV

k
a φa + ψz̄l̄ψziΓl̄

j̄n̄V n̄
a φa). (4.9)

Finally, we consider the infinite-volume or weak-coupling limit, whereby
gij̄ → ∞ or the inverse metric gij̄ → 0. In this limit, Lequiv′ will read as

Lweak = pzi∂z̄φ
i + pz̄j̄∂zφ

j̄ + ψzi∂z̄ψ
i + ψz̄j̄∂zψ

j̄ . (4.10)

Thus, one can regard Lweak as the effective Lagrangian of the weakly cou-
pled, half-twisted gauged sigma model with unitary, abelian gauge group
G = U(1)d for any d ≥ 1.

From the equations of motion associated with Lweak, we find that ∂z̄φ
i,

∂zφ
ī, ∂z̄pzi, ∂zpz̄ī, ∂z̄ψ

i, ∂zψ
ī, ∂z̄ψzi and ∂zψz̄ī must vanish, that is, the fields

are solely dependent on either z or z̄ accordingly. In addition, via standard
field theory methods, we find from Lweak the following OPEs:

pzi(z)φj(w) ∼ − δj
i

z − w
, ψzi(z)ψj(w) ∼ δj

i

z − w
(4.11)
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and

pz̄ī(z̄)φj̄(w̄) ∼ −
δj̄
ī

z̄ − w̄
, ψz̄ī(z̄)ψj̄(w̄) ∼

δj̄
ī

z̄ − w̄
. (4.12)

Notice that (4.11) and (4.12) are the usual OPEs of the conformal bc-βγ
system and its complex conjugate, respectively; the fields pzi, φj , ψzi, ψj ,
pz̄ī, φj̄ , ψz̄ī and ψj̄ correspond to the fields βi, γj , bi, cj , β̄ī, γ̄ j̄ , b̄ī and c̄j̄ .
In other words, Lweak defines a conformal system which is a tensor product
of a bc-βγ system and its complex conjugate.

4.2 The spectrum of operators and the chiral equivariant coho-
mology

4.2.1 The Fock vacuum

Note that since the fields pzi, φi, ψzi, ψi, pz̄ī, φī, ψz̄ī, ψī are solely dependent
on either z or z̄, we can express them in terms of a Laurent expansion. And
since the fields pzi, ψzi, pz̄ī, ψz̄ī scale as dimension one fields, while φi, ψi,
φī, ψī scale as dimension zero fields, their corresponding Laurent expansions
will be given by

pzi =
∑
n∈Z

pi,n

zn+1 , pz̄ī =
∑
n∈Z

pī,n

z̄n+1 , (4.13)

ψzi =
∑
n∈Z

ψi,n

zn+1 , ψz̄ī =
∑
n∈Z

ψī,n

z̄n+1 , (4.14)

φi =
∑
n∈Z

φi
n

zn
, φī =

∑
n∈Z

φī
n

z̄n
(4.15)

and

ψi =
∑
n∈Z

ψi
n

zn
, ψī =

∑
n∈Z

ψī
n

z̄n
. (4.16)

In addition, from the OPEs in (4.11) to (4.12), we find that their mode
expansion coefficients obey the relations

[φi
n, pj,m] = δi

jδn,−m, {ψi
n, ψj,m} = δi

jδn,−m (4.17)

and
[φī

n, pj̄,m] = δī
j̄δn,−m, {ψī

n, ψj̄,m} = δī
j̄δn,−m, (4.18)
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with all other commutation and anti-commutation relations between fields
vanishing. Consequently, from (4.17) and (4.18) above, we find that the zero
modes obey

[p′
j,0, φ

i
0] = δi

j , [φī
0, pj̄,0] = δī

j̄ (4.19)

and
{ψj,0, ψ

i
0} = δi

j , {ψī
0, ψj̄,0} = δī

j̄ . (4.20)

where we have rewritten −pj,m as p′
j,m for convenience.

Notice that (4.19) and (4.20) are identical to the relations [a, a†] = 1 and
{a, a†} = 1 between the annihilation and creation operators a and a†, respec-
tively; p′

j,0, φī
0, ψj,0 and ψī

0 will correspond to annihilation operators while
φi

0, pj̄,0, ψi
0 and ψj̄,0 will correspond to creation operators. Next, let us

denote the Fock vacuum for the zero mode sector of the Hilbert space of
states by |0〉. Then one has the condition that

p′
j,0|0〉 = φī

0|0〉 = ψj,0|0〉 = ψī
0|0〉 = 0. (4.21)

Recall that in the state-operator correspondence, |0〉 is represented by the
identity operator. Therefore, (4.21) implies that the corresponding vertex
operators of the theory must be independent of the fields φī, ψī and their
derivatives.12 However, because pzi and ψzi are of (holomorphic) weight
one, we can still consider these fields and their z-derivatives (but not their
z̄-derivatives since they are holomorphic in z) in the corresponding operator
expressions.13

4.2.2 Physical operators and the sheaf of CDR on X

From the various discussions so far, we learn that the physical operators
in the QR-cohomology must comprise only of the fields pzi, φi, ψzi, ψi, φa,
ψa

z and their z-derivatives of order greater or equal to one. (Recall from
Section 3.5 that the operators of the half-twisted gauged sigma model must
be of scaling dimension (n, 0) where n ≥ 0 only, so they cannot consist of
pz̄ī, ψa

z̄ and the z̄-derivatives of any field.) As explained in Section 3.5, these

12In general, the vertex operators need not be independent of the derivatives of the
fields φī and ψī. However, recall from Section 3.5 that in the half-twisted gauged sigma
model, the operators must have scaling dimension (n, 0) for n ≥ 0. This means that the
they must be independent of the z̄-derivatives of the fields φī and ψī. In addition, we
have the condition ∂zφī = ∂zψī = 0. Hence, the operators must be independent of any
worldsheet derivatives of φī and ψī to any non-zero order.

13From the Laurent expansion of the dimension (1, 0) fields pzi and ψzi, we find that
unless ψj,−1|0〉 or p′

j,−1|0〉 is zero, we may still include them in the corresponding vertex
operator expressions.
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physical operators in the chiral algebra A must be locally defined over Σ.
However, they remain globally defined over X. Hence, from the OPEs in
(4.11), and the corresponding mode relations in (4.17), we find that they
will correspond to global sections of the sheaf Ωch

X ⊗ 〈ψa
z , φa〉, where Ωch

X is
the CDR on X [3], and 〈ψa

z , φa〉 is a free polynomial algebra generated by
the commuting and non-commuting operators ∂k

z φa and ∂k
z ψa

z , where k ≥ 0.
Note also that 〈ψa

z , φa〉 is a polynomial algebra that is symmetric in ∂k
z φa

and anti-symmetric in ∂k
z ψa

z .

Now, let Va =
∑dimCX

i=1 V i
a (∂/∂φi) be a holomorphic vector field on X

which generates a G-action, such that the holomorphic components V i
a real-

ize a subset of the corresponding Lie algebra g of G. As in [10, 14], one
can proceed to define a dimension one operator JVa(z) = pziV

i
a (z) of ghost

number zero, where its conformally invariant and hence conserved charge
KVa =

∮
JVadz will generate a local symmetry of the 2d theory on Σ. From

the first OPE in (4.11), we find that

JVa(z)φk(z′) ∼ −V k
a (z′)

z − z′ . (4.22)

Under the symmetry transformation generated by KVa , we have δφk =
iε[KVa , φ

k]. Thus, we see from (4.22) that KVa generates an infinitesimal
holomorphic diffeomorphism δφk = −iεV k

a associated with the G-action on
the target space X. For finite diffeomorphisms, we have a general field trans-
formation φ̃k = gk(φi) induced by the G-action on X, where each gk(φi) is
a holomorphic function in the φis. In addition, one can also compute that

JVa(z)pzk(z′) ∼ pzi∂kV
i
a (z′)

z − z′ . (4.23)

However, since we are considering the case where G = T d is unitary and
abelian, the right-hand side of (4.23) vanishes, as a trivial structure constant
implies that ∂kV

i
a = 0. Hence, the OPE of JVa with d(pzi), an arbitrary

polynomial function in pzi and its z-derivatives, is trivial.

Next, consider adding to JVa another ghost number zero dimension one
operator, consisting of the fermionic fields, given by JF(z) = ψntn

mψzm(z),
where t[φ] is some matrix holomorphic in the φi’s, with the indices n, m =
1, . . . ,dimC X. Once again, its conformally invariant and hence conserved
charge KF =

∮
JFdz will generate a local symmetry of the 2d theory on Σ.

From the OPEs in (4.11), we find that

JF(z)ψn(z′) ∼ ψm(z′)tmn

z − z′ , (4.24)
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while

JF(z)ψzn(z′) ∼ − tn
mψz,m(z′)
z − z′ . (4.25)

Under the symmetry transformation generated by KF, we have δψn = iε
[KF, ψn] and δψzn = iε[KF, ψzn]. Hence, we see from (4.24) and (4.25)
that KF generates the infinitesimal transformations δψn = iεψmtm

n and
δψzn = −iεtn

mψzm. For finite transformations, we will have ψ̃n = ψmAm
n

and ψ̃zn = (A−1)n
mψzm, where [A(φ)] is a matrix holomorphic in the φi’s

given by [A(φ)] = eiα[t(φ)], where α is a finite transformation parameter.
Recall at this point that the ψn’s transform as holomorphic sections of the
pull-back Φ∗(TX), while the ψzn’s transform as holomorphic sections of
the pull-back Φ∗(T ∗X). Moreover, note that the transition function matrix
of a dual bundle is simply the inverse of the transition function matrix of
the original bundle. Hence, this means that if we are using an appropriate
symmetry of the worldsheet theory (and hence [t(φ)]) to ‘glue’ their local
descriptions over an arbitrary intersection U1 ∩ U2, we can consistently iden-
tify [A(φ)] as the holomorphic transition matrix of the tangent bundle TX.
(This was was done in [10] to derive the automorphism relations of the sheaf
of CDR defined in [3].) However, this need not be the case in general, and
for KF to still generate a symmetry of the worldsheet theory, it is sufficient
that [A(φ)] and therefore [t(φ)] be arbitrary matrices which are holomorphic
in the φi’s.

For the purpose of connecting with the results in [1, 2] by Lian et al.,
let tm

n(z) = ∂V n/∂φm. Thus, the total dimension one current operator
JVa + JF, with charges KL = KVa + KF generating the symmetries discussed
above, will be given by (after rewriting pzi, φj , ψzi, ψj as βi, γj , bi, cj)

LVa(z) = βiV
i
a (z) +

∂V j
a

∂γi
cibj(z), (4.26)

where the normal ordering symbol has been omitted for notational simplicity.
As defined in [1, Section 3], the dimension (or conformal weight) one operator
LVa(z) is just a vertex algebraic analogue of the Lie derivative with respect
to the holomorphic vector field Va on X. Indeed, one can compute the OPE

LVa(z)LVb
(z′) ∼

L[Va,Vb](z
′)

z − z′ , (4.27)

which is a vertex algebraic analogue of the differential-geometric relation
between two Lie derivatives [Lξ, Lη] = L[ξ,η], where ξ and η are any two vec-
tor fields on X. Note that the operator observables of our gauge-invariant
model ought to be G-invariant, where one recalls that G is the compact
gauge group of automorphisms on X; an admissible operator O will be
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invariant under the field transformations induced by the G-action. In other
words, we will have [KL,O} = 0, where KL is the conserved charge generat-
ing the field transformations associated with the G-action. This means that
the operator product expansion LVa(z)O(z′) should not contain any single
poles. However, because we are considering the case where G = T d is unitary
and abelian, we have a further simplification of LVa(z); the second term on
the right-hand side of LVa(z) vanishes since ∂V j

a /∂γi = 0. Hence, LVa(z)
effectively acts as JVa(z) = pziV

i
a (z) on the QR-cohomology of operators in

the abelian theory. Since a general, local operator O must comprise only of
the fields pzi, φi, ψzi, ψi, φa, ψa

z and their z-derivatives, it can be expressed
as f(φi)d(pzi)g(ψi, ψzi)s(φa, ψa

z ), where g(ψi, ψzi) is a polynomial function
up to some finite order in ψi, ψzi and their z-derivatives (since ψi and ψzi

are anti-commuting Grassmannian fields), while s(φa, ψa
z ) is a polynomial

function in φa, ψa
z and their z-derivatives up to some finite order in ∂k

z ψa
z

for k ≥ 0 (since ψa
z is an anti-commuting Grassmannian field). Note that

the operator product expansions of JVa with the fields pzi, ψi, ψzi, φa and
ψa

z are non-singular, and since the operator product expansion JVa(z)O(z′)
cannot contain single poles, we deduce that the operator product expan-
sion LVa(z)f(z′) cannot contain single poles either, that is, [KL, f(z)] = 0.
In other words, for O to be an admissible operator in the abelian theory,
it would suffice that f(φi) be a G-invariant holomorphic function in φi.
However, by a suitable averaging over the compact group G, one can take
O = f(φi)d(pzi)g(ψi, ψzi)s(φa, ψa

z ) to be G-invariant without changing its
cohomology class. Therefore, in either the abelian or non-abelian case, O will
be given by a global section of the sheaf (Ωch

X )t≥ ⊗ 〈φa, ψa
z 〉, where (Ωch

X )t≥

just denotes the subspace of Ωch
X that is invariant under the (worldsheet)

symmetry transformation associated with LVa(z).14

4.2.3 About the BRST operators QL and QR

Let us continue by discussing the BRST operators QL and QR in the regime
of weak coupling. To this end, let us first note that the field variations due
to QL acting on any operator O are

δLφi = ψi, δLψzi = −pzi, δLψa
z = −i∂zφ

a, (4.28)

δLpzi = 0, δLψi = 0, δLφa = 0. (4.29)

On the other hand, the non-vanishing field variations due to QR acting on
any operator O are (after absorbing i via a trivial field redefinition of φa)

δRφi = 0, δRψzi = 0, δRψa
z = 0, (4.30)

14We can always rewrite (Ωch
X ⊗ 〈φa, ψa

z 〉)t≥ as (Ωch
X )t≥ ⊗ 〈φa, ψa

z 〉, since the sections of
the sheaf 〈φa, ψa

z 〉 will always be invariant under the symmetry generated by KL anyway.
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δRφa = 0, δRψi = −φaV i
a , δRpzi = 0, (4.31)

where δRpzi = 0 only upon using the appropriate equations of motion.15

From Lweak, we find that the corresponding supercurrents can be written
(where normal ordering is understood) as

QL(z) = pziψ
i(z) and QR(z) = −φaV i

aψzi(z), (4.32)

so that

QL =
∮

dz

2πi
pziψ

i(z) and QR = −
∮

dz

2πi
φaV i

aψzi(z). (4.33)

Note that we have the OPEs

QL(z)QL(z′) ∼ reg and QR(z)QR(z′) ∼ reg. (4.34)

Hence, from (4.33), we see that {QL, QL} and {QR, QR} vanish, that is,
Q2

L = Q2
R = 0. Another point to note is that QL and QR have ghost numbers

(1, 0) and (0, 1) respectively; QL acts to increase the left ghost number of
any operator by one, while QR acts to increase the right ghost number of
any operator by one. In addition, one also has the OPE

QL(z)QR(z′) ∼ φaLVa(z′)
z − z′ . (4.35)

This means that we will have

{QL, QR} = QLV
, (4.36)

where

QLV
=

∮
dz

2πi
JLV

(z), (4.37)

and JLV
(z) = φaLVa(z). Since the OPEs of φa and LVa with any admissible

operator O do not contain any single poles, we deduce that QLV
annihilates

O, that is,
[{QL, QR},O} = 0. (4.38)

15By using the equations of motion from Lequiv′ , we find that δRpzi =
− 1

2ψzlg
lj̄(gij̄,kV k

a + gij̄,k̄V k̄
a )φa. However, in the sigma model perturbation theory, deriva-

tives of the metric are of order R−1
c , where Rc is the characteristic radius of curvature of

the target space X. Thus, in the infinite-volume limit where Rc → ∞, the derivatives of
the metric vanish, and δRpzi = 0 follows.
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To illustrate an important consequence of (4.38), let us take Oa to be an
admissible fermionic operator of ghost number (q, p − 1). Then, from (4.38),
we have

[QL, {QR,Oa}] + [QR, {QL,Oa}] = 0. (4.39)

If {QL,Oa} = 0, we will have [QL, {QR,Oa}] = 0. This can be trivially
satisfied if {QR,Oa} = 0. However, if {QR,Oa} �= 0, because Q2

L = 0, one
can hope to find an operator O′

a of ghost number (q − 1, p), such that
{QR,Oa} = {QL,O′

a}. This important observation will be useful below.

4.2.4 A spectral sequence and the subset of operators in the
QL-cohomology

Building towards our main objective of uncovering the physical interpreta-
tion of the chiral equivariant cohomology, we would now like to study the
subset of operators which are also in the QL-cohomology, that is, the subset
of operators which are also closed with respect to QL and QR, and can nei-
ther be written as a (anti)commutator with QL nor QR. Clearly, they wil
also be closed with respect to Q = QL + QR. Hence, in order to ascertain
this subset of operators, let us first try to determine the operators in the
QR-cohomology which are also Q-closed.

As explained in Section 3.5, operators in the QR-cohomology must have
scaling dimension (n, 0) where n ≥ 0. Therefore, let us begin with a general
operator, corresponding to a global section of (Ωch

X )t≥, of scaling dimension
or conformal weight (0, 0), which hence may be admissible as a class in the
QR-cohomology:

OA = Ai1i2...in(φk)ψi1ψi2 . . . ψin . (4.40)

(Note that we have not included the φa field in OA because it will soon
appear naturally in our current attempt to determine the operators which
are Q-closed.) Let us denote ΔOA as the change in OA due to the action of
Q, that is,

ΔOA = {QL,OA} + {QR,OA}. (4.41)

Let us choose OA such that it can be annihilated by QL, that is, {QL,OA} =
0, so that it may be admissible as a class in the QL-cohomology as well.
Then,

ΔOA = {QR,OA}
= −inφaV i1

a Ai1i2...inψi2 . . . ψin . (4.42)
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Thus, we find that OA is neither in the QR-cohomology nor Q-closed as
required. These observations suggest that corrections to the operator OA

need to be made. To this end, recall from our discussion above on Oa, that
since OA is to be admissible as an operator and is QL-closed, we may have

{QR,OA} = −{QL,O1
A}

= −inφaV i1
a Ai1i2...inψi2 . . . ψin , (4.43)

where O1
A is a global section of the sheaf (Ωch

X )t≥ ⊗ 〈φa, ψa
z 〉. One may then

‘refine’ the definition of OA to

ÔA = OA + O1
A

= Ai1i2...in(φk)ψi1ψi2 . . . ψin + φaAai1i2...in−2(φ
k)ψi1ψi2 . . . ψin−2 ,

(4.44)

where

∂mAai1i2...in−2ψ
mψi1ψi2 . . . ψin−2 = nV i1

a Ai1i2i3...inψi2ψi3 . . . ψin . (4.45)

Then, the change in ÔA due to the action of Q will be given by

ΔÔA = {QR,O1
A}

= −i(n − 2)φaφbV i1
b Aai1i2i3...in−2ψ

i2ψi3 . . . ψin−2 . (4.46)

Notice that ΔÔA is two orders lower in the fermionic fields ψi’s than ΔOA.
This indicates that if we continue to refine ÔA in the above fashion, we will
eventually reach ΔÔA = 0, and obtain the exact expression of the Q-closed
operator as desired. To verify this statement, let us continue to refine ÔA

by adding to it another term O2
A, that is,

ÔA = OA + O1
A + O2

A

= Ai1i2...in(φk)ψi1ψi2 . . . ψin + φaAai1i2...in−2(φ
k)ψi1ψi2 . . . ψin−2

+ φaφbAabi1i2...in−4(φ
k)ψi1ψi2 . . . ψin−4 , (4.47)

whereby

{QR,O1
A} = −{QL,O2

A}
= −i(n − 2)φaφbV i1

b Aai1i2i3...in−2ψ
i1ψi3 . . . ψin−2 , (4.48)
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and therefore

∂mAabi1i2...in−4ψ
mψi1ψi2 . . . ψin−4 = (n − 2)V i1

b Aai1i2i3...in−2ψ
i2ψi3 . . . ψin−2 .

(4.49)
So now, we have

ΔÔA = {QR,O2
A}

= −i(n − 4)φaφbφcV i1
c Aabi1i2i3...in−4ψ

i2ψi3 . . . ψin−4 . (4.50)

Indeed, if we continue with the above refining process, we will eventually
obtain the correct expression for ÔA that is Q-closed:

ÔA = Ai1i2...in(φk)ψi1ψi2 . . . ψin + φaAai1i2...in−2(φ
k)ψi1ψi2 . . . ψin−2

+ φaφbAabi1i2...in−4(φ
k)ψi1ψi2 . . . ψin−4 + · · · . (4.51)

Thus, the globally defined operator ÔA is a global section of the sheaf
(Ωch

X )t≥ ⊗ 〈φa〉 of conformal weight (0, 0).

Next, we shall proceed to make an important observation about the nature
of the Q-closed operator ÔA. To this end, let OA = a, O1

A = a1, O2
A =

a2, . . . ,On/2
A = an/2, where Ok

A is the kth correction term added to OA in our
final expression of ÔA. Let us denote [(Ωch

X )t≥]q−p ⊗ 〈φa〉p as the subcomplex
of (Ωch

X )t≥ ⊗ 〈φa〉 consisting of elements with (gL, gR) ghost number (q, p).
Define Cp,q to be any conformal weight (0, 0) element of this subcomplex.
Then, one can easily see that a ∈ C0,n, a1 ∈ C1,n−1, a2 ∈ C2,n−2, etc. In
other words, we can write ai ∈ C l+i,h−i, where a0 = a, that is, a ∈ C l,h,
which then means that l = 0 and h = n. Notice also that if we were to write
{QL,O} and {QR,O} as d̃O and δ̃O, respectively, from (4.43), (4.48), and
the subsequent analogous relations that will follow in our refinement of ÔA,
we see that for a ∈ C l,h, we have a system of relations

d̃a = 0,

δ̃a = −d̃a1,

δ̃a1 = −d̃a2, (4.52)

δ̃a2 = −d̃a3,

...

which admits a solution

(a1, a2, . . . ), where ai ∈ C l+i,h−i. (4.53)
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Thus, (4.52) tells us that an element

ẑ := a ⊕ a1 ⊕ a2 ⊕ · · · (4.54)

lies in Zn, where
Zn := {ẑ ∈ Cn, (d̃ + δ̃)ẑ = 0} (4.55)

and Cn is the total double complex defined by

Cn :=
⊕

p+q=n

Cp,q, (4.56)

with a total differential d̃ + δ̃ : Cn → Cn+1, where the individual differentials

d̃ : Cp,q → Cp,q+1, δ̃ : Cp,q → Cp+1,q (4.57)

satisfy
d̃2 = 0, {d̃, δ̃} = 0, δ̃2 = 0. (4.58)

Since we have Q2
L = Q2

R = 0, where QL and QR act to increase gL and gR of
any physical operator O by one, plus the fact that {QL, QR} = 0 on O, it is
clear that one can represent ÔA by ẑ, with QL and QR corresponding to d̃
and δ̃, respectively. Now consider the system of relations [16]

d̃c0 + δ̃c−1 = b,

d̃c−1 + δ̃c−2 = 0,

d̃c−2 + δ̃c−3 = 0, (4.59)

d̃c−3 + δ̃c−4 = 0,

...

where c−i ∈ C l−i,h+i−1, δ̃c0 = 0, b ∈ Bl,h ⊂ C l,h, and

Bn :=
⊕

p+q=n

Bp,q, Bn : (d + δ̃)Cn−1. (4.60)

Because l = 0 and h = n, we have c0 ∈ C0,n−1, c−1 ∈ C−1,n, c−2 ∈ C−2,n+1

and so on. Since the local operators cannot have negative gR values, there
are no physical operators corresponding to c−1, c−2, c−3, etc. In other words,
there is no solution (c0, c−1, c−2, . . . ) to (4.59), and Bn, which consists of
the elements (d̃ + δ̃)b̂, where

b̂ := c0 ⊕ c−1 ⊕ c−2 ⊕ . . . ∈ Cn−1 (4.61)
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is therefore empty. Consequently, the cohomology of the double complex
Hd̃+δ̃(C

n) = Zn/Bn, is simply given by Zn: a class in Hd̃+δ̃(C
n) can be

represented by an element ẑ. What this means is that ÔA, in addition to
being Q-closed, represents a class in the Q-cohomology too, that is, ÔA

cannot be written as {Q, . . . }.

Now that we have found our Q-closed operator ÔA, and learnt that it
is a class in the (QL + QR)-cohomology, one may then return to our orig-
inal objective and ask if ÔA is part of the subset of operators in the QR-
cohomology which is also in the QL-cohomology. The answer is yes. This
can be explained as follows. Firstly, the system of relations in (4.52) means
that the cohomology of the double complex Hd̃+δ̃(C

n) can be computed
using a spectral sequence [16,17]. In particular, we have

Hd̃+δ̃(C
n) = E∞, (4.62)

whereby

E1 = Hd̃(C
n),

E2 = Hδ̃Hd̃(C
n),

E3 = Hd2Hδ̃Hd̃(C
n), (4.63)

...

E∞ = Hd∞ . . . Hd2Hδ̃Hd̃(C
n).

More concisely, we have Er+1 = H(Er, dr), where E0 = Cn, d0 = d̃, E1 =
Hd̃(C

n), d1 = δ̃ and so on. Generally, dr = 0 for some r ≥ m, whence the
spectral sequence “collapses at its Em stage” and converges to Hd̃+δ̃(C

n),
that is, Em = Em+1 = · · · = E∞ = Hd̃+δ̃(C

n). Hence, from (4.63), we see
that any element of Hd̃+δ̃(C

n) is also an element of Hd̃(C
n) and Hδ̃(C

n).
Therefore, ÔA represents a class in the QR- and QL-cohomology. In sum-
mary, ÔA constitutes the subset of conformal weight (0, 0) local operators
of the half-twisted gauged sigma model which are also in the QL- and Q-
cohomology.

How about the higher conformal weight operators? Let us begin with a
general weight (1,0) operator

OB = Bj
i1i2...in

(φk)pzjψ
i1ψi2 . . . ψin , (4.64)

which may be admissible in the QR-cohomology. (As before, we have not
included the φa field in OB because it will soon appear in our discussion.)
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Let us denote ΔOB as the change in OB due to the action of Q, that is,

ΔOB = {QL,OB} + {QR,OB}. (4.65)

As in our discussion on OA, let us choose OB such that it can be annihilated
by QL, that is, {QL,OB} = 0, so that it may be admissible as a class in the
QL-cohomology as well. Then,

ΔOB = {QR,OB}
= −inφaV i1

a Bj
i1i2...in

pzjψ
i2 . . . ψin . (4.66)

Thus, as in the case with OA, we find that OB is neither in the QR-
cohomology nor Q-closed as required. These observations suggest that cor-
rections to the operator OB need to be made. To this end, recall from our
discussion above on Oa, that if OB is to be admissible as an operator and
is QL-closed, we may have

{QR,OB} = −{QL,O1
B}

= −inφaV i1
a Bj

i1i2...in
pzjψ

i2 . . . ψin , (4.67)

so that one may ‘refine’ the definition of OB to

ÔB = OB + O1
B

= Bj
i1i2...in

(φk)pzjψ
i1ψi2 . . . ψin + φaBj

ai1i2...in−2
(φk)pzjψ

i1ψi2 . . . ψin−2 ,

(4.68)

where

∂mBj
ai1i2...in−2

pzjψ
mψi1ψi2 . . . ψin−2 = nV i1

a Bj
i1i2i3...in

pzjψ
i2ψi3 . . . ψin ,

(4.69)
and so on, just as we did to derive the final form of ÔA. However, since pi, or
alternatively βi, transforms in a complicated fashion over an intersection of
open sets U1 ∩ U2 in X [3,10], OB may not be globally well-defined. Likewise
for O1

B. Hence, these operators are not admissible as global sections of the
sheaves (Ωch

X )t≥ or (Ωch
X )t≥ ⊗ 〈φa〉 in general. Thus, in contrast to ÔA, we

do not have a consistent procedure to define ÔB as a class in Hd̃+δ̃(C
n). In

other words, operators which are admissible in the Q- and hence QR- and
QL-cohomology cannot contain the pi fields or their higher z-derivatives.
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Another weight (1, 0) operator that one can consider is

OC = Ck
i1i2...in(φj)ψzkψ

i1ψi2 . . . ψin , (4.70)

which may be admissible in the QR-cohomology. (Again, we have not
included the φa field in OC because it will appear in our following dis-
cussion.) Let us denote ΔOC as the change in OC due to the action of Q,
that is,

ΔOC = {QL,OC} + {QR,OC}. (4.71)

As in our previous examples, let us choose OC such that it can be annihilated
by QL, that is, {QL,OC} = 0, so that it may be admissible as a class in the
QL-cohomology as well. Then,

ΔOC = {QR,OC}
= −inφaV i1

a Ck
i1i2...inψzkψ

i2 . . . ψin . (4.72)

Unlike pi, the field ψzk does not have a complicated transformation law over
an intersection of open sets U1 ∩ U2 in X [3, 10]. Thus, OC can correspond
to a global section of (Ωch

X )t≥. Recall from our discussion on Oa that we can
write

{QR,OC} = −{QL,O1
C}

= −inφaV i1
a Ck

i1i2...inψzkψ
i2 . . . ψin , (4.73)

so that one may ‘refine’ the definition of OC to

ÔC = OC + O1
C , (4.74)

just as we did for ÔA and ÔB, and so on. However, from (4.28) to (4.29),
we have δLψzi = −pzi and δLpzi = 0, and a little thought reveals that there
are no weight (1, 0) operators O1

C which can satisfy (4.73). Thus, the con-
struction fails and one cannot proceed to make further corrections to OC .
In other words, operators which are admissible in the Q- and hence QR- and
QL-cohomology cannot contain the ψzk fields or their higher z-derivatives.

In fact, the above observations about higher weight operators in the last
two paragraphs are consistent with the results of Section 3.4, which states
that because Tzz is QL-exact, that is, Tzz = {QL, Gzz} for some operator
Gzz, an operator in the QL-cohomology must be of weight (0, m) for m ≥ 0.
Since pzi, ψzk and their higher z-derivatives are of weight (l, 0) where l ≥ 1,
they cannot be included in an operator that is admissible. Likewise, we
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cannot have the field ψa
z , its higher z-derivatives and the higher z-derivatives

of the fields φi, φa and ψi either.

4.2.5 The chiral equivariant cohomology HTd (Ωch
X )

In rewriting QL(z) (as given in (4.32)) in terms of βi(z) and ci(z) fields, we
see that QL coincides with dQ, the differential of the CDR Ωch

X on X [3].16

Another observation to be made is that QR(z) (as given in (4.32)) can be
written as −φaιVa(z), where ιVa(z) = V i

aψzi(z) is just a vertex algebraic
analogue of the interior product by the holomorphic vector field Va on X.
Indeed, after rewriting ιVa(z) in terms of the γi(z) and bi(z) fields, one can
compute its OPE with LVa(z) (given in (4.26)) as

LVa(z)ιVb
(z′) ∼

ι[Va,Vb](z
′)

z − z′ . (4.75)

Moreover, one can also compute that

ιVa(z)ιVb
(z′) ∼ 0. (4.76)

Clearly, (4.75) and (4.76) are just the vertex algebraic analogue of the
differential-geometric relations [Lξ, ιη] = ι[ξ,η] and {ιξ, ιη} = 0, respectively,
where ξ and η are any two vector fields on X. Since ιVa(z) can only con-
sist of φi(γi) and ψzi(bi) fields in general, it must be a section of the sheaf
Ωch

X . Now recall that ψzi transforms as a section of Φ∗(T ∗X) on Σ, that
is, over an arbitrary intersection U1 ∩ U2 in X, we have the transforma-
tion ψ̃zj(z) = ψzi

∂φi

∂φ̃j
(z). On the other hand, a holomorphic vector such as

V i
a (z) will transform as Ṽ j

a (z) = V i
a

∂φ̃j

∂φi (z). This means that over an arbi-

trary intersection U1 ∩ U2 in X, we have Ṽ i
a (z)ψ̃zi(z) = V j

a (z)ψzj(z). This
can be written in terms of γi(z) and bi(z) fields as

Ṽ i
a (z)b̃i(z) = V j

a (z)bj(z), (4.77)

that is, ι̃Va(z) = ιVa(z). This means that the conformal weight (1, 0) vertex
operator ιVa(z) must be a global section of the sheaf Ωch

X .

Finally, notice that the sheaf (Ωch
X )t≥ ⊗ 〈φa〉 coincides with the small chi-

ral Cartan complex CT d(Ωch
X ) defined by Lian et al. in [1, Section 6.2]. More-

over, via the discussion above and (4.33), we see that the BRST operator

16The differential dQ in [3] is actually −QL because of a trivial sign difference in defining
βi(z). However, the sign convention adopted for βi(z) in this paper is the same as in [1],
which is our main point of interest.
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Q = QL + QR can be written as dT d = dQ − (φaιVa)(0), where (φaιVa)(0) =∮
dz
2πiφ

aιVa(z). Hence, dT d coincides with the differential of CT (Ωch
X ) defined

in [1, Section 6.2]. Therefore, ÔA represents a class in H(CT d(Ωch
X ), dT d),

the dT d-cohomology of the small chiral Cartan complex. From [1, The-
orem 6.5], we have, for any T d-manifold, the isomorphism HT d(Ωch

X ) ∼=
H(CT d(Ωch

X ), dT d), where HT d(Ωch
X ) is the T d-equivariant cohomology of the

CDR. Thus, ÔA actually represents a conformal weight (0,0) class in HT d

(Ωch
X )! In addition, from the discussion in the last few paragraphs on the

vanishing of other operators in the Q-cohomology, we learn that the only
classes in HT d(Ωch

X ) are represented by the operators ÔA. Hence, for G = T d,
the chiral equivariant cohomology can be described by the subset of physi-
cal operators of the half-twisted gauged sigma model which also belong to
the QL-cohomology. In fact, via this description of the chiral equivariant
cohomology in terms of a 2d sigma model, the mathematical result in [2,
Corollary 6.4] stating that there are no positive weight classes in HT d(Ωch

X ),
now lends itself to a simple and purely physical explanation. In particular,
since the holomorphic stress tensor is QL-exact, that is, Tzz = {QL, Gzz} for
some operator Gzz, the physical operators in the QL-cohomology must be
of conformal weight (0, m) for m ≥ 0. On the other hand, since the anti-
holomorphic stress tensor is QR-exact, that is, Tz̄z̄ = {QR, Gz̄z̄} for some
operator Gz̄z̄, the physical operators in the QR-cohomology must be of con-
formal weight (n, 0) for n ≥ 0. Therefore, the physical operators in the
Q-cohomology, which we have shown earlier to correspond to operators
that are also in the QL- and QR-cohomology, must be of conformal weight
(0, 0), that is, they must be ground operators. Since these operators of the
Q-cohomology represent the only classes in HT d(Ωch

X ), there are consequently
no classes of positive weight in HT d(Ωch

X ).

Last but not least, that Hd̃+δ̃(C
n) and therefore H(CT d(Ωch

X ), dT d) can be
constructed via a converging spectral sequence (Er, dr) which collapses at
Er for some r is also consistent with [1, Theorem 6.6]. Thus, the chiral equi-
variant cohomology can indeed be consistently represented by the ground
operators of a 2d half-twisted gauged sigma model.

4.3 Correlation functions and topological invariants

In this subsection, we shall examine the correlation functions of local oper-
ators of type ÔA. We will also define some non-local operators in the
Q-cohomology and study their correlation functions as well. In doing so, we
shall be able to derive a set of topological invariants on X. These invariants
can then be used to provide a purely physical verification of the isomorphism
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between the weight-zero subspace of HT d(Ωch
X ) and the classical equivariant

cohomology of X [1, 2].

4.3.1 Local operators

To begin with, let P1, P2, . . . , Pk be k distinct points on Σ. Let OA1 ,OA2 , . . . ,
OAK

be local operators of type OA with n1, n2, . . . , nk number of ψi fields.
Let ÔA1 , ÔA2 , . . . , ÔAK

be the corresponding operators which represent
classes in HT d(Ωch

X ). Consider a non-vanishing correlation function of such
operators (where Σ is a simply connected, genus-zero Riemann surface in
perturbation theory):

Z(A1, A2, . . . , AK) = 〈ÔA1(P1)ÔA2(P2) . . . ÔAK
(PK)〉0. (4.78)

Z(A1, A2, . . . , AK) is a topological invariant in the sense that it is invariant
under changes in the metric and complex structure of Σ or X. Indeed, since
Lgauged = {Q, Vgauged}, a change in the metric and complex structure of Σ
or X will result in a change in the Lagrangian δL = {Q, V ′} for some V ′.
Hence, because {Q, ÔAi(Pi)} = 0 and 〈{Q, Y }〉 = 0 for any operator Y , the
corresponding change in Z(A1, A2, . . . , AK) will be given by

δZ = 〈ÔA1ÔA2 . . . ÔAK
(−δL)〉0

= −〈ÔA1ÔA2 . . . ÔAK
{Q, V ′}〉0

= −〈{Q,ΠiÔAi · V ′}〉0
= 0. (4.79)

4.3.2 Non-local operators

We shall now continue to construct the non-local operators of the theory,
that is, operators which are globally defined on Σ. Unlike ÔAi above, these
operators will not define a chiral algebra A. (Recall from the discussion
at the end of Section 3.5, that a chiral algebra must be locally defined on
Σ unless Σ is of genus one). However, they will correspond to classes in
HT d(Ωch

X ), as we will see.

To this end, notice that we can always view ÔA as an operator-valued
zero-form on Σ. Let us then rewrite it as Ô(0)

A , where the superscript (0)
just denotes that the operator is a zero-form on Σ. Let us now try to
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compute the exterior derivative of Ô(0)
A on Σ:

dÔ(0)
A = ∂zÔ(0)

A dz + ∂z̄Ô(0)
A dz̄. (4.80)

(The motivation for doing so will be clear shortly.) The partial z-derivative
will be given by

∂zÔ(0)
A =

∂

∂z
(Ai1i2...inψi1ψi2 . . . ψin + φaAai1i2...in−2ψ

i1ψi2 . . . ψin−2

+ φaφbAabi1i2...in−4ψ
i1ψi2 . . . ψin−4 + · · · )

= ∂kAi1i2...in∂zφ
kψi1ψi2 . . . ψin + nAi1i2...in∂zψ

i1ψi2 . . . ψin

+ ∂zφ
aAai1i2...in−2ψ

i1ψi2 . . . ψin−2 + φa∂kAai1i2...in−2∂zφ
kψi1ψi2

. . . ψin−2 + (n − 2)φaAai1i2...in−2∂zψ
i1ψi2 . . . ψin−2 + · · · (4.81)

= nAi1i2...in∂zψ
i1ψi2 . . . ψin + ∂zφ

aAai1i2...in−2ψ
i1ψi2 . . . ψin−2

+ φa∂kAai1i2...in−2∂zφ
kψi1ψi2 . . . ψin−2

+ (n − 2)φaAai1i2...in−2∂zψ
i1ψi2 . . . ψin−2 + . . . ,

where the condition {QL,OA} = 0 implies that for our purpose, one can
discard the first term on the right-hand side of the second equality in (4.81)
to arrive at the final equality, since it will not contribute to dÔ(0)

A in (4.80).17

The z̄-derivative will be given by

∂z̄Ô(0)
A =

∂

∂z̄
(Ai1i2...inψi1ψi2 . . . ψin + φaAai1i2...in−2ψ

i1ψi2 . . . ψin−2

+ φaφbAabi1i2...in−4ψ
i1ψi2 . . . ψin−4 + · · · )

= ∂kAi1i2...in∂z̄φ
kψi1ψi2 . . . ψin + nAi1i2...in∂z̄ψ

i1ψi2 . . . ψin

+ ∂z̄φ
aAai1i2...in−2ψ

i1ψi2 . . . ψin−2 + φa∂kAai1i2...in−2∂z̄φ
kψi1ψi2

. . . ψin−2 + (n − 2)φaAai1i2...in−2∂z̄ψ
i1ψi2 . . . ψin−2 + . . .

= 0, (4.82)

17From the field variations δLφi = ψi and δLψi = 0, the expression QL(z) =∮
dz
2πi

pziψ
i(z), and the operator product expansion pzi(z)φi(z′) ∼ (z − z′)−1, one can see

that QL acts on OA as the exterior derivative dφk ∂
∂φk . Noting that dφk = ∂zφkdz + ∂z̄

φkdz̄ = ∂zφkdz since ∂z̄φk = 0, one will have {QL, OA} = ∂kAi1i2...indφkψi1ψi2 . . . ψin =
∂kAi1i2...in∂zφkdz ψi1ψi2 . . . ψin = 0. This then implies that one can discard the term
∂kAi1i2...in∂zφkψi1ψi2 . . . ψin in computing ∂zÔ(0)

A , since it vanishes in ∂zÔ(0)
A dz.
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where we have used the equations of motion ∂z̄φ
k = ∂z̄ψ

i = 0 and the fact
that ∂z̄φ

a = 0,18 in going from the second to third equality in (4.82). Hence,
we can write

dÔ(0)
A = ∂zÔ(0)

A dz

= nAi1i2...indψi1ψi2 . . . ψin + dφaAai1i2...in−2ψ
i1ψi2 . . . ψin−2

+ φa∂kAai1i2...in−2dφkψi1ψi2 . . . ψin−2

+ (n − 2)φaAai1i2...in−2dψi1ψi2 . . . ψin−2 + · · · . (4.83)

In fact, one can show that

dÔ(0)
A = {Q, Ô(1)

A }, (4.84)

whereby Ô(1)
A is an operator-valued one-form on Σ. For ease of illustration,

let us take Ô(0)
A to be of type n = 2, that is,

Ô(0)
A = Ai1i2ψ

i1ψi2 + φaAa. (4.85)

Then, from (4.83), we find that

dÔ(0)
A = 2Ai1i2dψi1ψi2 + dφaAa + φa∂kAadφk. (4.86)

But from (4.45), and the identification of ψi as dφi as explained in footnote
17, we have the condition

∂kAadφk = 2V i1
a Ai1i2dφi2 , (4.87)

so that

dÔ(0)
A = 2Ai1i2ψ

i1dψi2 + 2φaV i1
a Ai1i2dφi2 + dφaAa. (4.88)

Next, from (4.87), we deduce that ∂kAa = 2V i1
a Ai1k for k = 1, 2, . . . ,dimC X.

In order to satisfy the condition {QL,OA} = 0, one can simply choose
∂lAi1i2 = 0 or Ai1i2 constant. (The present discussion can be generalized to

18Note from discussion in Section 3.5 that any operator O in the QR-cohomology varies
holomorphically with z. Since, ÔA is such an operator, and it contains the fields φi, ψi

and φa, where φi and ψi are holomorphic in z from the equations of motion, we deduce
that φa must be holomorphic in z as well.
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non-constant Ai1i2 as will be explained shortly.) And since ∂l̄V
i
a = ∂lV

i
a = 0

for abelian G = Tn, we can thus write Aa as

Aa = 2
dimC X∑

α=1

V i1
a Ai1αφα. (4.89)

If we let

Âa = 2
dimC X∑

j=1

(φbV j
b )−1V i1

a Ai1jφ
jψj , (4.90)

one can verify that we will indeed have dÔ(0)
A = {Q, Ô(1)

A }, where

Ô(1)
A = 2iAi1i2ψ

i1dφi2 + idφaÂa. (4.91)

One can use similar arguments to show that (4.84) holds for Ô(0)
A of type

n > 2 as well. Consequently, one can go further to define the non-local
operator

WA(ζ) =
∫

ζ
Ô(1)

A , (4.92)

such that if ζ is a homology one-cycle on Σ (i.e., ∂ζ = 0), then

{Q, WA(ζ)} =
∫

ζ
{Q, Ô(1)

A } =
∫

ζ
dÔ(0)

A = 0, (4.93)

that is, WA(ζ) is a Q-invariant operator.

One can also deduce the relation dÔ(0)
A = {Q, Ô(1)

A } via the following argu-
ment. Firstly, note that since Z(A1, A2, . . . , AK) = 〈Ô(0)

A1
(P1)Ô(0)

A2
(P2) . . .

Ô(0)
AK

(PK)〉0 is a topological invariant in that it is independent of changes in
the metric and complex structure of Σ or X, it will mean that it is invariant
under changes in the points of insertion P1, P2, . . . , Pk, that is,

〈(
Ô(0)

A1
(P ′

1) − Ô(0)
A1

(P1)
)

Ô(0)
A2

(P2) . . . Ô(0)
AK

(PK)
〉

0
= 0, (4.94)

or rather 〈(∫
ζ
dÔ(0)

A1

)
Ô(0)

A2
(P2) . . . Ô(0)

AK
(PK)

〉
0

= 0, (4.95)
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where ζ is a path that connects P ′
1 to P1 on Σ. Since {Q, Y } = 0 for any

operator Y , and since {Q, Ô(0)
Ai

} = 0 for any i = 1, 2, . . . , k, it must be true
that ∫

ζ
dÔ(0)

A1
= {Q, WA1(ζ)}, (4.96)

and for consistency with the left-hand side of (4.96), WA1(ζ) must be an
operator-valued zero-form on Σ that depends on ζ, and where its explicit
form will depend on OA1 . Such a non-local operator can be written as
WA1(ζ) =

∫
ζ Ô(1)

A1
, where Ô(1)

A1
is an operator-valued one-form on Σ, and its

explicit form depends on OA1 . Hence, from (4.96), it will mean that

dÔ(0)
A = {Q, Ô(1)

A }, (4.97)

as we have illustrated with an example earlier. (Note that because the above
arguments hold in all generality, one can replace Ô(0)

A in (4.85) with another
consisting of a non-constant Ai1i2 , and still illustrate that the relation in
(4.84) holds.)

Let us now consider the correlation function of k Q-invariant operators
WA(ζ):

Z ((A1, ζ1), (A2, ζ2), . . . , (Ak, ζk)) = 〈WA1(ζ1) . . . WAk
(ζk)〉0. (4.98)

Under a variation in the metric of Σ or X, we have

δZ = 〈WA1(ζ1) . . . WAk
(ζk)(−δL)〉0

= 〈WA1(ζ1) . . . WAk
(ζk){Q, V ′}〉0

= 〈{Q,Πk
i=1WAi(ζi) · V ′}〉0

= 0, (4.99)

where we have used {Q, WAi(ζi)} = 0 and {Q, Y } = 0 for any operator Y .
This means that Z ((A1, ζ1), (A2, ζ2), . . . , (Ak, ζk)) is a topological invariant,
and is independent of changes in the metric and complex structure of Σ and
X. Hence, it will be true that

〈 [
WA1(ζ1) − WA1(ζ

′
1)

]
WA2(ζ2) . . . WAk

(ζk)
〉
0 = 0, (4.100)

where ζ ′
1 is a small displacement of ζ1, and both are homology one cycles on

Σ. Define ζ1 and ζ ′
1 to have opposite orientations such that they link a 2d
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manifold S in Σ. Then, we will have

WA1(ζ1) − WA1(ζ
′
1) =

∫
ζ1

Ô(1)
A1

(ζ1) −
∫

ζ′
1

Ô(1)
A1

(ζ ′
1) =

∫
S

dÔ(1)
A1

, (4.101)

and from (4.100), we deduce that

∫
S

dÔ(1)
A1

= {Q, WA1(S)}, (4.102)

where again, to be consistent with the left-hand side of (4.102), WA1(S) must
be an operator-valued zero-form on Σ, where its explicit form will depend
on OA1 and S. Such a non-local operator can be written as

WA1(S) =
∫

S
Ô(2)

A1
, (4.103)

where Ô(2)
A1

is an operator-valued two-form on Σ, and its explicit form
depends on OA1 . Thus, we can write

dÔ(1)
A = {Q, Ô(2)

A }. (4.104)

This implies that WA(ζ) =
∫
ζ Ô(1)

A depends only on the homology class that
ζ represents. Indeed, if ζ = ∂η for some two-manifold η in Σ, we will
have

WA(ζ) =
∫

ζ
Ô(1)

A =
∫

η
dÔ(1)

A = {Q,

∫
ζ
Ô(2)

A }, (4.105)

that is, WA(ζ) vanishes in Q-cohomology if ζ is trivial in homology. And
since Σ has real complex dimension 2, it cannot support forms of degree
higher than two. Hence,

dÔ(2)
A = 0. (4.106)

Let us now define the non-local operator

WA(Σ) =
∫

Σ
Ô(2)

A , (4.107)
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where Σ is the worldsheet Riemann surface which is therefore a homology
two-cycle because ∂Σ = 0. Consequently, we have

{Q, WA(Σ)} =
∫

Σ
{Q, Ô(2)

A } =
∫

Σ
dÔ(1)

A =
∫

∂Σ
Ô(1)

A = 0, (4.108)

that is, WA(Σ) is Q-invariant. Hence, correlation functions involving the
operators WA(P ), WA(ζ) and WA(Σ) will also be invariant under a variation
in the metric of Σ or X.

In summary, we have the local operator

WA(P ) = Ô(0)
A , (4.109)

where P is just a zero-cycle or a point on Σ, and the non-local operators

WA(ζ) =
∫

ζ
Ô(1)

A , WA(Σ) =
∫

Σ
Ô(2)

A , (4.110)

where
{Q, WA(P )} = {Q, WA(ζ)} = {Q, WA(Σ)} = 0. (4.111)

In addition, we also have the descent relations

dÔ(0)
A = {Q, Ô(1)

A }, dÔ(1)
A = {Q, Ô(2)

A }, dÔ(2)
A = 0. (4.112)

In the above relations,

Ô(1)
A ∈ Γ(Ω1

Σ ⊗ (Ωch
X )t≥ ⊗ 〈φa〉), Ô(2)

A ∈ Γ(Ω2
Σ ⊗ (Ωch

X )t≥ ⊗ 〈φa〉), (4.113)

and so from (4.110), we find that WA(P ), WA(ζ) and WA(Σ) will be given by
global sections of (Ωch

X )t≥ ⊗ 〈φa〉. Moreover, since WA(P ), WA(ζ) and WA(Σ)
are Q-closed, they will correspond to classes in the chiral equivariant coho-
mology HT d(Ωch

X ). From the descent relations in (4.112), we also find that
with respect to the Q-cohomology and therefore HT d(Ωch

X ), the operators
Ô(0)

A , Ô(1)
A and Ô(2)

A can be viewed as d-closed forms on Σ (since their exte-
rior derivatives on Σ are Q-exact and therefore trivial in Q-cohomology).

4.3.3 Relation to the classical equivariant cohomology of X

Consider the operator WAl
(γl), where Al is associated with the operator

OAl
in (4.40) that is of degree nl in the fields ψi, and γl is a homology cycle
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on Σ of dimension tl. Notice that WAl
(γl) generalizes the operators WA(P ),

WA(ζ) and WA(Σ) above. Now consider a general correlation function of s
such operators:

Z((A1, γ1, . . . , (As, γs)) = 〈 Πs
l=1WAl

(γl) 〉0. (4.114)

This can be explicitly written as

Z((A1, γ1, . . . , (As, γs)) =
∫

DX e−Sgauged · Πs
l=1WAl

(γl), (4.115)

where DX is an abbreviated notation of the path integral measure DA · Dφ ·
Dψ · Dφa · Dψa over all inequivalent field configurations.

As a relevant digression at this point, let us present an argument made
in Section 5 of [12]. Consider an arbitrary quantum field theory, with some
function space E over which one wishes to integrate. Let F be a group of
symmetries of the theory. Suppose F acts freely on E . Then, one has a
fibration E → E/F , and by integrating first over the fibres of this fibration,
one can reduce the integral over E to an integral over E/F . Provided one
considers only F -invariant observables O, the integration over the fibres will
just give a factor of vol(F ) (the volume of the group F ):

∫
E

e−SO = vol(F ) ·
∫

E/F
e−SO. (4.116)

Since G is a freely acting gauge symmetry of our sigma model, and since the
WAl

(γl)’s are G-invariant operators, we can apply the above argument to our
case where F = G and O = Πs

l=1WAl
(γl). Thus, for the correlation function

path integral in (4.115), the integration is done over fields modulo gauge
transformations, that is, over orbits of the gauge group. This observation
will be essential below.

Applying the same argument with F being the group of supersymme-
tries generated by Q, and O being the product of Q-invariant operators
Πs

l=1WAl
(γl), we learn that the path integral in (4.115) will localize onto

Q-fixed points only [12], that is, from (3.7) to (3.17), onto the field configura-
tions whereby ψa

z = ψa
z̄ = 0, φa = 0, ∂zφ

a = ∂z̄φ
a = 0 and ∂z̄φ

i = ∂zφ
ī = 0.

Hence, the path integral localizes onto the moduli space of holomorphic maps
Φ modulo gauge transformations. As explained earlier, one considers only
degree-zero maps in perturbation theory. Since the space of holomorphic
maps of degree-zero is the target space X itself, we find that for the path
integral in (4.115), one simply needs to integrate over the quotient space
X/G.
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As pointed out earlier, the WAl
(γl)’s represent weight-zero classes in the

chiral equivairant cohomology HT d(Ωch
X ). Granted that as claimed in [1, 2],

one has a mathematically consistent isomorphism between the weight-zero
classes of HT d(Ωch

X ) and the classical equivariant cohomology HG(X), it will
mean that there is a one-to-one correspondence between the WAl

(γl)’s and
the elements of HG(X). Since the G-action on X is freely acting, that is, the
quotient space X/G is a smooth manifold, we will have HG(X) = H(X/G),
where H(X/G) is just the de Rham cohomology of X/G. This means that
the correlation function in (4.115) will be given by

Z((A1, γ1, . . . , (As, γs)) =
∫

X/G
WA1 ∧ WA2 ∧ . . .WAs , (4.117)

where WAi is just an appropriate, globally defined differential form in the de
Rham cohomology of X/G corresponding to the physical operator WAi(γi),
such that

∑s
i=1 degree(WAi) = dim(X/G). Notice that the right-hand side

of (4.117) is an intersection form and is thus a topological invariant of X/G
and hence X, for a specified gauge group G that is freely acting. This is
consistent with the earlier physical observation that Z((A1, γ1, . . . , (As, γs))
is a topological invariant of X. Therefore, we conclude that the mathe-
matical isomorphism between the weight-zero classes of HT d(Ωch

X ) and the
classical equivariant cohomology HG(X) is likewise consistent from a physi-
cal viewpoint via the interpretation of the chiral equivairant cohomology as
the spectrum of ground operators in the half-twisted gauged sigma model.

4.4 A topological chiral ring and the de Rham cohomology ring
of X/G

Recall from Section 3.5 that the local operators of the perturbative half-
twisted gauged sigma model will span a holomorphic chiral algebra. In
particular, one can bring two local operators close together, and their result-
ing OPEs will have holomorphic structure coefficients. The Ô(0)

Ai
’s, or rather

WAi(P )’s, are an example of such local, holomorphic operators. By holomor-
phy, and the conservation of scaling dimensions and (gL, gR) ghost number,
the OPE of these operators take the form

WAi(z)WAj (z
′) =

∑
gk=gi+gj

Ck
ij WAk

(z′)

(z − z′)hi+hj−hk
, (4.118)

where z and z′ correspond to the points P and P ′ on Σ, and the hα’s are the
holomorphic scaling dimensions of the operators. We have also represented
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the (gL, gR) ghost numbers of the operators WAi(z), WAj (z) and WAk
(z)

by gi, gj and gk for brevity of notation. Here, Ck
ij is a structure coefficient

that is (anti)symmetric in the indices. Since WAi(z) and WAj (z) are ground
operators of dimension (0, 0), i.e., hi = hj = 0, the OPE will then be given by

WAi(z)WAj (z
′) =

∑
gk=gi+gk

Ck
ij WAk

(z′)
(z − z′)−hk

. (4.119)

Notice that the RHS of (4.119) is only singular if hk < 0. Also recall
that all physical operators in the QR-cohomology cannot have negative
scaling dimension, that is, hk ≥ 0. Hence, the RHS of (4.119), given by
(z − z′)hkWAk

(z′), is non-singular as z → z′, since a pole does not exist.
Note that (z − z′)hkWAk

(z′) must also be annihilated by QR and be in its
cohomology, since this is true of WAi(z) and WAj(z′) too. In other words, we
can write WAk

(z, z′) = (z − z′)hkWAk
(z′), where WAk

(z, z′) is a dimension
(0, 0) operator that represents a QR-cohomology class. Thus, we can express
the OPE of the ground operators as

WAi(z)WAj (z
′) =

∑
gk=gi+gj

Ck
ij WAk

(z, z′). (4.120)

Since the only holomorphic functions without a pole on a Riemann surface
are constants, it will mean that the operators WAk

(P ), as expressed in the
OPE above, can be taken to be independent of the coordinate ‘z’ on Σ.
Hence, they are completely independent of their insertion points and the
metric on Σ. Therefore, we conclude that the ground operators of the chiral
algebra A of the sigma model define a topological chiral ring via the OPE

WAiWAj =
∑

gk=gi+gj

Ck
ij WAk

. (4.121)

Now, consider the following two-point correlation function:

ηij = 〈WAiWAj 〉0. (4.122)

Next, consider the three-point correlation function:

〈WAiWAjWAk
〉0 = 〈WAi(WAl

C l
jk)〉0 = 〈WAiWAl

〉0 C l
jk, (4.123)

where we have used the OPE in (4.121) to arrive at the first equality above.
Thus, if we let

〈WAiWAjWAk
〉0 = Cijk, (4.124)
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from (4.122) and (4.123), we will have

Cijk = ηilC
l
jk. (4.125)

From the discussion in the previous subsection, we find that

Cijk =
∫

X/G
WAi ∧ WAj ∧ WAk

(4.126)

and

ηil =
∫

X/G
WAi ∧ WAl

, (4.127)

that is, ηil and Cijk correspond to the intersection pairing and structure
constant of the de Rham cohomology of X/G, respectively. Therefore, one
can see that the two-point correlation function of local ground operators
at genus-zero defined in (4.122), and the structure coefficient C l

jk of the
topological chiral ring in (4.121), will, together with (4.125), determine the
de Rham cohomology ring of X/G completely.

4.5 Results at arbitrary values of the sigma model coupling

From (3.26) and (3.27), we see that the Lagrangian in (4.1) of the half-
twisted gauged sigma model can be written as

Lgauged = {QL, Vgauged} + {QR, Vgauged}, (4.128)

where Vgauged is given explicitly by

Vgauged = igij̄

(
ψi

z̄Dzφ
j̄ + ψj̄

zDz̄φ
i − 1

2
ψj̄

zH
i
z̄ − 1

2
ψi

z̄H
j̄
z

)
. (4.129)

Consequently, one can see that any change in the metric gij̄ will manifest
itself as a QR-exact and a QL-exact term. The QR-exact term is trivial
in QR-cohomology, while the QL-exact term is trivial in QL-cohomology.
Therefore, arbitrary changes in the metric can be ignored when analysing
the subset of operators of the half-twisted gauged sigma model that are also
in the QL-cohomology. In particular, one can move away from the infinite-
volume limit to a large but finite-volume regime of the sigma model (where
worldsheet instanton effects are still negligible), and the above discussion
on the operators of the Q-cohomology will not be affected. Thus, the inter-
pretation of the chiral equivariant cohomology as the ground operators of
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the half-twisted gauged sigma model hold at arbitrarily small values of the
coupling constant and hence, to all orders in perturbation theory. Likewise,
this will also be true of the physical verification of the isomorphism between
the weight-zero subspace of the chiral equivariant cohomology and the classi-
cal equivariant cohomology of X, and the relation of the intersection pairing
and structure constant of the de Rham cohomology ring of X/G to the two-
point correlation function and structure coefficient of the topological chiral
ring, whereby their validity rests upon arguments involving operators in the
Q-cohomology.

5 Concluding remarks

In this paper, we have furnished a purely physical interpretation of the chi-
ral equivariant cohomology defined by Lian and Linshaw [1] in terms of a
2d sigma model. In particular, for a locally free and abelian G-action such
as G = T d, the chiral equivariant cohomology of a G-manifold X will corre-
spond to the sub-spectrum of ground operators of the half-twisted G-gauged
sigma model which are also in the QL- and (QL + QR)-cohomology. Via
this sigma model interpretation, the vanishing of positive weight classes in
the chiral equivariant cohomology can be attributed to the simple physical
observation that the holomorphic and anti-holomorphic stress tensors of the
model are QL- and QR-closed, respectively; hence, any admissible opera-
tor that is both in the QL- and QR-cohomology at the same instant must
be of weight (0, 0). Moreover, we have also verified, from a purely physi-
cal perspective using the topological invariance of the correlation function
of local and non-local operators, the validity of identifying the weight-zero
subspace of the chiral equivariant cohomology with the classical equivariant
cohomology of X. Last but not least, we have also demonstrated that the de
Rham cohomology ring of X/G can be determined fully from the two-point
correlation function of local ground operators which span the chiral alge-
bra, and the structure coefficient of the topological chiral ring generated by
these local operators. Hopefully, the math-physics connection elucidated in
this present work can bring about further progress in either fields through
an application of the physical and mathematical insights that it may have
offered.

What remains to be explored is the case when the abelian G-action has
fixed points, that is, when the target space of the half-twisted gauged sigma
model is a singular orbifold. According to the results of [2], there will be
non-vanishing classes of positive weights in the corresponding chiral equi-
variant cohomology. Again, it would be interesting and probably useful to
understand this from a purely physical perspective.
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Finally, it would also be interesting to provide a physical interpretation
of the chiral equivariant cohomology of X when G is a non-abelian group.
From the mathematical construction in [1], we find that the chiral Car-
tan complex in the Cartan model of the chiral equivariant cohomology is
now a tensor product of the horizontal subalgebra of the semi-infinite Weil
algebra and the CDR. This is in contrast to the small chiral Cartan com-
plex discussed in this paper, which is just a tensor product of 〈φa〉 and the
chiral de Rham complex. The work of Getzler [18], which aims to exam-
ine the analogy between equivariant cohomology and the topological string,
involves the semi-infinite Weil algebra. This seems to suggest that perhaps
one should consider a topological string extension of the half-twisted gauged
sigma model, that is, to consider coupling the present model to 2d world-
sheet gravity in a BRST-invariant fashion, such that one will need to inte-
grate over the space of all inequivalent worldsheet Riemann surfaces in any
path integral computation. The resulting model may just provide a physical
interpretation of the chiral equivariant cohomology in the non-abelian case.
We hope to explore this consideration elsewhere in a future publication.
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