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Abstract

We present the construction and properties of a self-dual perverse sheaf
S0

· whose cohomology fulfills some of the requirements of String theory as
outlined in [1]. The construction of this S0

· utilizes techniques that follow
from MacPherson–Vilonen [2]. Finally, we will discuss its properties as
they relate to String theory.

1 Introduction

In analyzing ways to move between Calabi and Yau manifolds, Green and
Hubsch in [3, 4] showed there are cases within String theory that admit
mildly singular target spaces. These mildly singular spaces, termed coni-
folds [3, 5, 6] consist of the usual smooth target spaces with the addition of
zero-dimensional singularities that stratify these spaces. Since these spaces

e-print archive: http://lanl.arXiv.org/abs/0704.3298



668 ABDUL RAH. MĀN

are singular, the usual techniques for calculating cohomology do not apply.
Ideally, a cohomology theory for String theory would apply to both smooth
and not “too” singular target spaces1 so that determination of stringy
vacua could be possible in all cases. In an effort to qualify the mathematical
requirements for this (co)homology theory, Hubsch proposed in [7] a working
definition for a homology theory for String theory in the case of a mildly
degenerate target space. This is recalled in the following definition.

Definition 1.1. Let Y be a 2n-dimensional stratified space with a single
isolated singularity, y. Then

SHk(Y ) =

⎧
⎪⎨

⎪⎩

Hk(Y ), k > n;
Hn(Y − y) ∪ Hn(Y ), k;
Hk(Y − y), k < n.

(1.1)

The middle dimension case, k, Hn(Y − y) ∪ Hn(Y ) is a qualitative way of
expressing the String theory requirement that the homology group con-
tain cycles from both Hn(Y − y) and Hn(Y ). This means that the mid-
dle dimension homology group should be larger than either Hn(Y − y) or
Hn(Y ). Many homology theories were examined to attempt to fulfill this
requirement but only intersection homology2 seemed to possess most of
the requirements. However, in the middle dimension, intersection homol-
ogy provided fewer (co)cyclic classes than required by String theory [5].
It was concluded that Hk(Y ; IC ·) seemed to be the correct choice in all
degrees except k, where IC · is the sheaf of intersection chains defined on
p.77 of ref. [9]. In this paper we will discuss the construction of a complex
of sheaves S0

· such that Hk(Y ; S0
·) = Hk(Y ; IC ·) in all degrees k �= n, but

will yield more cohomology in the middle dimension as predicted in String
theory [5].

1.1 Kähler package

As mentioned in the previous section, massless fields in superstring com-
pactifications were identified with cohomology classes on the target space.
However, a troubling consequence occurs when the target space is singu-
lar. Essentially, different cohomology theories on singular target spaces
yield different results thereby making it difficult to determine which the-
ory physics may favor. Several important characteristics of the cohomology,

1The only known criterion on the severity of singularization comes from supersymmetry,
which is essential for vacuum stability [8].

2A detailed discussion can be found in [11] and [9].
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which correspond to the massless fields, are based on general properties of
field theories, specifically, the (2,2)-supersymmetric two-dimensional world-
sheet field theories. These properties, known as the Kähler package, should
hold for singular and smooth target spaces. Let Y be a smooth Calabi–Yau
target space. We will use Refs. [7] and [10] for the definition of the Kähler
package which is stated as follows:

1. Hodge decomposition: Hr(Y, C) =
⊕

p+q=r Hp,q(Y).

2. Complex conjugation: H(p,q)(Y) = H(q,p)(Y), which follows from CPT
conjugation in the world-sheet field theory.

3. Poincare duality: Hn−p,n−q(Y) × Hp,q(Y) → Hn,n(Y) is non-
degenerate.

4. Kunneth formula: Given two topological spaces X and Y . Then
Hr(X × Y ) =

⊕
p+q=r Hp(X) ⊗ Hq(Y ) which says that in a product

of two spaces, harmonic forms are products of a harmonic form from
one space and a harmonic form from the other space, with their degrees
added.

5. Lefshetz SL(2, C) action.

(Remark: The Lefshetz SL(2, C) action does not have any recognizable
counterpoint in the physics applications, so we ignore it for now.)

In the case that Y is a singular Calabi–Yau target space, String theory
suggests that these properties of the Kähler package should be preserved.
Hence, a cohomology theory for String theory should not only meet the
cohomology requirements qualitatively outlined by Hubsch in [1], but should
also meet the properties of the Kähler package whether Y is singular or
smooth.

In this paper, we show there exists a perverse sheaf S0
· that fulfills these

cohomology requirements and satisfies one part of the Kähler package. Prov-
ing the remaining parts are currently open problems. In the next section,
we present the mathematical tools used in this paper.

1.2 Useful mathematical tools

In this paper we will use the following definitions and statements.

Definition 1.2. A 2n-dimensional simple stratified space Y is a compact
topological space with one “singular” point y ∈ Y such that

1. Y − {y} is a smooth 2n-dimensional manifold called the “non-singular”
part of Y .
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2. There exists a neighborhood Uy of the singular point y whose closure
is homeomorphic to the cone cL over L, where L is a compact (n − 1)-
dimensional submanifold of Y , by a homeomorphism φ : cL → Uy such
that φ(∗) = y where * represents the cone point. The open cone over
the link will be denoted by coL.

Let Y be a simple stratified space with Y o the non-singular part of Y .
Define the inclusions j : Y o ↪→ Y , and for the singular point y ∈ Y define the
inclusion i : {y} ↪→ Y . We will denote the sections of a complex of sheaves S
over an open set U as as either Γ(U, S) or S(U). A constructible complex of
sheaves will be denoted as K ·. The sheaves and complexes of sheaves used
in this paper will be constructible. In addition, H∗

c represents cohomology
with compact supports.

A morphism f : K · → L· of complexes of sheaves is said to be a quasi-
isomorphism if Hn(f) : Hn(K ·) → Hn(L·) is an isomorphism for any n. Let
K · and L· be quasi-isomorphic complexes of sheaves in an abelian category
A. The derived category of A, D(A), is a category in which these two
complexes of sheaves are isomorphic. The bounded below derived category,
Db

Y (A) , of the abelian category A on Y has objects, complexes of sheaves,
that are zero below some degree. Discussions about the derived category
can be found in Section 1.7 in [12], Section 1.3 in [13], or Section 4.1 in [14].

In this paper, Db
Y will denote the bounded below derived category of

constructible complexes sheaves of Q-vector spaces on Y . It is known that
Db

Y has enough injective objects in the sense of Section 1.3 in Ref. [13].
Furthermore, we will restrict our treatment to the case of all local systems
being the constant sheaf Q with Y a simple stratified space.

A functor T from the category of sheaves to an abelian category A gives
rise to a functor RT from the derived category of sheaves to the derived
category of A. We will be using the definitions of the pullback, pushforward,
extension by zero, and Verdier duality functors from [14]. Let A ∈ Db

Y be a
complex of sheaves on Y o. Its pushforward by j is defined to be the complex
of sheaves Rj∗A on Y whose sections over an open set U ⊂ Y are defined as
Rj∗(A)(U) = A(j−1(U)) and the restriction from U to V ⊂ U is induced by
the restriction from j−1(U) to j−1(V ) [14, p. 45]. Let B ∈ Db

Y be a complex
of sheaves on Y . Its pullback, j∗B, is a sheaf on Y o such that there is an
isomorphism Hom(j∗B, A) 
 Hom(B, j∗A). [14, p. 46].

Let f : U → Y be an open subset of Y , let F ∈ Db
Y be a complex of sheaves

on U . The extension by zero complex of sheaves Rj!F denotes the subsheaf
of Rj∗F given by Γ(V, Rj!F) = {s ∈ Γ(U ∩ V, F)|supp(s) is closed relative
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to V } where V is an open subset of U and supp(s) denotes the support of
the section s. More details can be found in Chaps. 2 and 5 in [14].

We will need the following facts about Verdier duality. Let Y and Z
be topological spaces and let f : Y → Z be a map. Verdier defined a map
f ! : Db

Z → Db
Y . The Verdier duality theorem is a canonical isomorphism

in Db
Z ,

Rf∗R Hom·(A·, f !B·) 
 R Hom·(Rf!A
·, B·) (1.2)

for any A· ∈ Db
Y and B· ∈ Db

Z .

Definition 1.3 (Dualizing sheaf). Let Y be a locally compact topological
space and let f : Y → {pt} be the map to a point. Verdier defined the
dualizing sheaf to be DY := f !

Q.

Let Y be a locally compact topological space and let A· ∈ Db
Y be a complex

of sheaves. In ref. [15], Verdier defined the duality functor DV by DV (A·) :=
R Hom(A·, DY ).

Definition 1.4 (Verdier Duality Functor). The duality functor DV has the
following properties (p. 92, [9]). Let Y and Z be topological spaces and let
f : Y → Z be a map. There exist isomorphisms in Db

Y as follows:

1. DY
∼= DV (Q) ∼= f !(DZ).

2. A· ∼= DV (DV (A·)).

Definition 1.5 (Verdier dual pairing [15]). Let S· and T · be complexes
of sheaves defined on the simple stratified space Y . A Verdier dual pair-
ing between S· and T · is a morphism φ : S· ⊗ T · → DY [−2n] which induces
a quasi-isomorphism S· → R Hom·(T ·, DY [−2n]) where DY is the dualizing
sheaf on Y .

Proposition 1.1. Suppose S· and T · are complexes of sheaves with a Verdier
dual pairing φ on the simple stratified space Y . Then the morphism φ induces
a non-degenerate pairing on cohomology φ̂ : H i(Y, S·) ⊗ H2n−i(Y, T ·) →
H0(Y, DY ) ∼= Q.

Two particular distinguished triangles will be used in this paper. Let U
be an open set in a topological space Y and let Z be its closed complement.
Let S· be a complex of sheaves on Y . Then there are distinguished triangles
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defined as follows:

Ri∗i!S
· �� S·

�����������

Rj∗j∗S·
[1]

�����������
(1.3)

Rj!j
∗S· �� S·

����
��

��
��

�

Ri∗i∗S
·

[1]

�����������
(1.4)

These distinguished triangles (1.3) and (1.4) induce long exact sequences on
cohomology:

· · · → Hn(Y ; Ri∗i
!S·) → Hn(Y ; S·) → Hn(Y ; Rj∗j

∗S·)

→ Hn+1(Y ; Ri∗i
!S·) → · · · (1.5)

and

· · · → Hn(Y ; Rj!j
∗S·) → Hn(Y ; S·) → Hn(Y ; Ri∗i

∗S·)

→ Hn+1(Y ; Rj!j
∗S·) → · · · , (1.6)

respectively. We will require another relation that arises through manipula-
tion of distinguished triangles.

Lemma 1.1. For any complex of sheaves P · on the simple stratified space
Y , there is a natural isomorphism Hk(i∗Rj∗P ·) ∼= Hk+1(i!Rj!P ·).

Proof. Recall that for any complex of sheaves S · we have the distinguished
triangle (1.3)

Ri∗i!S · �� S ·

�����������

Rj∗j∗S ·
[1]

�����������
(1.7)
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Let S · = Rj!P · where P · is a complex of sheaves. Then we have

Ri∗i!Rj!P · �� Rj!P ·

������������

Rj∗j∗Rj!P ·
[1]

�������������
(1.8)

We know that Rj∗j∗Rj!P · = Rj∗P ·. Substituting into equation (1.8) above
we have

Ri∗i!Rj!P · �� Rj!P ·

����
��

��
��

�

Rj∗P ·
[1]

������������
(1.9)

Applying i∗ to equation (1.9) we obtain

i∗Ri∗i!Rj!P · �� i∗Rj!P ·

������������

i∗Rj∗P ·
[1]

												
(1.10)

This simplifies to

i!Rj!P · �� i∗Rj!P ·

������������

i∗Rj∗P ·
[1]

�����������
(1.11)

Since Rj! is the extension by zero functor, it follows that i∗Rj!P · = 0. Hence,

i∗Rj∗P · [1] �� i!Rj!P · (1.12)

is an isomorphism in all degrees k > 0. Applying H∗ to equation (1.12) we
get

Hk(i∗Rj∗P ·) ∼= Hk+1(i!Rj!P ·) (1.13)

for all k > 0. �
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Lemma 1.2. Let Y be a simple stratified space and let P · be a complex of
sheaves on Y. Let y ∈ Y be the singular point and let Uy be a distinguished
neighborhood of y so that Ūy 
 cLy and Uy 
 coLy. Then there are natural
isomorphisms

1. Hm(Y ; i∗i∗P ·) ∼= Hm(Y o; P ·), ∀ m > 0,
2. Hm(Y ; i!i∗P ·) ∼= Hm

c (Y o; P ·), ∀ m > 0,
3. Hm(Y ; j∗j∗P ·) ∼= Hm(Uy; P ·), ∀ m > 0,
4. Hm(Y ; j∗j!P ·) ∼= Hm

c (Uy; P ·), ∀ m > 0,
5. Hm(Y ; j∗i∗P ·) ∼= Hm(L × (0, 1); P ·), ∀ m > 0 where L is the link of

the singular point y.

Remark: The proof of the results in Lemma 1.2 follow in a straightforward
manner from sheaf theory. For the remainder of this paper, L and Ly will
be used interchangeably to denote the link of the point y ∈ Y . The derived
category, quasi-isomorphisms, right derived functors and related topics are
taken from the Refs. [13, 14, 16]. In the next section we present the motiva-
tion for constructing the perverse sheaf S0

·.

1.3 Mathematical approach

The objective of this paper is to construct the minimal object S0
· using

the technique of MacPherson and Vilonen [2, Thm. 2.1], show it provides
the necessary cohomology in all degrees, discuss its properties, and then
provide some qualitative insight to applications to String theory. The coho-
mology requirement for the middle dimension as stated in the Introduction
can be expressed mathematically as follows. Let Y be a simple stratified
space. We seek a minimal object S0

· such that Hn(Y ; S0
·) fits into the

following diagram:

Hn(Y ; S0
·)

d



 














Hn(Y ; Q)
� �

c
������������

γ �� Hn(Y − y; Q)

(1.14)

where c is an injection, d is a surjection, and γ is the restriction map on
cohomology. This minimal object S0

· would have cohomology greater than
either Hn(Y − y) or Hn(Y ) for k, but Hk(Y ; S0

·) ∼= Hk(Y ; IC ·) in all other
degrees. The existence and construction of such an S0

· that yields the
desired cohomology in the case of a singular isolated point is the subject
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of this paper. In order to construct S0
· on Y , we will use the method

developed by MacPherson and Vilonen presented in [2]. In this technique, a
perverse sheaf will be constructed from datum on the non-singular part, Y o

of Y . Although [2] describes how to construct perverse sheaves on stratified
spaces with higher dimensional strata and non-trivial local systems defined
on Y o, we have adapted this technique for the case of a space Y that has a
“simple stratification” made up of two parts: the singular point y ∈ Y and
the smooth Y o. In addition, the constant local system defined on Y o will be
used in all cases. In the next section, the category of perverse sheaves and
the zig-zag category will be presented.

2 Perverse sheaves and the zig-zag category

In this section we will present a condensed discussion of the category of
perverse sheaves and the zig-zag category. Throughout this paper we restrict
ourselves to conventions as presented in Section 1.2.

2.1 The category of perverse sheaves

Definition 2.1. The category of perverse sheaves P(Y ) is the full sub-
category of Db(Y ) whose objects are complexes of sheaves S ·, which satisfy
the following properties:

1. There exists M > 0 ∈ Z such that Si = 0 ∀ i < M (bounded below)
2. The complex of sheaves j∗S · is quasi-isomorphic to a local system on

Y o (in degree 0). In other words,
(a) Hk(j∗S ·) = 0 if k �= 0
(b) H0(j∗S ·) is a local system

3. Hk(i∗S ·) = 0 for k > n (support)
4. Hk(i!S ·) = 0 for k < n (cosupport)

Remark: We will be primarily interested in the sub-category PQ(Y ) of
P(Y ) that consists of perverse sheaves S · where the local system H0(j∗S ·) is
the constant sheaf Q. Let P(Y o) represent the category of perverse sheaves
on Y o. This is equivalent to the category of local systems defined on Y o.

2.2 Zig-zag Category

2.2.1 Definitions and properties

We have modified the definition of the Zig-zag category Z(Y, y) as taken
from p. 409 in Ref. [2].
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Definition 2.2 (Z(Y, y)). An object in Z(Y, y) is a sextuple Θ = (L, K, C,
α, β, γ) where L ∈ P(Y o), and K and C are vector spaces together with an
exact sequence:

Hn−1(i∗j∗L) α−−−−→ K
β−−−−→ C

γ−−−−→ Hn(i∗j∗L) (2.1)

Let Θ′ = (L′, K ′, C ′α′, β′, γ′) ∈ Obj(Z(Y, y)). A morphism θ : Θ → Θ′ in
Z(Y, y) consists of maps L �→ L′, K �→ K ′ and C �→ C ′ such that the follow-
ing diagram commutes:

Hn−1(i∗j∗L) α−−−−→ K
β−−−−→ C

γ−−−−→ Hn(i∗j∗L)
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

Hn−1(i∗j∗L′) α′
−−−−→ K ′ β′

−−−−→ C ′ γ′
−−−−→ Hn(i∗j∗L′)

(2.2)

Remark: We will be primarily interested in the full sub-category ZQ(Y, y)
of Z(Y, y) that consists of zig-zag objects Θ where the local system L is the
constant sheaf Q.

Definition 2.3. The zig-zag functor μ : P(Y ) → Z(Y, y) is defined by send-
ing an object Q· ∈ P(Y ) to the triple (j∗Q·, Hn(i!Q·), Hn(i∗Q·)) together
with the exact sequence

Hn−1(i∗j∗j∗Q·) −−−−→ Hn(i!Q·) −−−−→ Hn(i∗Q·) −−−−→ Hn(i∗j∗j∗Q·)
(2.3)

2.2.2 Relationship to P(Y )

We will use Theorem 2.1 from MacPherson and Vilonen [2] in the proof of
the main result. It is stated below in a modified form.

Theorem 2.1. (MacPherson–Vilonen [2])

1. The zig-zag functor μ : P(Y ) → Z(Y, y) gives rise to a bijection from
isomorphism classes of objects of P(Y ) to isomorphism classes of
objects of Z(Y, y),

2. Given S,S ′ ∈ P(Y ). Then μ : HomP(S,S ′) → HomZ(μ(S), μ(S ′)) is a
surjection.

Hence an isomorphism class of objects in P(Y ) is determined by a local
system (in this case the constant local system) on Y o and a fixed K and C.
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Different choices of K and C lead to different perverse sheaves on Y . The
main result of this work involves constructing a certain perverse sheaf on Y
from a certain choice of K and C, as described in the following proposition.

Proposition 2.1. Let Θ0 = (Q, K0, C0, α0, β0, γ0) where K0 = Im(Hn
c (coL)

→ Hn
c (Y o)), C0 = Im(Hn(Y 0) → Hn+1

c (coL)). Let α0 : Hn
c (coL) → Im(Hn

c
(coL) → Hn

c (Y o)). Let β0 be the 0-map. Let γ0 : Im(Hn(Y 0) → Hn+1
c (coL))

→ Hn+1
c (coL). Then Θ0 ∈ Obj(ZQ(Y, y)). Therefore there exists S0 ∈ PQ

(Y ) such that μ(S0) = Θ0.

Proof. In order to have an object of ZQ(Y, y), we must specify K0, C0,
the maps between them and then show equation (2.1) is exact. Rewriting
equation (2.1) yields

Hn
c (coL) α0−−−−→ K0

β0−−−−→ C0
γ0−−−−→ Hn+1

c (coL) (2.4)

Recall the distinguished triangle in equation (1.3) applied to Y with coeffi-
cients in Q. Simplifying in degree n we have

−−−−→ Hn
c (coL) −−−−→ Hn

c (Y o) −−−−→ Hn(Y o)

−−−−→ Hn+1
c (coL) −−−−→

(2.5)

Comparing eqns. (2.4) and (2.5), it follows by definition that we can iden-
tify the canonical maps α0 : Hn

c (coL; Q) → K0 as a surjection and γ0 : C0 →
Hn+1

c (coL; Q) as an injection. Since equation (2.5) is exact with K0 ⊂
Hn

c (Y ; Q) and C0 ⊂ Hn+1
c (coL; Q), β0 : K0 → C0 is the zero map since mov-

ing across two elements of an exact sequence is equivalent to applying
d ◦ d = 0. All that remains is to show that equation (2.4) is exact. Now,
since β0 is the zero map it follows that Ker(β0) = Im(β0) = 0. Since α0
is a surjection, Ker(β0) = Im(α0) = 0. Similarly since γ0 is an injection,
Ker(γ0) = Im(β0) = 0, hence (2.4) is exact and Θ0 ∈ Obj(ZQ(Y, y)). Since,
Θ0 ∈ Obj(ZQ(Y, y)), it follows by Theorem 2.1 there exists S0 ∈ PQ(Y ) such
that μ(S0) = Θ0. �

3 Main result

In this section we state the main result and discuss its proof.
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Theorem 3.1. The perverse sheaf S0 has the following properties:

1. H i(Y ; S0) =

{
H i(Y ), i > n,

H i(Y o), i < n
2. Hn(Y ; S0) is specified by the following two canonical short exact

sequences:
(a) 0 → K0 → Hn(Y ; S0) → Hn(Y o) → 0
(b) 0 → Hn

c (Y o) → Hn(Y ; S0) → C0 → 0
3. S0 is self-dual.

Remark: The two short exact sequences in (2) are equivalent to the diagram

Hn(Y ; S0)

d



 














Hn(Y ; Q)
� �

c
������������

γ �� Hn(Y ; j∗j∗
Q)

(3.1)

where c is an injection, d is a surjection, and γ is the map that comes from
the distinguished triangle between these elements.

Proof (Parts 1 and 2).

Recall that Hn(Y ; S0) fits into the long exact sequence generated by applying
the distinguished triangle (1.4) to Y on Q. We will prove there is a diagram

Hn(Y ; S0)

d
����

Hn−1(j∗j∗Q)
α �� Hn(i∗i!Q)

β ��

a

����

Hn(Q)
� �

c



���������� γ �� Hn(j∗j∗Q)
δ ��

e

����

Hn+1(i∗i!Q)

K0 = Im(β)
� �

b



����������
C0 = Im(δ)

� �

f
��












(3.2)

We will construct the maps for this triangle and show they exist. Recall the
support and cosupport conditions for a perverse sheaf described in Defini-
tion 2.1. Consider the distinguished triangle (1.3) applied to Y with values
in the perverse sheaf S0. Explicitly, this is Hk(Y ; i∗i!S0) → Hk(Y ; S0) →
Hk(Y ; j∗j∗S0) (see equation (1.5)). Recall that, Hk(Y ; j∗j∗S0) ∼= Hk(Y o; Q)
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 Hk(Y o). Then applying the cosupport condition in Definition 2.1, Hk

(Y ; i∗i!S0) = 0 which implies that

H i(Y ; S0) 
 H i(Y o) (0 < i < n − 1). (3.3)

Consider once again the distinguished triangle (1.3) applied to Y with values
in the perverse sheaf S0 in the following degrees:

Hn−1(Y ; i∗i!S0) −−−−→ Hn−1(Y ; S0) −−−−→ Hn−1(Y ; j∗j∗S0)

−−−−→ Hn(Y ; i∗i!S0)
(3.4)

By the cosupport condition in Definition 2.1, Hn−1(Y ; i∗i!S0) = 0. So (3.4)
becomes

0 −−−−→ Hn−1(Y ; S0) −−−−→ Hn−1(Y ; j∗j∗S0) −−−−→ Hn(Y ; i∗i!S0)
(3.5)

Identifying the maps in (3.5) we have

0 −−−−→ Hn−1(Y ; S0)
θ−−−−→ Hn−1(Y ; j∗j∗S0)

φ−−−−→ Hn(Y ; i∗i!S0)
(3.6)

By inspection of (3.6), θ is an injection. Recall that Hn(Y ; i∗i!S0) = Hn
c

(coL; S0) = K0. So (3.6) can be rewritten as

0 −−−−→ Hn−1(Y ; S0)
θ−−−−→ Hn−1(Y ; j∗j∗S0)

φ−−−−→ K0 (3.7)

Recall Proposition 2.1, where we defined K0 = Im(β) ⊂ Hn(Q). This implies
that φ = α ◦ β = 0 since the horizontal part of (3.2) is part of a long exact
sequence. Hence φ is the zero map which means that θ is an isomorphism.
The result is that Hn−1(Y ; S0) 
 Hn−1(Y ; j∗j∗S0). This means that (3.3)
can be rewritten to include degree n − 1 as

H i(Y ; S0) 
 H i(Y o) (0 < i ≤ n − 1). (3.8)

Consider the distinguished triangle (1.4) applied to Y with values in the
perverse sheave S0. Then for i > n + 1, by the support condition in Defini-
tion 2.1, Hk(Y ; i∗i∗S0) = 0, which implies that Hk(Y ; S0) 
Hk(Y ; j!j

∗S0) 

Hk

c (Y o) 
 Hk(Y, coL; S0) 
 Hk(Y ). It follows that

H i(Y ; S0) 
 H i(Y ) (i > n + 1) (3.9)
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Consider once again the distinguished triangle (1.4) applied to Y with values
in the perverse sheaf S0 in the following degrees:

Hn(Y ; i∗i∗S0) −−−−→ Hn+1(Y ; j!j
∗S0) −−−−→ Hn+1(Y ; S0)

−−−−→ Hn+1(Y ; i∗i∗S0)
(3.10)

By the support condition in Definition 2.1, Hn+1(Y ; i∗i∗S0) = 0. So (3.10)
becomes

Hn(Y ; i∗i∗S0) −−−−→ Hn+1(Y ; j!j
∗S0) −−−−→ Hn+1(Y ; S0) −−−−→ 0

(3.11)
Identifying the maps in (3.11) we have

Hn(Y ; i∗i∗S0)
ω−−−−→ Hn+1(Y ; j!j

∗S0)
τ−−−−→ Hn+1(Y ; S0) −−−−→ 0

(3.12)
By inspection of (3.12) τ is a surjection. Recall that Hn(Y ; i∗i∗S0) = Hn

(coL; S0) = C0.

C0
ω−−−−→ Hn+1(Y ; j!j

∗S0)
τ−−−−→ Hn+1(Y ; S0) −−−−→ 0 (3.13)

Recall Proposition 2.1, where we defined C0 = Im(δ). Define μ : C0 → Hn+1

(Y ; S0). By exactness it follows that C0 = Ker(μ) = Im(δ) which is a sub- Q2
group of Hn+1(i∗i!Q). Since every element in C0 maps to 0 in Hn+1

(Y ; j!j
∗S0) ∼= Hn+1

c (Y o) ∼= Hn+1(Y ; S0) the map from μ is the 0-map and
thus τ is a bijection. It follows that, we can rewrite (3.9) as

H i(Y ; S0) 
 H i(Y ) (i ≥ n + 1). (3.14)

Identifying the maps in the diagram (3.2), we have

0 −−−−→ K0
c·b−−−−→ Hn(S0)

d−−−−→ Hn(j∗j∗
Q) −−−−→ 0 (3.15)

We must show exactness at each term. Since c · b is injective we have exact-
ness at K0. Since d is surjective we have exactness at Hn(j∗j∗

Q). All that
remains is to show exactness at Hn(S0). Recall that K0 = Ker(γ). Take
x ∈ K0, then d((c · b)(x)) = γ(x) = 0. This shows that Im(c · b) ⊂ Ker(d).
It remains to show that Ker(d) ⊂ Im(c · b). Take x ∈ Ker(d). We want
to show ∃ y ∈ Hn(Q) such that (c · b)(y) = x. Let y ∈ Hn(Q), x ∈ Ker(d),
and take γ(y) = d(x). Recall that we required the map d to be surjective,
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(c · b)(y) = x which means that Ker(d) ⊂ Im(c · b) hence, we have exactness
at Hn(S0).

Identifying the maps in the diagram (3.2), we have

0 −−−−→ Hn(Q) c−−−−→ Hn(S0)
e·d−−−−→ C0 −−−−→ 0 (3.16)

We must show exactness at each term. Since c is an injection we have exact-
ness at Hn(Q) and since e · d is surjective we have exactness at C0. All that
remains is to show exactness at Hn(S0). Recall that C0 = Im(δ) = Ker(μ)
which is a subgroup of Hn+1(i∗i!Q). Take x ∈ Hn(Q) then (e · d)(c(x)) =
δ(γ(x)) = 0. This shows that Im(c) ⊂ Ker(e · d). It remains to show that
Ker(e · d) ⊂ Im(c). Take y ∈ Ker(e · d). We want to show ∃ z ∈ Hn(Q) such
that c(z) = y. Let z ∈ Hn(Q), y ∈ Ker(e · d), and take δ · γ(z) = e · d(y).
The map e · d is surjective since both e and d are surjective. Then y = c(z)
which means that Ker(e · d) ⊂ Im(c) hence we have exactness at Hn(S0).
This completes the proof of parts 1 and 2. �

In the next section we will present the proof of part 3 of Theorem 3.1.

4 Duality

4.1 Overview and definitions

The goal of this section is to prove part 3 of the main result. We will use
part 2 of Theorem 2.1 (MacPherson–Vilonen) to prove that S0 is self-dual
in PQ(Y ). The organization of this section will be around two main themes.
The first goal will be to construct a duality functor in Z(Y, y) and then show
that the object defined in Definition 2.1 is self-dual. Then Theorem 2.1 will
generate the corresponding self-dual object in P(Y ). Recall that we will use
definitions and statements from Section 1.2.

4.2 Duality in Z(Y, y)

We seek a duality functor DZ in Z(Y, y), that is compatible with the zig-
zag functor μ : P(Y ) → Z(Y, y) stated in Definition 2.3. We will need the
following lemma.

Lemma 4.1. Given Θ = (L, K, C, α, β, γ) ∈ Obj(Z(Y, y)). Then the mor-
phism φ̂ from Proposition 1.1 gives rise to isomorphisms:
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1. Hn−1(i∗j∗L∗[−2n]) ∼= (Hn(i∗j∗L))∗

2. Hn(i∗j∗L∗[−2n]) ∼= (Hn−1(i∗j∗L))∗

where DV (L) = L∗ and ()∗ is the vector space dual.

Remark: The following proof utilizes calculations from pp. 185–186,
Lemma 2.20 in Section 20 from Ref. [17].

Proof. The morphism φ̂ of Proposition 1.1 gives rise to the following:

Hn−1(i∗j∗L∗[−2n]) ∼= Hn−1(i∗DV (j!L))[−2n]
∼= Hn−1(DV (i!j!L))[−2n]
∼= Hn+1(DV (i!j!L))
∼= (Hn(i∗j∗L))∗, (4.1)

where Hn+1(DV (i!j!L)) ∼= (Hn(i∗j∗L))∗ using Lemma 1.1.

Hn(i∗j∗L∗[−2n]) ∼= Hn(i∗DV (j!L)[−2n])
∼= Hn(DV (i!j!L))[−2n]
∼= Hn(DV (i!j!L))
∼= (Hn−1(i∗j∗L))∗, (4.2)

where Hn(DV (i!j!L)) ∼= (Hn−1(i∗j∗L))∗ using Lemma 1.1. �

We now define the dual of an object in Z(Y, y).

Definition 4.1. Given Θ = (L, K, C, α, β, γ) ∈ Obj(Z(Y, y)). Define DZ(Θ)
= (L∗, C∗, K∗, γ∗, β∗, α∗) where γ∗ : Hn−1(i∗j∗L∗) → C∗ is the map dual to
α, β∗ : C∗ → K∗ is the map dual to β, and α∗ : K∗ → Hn(i∗j∗L∗) is the
map dual to γ.

Consider the object Θ = (L, K, C, α, β, γ) with its exact sequence and maps
identified as follows:

Hn−1(i∗j∗L) α−−−−→ K
β−−−−→ C

γ−−−−→ Hn(i∗j∗L) (4.3)
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Lemma 4.2. Let Θ = (L, K, C, α, β, γ) ∈ Obj(Z(Y, y)) and DZ(Θ) =
(L∗, C∗, K∗, γ∗, β∗, α∗) with the following maps:

Hn−1(i∗j∗L∗)
γ∗

−−−−→ C∗ β∗
−−−−→ K∗ α∗

−−−−→ Hn(i∗j∗L∗) (4.4)

where α∗, β∗, and γ∗ are the dual maps defined in Definition 4.1. Then the
sequence (4.4) is exact and it follows that DZ(Θ) is an object of Z(Y, y).

Proof. The dual of the exact sequence in (4.3) is given by the exact sequence:

(Hn(i∗j∗L))∗ γ∗
−−−−→ C∗ β∗

−−−−→ K∗ α∗
−−−−→ (Hn−1(i∗j∗L))∗ (4.5)

By Lemma 4.1, since (Hn(i∗j∗L))∗ ∼= Hn−1(i∗j∗L∗) and (Hn−1(i∗j∗L))∗ ∼=
Hn(i∗j∗L∗), we can substitute these into (4.5) which becomes exactly (4.4).
Since the sequence is exact it follows that DZ(Θ) ∈ Obj(Z(Y, y)). �

The duality functor DZ in Z(Y, y) needs to be compatible the Verdier dual
in P(Y ). The following proposition demonstrates this.

Proposition 4.1. Let μ be the map as defined in Theorem 2.1. Then the
following diagram commutes up to canonical isomorphism:

P(Y )
μ−−−−→ Z(Y, y)

DV

⏐
⏐
� DZ

⏐
⏐
�

P(Y )
μ−−−−→ Z(Y, y)

(4.6)

Proof. Let S · ∈ Obj(P(Y )). We want to show that μ(DV (S ·)) ∼= DZ(μ(S ·)).
Applying μ to S · gives an object in Z(Y, y) which by Definition 2.3 is a triple,
(j∗S ·, Hn(i!S ·), Hn(i∗S ·)). This triple has an associated exact sequence
obtained by applying i∗ to the distinguished triangle (1.3),

Hn−1(i∗j∗j∗S ·) −−−−→ Hn(i!S ·) −−−−→ Hn(i∗S ·) −−−−→ Hn(i∗j∗j∗S ·)
(4.7)

Applying DZ to the zig-zag object μ(S ·) makes the maps in equation (4.7)
reverse direction with each term dualized. The resulting zig-zag object,
DZ(μ(S ·)), can be expressed as ((j∗S ·)∗, (Hn(i∗S ·))∗,(Hn(i!S ·))∗) which



684 ABDUL RAH. MĀN

has the following exact sequence:

(Hn(i∗j∗j∗S ·))∗ −−−−→ (Hn(i∗S ·))∗ −−−−→ (Hn(i!S ·))∗

−−−−→ (Hn−1(i∗j∗j∗S ·))∗
(4.8)

Now consider the Zig-zag object μ(DV (S ·)). This is a triple (j∗DV (S ·),
Hn(i!DV (S ·), Hn(i∗DV (S ·)) with exact sequence

Hn−1(i∗j∗j∗DV (S ·)) −−−−→ Hn(i!DV (S ·)) −−−−→ Hn(i∗DV (S ·))

−−−−→ Hn(i∗j∗j∗DV (S ·))
(4.9)

Simplifying the object and the exact sequence in equation (4.9) using Lemma
4.1 we have the triple ((j∗S ·)∗, (Hn(i∗S ·))∗,(Hn(i!S ·))∗) with exact sequence

(Hn(i∗j∗j∗S ·))∗ −−−−→ (Hn(i∗S ·))∗ −−−−→ (Hn(i!S ·))∗

−−−−→ (Hn−1(i∗j∗j∗S ·))∗
(4.10)

which is exactly the same as the zig-zag object DZ(μ(S ·)). Showing the
diagram commutes on morphisms is a similar argument and will be left to
the reader. �

We will need the following lemma from linear algebra.

Lemma 4.3 (Duals of Images). Given A, B, C, and D are vector spaces
with maps f : A → B and g : C → D. Let 〈, 〉1 : A × D → Q and 〈, 〉2 : B ×
C → Q be non-degenerate pairings such that < a, g(c) >1=< f(a), c >2 ∀a ∈
A and ∀c ∈ C. Then 〈, 〉1 and 〈, 〉2 induce a non-degenerate pairing 〈, 〉3 :
Im(f) × Im(g) → Q.

Theorem 4.1. The object Θ0 as defined in Proposition 2.1 is self-dual in
ZQ(Y, y).

Proof. We need to construct an isomorphism between Θ0 and its dual
DZ(Θ0) in ZQ(Y, y) where Θ0 = (Q, K0, C0, α0, β0, γ0) and DZ(Θ0) = (Q∗,

C∗
0 , K∗

0 , α∗
0, β

∗
0 , γ∗

0). In order to construct an isomorphism in ZQ(Y, y), recall
the definition of a morphism in ZQ(Y, y) (equation (2.2)) as a map from
Θ0 → DZ(Θ0) where the exact sequence for Θ0 maps isomorphically to the
exact sequence for DZ(Θ0) and Q maps isomorphically to Q

∗. These exact
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sequence maps are labelled in the following diagram:

Hn−1(i∗j∗L0)
f−−−−→ K0

g−−−−→ C0
h−−−−→ Hn(i∗j∗L0)

κ

⏐
⏐
� λ

⏐
⏐
� ν

⏐
⏐
� ξ

⏐
⏐
�

Hn−1(i∗j∗L∗
0[−2n]) l−−−−→ C∗

0
m−−−−→ K∗

0
n−−−−→ Hn(i∗j∗L∗

0[−2n])
(4.11)

where the maps κ, λ, ν, and ξ are non-degenerate pairings of isomorphism
classes defined as follows: κ : 〈, 〉κ, λ : 〈, 〉λ, ν : 〈, 〉ν , and ξ : 〈, 〉ξ. Before we
begin constructing the vertical isomorphisms defined in (4.11), we must show
that there is a map from Q → Q

∗. The map Q ⊗ Q → Q can be described by
multiplication which implies that Q is dual to itself. The remainder of the
proof will be concerned with showing that the vertical maps κ, λ, ν, and ξ
between the exact sequences are isomorphisms and that the diagram (4.11)
commutes. By Lemma 4.1, κ and ξ are isomorphisms. Next, we must
show that λ and ν are isomorphisms. Recall that K0 = Im(Hn

c (coL) →
Hn

c (Y 0)) and C0 = Im(Hn(Y 0) → Hn+1
c (coL)) are vector spaces. Using

Proposition 1.1 we have duality isomorphisms Hn
c (coL) to Hn+1

c (coL) and
Hn(Y 0) to Hn

c (Y 0).3 This implies there are two non-degenerate pairings
〈, 〉1 : Hn

c (coL) × Hn+1
c (coL) → Q and 〈, 〉2 : Hn(Y 0) × Hn

c (Y 0) → Q. By
use of Lemma 4.3 on duals of images, K0 × C0 → Q is a non-degenerate
pairing and λ : K0 → C∗

0 and ν : C0 → K∗
0 are isomorphisms. Hence, f is

the dual map to n, g is the dual map to m, and h is the dual map to l.

It remains to show that the diagram commutes. In order to show the dia-
gram commutes, let x ∈ Hn−1(i∗j∗L0) and c ∈ C0. We want to show that
λ(f(x))(c) = l(κ(x))(c). This is the same as showing 〈f(x), c〉λ = 〈x, h(c)〉κ

∀ x ∈ Hn−1(i∗j∗L0) and c ∈ C0. Since λ is a map of isomorphism classes, ∀
y ∈ C∗

0 the lift of 〈f(x), y〉λ is f(x). Recall that h = l∗. Consider 〈x, h(c)〉κ ∈
C∗

0 . Then since h : C0 → Hn(i∗j∗L0), for a ∈ Hn−1(i∗j∗L∗
0), h(c) = a =

l∗(a). So l(〈x, a〉κ) = 〈x, l∗(a)〉κ = 〈x, h(c)〉κ where 〈x, a〉κ ∈ Hn−1(i∗j∗L∗
0).

It follows that a lift of 〈x, a〉κ under κ is x. This shows that λ(f(x))(c) =
l(κ(x))(c).

Next we must show that for k′, k ∈ K0, m(λ(k))(k′) = ν(g(k))(k′). This
is equivalent to showing that 〈k, g(k′)〉λ = 〈g(k), k′〉ν . The lift of 〈g(k), k′〉ν

under ν is g(k). Under g, k �→ g(k). Recall that g = m∗. Let c =∈ C∗
0 .

Then since g : K0 → C0, g(k) = c = m∗(c). It follows that m(〈k, c〉λ) =

3By use of distinguished triangles, Hn
c (coL) � Hn−1(L) where dim(L) = 2n − 1. This

implies that Hn−1(L) → Hn(L) are dual since L is compact. Thus, applying Proposition
1.1, Hn

c (coL) → Hn+1
c (coL) is a duality isomorphism. In addition, dim(Y 0) = 2n so it

follows in a straightforward manner that Hn(Y 0) and Hn
c (Y 0) are dual also.
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〈k, m∗(c)〉λ = 〈k, g(k)〉λ where 〈k, g(k)〉λ ∈ C∗
0 . The lift of 〈k, g(k)〉λ = k.

This shows that m(λ(k))(k′) = ν(g(k))(k′).

The final part of showing the diagram commutes is to verify that for
y ∈ Hn(i∗j∗L∗

0) and c ∈ C0, 〈c, f(y)〉ν = 〈h(c), y〉ξ. This is equivalent to
showing that n(ξ(c))(y) = ξ(h(c))(y). Recall that ξ is a map of isomorphism
classes. The lift of 〈h(c), y〉ξ = h(c). Under h,c �→ h(c). Recall that n =
f∗. Let k ∈ K∗, then f(y) = k∗(k). Consider 〈c, k〉ν ∈ K∗

0 . It follows that
〈c, f(y)〉ν = 〈c, n∗(k)〉ν(〈c, k〉ν). Now a lift of 〈c, k〉ν = c. This shows that
〈c, f(y)〉ν = 〈h(c), y〉ξ, and hence the diagram (4.11) commutes. �

Corollary 4.1. The perverse sheaf S0 is self-dual in PQ(Y ).

Proof. By Theorem 2.1, μ : HomP(S0,DV (S0)) → HomZ(μ(S0), μ(DV (S0)))
is a surjection. Since the diagram in (4.6) commutes, HomZ(μ(S0), μ(DV

(S0))) = HomZ(Θ0,DZ(Θ0)). Now by Theorem 4.1, we have constructed an
isomorphism Φ ∈ HomZ(Θ0,DZ(Θ0)). Since μ is a surjection on morphisms,
there exists an isomorphism Φ̄ ∈ HomP(S0,DV (S0)). Therefore S0 is self-
dual in PQ(Y ). �

Remark: It is not known whether the isomorphism S0 → DV (S0) is unique.
It is conceivable that there may be several, essentially different, pairings S0 ⊗
S0 → DY . Corollary 4.1 completes the proof of the main result presented
in Theorem 3.1. A direct corollary to Corollary 4.1 is Poincaré duality. We
state this below.

Corollary 4.2 (Poincaré duality). For all degrees i ≥ 0, H i(Y ; S0) ∼= H2n−i

(Y ; S0).

5 An example

5.1 The construction

We will look at a very simple construction of space time M = X3,1 × Y
where Y is a single node Calabi–Yau manifold (simple stratified space) as
presented on pp. 276–277 in [7]. We will restate this construction here.
Consider the family of quintic hypersurfaces in P

4, defined by

I := x3
5(Σ

4
i=1x

2
i ) + Σ5

i=1aix
5
i = 0, (5.1)
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where xi are the homogeneous coordinates of P
4. On the x5 = 0 hyperplane

P
3 ⊂ P

4 we have that
I = Σ4

i=1aix
5
i , (5.2)

dI = 5Σ4
i=1dxi · aix

4
i . (5.3)

For generic ai, I = 0 = dI only at xi = 0 which is not in P
4, so the singular

points of Y are all in the x5 �= 0 coordinate patch and we set x5 = 1. For
generic choice of ai, I = 0 and dI = 0 have no common solution, so that the
quintic hypersurface I = 0 in P

4 is smooth.

Let a5 → 0. Then, dI = 0 implies xi(5aix
3
i + 2) = 0 and candidate singu-

lar points (p#) are parametrized as

xi = −ξi
3

√
2

5ai
· ωki (5.4)

where ω = e
2iπ
3 for ki = 0, 1, 2, and ξi = 0, 1 for i = 1, 2, 3, 4. At these points

I(p#) =
3
5

3

√
4
25

Σ4
i=1

ξi ω
2ki

a
2
3
i

, (5.5)

the vanishing of which brings about several cases. The case of interest
for the purposes of this paper is when I(p#) vanishes at a single point,
(0, 0, 0, 0, 1) ∈ IP4, i.e., setting ξi = 0 i = 1, 2, 3, 4, whereupon both I = 0
and dI = 0 — regardless of the choice of ai’s. There, det I ′′ = 16 �= 0 and
this singular point is a node.

We now fix some generic choice of a1, a2, a3, a4 and regard equation (5.1)
as a pencil of quintics in IP4, parametrized by a5. The quintic hypersurfaces
in IP4 defined by equation (5.1) for each a5 �= 0 and |a5| not too large4 are
all smooth; the one at a5 is however singular and has a single node. Let
Ya5 denote these smooth quintics, for a5 �= 0; let Y = Y0 denote the 1-node
singular quintic, at a5 = 0.

5.2 Computing H∗(Y )

We now focus on the quintic with a single node, Y = Y0 where Y o denotes
the non-singular part of Y . Let Ỹ be the small resolution of Y ; there is
no obstruction to local surgery, replacing the node by a IP1. Note that Ỹ

4Given concrete values of a1, a2, a3, a4, there may well exist an upper bound on |a5| for
this to be true.
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cannot be Kähler: any putative Kähler form would have to be null on the
exceptional IP1 [7].5

We want to compute H∗ using S0 and compare it to the results obtained

from string theory. For n �= 3, Hn(Y ; S0) 
 Hn(Y ; IC) 
 Hn(Ỹ ; Q) where

Ỹ is the small resolution. In the middle dimension we must use part 2 (short
exact sequences) of Theorem 3.1. Recall that Hn(Y ; S0) is specified by the
following two canonical short exact sequences:

1. 0 → K0 → Hn(Y ; S0) → Hn(Y o) → 0,
2. 0 → Hn

c (Y o) → Hn(Y ; S0) → C0 → 0,

where K0 = Im(Hn
c (coL) → Hn

c (Y o)), C0 = Im(Hn(Y o) → Hn+1
c (coL)) with

the non-singular part Y o and L = S2 × S3 the link of the singular point. In
addition, Hn(Y ; Q) 
 Hn

c (Y o; Q), Hn
c (coL; Q) 
 Hn(L; Q) and Hn(Ỹ ; Q) 


Hn(Y ; IC).

5.3 String theoretic description

The analysis of Type IIB superstring compactification on Y à la Strominger
[5] would proceed as a limiting process, starting from some Ya5 �=0, and taking
the limit a5 → 0. For |a5| sufficiently small, Ya5 �=0 is a smooth quintic and
a Type IIB superstring compactification would feature one massless vector
supermultiplet of N = 2 supersymmetry in the effective four-dimensional
spacetime, and 101 massless hypermultiplets plus their Hermitian conju-
gates. In the limit a5 → 0 one of these hypermultiplets and its Hermitian
conjugate would be “frozen” to a constant value and become removed from
the spectrum of massless (variable) fields. However, Strominger showed that
a massless state and its Hermitian conjugate would become massless in the
a5 → 0 limit where |a5| is small enough, Ya5 �=0 contains a “vanishing” S3,
which shrinks to a point in the a5 → 0 limit. Strominger’s replacement
state turns out to have a mass proportional to the volume of the vanishing
S3. This is massive in compactifications on Ya5 �=0, but becomes massless in
compactifications on Y = Y0.

5The single node example presented here has a major drawback for application in
superstring theory: neither Y = Y0 nor its small resolution ˜Y admit a Kähler metric.
However, the purpose of this example is to demonstrate that the complex of sheaves S0

can provide the needed ranks in all dimensions (as suggested by Hubsch [8] and Strominger
[5]).
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Table 1: Dimension of Hn(Y ; ∗)

Deg Hn(Y ; S0) Hn(Y ; Q) Hn(Ỹ ; Q)
6 1 1 1
5 0 0 0
4 1 2 2
3 204 203 202
2 1 1 2
1 0 0 0
0 1 1 1

Therefore, the spectrum of massless fields in Type IIB superstring com-
pactifications on Ya5 remains constant in the a5 → 0 limit which can be
obtained from Table 1:

dim Hn(Y ; S0) = dimHn(Ya5 �=0; Q). (5.6)

Note that in singular 3-folds with more than one node that do have a Kähler
small resolution, the S0-valued cohomology of the singular model would
equal neither the Q-valued cohomology of the small resolution, nor that of
the smooth deformation. The equality (5.6) owes to the fact that Y has a
single node, whereupon its small resolution cannot be Kähler.

6 Final remarks

In this paper we presented the construction and properties of a self-dual
perverse sheaf S0 using techniques of MacPherson–Vilonen [2]. In addition,
this perverse sheaf was shown to satisfy Poincarè duality (property (3) of
the Kähler package) as well as having relevant applications for cases of Type
IIB superstring compactification. It is currently not known whether the
remainder of the Kähler package holds for S0. These are currently open
problems.

6.1 The Kähler package

Proofs of all four parts of the Kähler package were not addressed in this
paper. Only Corollary 4.2, which was a consequence of the self-duality of
S0, provided Poincare duality. It would take additional effort to prove the
remaining parts of the Kähler package. The difficulties would lie in proving
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Hodge decomposition and the Kunneth formula. It is not clear if there is a
pure or mixed Hodge structure of S0. This has to be explored.

6.2 Multiple singular points

There are cases that arise in String theory where the target space will have
more than one singularity. We would like to extend this effort (one singular
point) to include the case of multiple singular points. Although this may
seem to be a straightforward transition, there appear to be problems in
preserving some of the properties of the needed maps.

In the case of multiple singular points, the singularity {y} now becomes
a singular set made up of isolated distinct singular points Σ = {y1, . . . , yr}
where r is the number of singular points. As a result, the injection j now
becomes ĵ : Σ ↪→ Y while i : Y o → Y remains unchanged. Consequently, the
maps in the long exact sequences that arise from the distinguished triangles
are altered by the inclusion of more singular points. In order to qualify this
difficulty we can begin by restating the last three identities of Lemma 1.2
as follows.

Lemma 6.1. Let Y be a simple stratified space and let F · be a complex of
sheaves on Y. Let Σ = {y1, . . . , yr} ∈ Y be the singular set and let Uyb

be
a distinguished neighborhood of yb so that Ūyb


 cLyb
and Uyb


 coLyb
for

1 ≤ b ≤ r. Let i : Y o ↪→ Y and ĵ : Σ ↪→ Y be inclusions. Then there are
natural isomorphisms

1. Hm(Y ; ĵ∗ĵ∗F ·) ∼=
⊕r

b=1 Hm(Uyb
; F ·), ∀ m > 0,

2. Hm(Y ; ĵ∗ĵ!F ·) ∼=
⊕r

b=1 Hm
c (Uyb

; F ·), ∀ m > 0,
3. Hm(Y ; ĵ∗i∗F ·) ∼=

⊕r
b=1 Hm(Lyb

× (0, 1); F ·), ∀ m > 0 where Lyb
is the

link of the singular point yb for 1 ≤ b ≤ r.

(Remark: Note that Uyb
∼= cLyb

where cLyb
is the cone over the link of the

singular point yb.)
Consider the distinguished triangles in diagrams (1.3) and (1.4) applied to
S0

·. Rewriting these triangles using ĵ : Σ ↪→ Y instead of j : {y} ↪→ Y we
obtain

Rĵ∗ĵ!S0
· �� S0

·

�����������

Ri∗i∗S0
·

[1]

�����������
(6.1)
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Ri!i
∗S0

· �� S0
·

����
��

��
��

�

Rĵ∗ĵ∗S0
·

[1]

�����������
(6.2)

The resulting long exact sequence in degree n for the triangle in diagram
(6.1) gives

· · · −→
r⊕

b=1

Hn
c (cLyb

; S0
·) −→ Hn(Y ; S0

·) −→ Hn(Y o)

−→
r⊕

b=1

Hn+1
c (cLyb

; S0
·) −→ · · · (6.3)

Let the maps of the long exact sequence in equation (6.3) be defined as

α1 :
r⊕

b=1

Hn
c (cLyb

; S0
·) → Hn(Y ; S0

·) (6.4)

β1 :Hn(Y ; S0
·) → Hn(Y o) (6.5)

γ1 :Hn(Y o) →
r⊕

b=1

Hn+1
c (cLyb

; S0
·) (6.6)

Similarly the resulting long exact sequence in degree n for the triangle in
diagram (6.2) gives

· · · −→
r⊕

b=1

Hn−1(cLyb
; S0

·) −→ Hn
c (Y o) −→ Hn(Y ; S0

·)

−→
r⊕

b=1

Hn(cLyb
; S0

·) −→ · · · (6.7)

Similarly let the maps of the long exact sequence in equation (6.7) be
defined as

α2 :
r⊕

b=1

Hn−1(cLyb
; S0

·) → Hn
c (Y o) (6.8)

β2 :Hn
c (Y o) → Hn(Y ; S0

·) (6.9)

γ2 :Hn(Y ; S0
·) →

r⊕

b=1

Hn(cLyb
; S0

·) (6.10)
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Recall the figure where the map c is an injection and d is a surjection that
was shown to exist in the proof of Theorem 3.1. These were requirements
imposed by String theory (see Section 1.3 for a discussion).

Hn(Y ; S0)

d
����

Hn−1(i∗i∗Q)
α �� Hn(j∗j!Q)

β ��

a

����

Hn
c (Y o)

� �

c

������������ γ �� Hn(Y o)
δ ��

e

����

Hn+1(j∗j!Q)

K0 = Im(β)
� �

b

������������
C0 = Im(δ)

� �

f
�������������

(6.11)

Equation (6.11) and its maps were defined in the case of one singular point
where the map j : {pt} → Y . Now if we replace j with ĵ : Σ → Y it is not
completely clear if the map c will remain an injection and d will remain a
surjection. (Recall that in order to obtain a cohomology for String theory
it is a requirement that the map c be injective and d be surjective.) These
are necessary conditions in order to obtain a larger rank of cohomology in
the middle dimension. Notice that in the long exact sequences using ĵ,
equations (6.3) and (6.7), if we replaces j by ĵ, the maps c and d can be
described as follows:

c corresponds to the map β2 ⇒ α2 needs to be the 0-map. (6.12)

d corresponds to the map β1 ⇒ γ1 needs to be the 0-map. (6.13)

It is not quite clear however, if for all singular points in Σ the maps α2
and γ1 can be made to be the 0-maps. This is currently an obstruction to
extending the singular point case to the case of a singular set. Hopefully a
future effort will address this.
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