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Abstract

It was suggested that light-cone superstring field theory (LCSFT) and
matrix string theory (MST) are closely related. Especially the bosonic
twist fields and the fermionic spin fields in MST correspond to the string
interaction vertices in LCSFT. Since CFT operators are characterized
by their OPEs, in our previous work we realized the most important
OPE of the twist fields by computing contractions of the interaction
vertices using the bosonic cousin of LCSFT. Here using the full LCSFT
we generalize our previous work into the realization of OPEs for a vast
class of operators.

1 Introduction

Search for a fundamental field-theoretical formulation of string theory began
in the old days of dual resonance models. However, none of these attempts
have been completed yet for the superstring theory.

e-print archive: http://lanl.arXiv.org/abs/hep-th/0611113
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The light-cone superstring field theory (LCSFT) is the most successful
formulation thus far and was first constructed in [1,2]. The starting point is
the Green–Schwarz action in the light-cone gauge. Out of the action we can
construct the free Hamiltonian H0 and two free supercharges Qȧ

0, Q̃
ȧ
0, which

satisfy the supersymmetry algebra:

{Qȧ
0, Q

ḃ
0} = {Q̃ȧ

0, Q̃
ḃ
0} = 2δȧḃH0, (1.1)

[Qȧ
0, H0] = [Q̃ȧ

0, H0] = 0. (1.2)

The interaction terms are added to these charges so that the total charges
satisfy the same supersymmetry algebra order by order. Namely, we con-
struct the interaction terms by replacing the free charges H0, Q

ȧ
0, Q̃

ȧ
0 in (1.1),

(1.2) by the full order charges

H = H0 + gsH1 + · · · , (1.3)

Qȧ = Qȧ
0 + gsQ

ȧ
1 + · · · , (1.4)

Q̃ȧ = Q̃ȧ
0 + gsQ̃

ȧ
1 + · · · , (1.5)

and determining the interaction terms order by order. The result for the
first order interaction terms is

|H1〉123 = ZiZ̄jvji(Y )|V 〉123, (1.6)

|Qȧ
1〉123 = Z̄isiȧ(Y )|V 〉123, (1.7)

|Q̃ȧ
1〉123 = Zis̃iȧ(Y )|V 〉123. (1.8)

Here |V 〉123 is the kinematical three-string interaction vertex constructed by
the overlapping condition and Zi (Z̄i) is the holomorphic (anti-holomorphic)
part of the bosonic momentum at the interaction point, whose divergence is
regularized:
(
P (1)i +

1
2πα1

X(1)i′
)
(σ1)|V 〉123 ∼ 1 + iε(σint − σ1)

4π
√

−α123
√

|σint − σ1|
Zi|V 〉123, (1.9)

with αr = p+
r , α123 = α1α2α3 and σint being the interaction point. We

take the range of σ1 to be −πα1 ≤ σ1 ≤ πα1, which implies σint = πα1 for
σ1 ∼ πα1 and σint = −πα1 for σ1 ∼ −πα1, respectively. ε(x) is the step
function and defined by ε(x) = +1 (−1) for x > 0 (x < 0). Similarly, Y a is
the regularization of the fermionic momentum at the interaction point:

λ(1)a(σ1)|V 〉123 ∼ 1
4π

√
−α123

√
|σint − σ1|

Y a|V 〉123, (1.10)

and the prefactors vji(Y ), siȧ(Y ) and s̃iȧ(Y ) are functions of Y a and were
originally given in complicated forms. Here we find that these functions can
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be simply put into the hyperbolic functions:

vji(Y ) =
[
cosh �Y

]ij = δij +
1
2!

(�Y 2)ij +
1
4!

(�Y 4)ij +
1
6!

(�Y 6)ij +
1
8!

(�Y 8)ij ,

(1.11)

siȧ(Y ) =
√

−α123
[
sinh �Y

]ȧi

=
√

−α123

[
(�Y )ȧi +

1
3!

(�Y 3)ȧi +
1
5!

(�Y 5)ȧi +
1
7!

(�Y 7)ȧi
]
, (1.12)

s̃iȧ(Y ) = i
√

−α123
[
sinh �Y

]iȧ

= i
√

−α123

[
(�Y )iȧ +

1
3!

(�Y 3)iȧ +
1
5!

(�Y 5)iȧ +
1
7!

(�Y 7)iȧ
]
, (1.13)

where we have constructed gamma matrices with spinor indices γ̂a out of
the standard gamma matrices with the vector indices γi using the triality
of SO(8) and defined �Y as

�Y =
√

2
−α123

η∗Y aγ̂a =
(

0 �Yiȧ

�Yȧi 0

)
, (1.14)

with η∗ = e−iπ/4. Note that the indices of the functions in (1.11) to (1.13)
are consistent because cosh is an even function while sinh is an odd one. For
more details of the prefactors, see Appendix A. As pointed out in [1], these
quantities satisfy the following Fourier identities:

[
cosh �Y

]ij =
(α123

2

)4
∫

d8φ e(2/α123)φaY a[
cosh �φ

]ji
, (1.15)

[
sinh �Y

]ȧi = −i
(α123

2

)4
∫

d8φ e(2/α123)φaY a[
sinh �φ

]iȧ
, (1.16)

[
sinh �Y

]iȧ = i
(α123

2

)4
∫

d8φ e(2/α123)φaY a[
sinh �φ

]ȧi
, (1.17)

which will play important roles in our following computation. The program
of constructing the interaction terms is successful at the first order, though
it is too complicated to proceed to higher orders.

Recently, there is a significant breakthrough in the construction [3]. The
point is to relate LCSFT to another formulation of the superstring theory
known as matrix string theory (MST) [4, 5]. MST stems from the matrix
formulation of light-cone quantization of M-theory [6] and takes the form
of the maximally supersymmetric Yang-Mills theory. To relate MST to the
perturbative string, we note that the Yang-Mills coupling constant gYM is
related to the string coupling constant gs and the string length

√
α′ by

g−1
YM ∼ gs

√
α′. Hence, the free string limit corresponds to the IR limit and

the first order interaction term to the least irrelevant operator. From the
requirement of the dimension counting and the locality of the interaction,
we expect that the first order interaction term is a dimension three operator
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constructed essentially out of the bosonic twist fields and the fermionic spin
fields. The interaction term of MST is proposed to be [5]

H1 =
∑
m,n

∫
dσ

(
[τ iτ̄ j ]ΣiΣ̄j

)
m,n

, (1.18)

where τ i(z) is the excited Z2 twist field defined as

∂Xi(z) · σ(0) ∼ 1√
z
τ i(0), (1.19)

with σ(z) being the elementary Z2 twist field. Since the holomorphic part
of the twist field does not completely decouple from the anti-holomorphic
part due to the zero-mode contribution, we combine them with the square
parenthesis in (1.18). Σi(z) and Σȧ(z) (which will appear later) are the spin
fields for the Green–Schwarz fermion θa(z). The indices m and n of the twist
fields denote the string bits where the “exchange” interaction takes place.

Now we can find a close analogy between (1.6) and (1.18) and between
(1.9) and (1.19), if we regard [σσ̄](z, z̄) as |V 〉123 and [τ iτ̄ j ](z, z̄) as ZiZ̄j

|V 〉123. Following this analogy between LCSFT and MST, two supercharges
of MST were written down explicitly in [7]:

Qȧ
1 =

∑
m,n

∫
dσ

(
[στ̄ i]ΣȧΣ̄i

)
m,n

, Q̃ȧ
1 =

∑
m,n

∫
dσ

(
[τ iσ̄]ΣiΣ̄ȧ

)
m,n

, (1.20)

and the supersymmetry algebra was checked. These arguments of super-
charges are consistent with the pioneering argument in [5] and with the
relation between LCSFT and MST proposed in [3].

After observing the analogy between LCSFT and MST, we would like
to establish the correspondence next. Since operators in conformal field
theory are characterized by their OPEs, we need to reproduce the OPEs
in terms of LCSFT in order to completely confirm the correspondence. In
our previous work [8], we assumed the correspondence between the bosonic
cousin of LCSFT

|Hboson
1 〉123 = |V b〉123, (1.21)

and the “bosonic” version of MST [9]

Hboson
1 =

∑
m,n

∫
dσ

(
[σσ̄]

)
m,n

, (1.22)

and reproduced the OPE of the twist field

[σσ̄](z, z̄) · [σσ̄](0, 0) ∼ 1[
|z|1/4(log |z|)1/2

]d−2 , (1.23)
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by computing the corresponding contractions of the string interaction ver-
tices in the bosonic LCSFT. On the LCSFT side, it is well-known that the
first order interaction vertex in the bosonic LCSFT (1.21) takes the same
form as that in the full LCSFT, if we drop the prefactors and pick up the
bosonic sector in the kinematical interaction vertex |V 〉123. The superscript
“b” in (1.21) denotes that we pick up the bosonic sector. On the MST side,
of course there is no non-perturbative justification for the bosonic MST, but
the interaction term (1.22) looks natural considering the correct dimension
of the operators [σσ̄] and the correspondence between [σσ̄](z, z̄) and |V 〉123.

Since the string interaction vertex describes both the processes of one
string splitting into two strings and two strings joining into one string, there
are two diagrams which correspond to the OPE (1.23). One of them is a
tree diagram with two incoming strings and two outgoing strings of the same
string lengths, while the other is a one-loop diagram with one incoming string
and one outgoing string. (see figures 1 and 2 at the beginning of sections 3
and 4, respectively) For the two realizations of the OPE, the corresponding
contractions of the interaction vertices are given by

36〈Rb|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )|V b〉123|V b〉456,

14〈Rb|25〈Rb|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )|V b〉123|V b〉456. (1.24)

We found that both the contractions of the string vertices give exactly the
same singular behavior expected from the OPE (1.23).

Though the correspondence seems to work well also in the bosonic case,
the action (1.22) still lacks justification. In this paper we would like to
return to our original motivation of investigating the correspondence in the
supersymmetric case, where we typically have to deal with the prefactors.
First, we repeat the computation of the bosonic sector. In order to reproduce
the OPE

[τ iσ̄](z, z̄) · [τkσ̄](0, 0) ∼ δik

z2z̄(log |z|)4 , (1.25)

in terms of LCSFT, from the correspondence dictionary we need to consider
two contractions:

36〈Rb|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )Zi

123|V b〉123Z
k
456|V b〉456,

14〈Rb|25〈Rb|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )Zi

123|V b〉123Z
k
456|V b〉456,

(1.26)

for the tree diagram and the one-loop diagram. After the computation in
the bosonic sector, we shall proceed to the fermionic sector. Among various
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OPEs of the spin fields, we would like to concentrate on the realization of
the OPE

Σi(z)Σ̄j(z̄) · Σk(0)Σ̄l(0) ∼ δikδjl

|z|2 . (1.27)

This OPE corresponds to the fermionic parts of the contractions between
two first order Hamiltonians |H1〉 (1.6) in LCSFT:

36〈Rf |e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )[cosh �Y123

]ij |V f〉123
[
cosh �Y456

]kl|V f〉456,

14〈Rf |25〈Rf |e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )[cosh �Y123

]ij |V f〉123

×
[
cosh �Y456

]kl|V f〉456. (1.28)

The superscript “f” denotes that we pick up the fermionic sector. Comparing
with the previous case of (1.24), we note that in the computation of (1.26)
and (1.28) we have to deal with the prefactors Zi or [cosh �Y ]ij .

Since both the reflector and the interaction vertex basically take the
Gaussian form, we will utilize the Gaussian convolution formula in our com-
putation. The bosonic case of the Gaussian convolution formula is well-
known and can be found, for example, in [8]. For the fermionic oscillators
Sm, S†

n satisfying {Sm, S†
n} = δm,n, the formula reads

〈0| exp
(

1
2
STMS + kTS

)
exp

(
1
2
S†TNS† + lTS†

)
|0〉

=
√

det(1 + MN) exp
(

1
2
kTN

1
1 + MN

k +
1
2
lT

1
1 + MN

M l

+ lT
1

1 + MN
k

)
. (1.29)

To deal with the bosonic prefactor Zi
123Z

k
456 in (1.26), we need to intro-

duce the source term eβi
123Zi

123+βk
456Zk

456 , take the derivative with respect
to β and finally set β = 0. However, the fermionic prefactor [cosh �Y123]ij

[cosh �Y456]kl in (1.28) looks much more complicated than the bosonic one
Zi

123 Zk
456. Fortunately, using the Fourier transformation of the prefactor

(1.15) we can compute the contractions with the simple source term
e(2/α123)(φ123Y123−φ456Y456) as in the bosonic case and perform the φ integra-
tion afterwards. The surprise is that, although the right hand side of (1.29)
consists of the bilinear terms of the sources k and l, after the computation we
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find that the bilinear terms of φ do not appear in the final result. Therefore,
in the φ integration we can apply (1.15) once again and write down the
answer explicitly.

The contents of the present paper are as follows. In the next section,
we recapitulate some ingredients of LCSFT, which will be necessary in our
computation. After the review we proceed to the computation of the con-
tractions of the string interaction vertices which correspond to the OPEs.
We first compute the contractions of the tree diagram in Section 3 in the
ordering of the bosonic sector and the fermionic sector. Then we turn
to the computation of the one-loop diagram in the same ordering in Sec-
tion 4. Finally we conclude our paper with some comments. Appen-
dix A is devoted to our new notations of the prefactors. In Appendix B
we collect several relations of the Neumann coefficient matrices and prove
some preliminary formulas for Appendix C. In Appendix C we evaluate the
small intermediate time behavior of some Neumann coefficient matrix prod-
ucts. In Appendix D we collect some formulas for the gamma matrices.
The results in the appendices are necessary at each stage of our diagram
computation.

2 Light-cone superstring field theory

In this section we would like to recapitulate some ingredients of LCSFT,
which are necessary in the computation of following sections. The first
order interaction terms are expressed by the three-string Fock space and
given by [2]

|H1〉123 = ZiZ̄j
[
cosh �Y

]ij |V 〉123, (2.1)

|Qȧ
1〉123 =

√
−α123Z̄

i
[
sinh �Y

]ȧi|V 〉123, (2.2)

|Q̃ȧ
1〉123 = i

√
−α123Z

i
[
sinh �Y

]iȧ|V 〉123. (2.3)

Here the kinematical interaction vertex |V 〉123 = |V b(1α1 , 2α2 , 3α3)〉|V f

(1α1 , 2α2 , 3α3)〉, determined by the overlapping conditions of strings, is
given by

|V b(1α1 , 2α2 , 3α3)〉 =
∫

δb(1, 2, 3)eEb+Ēb |p1〉1|p2〉2|p3〉3, (2.4)

|V f(1α1 , 2α2 , 3α3)〉 =
∫

δf(1, 2, 3)eEf |λ1〉1|λ2〉2|λ3〉3, (2.5)
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with the zero-mode delta functions being∫
δb(1, 2, 3) =

∫
d8p1

(2π)8
d8p2

(2π)8
d8p3

(2π)8
(2π)8δ8(p1 + p2 + p3), (2.6)

∫
δf(1, 2, 3) =

∫
d8λ1d

8λ2d
8λ3δ

8(λ1 + λ2 + λ3), (2.7)

and the oscillator bilinears Eb (and its anti-holomorphic cousin Ēb) and Ef

given by

Eb =
1
2
a(12)†TN12,12a(12)† + a(12)†TN12,3a(3)† +

1
2
a(3)†TN3,3a(3)†

+
(
N12Ta(12)† + N3Ta(3)†)

P123 − τ0

2α123
P

2
123, (2.8)

Ef =
1
2
S(12)†T[N̂ ]12,12S(12)† + S(12)†T[N̂ ]12,3S(3)† +

1
2
S(3)†T[N̂ ]3,3S(3)†

−
√

2Λ123
(
N̂12TSII(12)† + N̂3TSII(3)†). (2.9)

The explicit forms of the building blocks of the prefactors Zi and Y a, defined
in (1.9) and (1.10), are given by

Zi = P
i
123 − α123

3∑
r=1

∞∑
n=1

n

αr
N r

na
(r)i
−n , (2.10)

Y a = Λa
123 − α123√

2

3∑
r=1

∞∑
n=1

√
n

αr
N r

nS
I(r)a
−n . (2.11)

Our notation for the bosonic part is exactly the same as those in our
previous work [8]. Hence, we shall only explain our notation for the fermionic
part in detail. We define the zero mode Λa

123 to be Λa
123 = α1λ

a
2 − α2λ

a
1, and

adopt the matrix notation for the infinite non-zero modes of the fermionic
oscillators S

I(r)a
m and S

II(r)a
m satisfying

{SI(r)a
m , SI(s)b

n } = δm+n,0δ
r,sδa,b, {SII(r)a

m , SII(s)b
n } = δm+n,0δ

r,sδa,b,

{SI(r)a
m , SII(s)b

n } = 0, (2.12)

and S
I(r)a
m |λr〉r = S

II(r)a
m |λr〉r = 0 (m > 0) on the vacuum ket-state |λr〉r. We

first rewrite the fermionic oscillators S
I(r)a
m and S

II(r)a
m into the vector forms

(m > 0)

(SI(r))m = SI(r)
m , (SII(r))m = SII(r)

m , (SI(r)†)m = S
I(r)
−m, (SII(r)†)m = S

II(r)
−m .

(2.13)

Then we combine the fermionic oscillators of the incoming/outgoing strings as

SI(12)T =
(
SI(1)T SI(2)T

)
, SII(12)T =

(
SII(1)T SII(2)T

)
, (2.14)
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and finally pair up the oscillators with the index I and the oscillators with
the index II:

S(12)T =
(
SI(12)T SII(12)T

)
, S(3)T =

(
SI(3)T SII(3)T

)
. (2.15)

Correspondingly, we repeat the same manipulation for the Neumann
coefficient matrices. The Neumann coefficient matrices for the fermionic
oscillators N̂ r,s, N̂ r are constructed out of those for the bosonic oscillators
N r,s, N r by

N̂ r,s = (C/αr)1/2N r,s(C/αs)−1/2, N̂ r = (C/αr)1/2N r. (2.16)

We combine the Neumann coefficient matrices of the incoming/outgoing
strings by

N̂12,12 =
(

N̂1,1 N̂1,2

N̂2,1 N̂2,2

)
, N̂3,12 =

(
N̂3,1 N̂3,2

)
, N̂12,3 =

(
N̂1,3

N̂2,3

)
,

N̂12 =
(

N̂1

N̂2

)
, (2.17)

and pair the Neumann coefficient matrices for the fermionic oscillators with
the index I and those for the fermionic oscillators with the index II:

[N̂ ]12,12 =
(

0 −N̂12,12T

N̂12,12 0

)
, [N̂ ]12,3 =

(
0 −N̂3,12T

N̂12,3 0

)
,

[N̂ ]3,3 =
(

0 −N̂3,3T

N̂3,3 0

)
. (2.18)

Using the matrix notation, the fermionic part of the reflector 〈R(3, 6)| =
〈Rb(3, 6)|〈Rf(3, 6)| is expressed as

〈Rf(3, 6)| =
∫

δf(3, 6)3〈λ3|6〈λ6| exp
(

1
2
S(36)TRS(36)

)
, (2.19)

with the vacuum bra-state satisfying r〈λr|SI(r)
−m = r〈λr|SII(r)

−m = 0 and 〈λ|λ′〉=
δ8(λ −λ′). Here the fermionic oscillators are defined as S(36)T = (S(3)TS(6)T)
and the matrix R is given by

R =
(

0 i[Σ1]
−i[Σ1] 0

)
, [Σ1] =

(
0 1
1 0

)
, (2.20)
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where the matrices 1 and 0 in [Σ1] denote the infinite-dimensional unity
matrix and the infinite-dimensional zero matrix respectively and are the
Neumann coefficient matrices for the oscillators with the indices I and II.

3 Tree amplitude

After the recapitulation of LCSFT in the previous section, we would like
to proceed to realize various OPEs using the string interaction vertices. As
explained in the introduction, we have two ways to realize the OPEs. This
section will devote to the calculation of the four-point tree diagram with
two incoming strings 1 (with length α1(> 0)) and 2 (with length α2(> 0)),
joining and splitting again into two outgoing strings 4 and 5 of the same
length as 1 and 2, respectively. (see figure 1.)

Figure 1: Four-string tree diagram.

3.1 Bosonic sector

Let us start with realizing the OPE

[τ iσ̄](z, z̄) · [τkσ̄](0) ∼ δik

z2z̄(log |z|)4 , (3.1)

with the tree diagram. For this purpose, we shall consider the bosonic
effective four-string interaction vertex

|Ab(1, 2, 4, 5)〉 = 〈Rb(3, 6)|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )

× Zi
123|V b(1α1 , 2α2 , 3α3)〉Zk

456|V b(4−α1 , 5−α2 , 6−α3)〉.
(3.2)

Comparing the OPE (3.1) with (1.23), we have an extra factor of 1/z. There-
fore, we expect that the extra prefactors Zi

123Z
k
456 in the effective four-string

vertex |Ab(1, 2, 4, 5)〉 induce an extra 1/T factor in the limit T → +0. Here
note that we can identify the relative distance in z as the relative distance
in T .
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For the computation of the effective four-string interaction vertex |Ab(1, 2,
4, 5)〉, it is sufficient to consider the generating function

|Ab
β(1, 2, 4, 5)〉 = 〈Rb(3, 6)|e(−T/|α3|)(L(3)

0 +L̄
(3)
0 )

×eβi
123Zi

123+βk
456Zk

456 |V b(1α1 , 2α2 , 3α3)〉|V b(4−α1 , 5−α2 , 6−α3)〉.
(3.3)

The computation is almost the same as that performed in [8]. The only
difference is the source term, but the effect can be easily absorbed by com-
pleting the square. The result is given as

|Ab
β(1, 2, 4, 5)〉 = (det)−8

∫
δb(1, 2, 4, 5)eFb(1,2,4,5)

× eβ123Z123+β456Z456+(1/2)(β2
123+β2

456)a2+β123β456b2

× |p1〉1|p2〉2|p4〉4|p5〉5, (3.4)

where various expressions are

det = det
[
1 −

(
e(−T/2|α3|)CN3,3e(−T/2|α3|)C)2]

∼ 2−5/12μ1/6
[

T

|α123|1/3

]1/4

, (3.5)

μ = exp
(

−τ0

3∑
t=1

1
αt

)
, τ0 =

3∑
t=1

αt log |αt|, (3.6)

∫
δb(1, 2, 4, 5) =

∫
d8p1

(2π)8
d8p2

(2π)8
d8p4

(2π)8
d8p5

(2π)8
(2π)8δ8(p1 + p2 + p4 + p5),

(3.7)

lim
T→+0

F b(1, 2, 4, 5) = −
(
a(12)†Ta(45)† + ā(12)†Tā(45)†) − (p1 + p4)2 lim

T→+0
b

− (p1 + p4)α3N
3T(N12,3)−1(a(12)† + a(45)†

+ ā(12)† + ā(45)†), (3.8)

b = α2
3N

3T ◦
(
1 − (N3,3)2◦

)−1
◦ N3 ∼ 2 log

|α3|
T

, (3.9)

which have already appeared in [8]. Here we drop the subscript T in bT

of [8], because all the quantities depend on T . The new effect of the source
term is taken care of by

Z123 = (1 − a1)P123 − b1P456 − aTa(12)† + bTa(45)†, (3.10)

Z456 = −b1P123 + (1 − a1)P456 − bTa(12)† + aTa(45)†, (3.11)
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with various new quantities defined by

a1 = α123N
3T

(
C

α3

)
◦
(
1 − (N3,3)2◦

)−1
◦ N3,3 ◦ N3, (3.12)

b1 = α123N
3T

(
C

α3

)
◦
(
1 − (N3,3)2◦

)−1
◦ N3, (3.13)

a2 = (α123)2N3T
(

C

α3

)
◦
(
1 − (N3,3)2◦

)−1
◦ N3,3 ◦

(
C

α3

)
N3, (3.14)

b2 = (α123)2N3T
(

C

α3

)
◦
(
1 − (N3,3)2◦

)−1
◦

(
C

α3

)
N3, (3.15)

aT = α123

(
N12T

(
C

α12

)
+ N3T

(
C

α3

)
◦
(
1 − (N3,3)2◦

)−1
◦ N3,3 ◦ N3,12

)
,

(3.16)

bT = α123N
3T

(
C

α3

)
◦
(
1 − (N3,3)2◦

)−1
◦ N3,12. (3.17)

Here ◦ denotes the matrix multiplication with e(−T/|α3|)C inserted and (1 −
(N3,3)2◦)

−1
◦ is defined by

(
1 − (N3,3)2◦

)−1
◦ = 1 + N3,3 ◦ N3,3 ◦ +N3,3 ◦ N3,3 ◦ N3,3 ◦ N3,3 ◦ + · · · .

(3.18)

Note that C/α12 is the bookkeeping notation for

C

α12
=

(
C
α1

0
0 C

α2

)
, (3.19)

and should not be confused with α123 = α1α2α3. To get back to the effective
four-string interaction vertex |Ab(1, 2, 4, 5)〉 we need to take the derivative
of the generating function |Ab

β(1, 2, 4, 5)〉 and set β = 0 finally:

|Ab(1, 2, 4, 5)〉 =
∂

∂βi
123

∂

∂βk
456

|Ab
β(1, 2, 4, 5)〉

∣∣∣∣
β=0

=
(
b2δ

ik + Zi
123Zk

456
)
|Ab

β(1, 2, 4, 5)〉
∣∣∣∣
β=0

. (3.20)

Let us take the short intermediate time limit T → +0 hereafter to repro-
duce the OPE (3.1). Note that the non-zero-mode part of the reflector
already appears correctly in (3.8) and no extra contributions from the pref-
actor (3.10) and (3.11) are added to the non-zero-mode part because of
limT→+0 a = limT→+0 b = 0 (B.9), as proved in Appendix B.2. Hence, we
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shall concentrate on the zero-mode contribution. Using

Zi
123 ∼ −Zi

456 ∼ −b1α3(p1 + p4)i, (3.21)

which can be shown with limT→+0(1 − a1 − b1) = 0 (B.9), the zero-mode
part of the effective interaction vertex |Ab(1, 2, 4, 5)〉 is given as

|Ab(1, 2, 4, 5)〉
∣∣∣∣
0

∼
(
b2δ

ik + (b1α3)2(p1 + p4)i(p1 + p4)k)
)
e−b(p1+p4)2

× δ8(p1 + p2 + p4 + p5)

=
[(

b2 +
(b1α3)2

2b

)
δik +

(b1α3)2

4b2 ∂pi
1
∂pk

1

]
e−b(p1+p4)2

× δ8(p1 + p2 + p4 + p5)

∼ b2δ
ik · e−b(p1+p4)2δ8(p2 + p5). (3.22)

In the last line we have picked up the most singular term using the short
intermediate time behavior of b (3.9), b1 (C.8) and b2 (C.9). The behavior
of b2 in the short intermediate time limit T → +0 is b2 ∼ −α123/(2T ). Since
we have an extra 1/T factor compared with the case with no prefactors, this
result is exactly what we have expected from the OPE (3.1). After all the
final result is given as

|Ab(1, 2, 4, 5)〉∼2−29/3π−4μ−4/3|α123|5/3 δik

T 3

(
log

T

|α3|

)−4

|Rb(1, 4)〉|Rb(2, 5)〉.

(3.23)

3.2 Fermionic sector

In this subsection we would like to realize the OPE

Σi(z)Σ̄j(z̄) · Σk(0)Σ̄l(0) ∼ δikδjl

|z|2 , (3.24)

in terms of the string interaction vertex. This OPE corresponds to the
fermionic part of the contraction between two first order Hamiltonians H1 ·
H1. Therefore, we shall compute the fermionic effective four-string interac-
tion vertex

|Af(1, 2, 4, 5)〉 = 〈Rf(3, 6)|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )

×
[
cosh �Y123

]ij |V f(1α1 , 2α2 , 3α3)〉
[
cosh �Y456

]kl

× |V f(4−α1 , 5−α2 , 6−α3)〉. (3.25)
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Due to the Fourier transformation formula (1.15), we can evaluate the
effective four-string interaction vertex |Af(1, 2, 4, 5)〉 by the generating
function

|Af
φ(1, 2, 4, 5)〉 = 〈Rf(3, 6)|e(−T/|α3|)(L(3)

0 +L̄
(3)
0 )

× e(2/α123)(φ123Y123−φ456Y456)|V f(1α1 , 2α2 , 3α3)〉
× |V f(4−α1 , 5−α2 , 6−α3)〉. (3.26)

In order to calculate the generating function |Af
φ(1, 2, 4, 5)〉, we first rewrite

the reflector and the interaction vertices into the following expression:

〈Rf(3, 6)|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )

=
∫

δf(3, 6)3〈λ3|6〈λ6| exp
(

1
2
S(36)TM̃S(36)

)
, (3.27)

e(2/α123)(φ123Λ123−φ456Λ456)|V f(1α1 , 2α2 , 3α3)〉|V f(4−α1 , 5−α2 , 6−α3)〉

=
∫

δf(1, 2, 3)δf(4, 5, 6) exp
(

1
2
S(36)†TÑS(36)† + l̃TS(36)† + P̃

)

× |λ1〉1|λ2〉2 · · · |λ6〉6, (3.28)

with S(36) =
(
S(3) S(6)

)
, S(1245) =

(
S(12) S(45)

)
and

M̃ = e(−T/|α3|)C
(

0 i[Σ1]
−i[Σ1] 0

)
, Ñ =

(
[N̂ ]3,3 0

0 [N̂ ]3,3

)
, (3.29)

l̃T = S(1245)†T
(

[N̂ ]3,12T 0
0 [N̂ ]3,12T

)
−

√
2
(
φ123 Λ123 iφ456 iΛ456

)
N̂3T,

(3.30)

P̃ =
1
2
S(1245)†T

(
[N̂ ]12,12 0

0 [N̂ ]12,12

)
S(1245)†

−
√

2
(
φ123 Λ123 iφ456 iΛ456

)
N̂12T S(1245)†

+
2

α123
(φ123Λ123 − φ456Λ456). (3.31)

Then the calculation can be easily done with the help of the fermionic
Gaussian convolution formula (1.29). The result is given as

|Af
φ(1, 2, 4, 5)〉 = (det)8

∫
δf(1, 2, 4, 5)e(2/α123)(φ123Y123−φ456Y456)

× eF f(1,2,4,5)|λ1〉1|λ2〉2|λ4〉4|λ5〉5, (3.32)
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with various expressions defined as
∫

δf(1, 2, 4, 5) =
∫

d8λ1d
8λ2d

8λ4d
8λ5δ

8(λ1 + λ2 + λ4 + λ5), (3.33)

F f(1, 2, 4, 5) =
1
2
S(1245)†TMS(1245)† + kTS(1245)†, (3.34)

Y123 = (1 − a1)Λ123 − b1Λ456 − 1√
2
SI(12)†T

(
C

α12

)−1/2

a

+
i√
2
SI(45)†T

(
C

α12

)−1/2

b, (3.35)

Y456 = −b1Λ123 + (1 − a1)Λ456 +
1√
2
SI(12)†T

(
C

α12

)−1/2

b

− i√
2
SI(45)†T

(
C

α12

)−1/2

a. (3.36)

Here the effective Neumann coefficient matrix M and kT are given as

M =
(

[A] i[B]
−i[B] [A]

)
, [A] =

(
0 −AT

A 0

)
, [B] =

(
0 BT

B 0

)
, (3.37)

kT =−
√

2
(
0 Λ123U

T−α3(λ1+λ4) V T 0 i(Λ456U
T+α3(λ1+λ4) V T)

)
,

(3.38)

with the building blocks being

A = N̂12,12 + N̂12,3 ◦ N̂3,3 ◦
(
1 − (N̂3,3)2◦

)−1
◦ N̂3,12, (3.39)

B = N̂12,3 ◦
(
1 − (N̂3,3)2◦

)−1
◦ N̂3,12, (3.40)

U = N̂
12

+ N̂12,3 ◦
(
1 − N̂3,3)−1

◦ N̂
3
, (3.41)

V = N̂12,3 ◦
(
1 − (N̂3,3)2◦

)−1
◦ N̂

3
. (3.42)

What is surprising in this result (3.32) is that although in the bosonic case
we find the linear source term β induces the squared source term β2 in the
final result (3.4), the squared source term φ2 is absent in the current final
result (3.32). The reason is that both the Neumann coefficient matrix in the
interaction vertex (2.18) and that in the reflector (2.20) connect the oscilla-
tors with the index I and the oscillators with the index II, but in the Fourier
transformation formula (1.15) the source φ only couples to the oscillators
with the index I. Due to this fact, we can perform the φ integration without
difficulty. After performing the inverse Fourier transformation (1.15) for the
result of the generating function |Af

φ(1, 2, 4, 5)〉 (3.32), we find the effective
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four-string interaction vertex |Af(1, 2, 4, 5)〉 itself is given by

|Af(1, 2, 4, 5)〉 = (det)8
∫

δf(1, 2, 4, 5)

×
[
cosh �Y123

]ij[cosh �Y456
]kleF f(1,2,4,5)|λ1〉1|λ2〉2|λ4〉4|λ5〉5.

(3.43)

Note that the kinematical overlapping part in the short intermediate time
limit T → +0 is given as

lim
T→+0

A = 0, lim
T→+0

B = 1, lim
T→+0

U = 0, (3.44)

lim
T→+0

V =
(

C

α12

)1/2 (
N3,12)−1

N3 = −α3

2

(
C

α12

)3/2

A(12)TC−1B, (3.45)

which implies

lim
T→+0

F f(1, 2, 4, 5) = i(SI(45)†TSII(12)† − SI(12)†TSII(45)†)

−
√

2α3(λ1 + λ4) lim
T→+0

V T(iSII(45)† − SII(12)†),

(3.46)

while the singular behavior of the prefactors are

Ya
123 ∼ −Ya

456 ∼ Ya, Ya = b1α3(λ1 + λ4)a, (3.47)

if we use the short intermediate time behavior of 1 − a1, b1, a and b in
(B.9). Since we have normalized Y by

√
−α123 as in (1.14), the result of

(3.47) implies

�Y456 =
√

2√
−α456

η∗Ya
456γ̂

a ∼
√

2
i
√

−α123
η∗(−Ya

123)γ̂
a = i �Y123, (3.48)

where the phase i induce the effect of the transposition:
[
cosh i �Y123

]kl =
[
cosh �Y123

]lk
. (3.49)

To reproduce the tensor structure of the most singular term in the OPE
(3.24), let us first rewrite the prefactors into
[
cosh �Y123

]ij[cosh �Y123
]lk

=
1
24

8∑
m=0

(−1)(1/2)m(m−1)

m!
γ̂c1···cm

ik (cosh �Y123γ̂
c1···cm cosh �Y123)lj , (3.50)
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and then expand the hyperbolic functions into polynomials to study the
singular behavior of each term. Here in (3.50) we have used the Fierz identity

MABNCD =
(−1)|M ||N |

24

8∑
m=0

(−1)(1/2)m(m−1)

m!
γ̂c1···cm

AD (Nγ̂c1···cmM)CB,

(3.51)

with γ̂c1···cm = γ̂[c1 . . . γ̂cm]. Note that from the index structure of γ̂c1···cm
ik ,

the summand of (3.50) is nonvanishing only when m is even.

Since Y is the only singularity, the more Y’s we have, the more singular
the expression is. In order to extract the coefficient of the most singular
term (p + q = 8)

Ya1 · · · YapYb1 · · · Ybq = εa1···apb1···bqδ8(Y), δ8(Y) = Y1 · · · Y8, (3.52)

we note the formulas [10]

1
q!

εa1···apb1···bq γ̂b1···bq = (−1)(1/2)p(p−1)γ̂a1···ap γ̂9, (3.53)

(−1)(1/2)p(p−1)

p!
γ̂a1···ap γ̂c1···cm γ̂a1···ap = dp,mγ̂c1···cm , (3.54)

with γ̂9 and dp,m defined by

γ̂9 = γ̂1 · · · γ̂8 =
(

δij 0
0 −δȧḃ

)
, (1 + x)8−m(1 − x)m =

8∑
p=0

(−1)pmdp,mxp.

(3.55)

There are lots of useful formulas of dp,m. We collect some of them in Appen-
dix D, which are necessary in this paper. Using the formulas (3.53), (3.54)
and (D.5), we find the most singular part of the prefactors is given as

[
cosh �Y123

]ij[cosh �Y123
]lk = 16ν8δikδjlδ

8(Y) + O(Y6), ν =
√

2
−α123

η∗.

(3.56)

This extra fermionic delta function will eliminate the extra term in F f(1, 2,
4, 5) (3.46) and turn |Af(1, 2, 4, 5)〉 into two reflectors

|Af(1, 2, 4, 5)〉 ∼ 226/3μ4/3|α123|−2/3 δikδjl

T 2 |Rf(1, 4)〉|Rf(2, 5)〉, (3.57)

as we have expected from the OPE (3.24).
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3.3 Other processes

Other processes corresponding to the OPEs (up to the numerical factor)

Σȧ(z)Σ̄i(z̄) · Σḃ(0)Σ̄j(0) ∼ δȧḃδij

|z|2 , Σi(z)Σ̄ȧ(z̄) · Σj(0)Σ̄ḃ(0) ∼ δijδȧḃ

|z|2 ,

(3.58)

Σi(z)Σ̄j(z̄) · Σȧ(0)Σ̄k(0) ∼ γi
aȧδ

jk

√
zz̄

θa(0),

Σi(z)Σ̄j(z̄) · Σk(0)Σ̄ȧ(0) ∼ δikγj
aȧ√

z̄z
θ̄a(0), (3.59)

Σȧ(z)Σ̄i(z̄) · Σj(0)Σ̄ḃ(0) ∼
γj

aȧγ
i
bḃ

|z| θa(0)θ̄b(0), (3.60)

can also be evaluated as in the previous subsection. These OPEs correspond
to the fermionic sector of the Qȧ

1 · Qḃ
1, Q̃ȧ

1 · Q̃ḃ
1, H1 · Qȧ

1, H1 · Q̃ȧ
1 and Qȧ

1 · Q̃ḃ
1

contractions respectively. Since all of the string interaction vertices have
the identical overlapping part |V f〉, we would like to concentrate on the
prefactors hereafter.

The tree diagram corresponding to (3.58) can be evaluated exactly in the
same way except that instead of (3.49) we use

[
sinh i �Y123

]ḃj = i
[
sinh �Y123

]jḃ
,

[
sinh i �Y123

]jḃ = i
[
sinh �Y123

]ḃj
, (3.61)

and instead of (D.5) we use (D.6). Since the contribution of the prefactors
is given by

[
sinh �Y123

]ȧi[sinh �Y123
]jḃ = −16ν8δijδȧḃδ

8(Y) + O(Y6), (3.62)
[
sinh �Y123

]iȧ[sinh �Y123
]ḃj = 16ν8δijδȧḃδ

8(Y) + O(Y6), (3.63)

the effective interaction vertices are computed to be

〈Rf(3, 6)|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )[sinh �Y123

]ȧi|V f(1α1 , 2α2 , 3α3)〉

×
[
sinh �Y456

]ḃj |V f(4−α1 , 5−α2 , 6−α3)〉

∼ −i226/3μ4/3|α123|−2/3 δȧḃδij

T 2 |Rf(1, 4)〉|Rf(2, 5)〉, (3.64)

〈Rf(3, 6)|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )[sinh �Y123

]iȧ|V f(1α1 , 2α2 , 3α3)〉

×
[
sinh �Y456

]jḃ|V f(4−α1 , 5−α2 , 6−α3)〉

∼ i226/3μ4/3|α123|−2/3 δijδȧḃ

T 2 |Rf(1, 4)〉|Rf(2, 5)〉. (3.65)
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To evaluate the tree diagram corresponding to (3.59) and (3.60), a little
more effort is required. Since the most singular term p + q = 8 vanishes in
this case, we have to consider terms with p + q < 8. First we note that a
natural generalization of (3.52) for p + q < 8 is

Ya1 · · · YapYb1 · · · Ybq =
(−1)(1/2)r(r−1)

r!
εd1···dra1···apb1···bq

∂

∂Yd1
· · · ∂

∂Ydr
δ8(Y),

(3.66)

if we define r = 8 − (p + q). Using (3.66) and (3.53), we find two expressions
for each term of the polynomial expansion of the hyperbolic functions:

1
p!q!

(Yaγa)pγ̂c1···cm(Ybγb)q =
1
r!

Gc1···cm,d1···dr
p γ̂9

∂

∂Yd1
· · · ∂

∂Ydr
δ8(Y)

=
(−1)m

r!
G̃d1···dr,c1···cm

q γ̂9
∂

∂Yd1
· · · ∂

∂Ydr
δ8(Y),

(3.67)

with Gc1···cm,d1···dr
p and G̃d1···dr,c1···cm

q defined as

Gc1···cm,d1···dr
p =

(−1)(1/2)p(p−1)

p!
γ̂a1···ap γ̂c1···cm γ̂a1···apd1···dr , (3.68)

G̃d1···dr,c1···cm
q =

(−1)(1/2)q(q−1)

q!
γ̂d1···drb1···bq γ̂c1···cm γ̂b1···bq . (3.69)

For the computation of the tree diagram corresponding to (3.59), we con-
sider the case p + q = 7 or r = 1. For this purpose, Gc1···cm,d

p is evaluated in
Appendix D:

Gc1···cm,d
p =

⎛
⎜⎜⎝

∑
0≤p0≤p

p0≡p mod 2

dp0,m

⎞
⎟⎟⎠ γ̂c1···cm γ̂d−

⎛
⎜⎜⎝

∑
0≤p0≤p

p0≡p−1 mod 2

dp0,m

⎞
⎟⎟⎠ γ̂dγ̂c1···cm .

(3.70)

Using (D.7) and (D.8), we find the contribution of the prefactors is given by
[
cosh �Y123

]ij[sinh �Y123
]kȧ = −8ν7δjkγ

i
aȧ

∂

∂Ya
δ8(Y) + O(Y5), (3.71)

[
cosh �Y123

]ij[sinh �Y123
]ȧk = 8ν7δikγ

j
aȧ

∂

∂Ya
δ8(Y) + O(Y5). (3.72)

To translate these results into the effective interaction vertices, we need a
fermionic expansion formula:

[
∂

∂ξa
δ8(ξ)

]
δ8(ξ + η)eξcζc

=
[

∂

∂ξ
− ∂

∂η
− ζ

]a

δ8(ξ)δ8(η), (3.73)
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which can be proved by

ξb ∂

∂ξa
δ8(ξ) = δb

aδ
8(ξ), δ8(ξ + η) = δ8(η) + ξb ∂

∂ηb
δ8(η) + O(ξ2),

eξcζc
= 1 + ξcζc + O(ξ2). (3.74)

After plugging ξa =(λ1 + λ4)a, ηa =(λ2 + λ5)a and ζa =−
√

2α3 limT→+0 V T

(iSII(45)† − SI(12)†) into (3.73) for our purpose, we find the expression
appearing on the right hand side can be rewritten into
[

∂

∂λ2
− ∂

∂λ1
−

√
2α3 lim

T→+0
V T(iSII(45)† − SII(12)†)

]a

|Rf(1, 4)〉|Rf(2, 5)〉

=
[
ϑ(2)(σ2,int) − ϑ(1)(σ1,int)

]a|Rf(1, 4)〉|Rf(2, 5)〉, (3.75)

with the fermionic coordinate

ϑ(r)(σr) = ϑr +
√

2
αr

∞∑
n=1

((
SI

n + SII
−n

)
cos

nσr

|αr|
+
(
SII

n − SI
−n

)
sin

nσr

|αr|

)
,

(3.76)

and σ1,int = πα1, σ2,int = 0. Therefore, the effective string interaction ver-
tices corresponding to (3.59) are given as

〈Rf(3, 6)|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )[cosh �Y123

]ij |V f(1α1 , 2α2 , 3α3)〉

×
[
sinh �Y456

]ȧk|V f(4−α1 , 5−α2 , 6−α3)〉

∼ −η∗220/3μ4/3|α123|−2/3 δjkγ
i
aȧ

T 3/2

[
ϑ(2)(σint)

− ϑ(1)(σint)
]a|Rf(1, 4)〉|Rf(2, 5)〉, (3.77)

〈Rf(3, 6)|e(−T |α3|)(L(3)
0 +L̄

(3)
0 )[cosh �Y123

]ij |V f(1α1 , 2α2 , 3α3)〉

×
[
sinh �Y456

]kȧ|V f(4−α1 , 5−α2 , 6−α3)〉

∼ η∗220/3μ4/3|α123|−2/3 δikγ
j
aȧ

T 3/2

[
ϑ(2)(σint) − ϑ(1)(σint)

]a|Rf(1, 4)〉|Rf(2, 5)〉.
(3.78)

Here we have abbreviated σ1,int and σ2,int as σint.

Finally, let us turn to the effective string interaction vertex corresponding
to (3.60). We can easily show with the help of (D.6) that p + q ≥ 7 does
not contribute. Hence, let us consider the case of p + q = 6. Though it is
not easy to find the value of Gc1···cm,d1d2

p or G̃d1d2,c1···cm
q separately, we find
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in Appendix D that the difference can be evaluated as

Gc1···cm,d1d2
p − G̃d1d2,c1···cm

p =

⎛
⎜⎜⎝

∑
0≤p0≤p

p0≡p mod 2

dp0,m

⎞
⎟⎟⎠ [γ̂c1···cm , γ̂d1d2 ]. (3.79)

To use this result properly, let us first combine two expressions of (3.67)
into

1
p!q!

(
(Yaγ̂a)pγ̂c1···cm(Ybγ̂b)q + (Yaγ̂a)qγ̂c1···cm(Ybγ̂b)p

)

=
1
4
(
Gc1···cm,d1d2

p + (−1)mG̃d1d2,c1···cm
p + Gc1···cm,d1d2

6−p

+ (−1)mG̃d1d2,c1···cm
6−p

)
γ̂9

∂

∂Yd1

∂

∂Yd2
δ8(Y). (3.80)

Fortunately, since we only want to consider the case with m being odd
because of the index structure of the gamma matrices in the summand
of (3.51), (3.80) reduces to the difference of Gc1···cm,d1d2

p and G̃d1d2,c1···cm
p .

Therefore, we can apply the result of (3.79) directly to find

[
sinh �Y123

]ȧi[sinh �Y123
]ḃj ∼ ν6(γ̂c)ȧj([γ̂c, γ̂d1d2 ])ḃi

∂

∂Yd1

∂

∂Yd2
δ8(Y), (3.81)

with the help of (D.9). Using the formula for the gamma matrices (γ̂c)ȧj

([γ̂c, γ̂d1d2 ])ḃi = 4γ̂
[d1
jȧ γ̂

d2]
iḃ

, we arrive at the result:

[
sinh �Y123

]ȧi[sinh �Y123
]ḃj = 4ν6γj

aȧγ
i
bḃ

∂

∂Ya

∂

∂Yb
δ8(Y) + O(Y4). (3.82)

To translate our result into the effective interaction vertex, we introduce
another fermionic expansion formula similar to (3.73)

[
∂

∂ξa

∂

∂ξb
δ8(ξ)

]
δ8(ξ+η)eξcζc

=
[

∂

∂ξ
− ∂

∂η
− ζ

]a [ ∂

∂ξ
− ∂

∂η
− ζ

]b

δ8(ξ)δ8(η),

(3.83)

which can be proved with

ξc ∂

∂ξa

∂

∂ξb
δ8(ξ) = −δc

b

∂

∂ξa
δ8(ξ) + δc

a

∂

∂ξb
δ8(ξ),

ξcξd ∂

∂ξa

∂

∂ξb
δ8(ξ) = −(δc

aδ
d
b − δc

bδ
d
a)δ8(ξ). (3.84)
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Finally, using (3.83) the effective string interaction vertex is expressed as

〈Rf(3, 6)|e(−T/|α3|)(L(3)
0 +L̄

(3)
0 )[sinh �Y123

]ȧi|V f(1α1 , 2α2 , 3α3)〉

×
[
sinh �Y456

]jḃ|V f(4−α1 , 5−α2 , 6−α3)〉

∼ −214/3μ4/3|α123|−2/3
γj

aȧγ
i
bḃ

T

[
ϑ(2)(σint) − ϑ(1)(σint)

]a[
ϑ(2)(σint)

− ϑ(1)(σint)
]b|Rf(1, 4)〉|Rf(2, 5)〉. (3.85)

This result exactly takes the form expected from (3.60).

4 One-loop amplitude

In the previous section we have computed one realization of the OPE via
the tree diagram. Here we would like to proceed to the other realization
via the one-loop diagram: the incoming string 6 splits into two short strings
and join again into the outgoing string 3. (see figure 2.) Since most of the
computations are parallel to the previous section, we will be short in the
presentation and put the prime P ′ on every corresponding quantity P in
the tree diagram to make the similarity clear.

Figure 2: Two-string one-loop diagram.

4.1 Bosonic sector

We start with the bosonic sector again. We would like to compute the
effective two-string interaction vertex

|A′b(3, 6)〉 = 〈Rb(1, 4)|〈Rb(2, 5)|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

× Zi
123|V b(1α1 , 2α2 , 3α3)〉Zk

456|V b(4−α1 , 5−α2 , 6−α3)〉, (4.1)
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to see whether the prefactor Zi
123Z

k
456 gives the extra contribution of 1/T .

As in the previous section, let us first consider the generating function

|A′b
β (3, 6)〉

= 〈Rb(1, 4)|〈Rb(2, 5)|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

× eβi
123Zi

123+βk
456Zk

456 |V b(1α1 , 2α2 , 3α3)〉|V b(4−α1 , 5−α2 , 6−α3)〉. (4.2)

The result of the generating function is

|A′b
β (3, 6)〉

= (det ′)−8
∫

d8p1

(2π)8

∫
δb(3, 6)eF ′b(3,6,p1)

× eβ123Z′
123+β456Z′

456+(1/2)(β2
123+β2

456)a′
2+β123β456b′

2 |p3〉3|p6〉6, (4.3)

with various expressions denoting

det ′ = det
[
1 −

(
e(−T/2α12)CN12,12e(−T/2α12)C)2], (4.4)

∫
δb(3, 6) =

∫
d8p3

(2π)8
d8p6

(2π)8
(2π)8δ8(p3 + p6), (4.5)

lim
T→+0

F (3, 6, p1) = −
(
a(3)†Ta(6)† + ā(3)†Tā(6)†) +

(
lim

T→+0
c
)[

p1 − α1

α3
p3

]2

+
(

lim
T→+0

CT
)
(a(3)† − a(6)† + ā(3)† − ā(6)†)

[
p1 − α1

α3
p3

]
,

(4.6)

Z ′
123 = (1 − a′

1 − b′
1) P123 − a′Ta(3)† + b′Ta(6)†, (4.7)

Z ′
456 = (1 − a′

1 − b′
1) P123 − b′Ta(3)† + a′Ta(6)†. (4.8)

Here various quantities are given as

c = 2α2
3

(T/2 − τ0

α123
+ N12T ◦′ (1 − N12,12)−1

◦′ N12
)
, (4.9)

C = α3

(
N3 + N3,12 ◦′ (1 − N12,12)−1

◦′ N12
)
, (4.10)

a′
1 = α123N

12T
(

C

α12

)
◦′ (1 − (N12,12)2◦′

)−1
◦′ N12,12 ◦′ N12, (4.11)
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b′
1 = α123N

12T
(

C

α12

)
◦′ (1 − (N12,12)2◦′

)−1
◦′ N12, (4.12)

a′
2 = (α123)2N12T

(
C

α12

)
◦′ (1 − (N12,12)2◦′

)−1
◦′ N12,12 ◦′

(
C

α12

)
N12,

(4.13)

b′
2 = (α123)2N12T

(
C

α12

)
◦′ (1 − (N12,12)2◦′

)−1
◦′

(
C

α12

)
N12, (4.14)

a′T = α123

(
N3T

(
C

α3

)
+ N12T

(
C

α12

)

◦′ (1 − (N12,12)2◦′
)−1
◦′ N12,12 ◦′ N12,3

)
, (4.15)

b′T = α123N
12T

(
C

α12

)
◦′ (1 − (N12,12)2◦′

)−1
◦′ N12,3, (4.16)

with ◦′ denoting the matrix multiplication with e(−T/α12)C inserted. Again,
we dropped the subscript T in cT and CT from our previous paper [8]. To
consider the effective two-string interaction vertex |A′b(3, 6)〉, we take the
derivative of the generating function |A′b

β (3, 6)〉 as in the previous section:

|A′b(3, 6)〉 =
∂

∂βi
123

∂

∂βk
456

|A′b
β (3, 6)〉

∣∣∣∣
β=0

=
(
b′
2δ

ik + Z ′i
123Z ′k

456
)
|A′b

β (3, 6)〉
∣∣∣∣
β=0

,

(4.17)

where in the last expression the factor (b′
2δ

ik + Z ′i
123Z ′k

456) should be inter-
preted to be in the p1 integration of |A′b

β (3, 6)〉.

Let us consider the short intermediate time limit hereafter. In (B.19), we
prove that

lim
T→+0

a′ = lim
T→+0

b′ =
α123

2

[
C

α3

]−1 3∑
t=1

A(t)
[

C

αt

]2

N t, (4.18)

which, as argued around (C.19) in [2], gives the difference of the delta func-
tions of physically the same point and vanishes essentially. Hence, we can
concentrate on the zero-mode part again. Since we have

Z ′i
123 ∼ Z ′i

456 ∼ −2b′
1α3

(
p1 − α1

α3
p3

)i
, (4.19)
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because of limT→0(1 − a′
1 + b′

1) = 0 (B.19), the contribution of the zero-
mode part is given by

|A′b(3, 6)〉
∣∣∣∣
0

∼
∫

d8p1

(2π)8
(
b′
2δ

ik + 4b′2
1 α2

3(p1 − α1

α3
p3)i(p1 − α1

α3
p3)k

)

× ec(p1−(α1/α3)p3)2+CT(a(3)†−a(6)†+ā(3)†−ā(6)†)(p1−(α1/α3)p3).
(4.20)

Comparing b′
2 ∼ O(T−1) (C.23) with b′2

1 /c ∼ O
(
T−1(log T )−1

)
due to (C.24)

and (C.25), we find that the first term is more singular. Because of
limT→+0(C)m(C)n/c = 0 [8] (see also Appendix C.3.), the leading contri-
bution is given by

|A′b(3, 6)〉
∣∣∣∣
0

∼ b′
2δ

ik · 1
28π4(−c)4

. (4.21)

The behavior of b′
2 (C.23) is roughly b′

2 ∼ −α123/(2T ) in the limit T → +0,
so we have found the expected singular behavior again:

|A′b(3, 6)〉 ∼ 2−29/3π−4μ−4/3|α123|5/3 δik

T 3

(
log

T

|α3|

)−4

|Rb(3, 6)〉. (4.22)

4.2 Fermionic sector

Let us turn to the fermionic sector of the one-loop diagram. Here we would
like to compute the effective two-string interaction vertex

|A′f(3, 6)〉 = 〈Rf(1, 4)|〈Rf(2, 5)|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

×
[
cosh �Y123

]ij |V f(1α1 , 2α2 , 3α3)〉
[
cosh �Y456

]kl

× |V f(4−α1 , 5−α2 , 6−α3)〉. (4.23)

As in the tree diagram let us consider the generating function first:

|A′f
φ(3, 6)〉 = 〈Rf(1, 4)|〈Rf(2, 5)|e(−T/α1)(L(1)

0 +L̄
(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

× e(2/α123)(φ123Y123−φ456Y456)|V f(1α1 , 2α2 , 3α3)〉|V f(4−α1 , 5−α2 , 6−α3)〉.
(4.24)

After applying the Gaussian convolution formula (1.29), we find

|A′f
φ(3, 6)〉

= (det ′)8
∫

δf(3, 6)
∫

d8λ1e(2/α123)(φ123Y ′
123−φ456Y ′

456)eF ′f(3,6)|λ3〉3|λ6〉6,
(4.25)
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with various expressions defined by

F ′f(3, 6) =
1
2
S(36)†TM ′S(36)† + k′TS(36)†, (4.26)

Y ′
123 = (1 − a′

1 − b′
1)Λ123 − 1√

2
SI(3)†T

(
C

α3

)−1/2

a′

+
i√
2
SI(6)†T

(
C

α3

)−1/2

b′, (4.27)

Y ′
456 = (1 − a′

1 − b′
1)Λ123 +

1√
2
SI(3)†T

(
C

α3

)−1/2

b′

− i√
2
SI(6)†T

(
C

α3

)−1/2

a′. (4.28)

Here M ′ and k′T are given as

M ′ =
(

[A′] −i[B′]
i[B′] [A′]

)
, [A′] =

(
0 −A′T

A′ 0

)
, [B′] =

(
0 B′T

B′ 0

)
, (4.29)

k′T = −
√

2
(
0 1 0 i

)
Λ123U

′T, (4.30)

with the building blocks being

A′ = N̂3,3 + N̂3,12 ◦′ N̂12,12 ◦′ (1 − (N̂12,12)2◦′
)−1
◦′ N̂12,3, (4.31)

B′ = N̂3,12 ◦′ (1 − (N̂12,12)2◦′
)−1
◦′ N̂12,3, (4.32)

U ′ = N̂3 + N̂3,12 ◦′ (1 − N̂12,12)−1
◦′ N̂12. (4.33)

Transforming back to the original effective interaction vertex with (1.15),
we find our result is given as

|A′f(3, 6)〉 = (det ′)8
∫

δf(3, 6)
∫

d8λ1
[
cosh �Y ′

123
]ij[cosh �Y ′

456
]kl

× eF ′f(3,6)|λ3〉3|λ6〉6. (4.34)

Note that for T → +0, we have

lim
T→+0

A′ = 0, lim
T→+0

B′ = 1, lim
T→+0

U ′ = 0, (4.35)

which implies

lim
T→+0

F ′f(3, 6) = i(−SI(6)†TSII(3)† + SI(3)†TSII(6)†). (4.36)

Also, due to (B.19) which essentially means limT→+0 a′ = limT→+0 b′ = 0,
we have

Y ′a
123 ∼ Y ′a

456 ∼ Y ′a, Y ′a = −2b′
1α3

(
λ1 − α1

α3
λ3

)a
, (4.37)
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where we have used Λ123 = Λ456 = α3λ1 − α1λ3. As in the previous section,
this relation implies

�Y ′
456 ∼ −i �Y ′

123,
[
cosh −i �Y ′

123
]kl =

[
cosh �Y ′

123
]lk

. (4.38)

Hence, we can repeat the evaluation with the Fierz identity analogous to
(3.56) and find

|A′f(3, 6)〉 ∼ 226/3μ4/3|α123|−2/3 δikδjl

T 2 |Rf(3, 6)〉, (4.39)

with the use of (C.26). This expression of the effective interaction vertex
gives the expected results from the OPE (3.24).

4.3 Other processes

Similarly, using
[
sinh−i �Y ′

123
]ḃj = −i

[
sinh �Y ′

123
]jḃ

,
[
sinh−i �Y ′

123
]jḃ = −i

[
sinh �Y ′

123
]ḃj

,
(4.40)

and the one-loop analogues of (3.62) and (3.63), we can also evaluate the
effective interaction vertices

〈Rf(1, 4)|〈Rf(2, 5)|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

×
[
sinh �Y123

]ȧi|V f(1α1 , 2α2 , 3α3)〉
[
sinh �Y456

]ḃj |V f(4−α1 , 5−α2 , 6−α3)〉

∼ i226/3μ4/3|α123|−2/3 δȧḃδij

T 2 |Rf(3, 6)〉, (4.41)

〈Rf(1, 4)|〈Rf(2, 5)|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

×
[
sinh �Y123

]iȧ|V f(1α1 , 2α2 , 3α3)〉
[
sinh �Y456

]jḃ|V f(4−α1 , 5−α2 , 6−α3)〉

∼ −i226/3μ4/3|α123|−
2
3
δijδȧḃ

T 2 |Rf(3, 6)〉, (4.42)

which again give the expected results from the OPEs in (3.58).

To evaluate the one-loop diagram corresponding to the OPEs in (3.59)
and (3.60), we need more efforts. Using the one-loop analogues of (3.71),
(3.72) and (3.82), we find that the most singular terms in these cases do
not have eight enough Λ123’s to survive the λ1 integration in an expression
similar to (4.34). Therefore, we need to take Λ123 in k′ (4.30) out of the
exponential factor eF ′f(3,6) (4.26) to compensate the λ1 integration.

An explicit asymptotic expression of U ′ (4.33) is necessary, since Λ123 in
k′ (4.30) always appears simultaneously with U ′, when we take Λ123 out of
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the exponential part eF ′f(3,6) using the formulas

[
∂

∂ξa
δ8(ξ)

]
eξcζc

=
[

∂

∂ξ
− ζ

]a

δ8(ξ),

[
∂

∂ξa

∂

∂ξb
δ8(ξ)

]
eξcζc

=
[

∂

∂ξ
− ζ

]a[ ∂

∂ξ
− ζ

]b

δ8(ξ). (4.43)

Using a′
0 and b′

0 with the definition given by (C.33) and (C.34) and the
asymptotic expression given by (C.46) and (C.47), we find the asymptotic
expression of U ′ is

U ′ =
√

C

α3

a′
0 + b′

0

α1α2
∼
√

C

α3

π2α1α2

|α3|2 log(T/|α3|)
CB, (4.44)

where we have plugged in the value of g (C.64) which is determined in
Appendix C.4.

Our final result can be summarized by the expression of the fermionic
momentum acting on the reflector

[
λ(3)(σ) + λ(6)(σ)

]
|R(3, 6)〉 =

1√
2α3π

∞∑
n=1

(SII(3)
−n + iS

II(6)
−n ) sin

nσ

|α3|
|R(3, 6)〉,

(4.45)

with the fermionic momentum given by

λ(r)(σ) =
1

2π|αr|

[
λr +

√
αr

2

∞∑
n=1

(
(SII(r)

n + S
I(r)
−n ) cos

nσ

|αr|

+ (SII(r)
−n − SI(r)

n ) sin
nσ

|αr|

)]
. (4.46)

The results are given by

〈Rf(1, 4)|〈Rf(2, 5)|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

×
[
cosh �Y123

]ij |V f(1α1 , 2α2 , 3α3)〉
[
sinh �Y456

]ȧk|V f(4−α1 , 5−α2 , 6−α3)〉

∼ η∗220/3μ4/3|α123|−2/3 δjkγ
i
aȧ

T 3/2 4π
[
λ(3)(σ3,int) + λ(6)(σ3,int)

]a|Rf(3, 6)〉,
(4.47)
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〈Rf(1, 4)|〈Rf(2, 5)|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

×
[
cosh �Y123

]ij |V f(1α1 , 2α2 , 3α3)〉
[
sinh �Y456

]kȧ|V f(4−α1 , 5−α2 , 6−α3)〉

∼ −η∗220/3μ4/3|α123|−2/3 δikγ
j
aȧ

T 3/2 4π
[
λ(3)(σ3,int) + λ(6)(σ3,int)

]a|Rf(3, 6)〉,
(4.48)

〈Rf(1, 4)|〈Rf(2, 5)|e(−T/α1)(L(1)
0 +L̄

(1)
0 )e(−T/α2)(L(2)

0 +L̄
(2)
0 )

×
[
sinh �Y123

]ȧi|V f(1α1 , 2α2 , 3α3)〉
[
sinh �Y456

]jḃ|V f(4−α1 , 5−α2 , 6−α3)〉

∼ 214/3μ4/3|α123|−2/3
γj

aȧγ
i
bḃ

T
4π
[
λ(3)(σ3,int) + λ(6)(σ3,int)

]a

× 4π
[
λ(3)(σ3,int) + λ(6)(σ3,int)

]b|Rf(3, 6)〉, (4.49)

with σ3,int = πα2, which match exactly with the OPEs (3.59) and (3.60).

5 Conclusion

In this paper, we have completed our previous attempts of realizing all the
OPEs in MST using the interaction vertices in LCSFT. We have found
all the diagrams reproduce the correct OPEs and established the correspon-
dence between LCSFT and MST. Especially, we find the OPEs (3.1), (3.24),
(3.58), (3.59), (3.60) are realized by the tree diagrams in (3.23), (3.57),
(3.64), (3.65), (3.77), (3.78), (3.85) and the loop diagrams in (4.22), (4.39),
(4.41), (4.42), (4.47), (4.48), (4.49). It would be interesting to understand
the relation between our current computations and those in [11] where the
Veneziano amplitude was reproduced from MST.

We have to confess that we do not fully understand why the holomor-
phic quantity θa(z) and the anti-holomorphic quantity θ̄a(z̄) in (3.59) and
(3.60) are realized as ϑ(2)(σint) − ϑ(1)(σint) in the tree diagrams while as
4π
[
λ(3)(σint) + λ(6)(σint)

]
in the loop diagrams. Roughly speaking, two sets

of fermions are separated as holomorphic θa(z) and anti-holomorphic θ̄a(z̄)
in MST while their linear combinations play the role of the fermionic coor-
dinate ϑ(σ) and the fermionic momentum λ(σ) in LCSFT. But we cannot
make the exact correspondence clear.

Aside from the main result, we have several comments. First of all, the
notoriously complicated prefactors in LCSFT are put into much simpler
expressions (1.11) to (1.13). As in Appendix A, using these expressions, the
supersymmetry algebras are shown easily. We hope these expressions will
make LCSFT more accessible to nonexperts of the subject.
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Secondly, we have performed the computation of the tree and one-loop
diagrams. At first sight the computation in the fermionic sector seems
impossibly complicated. Fortunately, since the result of the generating func-
tion does not have the squared term of the source, we can perform the inverse
Fourier transformation without difficulty and write down the result explic-
itly. We hope this fact will enable other important calculations in LCSFT.

Having acquired enough information of the first order interaction term,
we would like to turn to the contact terms next. We wish to report progress
in this direction in the near future.
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A Prefactors

In this section, we would like to recapitulate the prefactors of the Green–
Schwarz-Brink light-cone superstring field theory. The prefactors were
thought to be notoriously complicated. We would like to show here that
we can simplify the expressions of the prefactors in our new notation. First
of all, we note that due to the triality of SO(8) we can construct the gamma
matrices with the spinor indices

γ̂a =
(

0 γ̂a
iȧ

γ̂a
ȧi 0

)
, (A.1)

by the gamma matrices with the vector indices γ̂a
iȧ = γ̂a

ȧi ≡ γi
aȧ. Here we

have used i, j, k, · · · to represent the vector indices, a, b, c, · · · to repre-
sent the spinor indices and ȧ, ḃ, ċ, · · · to represent the cospinor indices.



ON LCSFT/MST CORRESPONDENCE 141

The new gamma matrices with the spinor indices satisfy the standard anti-
commutation relations:

γ̂a
iȧγ̂

b
ȧj + γ̂b

iȧγ̂
a
ȧj = 2δabδij , γ̂a

ȧiγ̂
b
iḃ

+ γ̂b
ȧiγ̂

a
iḃ

= 2δabδȧḃ. (A.2)

If we define �Y as

�Y =
√

2
−α123

η∗Y aγ̂a =
(

0 �Yiȧ

�Yȧi 0

)
, (A.3)

using the modified gamma matrices γ̂a, we find the complicated prefactors
of Hamiltonian and two supercharges, vji(Y ), siȧ(Y ), s̃iȧ(Y ) as well as the
auxiliary quantity mȧḃ(Y ) can be written as

vji(Y ) =
[
cosh �Y

]ij
, mȧḃ(Y ) =

[
cosh �Y

]ȧḃ
, (A.4)

siȧ(Y ) =
√

−α123
[
sinh �Y

]ȧi
, s̃iȧ(Y ) = i

√
−α123

[
sinh �Y

]iȧ
, (A.5)

where the indices of the function are consistent because cosh is an even
function while sinh is an odd function.

Let us show that the supersymmetry algebra can be proved easily with
our new notation hereafter. The Y a derivative and the Y a multiplication
are paired into two anti-commuting operators Da and D∗a. We shall modify
the definition of two anti-commuting operators slightly by

Da = i

√
−α123

2
Da

+, D∗a = −
√

−α123

2
Da

−, (A.6)

with

Da
± =

√
−α123

2
1
η∗

∂

∂Y a
±
√

2
−α123

η∗Y a. (A.7)

Then we can easily find how the operators Da
± act on cosh �Y and sinh �Y .

Since the derivative ∂/∂Y a can act on any �Y in the polynomial expansion
of the hyperbolic functions, we need a formula to bring γ̂a to the most left
side or the most right side of the expression. By iterative use of (A.2), we
find

�Y kγ̂a − (−1)kγ̂a �Y k = (−1)k−12k

√
2

−α123
η∗Y a �Y k−1

= 2k �Y k−1
√

2
−α123

η∗Y a, (A.8)
√

−α123

2
1
η∗

∂

∂Y a
�Y k = kγ̂a �Y k−1 − k(k − 1)

√
2

−α123
η∗Y a �Y k−2

= (−1)k−1
(

k �Y k−1γ̂a − k(k − 1) �Y k−2
√

2
−α123

η∗Y a

)
,

(A.9)
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for k = 1, 2, · · · . The results of the computation are given as

Da
+
[
cosh �Y

]ij =
[
γ̂a sinh �Y

]ij
, Da

−
[
cosh �Y

]ij = −
[
(sinh �Y )γ̂a

]ij
, (A.10)

Da
+
[
cosh �Y

]ȧḃ =
[
γ̂a sinh �Y

]ȧḃ
, Da

−
[
cosh �Y

]ȧḃ = −
[
(sinh �Y )γ̂a

]ȧḃ
, (A.11)

Da
+
[
sinh �Y

]ȧi =
[
γ̂a cosh �Y

]ȧi
, Da

−
[
sinh �Y

]ȧi =
[
(cosh �Y )γ̂a

]ȧi
, (A.12)

Da
+
[
sinh �Y

]iȧ =
[
γ̂a cosh �Y

]iȧ
, Da

−
[
sinh �Y

]iȧ =
[
(cosh �Y )γ̂a

]iȧ
, (A.13)

which imply

Davij(Y ) =
i√
2
γj

aȧs
iȧ(Y ), D∗avij(Y ) = − i√

2
γi

aȧs̃
jȧ(Y ), (A.14)

Damȧḃ(Y ) =
1√
2
γi

aȧs̃
iḃ(Y ), D∗amȧḃ(Y ) =

1√
2
γi

aḃ
siȧ(Y ), (A.15)

Dasiȧ(Y ) = − iα123√
2

γj
aȧv

ij(Y ), D∗asiȧ(Y ) =
α123√

2
γi

aḃ
mȧḃ(Y ), (A.16)

Das̃iȧ(Y ) =
α123√

2
γi

aḃ
mḃȧ(Y ), D∗as̃iȧ(Y ) =

iα123√
2

γj
aȧv

ji(Y ). (A.17)

Using (A.16) and (A.17) we can further show

√
2α123δȧḃv

ij(Y ) = iγj
aȧD

asiḃ(Y ) + iγj

aḃ
Dasiȧ(Y )

= −iγi
aȧD

∗as̃jḃ(Y ) − iγi
aḃ

D∗as̃jȧ(Y ), (A.18)
√

2α123δ
ijmȧḃ(Y ) = γj

aȧD
as̃iḃ(Y ) + γi

aȧD
as̃jḃ(Y )

= γj

aḃ
D∗asiȧ(Y ) + γi

aḃ
D∗asjȧ(Y ). (A.19)

All these formulas are sufficient to prove the supersymmetry algebra.

B Neumann coefficient matrices

B.1 Convention

We would like to present the definition of various Neumann coefficient matri-
ces in this appendix, in order to fix the convention used in this paper as well
as to make preparations for the next appendix.
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In [1] the overlapping condition was rewritten in terms of the mode expan-
sion and the matrices A(1), A(2), B and C were introduced as

(A(1))mn =
√

n

m

(−1)m

πα1

∫ πα1

0
dσ 2 cos

nσ

α1
cos

mσ

α3

=
√

m

n

(−1)m

πα3

∫ πα1

0
dσ 2 sin

nσ

α1
sin

mσ

α3
, (B.1)

(A(2))mn =
√

n

m

(−1)m

πα2

∫ π(α1+α2)

πα1

dσ 2 cos
n(σ − πα1)

α2
cos

mσ

α3

=
√

m

n

(−1)m

πα3

∫ π(α1+α2)

πα1

dσ 2 sin
n(σ − πα1)

α2
sin

mσ

α3
, (B.2)

(B)m =
2(−1)m+1
√

mπα1α2

∫ πα1

0
dσ cos

mσ

α3
=

2(−1)m

√
mπα1α2

∫ π(α1+α2)

πα1

dσ cos
mσ

α3
,

(B.3)

(C)mn = mδmn. (B.4)

In terms of these matrices, the Neumann coefficient matrices are given as

N r,s = δrs − 2A(r)TΓ−1A(s), N r = −A(r)TΓ−1B,

Γ = 1 + A(1)A(1)T + A(2)A(2)T, (B.5)

if we define (A(3))mn = δmn in addition. It was found in [1] by explicit
computation that these matrices satisfy the relations (r, s = 1, 2)

−αr

α3
A(r)TCA(s) = δrsC, A(r)TCB = 0,

1
2
α1α2B

TCB = 1,

−α3

αr
A(r)T 1

C
A(s) = δrs

1
C

,

3∑
t=1

αtA
(t) 1

C
A(t)T =

1
2
α1α2α3BBT,

3∑
t=1

1
αt

A(t)CA(t)T = 0. (B.6)

As was pointed out in [8, 12], these relations can simply be interpreted as
the unitarity of the overlapping transformation between the incoming and
outgoing strings where no information is lost. Due to (B.6) we can also
prove the following relations without difficulty.

3∑
t=1

N r,tN t,s = δr,s,

3∑
t=1

N r,tN t = −N r. (B.7)

As in [13], we adopt

(
A(12))−1 = −

(
C

α12

)
A(12)T

(
C

α3

)−1

, (B.8)
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to be the inverse of A(12) =
(
A(1) A(2)

)
, since we can show that it is a right

inverse as well as a left inverse by applying (B.6).

B.2 Tree diagram formulas

Here we would like to prove some preliminary formulas

lim
T→+0

a = lim
T→+0

b = 0, lim
T→+0

(
(1 − a1) − b1

)
= 0, (B.9)

which appear in the main text and will also be necessary in the next appendix.

Using (B.7) we find that

lim
T→+0

aT = α123

(
N12T C

α12
+ N3T C

α3
N3,3(N12,3)−1

)
, (B.10)

lim
T→+0

bT = α123N
3T C

α3

(
N12,3)−1

. (B.11)

With the help of the expression for N r,s in (B.5), we can put the above two
expressions into

lim
T→+0

aT = α123

(
N12T C

α12
− 1

2
N3T C

α3
Γ
(
A(12)T)−1 + N3T C

α3

(
A(12)T)−1

)
,

(B.12)

lim
T→+0

bT = −α123

2
N3T C

α3
Γ
(
A(12)T)−1

. (B.13)

If we plug in the expression for (A(12))−1 (B.8) we find the first term and
the last term of (B.12) cancel each other. Therefore both the expressions
(B.12) and (B.13) reduce to the same form. Furthermore, if we plug in the
expression of Γ (B.5) and (A(12))−1 (B.8), we obtain

lim
T→+0

aT = lim
T→+0

bT = −α123

2

(
−N3TA(12) C

α12
+ N3T C

α3
A(12)

)
. (B.14)

As in [1], from the definition of Γ (B.5), we can easily compute ΓCA(12)

using (B.6):

ΓCA(12) = CA(12) − α3A
(12) C

α12
. (B.15)

By multiplying BTΓ−1 from the left, we find finally

lim
T→+0

aT = lim
T→+0

bT = 0T. (B.16)
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For the second formula of (B.9) let us repeat our formal computation:

lim
T→+0

(
(1 − a1) − b1

)
= 1 − α1α2

2
BT 1

Γ
CB. (B.17)

Since computation of ΓCB with (B.5) and (B.6) leads to ΓCB = CB,
we find

BT 1
Γ

CB = BTCB, (B.18)

which combined with (B.6) implies the second formula.

B.3 Loop diagram formulas

Let us turn to the proof of

lim
T→+0

a′T = lim
T→+0

b′T =
α123

2

3∑
t=1

N tT
[

C

αr

]2

A(r)T
[

C

α3

]−1

,

lim
T→+0

(
(1 − a′

1) + b′
1
)

= 0, (B.19)

in this subsection. The proof is parallel to the previous subsection. For the
first formula, we find both of the expressions reduce to

lim
T→+0

a′T = lim
T→+0

b′T = −α123

2
N12T C

α12

(
A(12))−1Γ. (B.20)

Plugging the expression of Γ and (A(12))−1, we find the result does not vanish
but gives instead (B.19) this time. The second formula can also be proved
similarly.

C Small time behavior of the matrix products

C.1 Tree diagram formulas

In this subsection we would like to evaluate a1, b1 and b2, which is necessary
for our analysis of small intermediate time behavior of the tree diagram
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amplitude. Let us define as in [14] (i, j ≥ 0)

āi,j = α1α2N
3TCi ◦ N3,3 ◦

(
1 − (N3,3)2◦

)−1
◦ CjN3, (C.1)

b̄i,j = α1α2N
3TCi ◦

(
1 − (N3,3)2◦

)−1
◦ CjN3. (C.2)

Then, according to [14] we can show that these quantities satisfy the relations

|α3|
∂

∂T
log det = −ā1,1, (C.3)

|α3|
∂

∂T
āi,j = b̄i,1b̄1,j , (C.4)

|α3|
∂

∂T
b̄i,j = b̄i,1ā1,j − b̄i,j+1, (C.5)

using the decomposition formula [1]

C

αr
N r,s + N r,s C

αs
= −α1α2α3

C

αr
N rN sT C

αs
. (C.6)

Combining with our results from the bosonic case [8]

det ∼ 2−5/12μ1/6
[

T

|α123|1/3

]1/4

, b̄0,0 ∼ −2
α1α2

α2
3

log
T

|α3|
, (C.7)

we have especially

1 − a1 = 1 − ā1,0 ∼
√

2α1α2

α2
3

|α3|
T

, b1 = b̄1,0 ∼
√

2α1α2

α2
3

|α3|
T

, (C.8)

b2 = α1α2b̄1,1 ∼ −α123

2T
. (C.9)

C.2 Loop diagram formulas

As the Neumann matrix products (C.1) and (C.2) are defined in [14] to
analyze the tree diagram amplitude, let us define

ā′
i,j = (α1α2)(i+j+1)/2α3N

12T
[

C

α12

]i

◦′ N12,12◦′

×
(
1 − (N12,12))2◦′

)−1

◦′

[
C

α12

]j

N12, (C.10)

b̄′
i,j = (α1α2)(i+j+1)/2α3N

12T
[

C

α12

]i

◦′ (1 − (N12,12)2◦′
)−1
◦′

[
C

α12

]j

N12,

(C.11)



ON LCSFT/MST CORRESPONDENCE 147

for the loop diagram amplitude. These quantities satisfy the following
identities:

√
α1α2

∂

∂T
log det ′ = −ā′

1,1, (C.12)

√
α1α2

∂

∂T
ā′

i,j = b̄′
i,1b̄

′
1,j , (C.13)

√
α1α2

∂

∂T
b̄′
i,j = b̄′

i,1ā
′
1,j − b̄′

i,j+1, (C.14)

which imply especially the following relations:

α1α2
∂2

∂T 2 log det ′ = −(b̄′
1,1)

2 (C.15)

α1α2
∂2

∂T 2 (ā′
0,0 + b̄′

0,0) = b̄′
1,1

(
b̄′
1,0 − (1 − ā′

1,0)
)2

, (C.16)

√
α1α2

∂

∂T

(
b̄′
1,0 − (1 − ā′

1,0)
)

= b̄′
1,1

(
b̄′
1,0 − (1 − ā′

1,0)
)
. (C.17)

Combining with the results from our bosonic analysis [8],

√
−c det ′ ∼ 21/12μ1/6

[
T

|α123|1/3

(
log

T

|α3|

)2
]1/4

, (C.18)

c =
α3(T − 2τ0)

α1α2
+

2α3√
α1α2

(ā′
0,0 + b̄′

0,0), (C.19)

we find that the quantities a′
1 = ā′

1,0, b′
1 = b̄′

1,0 and b′
2 =

√
α1α2α3b̄

′
1,1 appear-

ing in the main text should satisfy

(
b′
2

α123

)2

∼ 1
4T 2

[
1 + 2

(
log

T

|α3|

)−1

+ 2
(

log
T

|α3|

)−2]
+

1
2

∂2

∂T 2 log(−c),

(C.20)

α1α2

α3

∂2

∂T 2 c = 2
b′
2

α123

(
b′
1 − (1 − a′

1)
)2

, (C.21)

α123

b′
2

∂

∂T

(
b′
1 − (1 − a′

1)
)

= b′
1 − (1 − a′

1). (C.22)
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Solving the asymptotic behavior by first adopting the ansatz of the Laurent
expansion of T and then correcting by the Laurent expansion of log T , we
find that

b′
1 − (1 − a′

1) ∼ g√
T

(
log

T

|α3|

)−1

,
b′
2

α123
∼ − 1

T

[
1
2

+
(

log
T

|α3|

)−1 ]
,

(C.23)

α1α2

α3
c ∼ −g2

(
log

T

|α3|

)−1

, (C.24)

where g is an undetermined constant independent of the intermediate time
T . Moreover, due to (B.19), we find explicitly

b′
1 ∼ g

2
√

T

(
log

T

|α3|

)−1

, 1 − a′
1 ∼ − g

2
√

T

(
log

T

|α3|

)−1

. (C.25)

Note that a combination 2b′
1/

√
−c does not depend on the undetermined

constant g. Combining with (C.18) we find especially

(
2b′

1 det ′)8 ∼ 22/3μ4/3

|α123|2/3T 2

(
α1α2

α3

)4

, (C.26)

which appears in the main text.

C.3 Some identities

In this subsection let us make a small digression to clarify several relations
of the Neumann coefficient products. As a result, among others, we will
show

lim
T→+0

(C)m(C)n

c
= 0, (C.27)

which was conjectured in [8] and is also needed in our computation in (4.21).
Our result in this subsection will also enable the evaluation of g in the next
subsection.

We start with proving

(1 − a′
1)

2 − b′2
1 = 1. (C.28)
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Our strategy is basically the same as the derivation of the differential equa-
tions (C.3) to (C.5) and (C.12) to (C.14). First of all let us rewrite a′

1 as
follows:

a′
1 =

α123

2
N12T

[
C

α12

N12,12

1 − (N12,12)2
+

N12,12

1 − (N12,12)2
C

α12

]
N12. (C.29)

Here (until (C.31)) note that ◦′ in the multiplication between Neumann
matrices is implicit. We omit it shortly just to simplify our notation.
The key point is to regard the decomposition formula (C.6) as an anti-
commutation relation between the Neumann coefficient matrix N12,12 and
C/α12 and move C/α12 all the way from the right to the left. The quantity
in the square bracket of (C.29) is given as (C12 = C/α12)
[
· · ·

]
= C12N

12,12 + N12,12C12 + C12(N12,12)3

+ N12,12C12(N12,12)2 − N12,12C12(N12,12)2 − (N12,12)2C12N
12,12

+ (N12,12)2C12N
12,12 + (N12,12)3C12 + · · · , (C.30)

which can be resumed into

[
· · ·

]
= −α123

{
1

1 − (N12,12)2
C

α12
N12N12T C

α12

1
1 − (N12,12)2

− N12,12

1 − (N12,12)2
C

α12
N12N12T C

α12

N12,12

1 − (N12,12)2

}
, (C.31)

where we have used the decomposition formula (C.6). This implies that
(C.29) can be expressed as

a′
1 =

1
2
(
−(b′

1)
2 + (a′

1)
2), (C.32)

which is exactly what we want in (C.28).

Similarly, if we further define a′
0 and b′

0 as

a′
0 = α1α2

(
N3 + N3,12 ◦′ (1 − (N12,12)2◦′

)−1
◦′ N12,12 ◦′ N12

)
, (C.33)

b′
0 = α1α2N

3,12 ◦′ (1 − (N12,12)2◦′
)−1
◦′ N12, (C.34)

we can prove the following formulas algebraically,

a′ − Ca′
0 = a′a′

1 − b′b′
1, (C.35)

b′ + Cb′
0 = −a′b′

1 + b′a′
1. (C.36)
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Using (C.28), we can solve these equations for a′ and b′:

a′ = (1 − a′
1)Ca′

0 + b′
1Cb′

0, (C.37)

b′ = −b′
1Ca′

0 − (1 − a′
1)Cb′

0. (C.38)

We have found several algebraical formulas thus far. Let us turn to the
proof of the formula (C.27). Noting C can be expressed as

C =
α3

α1α2
(a′

0 + b′
0), (C.39)

let us study the short intermediate time behavior of a′
0 and b′

0. Our strategy
is as follows. We first consider the derivatives of a′

0 and b′
0. From the expe-

rience of the previous two subsections, we know roughly the results should
be given by a′ and b′, which are expressed again by a′

0 and b′
0 by (C.37)

and (C.38). Therefore we can solve the differential equations explicitly.

Similarly to the previous two subsections, we find that

α3
d

dT
a′

0 = b′b′
1 = −(b′

1)
2Ca′

0 − (1 − a′
1)b

′
1Cb′

0, (C.40)

α3
d

dT
b′

0 = −b′(1 − a′
1) = (1 − a′

1)b
′
1Ca′

0 + (1 − a′
1)

2Cb′
0, (C.41)

where in the last equations we have used (C.37) and (C.38). Plugging the
small intermediate time behavior of 1 − a′

1 and b′
1 (C.25), we find

d

d log(T/|α3|)
a′

0 ∼ − g2

4α3
(
log(T/|α3|)

)2 C(a′
0 − b′

0), (C.42)

d

d log(T/|α3|)
b′

0 ∼ − g2

4α3
(
log(T/|α3|)

)2 C(a′
0 − b′

0). (C.43)

These differential equations imply that a′
0 − b′

0 is T -independent at the
leading order. Using (B.7) we find

a′
0 − b′

0 ∼ α1α2
2

1 − N3,3 N3 = −α1α2B, (C.44)

a′
0 + b′

0 ∼ 0, (C.45)

in the exact limit of T → +0. Plugging (C.44) back to (C.42) and (C.43),
we find the expression for a′

0 and b′
0:

a′
0 ∼ −α1α2

2
B − g2α1α2

4α3 log(T/|α3|)
CB, (C.46)

b′
0 ∼ α1α2

2
B − g2α1α2

4α3 log(T/|α3|)
CB, (C.47)
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which implies

C ∼ − g2

2 log(T/|α3|)
CB. (C.48)

The final result shows (C.27).

C.4 Evaluation of g

In order to obtain explicit formulas corresponding to (3.59) and (3.60) for
the one-loop diagram in LCSFT, we have to evaluate the constant g, which
appeared in Appendix C.2. Here, we determine it by computing a one-loop
diagram with two gravitons inserted in two ways, using respectively bosonic
LCSFT and the α = p+ HIKKO string field theory [15], and comparing their
results. Note that in [8] we applied the same method for a one-loop diagram
with two tachyons inserted to determine KT = μ4(4π)−12|

√
−c det′ |−24 or

(C.18).

Let us consider, in bosonic LCSFT, a contraction of two graviton states
〈ζr,−ki

r| = ζij
r 〈−ki

r|a
(r)i
1 ā

(r)j
1 , (r = 3, 6) with ki

rζ
ij
r = 0, ζij

r = ζji
r , ζij

r δij = 0
and |B(3, 6)〉, which is given by (34) in [8]. It is evaluated as

〈ζ3,−ki
3|〈ζ6,−ki

6|B(3, 6)〉

∼ ζij
3 ζkl

6

[
δilδjk

(
− 1

2c

(
(C)1

)2)2

+ δjlδik

]
KT (2π)24δ24(k3 + k6),

(C.49)

for T → +0, where KT appears similarly to the computation of the one-loop
diagram with two tachyons inserted [8]. From (C.48), we have

− 1
2c

(
(C)1

)2 ∼ g2

2π2|α1α2/α3|
sin2(πα1/|α3|)
− log(T/|α3|)

, (C.50)

which implies that we can determine g from the evaluation of (C.49).

Including the light-cone directions and the level matching projection, the
total amplitude for the one-loop diagram with two gravitons is computed as

T36 =〈ζ3,−k3|〈ζ6,−k6|〈RLC(2, 5)|〈RLC(1, 4)|Δ1Δ2|V LC(1, 2, 3)〉|V LC(4, 5, 6)〉

=
∫ ∞

0
dT

∫
dα1

∮
dθ1

2π

∮
dθ2

2π
(2π)2δ(k−

3 + k−
6 )δ(k+

3 + k+
6 )

e2Tk−
3

4πα1α2

× 〈ζ3,−ki
3|〈ζ6,−ki

6|Bθ1,θ2(3, 6)〉 , (C.51)
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where Δr is the propagator combined with the level matching projection:

Δr =
1

−2p+
r p−

r + L
(r)
0 + L̄

(r)
0

Pr

=
∫ ∞

0

dTr

αr

∮
dθr

2π
e(−Tr/αr)(−2p+

r p−
r +L

(r)
0 +L̄

(r)
0 )eiθr(L(r)

0 −L̄
(r)
0 ), (C.52)

and |Bθ1,θ2(3, 6)〉 is the effective interaction vertex rotated from the original
one |B(3, 6)〉 with |Bθ1=0,θ2=0(3, 6)〉 = |B(3, 6)〉.

The above on-shell amplitude T36 can be also obtained in the framework
of the α = p+ HIKKO string field theory:

T36 = 〈ζ3,−k3|〈ζ6,−k6|〈Rα=p+
(2, 5)|〈Rα=p+

(1, 4)| b
(1)
0 b̄

(1)
0

L
tot(1)
0 + L̄

tot(1)
0

Ptot
1

× b
(2)
0 b̄

(2)
0

L
tot(2)
0 + L̄

tot(2)
0

Ptot
2 |V α=p+

(1, 2, 3)〉|V α=p+
(4, 5, 6)〉

=
∫ ∞

0
dT1

∫ ∞

0
dT2

∮
dθ1

2π

∮
dθ2

2π
〈ζ3,−k3|〈ζ6,−k6|〈Rα=p+

(2, 5)|

× 〈Rα=p+
(1, 4)| 1

α1α2
b
(1)
0 b̄

(1)
0 b

(2)
0 b̄

(2)
0

× exp

(
− T1

α1
(Ltot(1)

0 + L̄
tot(1)
0 ) − T2

α2
(Ltot(2)

0 + L̄
tot(2)
0 )

+ iθ1(L
tot(1)
0 − L̄

tot(1)
0 ) + iθ2(L

tot(2)
0 − L̄

tot(2)
0 )

)

× |V α=p+
(1, 2, 3)〉|V α=p+

(4, 5, 6)〉, (C.53)

which includes the ghost part in addition to the light-cone direc-
tions. We calculate it using the CFT correlator on the torus u-plane
(u ∼ u + 1 ∼ u + τ):

T36 =
∫ ∞

0
dT1

∫ ∞

0
dT2

∮
dθ1

2π

∮
dθ2

2π

〈
(α1α2)−1b(1)b̄(1)b(2)b̄(2)

× Vζ6,k6(U6, Ū6)Vζ3,k3(U3, Ū3)
〉
τ
, (C.54)
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where b(i) is given by a contour integral on Ci in the u-plane, which is
denoted in figure 3 of Ref. [8] for a pure imaginary τ , and Vζ,k(u, ū) is the
graviton vertex:

b(i) =
∫

Ci

du

2πi
αi

du

dρ
b(u),

Vζ,k(u, ū) =
1
4
ζijc(u)c̄(ū) : i∂Xi(u)i∂̄X̄j(ū)eikμXμ(u,ū): . (C.55)

Note that here we have used the on-shell condition for the graviton vertices:
kμ

3 k3μ = kμ
6 k6μ = 0. The light-cone diagram (ρ-plane) can be obtained from

the torus u-plane by the generalized Mandelstam map:

ρ(u) = |α3|
(

log
ϑ1(u − U6|τ)
ϑ1(u − U3|τ)

+ 2πi
Im(U3 − U6)

Imτ
u

)
, (C.56)

with |α3| = k+
3 and U3 + U6 = 0. It is related to the parameters on the

light-cone diagram as

ρ(u + 1) − ρ(u) = −2πiα1, (C.57)

ρ(u + τ) − ρ(u) = T2 − T1 − i(α2θ2 − α1θ1), (C.58)

ρ(u−) − ρ(u+) = T2 − iα2θ2,
dρ(u±)

du
= 0. (C.59)

From the explicit computation with the α = p+ prescription, which pro-
vides δ(Re(ρ(u + τ) − ρ(u))) = δ(T2 − T1) in the integrand, (C.54) can be
rewritten as

T36 =
∫ ∞

0
dT

∫
dα1

∮
dθ1

2π

∮
dθ2

2π
(2π)26δ26(k6 + k3)

α1α2

238π25α4
3

×
∣∣∣g′

1(u+ − U6|τ) − g′
1(u+ − U3|τ)

∣∣∣
−2∣∣∣(Imτ)1/4η(τ)

∣∣∣
−48

× ζij
3 ζkl

6

[
δilδjk

(
π

Imτ

)2

+ δjlδik

∣∣∣∣
π

Imτ
+ g′

1(U6 − U3|τ)
∣∣∣∣
2]

, (C.60)

with g′
1(ν|τ) = ∂2

ν log ϑ1(ν|τ). The factors in the second and the third line
are functions of two complex parameters τ, U3 − U6, which are related to 4
real parameters T (=T1 = T2), α1, θ1, θ2 by (C.57) to (C.59).
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Similarly, for the one-loop amplitude with two tachyons inserted we find1

S36 = 〈−k3|〈−k6|〈Rα=p+
(2, 5)|〈Rα=p+

(1, 4)| b
(1)
0 b̄

(1)
0

L
(1)
0 + L̄

(1)
0

Ptot
1

b
(2)
0 b̄

(2)
0

L
(2)
0 + L̄

(2)
0

Ptot
2

× |V α=p+
(1, 2, 3)〉|V α=p+

(4, 5, 6)〉

=
∫ ∞

0
dT

∫
dα1

∮
dθ1

2π

∮
dθ2

2π
(2π)26δ26(k6 + k3)

α1α2

238π25α4
3

×
∣∣∣g′

1(u+ − U6|τ) − g′
1(u+ − U3|τ)

∣∣∣
−2∣∣∣(Imτ)1/4η(τ)

∣∣∣
−48

×
∣∣∣∣eπ

(Im(U3−U6))2

Imτ
∂νϑ1(ν|τ)|ν=0

ϑ1(U6 − U3|τ)

∣∣∣∣
4

. (C.62)

For θ1 = θ2 = 0, T → +0, the extra factor of the integrand in (C.60) com-
pared to that in (C.62) can be evaluated as

ζij
3 ζkl

6

[
δilδjk

(
π

Imτ

)2

+ δjlδik

∣∣∣∣
π

Imτ
+ g′

1(U6 − U3|τ)
∣∣∣∣
2]

×
∣∣∣∣eπ

(Im(U3−U6))2

Imτ
∂νϑ1(ν|τ)|ν=0

ϑ1(U6 − U3|τ)

∣∣∣∣
−4

∼ ζij
3 ζkl

6

[
δilδjk

(
sin2(πα1/|α3|)
− log(T/|α3|)

)2

+ δjlδik

]
. (C.63)

Comparing this factor with (C.50) and (C.49), we finally obtain

g =
√

2π|α1α2/α3|1/2. (C.64)

D Formulas for the gamma matrices

Here we would like to prove the formulas (3.70) and (3.79) first. The point
is to find a recursion relation. Multiplying (3.54) by γ̂d1···dr and using the

1Because we have included the level matching projection which was omitted in [8], we
can reproduce a modular invariant measure by computing the Jacobian using (C.57) to
(C.59): ∫ ∞

0
dT

∫
dα1

∮
dθ1

2π

∮
dθ2

2π

α1α2

α4
3

(· · · )

=
1
2π

∫
d2τdxdy

∣∣g′
1(u+ − U6|τ) − g′

1(u+ − U3|τ)
∣∣2 (· · · ). (C.61)

Here x, y are real parameters defined by U3 − U6 = x + yτ . However, we have only to
use the expression of the integrand for θ1 = 0, θ2 = 0, namely without projection, in the
evaluation of KT (T → +0) in [8] and g here.
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gamma matrix product formula (See e.g. [16])

γ̂a1···ap γ̂b1···bq =
min(p,q)∑

k=0

(−1)pk−(1/2)k(k+1)p!q!
(p − k)!(q − k)!k!

δ
[a1
[b1

· · · δak
bk

γ̂ak+1···ap]
bk+1···bq ],

(D.1)

where [· · · ] denotes the anti-symmetrization of the indices, we find the recur-
sive relations for small r:

Gc1···cm,d
p

= dp,mγ̂c1···cm γ̂d − dp−1,mγ̂dγ̂c1···cm + Gc1···cm,d
p−2 , (D.2)

Gc1···cm,d1d2
p − G̃d1d2,c1···cm

p

= dp,m[γ̂c1···cm , γ̂d1d2 ] + Gc1···cm,d1d2
p−2 − G̃d1d2,c1···cm

p−2 . (D.3)

Using these formula recursively, we can prove (3.70) and (3.79) without
difficulty.

For the explicit computation of Gc1···cm,d
p and Gc1···cm,d1d2

p − G̃d1d2,c1···cm
p ,

we need several summation formulas of dp,m. For this purpose first we note
that dp,m has the residue formula:

dp,m = (−1)pm

∮

z=0

dz

2πi
z−1−p(1 + z)8−m(1 − z)m

=
min(p,m)∑

s=0

(−1)s(8 − m)!m!
(p − s)!(8 − m − p + s)!s!(m − s)!

. (D.4)

Using this expression we find we can show the following formulas.
4∑

q=0

d2q,m = 128(δm,0 + δm,8), (D.5)

3∑
q=0

d2q+1,m = 128(δm,0 − δm,8), (D.6)

3∑
q=0

q∑
q0=0

d2q0+1,m = 320(δm,0 − δm,8) − 32(δm,1 − δm,7), (D.7)

3∑
q=0

q∑
q0=0

d2q0,m = 256(δm,0 + δm,8) + 32(δm,1 + δm,7), (D.8)

2∑
q=0

q∑
q0=0

d2q0+1,m = 192(δm,0 − δm,8) − 32(δm,1 − δm,7). (D.9)
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