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Abstract

We study cohomological gauge theories on total spaces of holomor-
phic line bundles over complex manifolds and obtain their reduction to
the base manifold by U(1)-equivariant localization of the path integral.
We exemplify this general mechanism by proving via exact path integral
localization a reduction for local curves conjectured in hep-th/0411280,
relevant to the calculation of black hole entropy/Gromov—Witten invari-
ants. Agreement with the four-dimensional gauge theory is recovered by
taking into account in the latter non-trivial contributions coming from
one-loop fluctuation determinants at the boundary of the total space. We
also study a class of abelian gauge theories on Calabi—Yau local surfaces,
describing the quantum foam for the A-model, relevant to the calculation
of Donaldson-Thomas invariants.
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1 Introduction

Topological theories are a natural and amusing instrument to quantify some
non-perturbative aspects of superstring theory. Actually, BPS protection
reduces the evaluation of F-terms to a restricted configuration space and
this, in favorable conditions, allows their exact calculation. The language
of topological theories renders manifest the non-renormalization properties
of such terms and clarifies the above configuration space reduction [4,7].
In particular, this applies both to the world-sheet and the gauge theory
approaches to the counting of the entropy of BPS black holes in superstring
theories [28]. On the world-sheet side one finds that few, but remarkable,
all-loop calculations of the effective theory of a Calabi—Yau compactifica-
tion can be recasted in terms of amplitudes of a topological theory of strings
counting the number of inequivalent world-sheet instantons in the Calabi—
Yau, Ziop =) g )\fg; 2Fg. The counting of D-brane bound states has been
advocated in [28] to provide a non-perturbative completion of these ampli-
tudes via a conjectured S-duality in topological strings [27]. A natural set-
ting to describe this duality is topological M-theory [3,5,9,11, 14,18, 26].
More precisely, in [28], the suggestive relation Zpy ~ |Ziop|? was proposed
to hold in the limit of large black holes charges up to O(e™") corrections.
In the dual D-brane language, the black hole BPS multiplicities gets calcu-
lated by the supersymmetric partition function of the twisted gauge theory
living on the D-brane system. It is therefore interesting to find exact cal-
culational methods in such a framework. In this paper, we study in partic-
ular cohomological gauge theories on local spaces, that is, on spaces whose
geometry can be obtained by zooming in the vicinity of a given non-trivial
cycle. Namely, in the case of complex codimension one, one has the total
space over the cycle of an appropriate line bundle. On this space, there
is a natural U(1)-symmetry acting on the fiber which can be used to sim-
plify the relevant path integral calculation. Actually, we will show how to
realize the dimensional reduction on the base by using such a symmetry.
This will be described in detail for the D4/D2/D0 system considered in
[2,29]. We will also present a more general mechanism for the D6/D2/D0
system [22].

In [2], it has been proposed that the partition function of the relevant
twisted NV = 4 gauge theory on the total space £ — X, where ¥ is a Riemann
surface and £ a line bundle over it, can be evaluated by reducing to a
g-deformed YMsy on ¥ [20]. This was verified by comparing the factorized
structure of the partition function in the large N limit with topological
string amplitudes on the relevant Calabi-Yau local curve £ @ KLt — 3,
where K is the canonical line bundle on the base ¥ and the D4-branes wrap
the cycle £ — ¥ [12].
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On the other hand, a comparison with the four-dimensional gauge theory
has been done in the genus zero case when the instanton counting can be
performed [17,19]. In this case, agreement was found up to some pertur-
bative contributions which can be recasted as one-loop fluctuations of the
Chern—Simons theory living at the boundary of the total space [19]. In
this paper, we suggest that these contributions have actually a very simple
interpretation in the four-dimensional gauge theory. The crucial point is
that we are quantizing the theory on a non-compact space. Henceforth, the
one-loop determinants do not cancel completely as it happens on compact
manifolds, but they receive a non-trivial contribution precisely from the
boundary, where the four-dimensional action reduces to a Chern—Simons
term.! By including these contributions in the four-dimensional instanton
counting one can recover agreement with the g-deformed YMjy results.

Let us briefly outline the content of the paper. In Section 2, we start
describing the geometric set-up, then we obtain the reduction of the
topological action on the base as well as the natural implementation of the
U(1)-equivariant BRST symmetry in our problem. In Section 3, we ana-
lyze in close detail the D4/D2/D0 system and we discuss its reduction to
the g-deformed YMs by using the relevant localization of the path integral.
In Section 4, we extend our procedure to the case of a topological gauge
theory on a local Calabi—Yau surface and we propose an analogous reduced
approach to the counting of D6/D2/D0 BPS black hole entropy. In Section
5, we discuss few open issues.

2 Reduction of cohomological gauge theories on local spaces
2.1 Cohomological gauge theories on local spaces

Let ¥ be a complex manifold with dimc > =n and £ be an holomorphic
line bundle over it. Let M = £ — X be the total space of L. Let E be a
gauge bundle over ¥ with structure group G. It extends canonically to a
gauge bundle on M that we will still call E for notational simplicity. Let
A € Conn(E, M) be a connection of E on M and let us consider a topological
invariant functional Siop,(A) that is invariant under continuous deformations
of the connection A along Conn(FE, M). Typically

Supl4) = [ [P(F)A K] (2.1)

'In the case of flat R* space, the boundary contribution is trivial.
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where P(F) is an Ad-invariant polynomial in the curvature FF = dA+ AN A
and K € H*(X) is an element in the even cohomology of . In (2.1), the
top component of the integrand is understood.

This kind of theories naturally arise in D-brane/black holes entropy count-
ings. These countings reduce to the evaluation of the partition function of
the cohomological gauge theories obtained by quantizing (2.1). Actually,
since M is non compact, we wish to sum over all the gauge field configu-
rations at the boundary. This can be achieved either directly in the path
integral by implementing the summation over the boundary fluctuations via
the associated Chern—Simons-like theory, or by analyzing the sum over the
boundary values in terms of the holonomy of gauge field at infinity. The
first approach leads then to work on the total space M giving the result in
terms of bulk and boundary contributions. The second, as we will show in
detail later, leads to a reduction of the calculation of the path integral via
an associated topological theory defined on the base 3.

By construction OM is the total space of the circle bundle arg(L), namely
OM = arg L — X. Therefore, to parametrize the boundary conditions, we
can specify the holonomy of A along each S fiber on ¥, that is

e'® = Pexp {z/ A} (2.2)
S1xPt

at any point Pt € ¥. Summing over all the boundary conditions, then will
mean path integrate over the holonomy field ®.

On M it is natural to distinguish horizontal and vertical directions. Let
~v € Conn(L,Y) be a reference connection for £ and let w be a coordinate
on the fiber. Then, the differential element Dw = dw + yw is covariant,
namely Dw transform like a section of £. This defines a decomposition of
the Dolbeault differential 9 = " + 9V, where

O = By, — YWy,
0¥ = Dw0y,,

and Oy, is the Dolbeaux differential on the base. The de Rham differential
gets decomposed too. Similarly, the gauge connection splits as

A= A"+ AY = A" + oDw + ' Dw, (2.3)

where both A" € Conn(E,¥) and ¢ € I'(Ad E, ¥) depend parametrically on
the fiber coordinate w.
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The above holonomy assignment (2.2) corresponds, up to a gauge trans-
formation, to the boundary conditions

P
igA = i(wp —wp') ~ 5. a8 w~ oo, (2.4)

where 6 = i(wd,, — wOy) is the fundamental vector field generating the U(1)-
action on the fiber w — ew.

We will now show how the topological theory (2.1) can be calculated in
terms of reduced field configurations on the base manifold. We will first
analyse (2.1) at the classical level, and then show how the equivariant local-
ization with respect to the U(1)-action w — ew on the fiber allows us to
dimensionally reduce the theory at the path integral level.

2.2 Covariant dimensional reduction of the classical action

Since the classical topological action is independent upon the specific con-
nection of the given vector bundle E and at given boundary conditions we
use to calculate it, we can choose to evaluate it by using some particular class
of connections, namely U(1)-invariant ones. On top of it, to simplify our
life, we can perform the calculation in a given gauge with respect to the G
bundle. We choose to work in radial gauge igA = 0, where R = w0y, + w0y
is the invariant vector field generating the fiber dilatations. This means that
we consider gauge connections of the form

A=a+Lm (Dw) , (2.5)

where o € Conn(E,Y). « and p do not depend on arg(w) and p € Adj(E, )
satisfies the boundary condition p ~ ® as w ~ oo.

Although the calculation can be performed in arbitrary dimensions, let us
do it explicitly in the case n = 1 first. The relevant possible terms in (2.1)
are [,, Te(FAF) and [, K A Tr(F). By simply substituting (2.5), using
the Stokes theorem and the boundary condition for p, we get

/ trFAK:/trq>K (2.6)
M b

and
/M te(F A F) = /E {2 tr (®f) + %tr ®2R£] , (2.7)

where f =dsa+aAa, a = alywo and Ry = dy Im+y is the curvature of L.
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In the general case,? we can proceed by using equivariant localization
under the U(1)-invariance in the evaluation of the topological invariant (2.1).
The equivariant extension of the gauge curvature at the fixed point (2.5) is
given by B R

F=F+pu, (2.8)
where (1 is the moment map of the U(1)-action, d ;u = —igF. By inspection,
one gets p = 3-. The localization formula [6] then gives

B . B P(f+2(1+R))AK
/M[P(F) ANE] = /M[P(F) ANEK] = 27r/2 ) :
27

(2.9)
where the factor 1 o is the inverse Euler class of the normal bundle, that
is of the line bundle L itself. Notice that since K € H*(X), then ip/ =0
and K is trivially equivariantly closed. In particular, by specifying n =1
in (2.9), we generate as possible terms exactly (2.6) and (2.7).

Therefore, we see that if we constrain the connection to be U(1)-invariant,
then the topological action (2.1) gets reduced to (2.9), which depends on a
connection for F on the base and the holonomy field. Our next aim will be
to implement the above reduction in the full gauge-fixed topological theory.

2.3 Reduction via U(1)-equivariant localization: the
four-dimensional case

To implement the reduction of the previous section at the path integral level,
we use equivariant localization with respect to the lifting on the field space
of the U(1)-action on the fiber w — e®w, § € S.

Before doing it, let us discuss some aspects of the topological gauge
symmetry at hand. We restrict for simplicity to the four-dimensional case
(n = 1), although the following strategy can be generalized to higher dimen-
sions. This will be exemplified later for n = 2.

Let us consider first the topological action % Il o tr F'A F. This is invariant
under the BRST action on the space of connections with arbitrary boundary
conditions sA =V if ¥ ~ d4c at the boundary. Actually, this is the usual
scheme to quantize the four-dimensional topological theory and to show that
it localizes on instanton solutions. As it is well known, the semiclassical limit

2 Actually one could proceed also in the direct way. This implies the use of the standard
integral transgression formula to solve P(F) = dQ(A, F), passing to the boundary via
Stoke’s theorem, calculating the integral along the circle at infinity and finally integrating
back the transgression formula.
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is exact in these cohomological theories and the path integral is reduced
to the integration of the relevant observables over the instanton moduli
space times the contribution of the determinants of the one-loop fluctuations
around the instanton vacua. These determinants usually cancel to one due
to supersymmetry. Notice however that there is a subtlety in this case due
to the non-compactness of the manifold on which we are quantizing the
theory. The functional integration of the fields at the boundary produces a
non-trivial one-loop determinant which has to be taken into account. Then
schematically one gets

Zpg = Zgo17100P) Zinstantons (2.10)

The one-loop Chern—Simons partition function comes from the integration
along the field fluctuations at the boundary while the second factor comes
from the bulk instantons.

The same calculation can be performed in a different way by parametriz-
ing the boundary values of the connection via its holonomy. So we calculate

Iy = /D[@]ZM(@, (2.11)

where Zj;(®) is the partition function calculated at fixed holonomy ®. As
we will show in detail in the next section, by applying this procedure to
the gauge theory relevant for the D4/D2/D0 system, one gets the partition
function of the g-deformed YMj. The quantum measure D[®] has been
discussed in [2] and we will come back to it later on. Notice that the explicit
calculations of the g-deformed YMy on the sphere precisely reproduce the
structure in (2.10) [19].

Let us put again the question about the boundary conditions on gauge
parameters. Now, since the holonomy is fixed, we can assign them differ-
ently. Actually, at fixed holonomy, we require the natural boundary condi-
tions

dgA" ~ 0, igA ~ ®/2m, (2.12)
de¥" ~ 0, igW ~ 0. (2.13)

up to gauge transformations, which we want to insist on. Actually the topo-
logical action is not shift symmetric under the above boundary conditions.
In fact, we have

1
s/ trF/\F:/ trF/\dA\IJ:/ tr (F" A Uy + F} AT
2 M M oM

:/ trdnAg AU = / trd,® A1, (2.14)
oM )
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where A" ~ a and U" ~ 1) as w ~ co. Notice that, if K is a 2-form on %,
we have

s/ KAtrF = KANT =0
M oM
since Wy ~ 0.

In order to cure the above lack of symmetry, one can improve the topo-
logical action by adding the following topological observable localized on ¥

ol = / tr <¢F + %\IJ A \11> . (2.15)
Y

Let us read now the above deformation from the point of view of the calcu-
lation (2.11) with fixed holonomy at infinity. We just noticed in (2.14) that

we need to improve our action. In fact, we have to improve the BRST sym-

metry too. Let us consider the quantity I = % I} v T FAF+ Ogo)o where

Y 1s the copy of the base at infinity, and calculate its BRST transform
under a BRST operator sy to be determined up to its fixed shift action on
the connection syA = ¥. We have

sol = / tr(sgdF) + tr(sgVU — dagp — da )V, (2.16)

which is zero for
SpA =V, 590 = dA((b + 27Ti9A) 4+ 2migF and sgp =0 (2.17)

due to the boundary condition i9yW ~ 0 at infinity. Actually, we can rewrite
(2.17) as

sgA =V, 59V =dg¢p+2nLgA and s9¢p =0 (2.18)
which satisfies sg = 04 + 2mLg, where Ly = dig +igd is the Lie derivative
along the vector field 6. This reveals sy to be nothing but the U(1)-
equivariant extension of the original BRST symmetry.

Alternatively, by redefining
¢ = ¢+ 2migA (2.19)
we can rewrite (2.18) as
sgA =V, 59U =dys¢' + 2migF and sgd = 2migV, (2.20)

and we have sg = 04 + 2Ly, where Lg = daig +igda is the covariant Lie
derivative. Notice that the field redefinition (2.19) changes the boundary
conditions of the field ¢ due to (2.4). Actually these are no longer vanishing,
but ¢ ~ ® as w ~ oo.

For later use, let us notice also that, due to (2.13), we have sy fMK A
tr FF = 0.
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3 D4/D2/D0-branes on local Calabi—Yau’s

Let us here consider the topological gauge theory studied in [2,29]. Consider
a Riemann surface ¥, a line bundle £ over it and the CY local curve X =
L® LK — %, where K is the canonical line bundle over . Let us place
N D4-branes on M = £ — ¥ and any number of DO and D2 wrapping X.

Actually, the entropy of such a D-brane system is calculated by the Vafa—
Witten twisted N' =4 SYM with gauge group U(N) and classical action

o o
tr(FAF) + — tr FAK 3.1
295 M ( ) 9s J M ( )

with K the unit volume form on X.

Stop =

In the previous section, we have been proving that the path integral for
such a theory gets localized on U(1)-invariant configurations. In particular,
the reduction of the various terms in (3.1) reads

1 R
/ tr 25 (3.2)
» 2T

1 0
Sred:/tr(éf)—k/trq)K—i-
gs Jx gs Jx 295

Let us notice the appearance of the last term quadratic in ® which we
obtained just by insisting on a covariant reduction scheme. The curvature of
the line bundle is Ry = —2npK, where deg(L) = —p. In this way, one
obtains precisely the topological action for the g-deformed YMsy considered
in [2].

Let us now discuss the evaluation of the partition function for the D4/D2/
DO system

1
Zp4/p2/D0 = /D[A,\I/, ...Jexp [_Stop — Syf — 97(02 4 HOEK] + 00,
(3.3)

where

ol = / tr oK, (3.5)
>

1
Oy = / tr ¢>R. (3.6)
2 Js
The subscript index in (3.6) is the ghost number.

Notice that, according to the prescription described in Section 2.3, in
(3.3) we inserted the topological observables (3.6) with positive ghost num-
bers. Due to the absence of a ghost number anomaly in the twisted N' = 4
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SYM theory, the v.e.v. of these observables is actually vanishing and the
path integral is insensitive to their presence. Nonetheless, their insertion
simplifies the task of dimensional reduction. This procedure is completely
analogous to the mass deformation of the Vafa—Witten theory which allows
to compute the twisted A/ = 4 partition function in terms of N’ =1 vacua
countings. In our case, the observables (3.6) break the anti-BRST of the
N7 = 2 balanced topological field theory [8,15], thus reducing the twisted
supersymmetry to Ny = 1. Indeed, the deformation (3.3) suggests an inspir-
ing relation with the Donaldson intersection theory on the instanton moduli
space. It would be very interesting to study in deeper detail this connection
by analyzing the U(1)-localization procedure for Witten’s TYM theory [30].
For Riemann surfaces of genus zero, this could provide a direct derivation
of the blow-up formulae for Donaldson polynomials [16] that were obtained
in [23,24] by using the low-energy Seiberg—Witten effective theory.

At the fixed locus under the U(1)-action, the observables (3.6) give

o5t = [[or (£ + Rew)o+ 30 n0). 3.7)
Offred _ /E tr ¢ K, (3.8)
ored = % / tr o> Ry, (3.9)

Y

where all the fields depend on the base ¥ only. We calculate the total

classical action first by reducing Siop + g%[(?g + HOQK] + O4] and obtain
1 / / 2 1 /2
Sred = o Otr(¢)K + tr(¢ f +¢7) + itr(é JRe |, (3.10)
s JX

where ¢ = ¢ + ®. Notice that this is precisely the shift (2.19) so that we
can interpret the reduced theory as a two-dimensional topological gauge
theory on 3.

Notice however that since we choose ¥ = ¥, the vanishing boundary
conditions on ¢ imply that on the base image at infinity ¢/ = ®. Therefore,
we get the reduced theory with action

Sym, = 1/ [9 tr(®)K + tr(Pf + @112) + 1‘51F(<I>2)R£ (3.11)
gs Jx 2

that is the topological action of the 2d Yang-Mills. The reduced BRST
operator is then

sa=1, sp=d, and sP =0. (3.12)
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3.1 Equivariant localization of the path integral

In order to show the dimensional reduction at the path integral level, we have
to face the full gauge-fixed theory. The full field content of the Vafa-—Witten
twisted A = 4 theory is given by the Ny = 2 connection multiplet (A, ¥, H),
a selfdual tensor multiplet (B*,x%, HT) and the Cartan multiplet [15].
The relevant U(1)-equivariant BRST transformations on the selfdual
multiplet are

soBT =x1, soxT =[¢/, BT + LyB™. (3.13)

The gauge-fixed action of the theory is given in terms of the action
potential [15]

F=F+F,

Fi= | T[B(F" +[B}, B,
M

Fo = / Tr[xT AxT + Uy AxT_], (3.14)
M

where we do not consider the gauge fixing of the Cartan multiplet since it
can be universally re-absorbed [15].

Let us now show that the modes with non-zero transverse momentum
can be integrated out and that they do not contribute to the topological
partition function. In order to show this, we split all field configurations in
terms of zero and non-zero modes with respect to the operator which defines
the transverse momentum. Because of the gauge symmetry of the problem,
we have to consider the operator d_, where A is the connection at the
boundary w ~ co. The integrability of FY along the fibers requires that
FY = (d;"oo)Q = 0. To choose the appropriate gauge-fixing, let us rescale
the fields as

A= As + 20 A" + 271547,
Bt =27%B3Y 4 c.c. 4 (boo + b)w,. (3.15)

where §[fields] denote the non-zero modes with respect to d . We will con-
sider the scaling gauge = — oo. In (3.15) we used the rescaled Kahler form
we = 2w + 27" obtained from the block diagonal w = w4 W =
i00f, where f is the Kihler potential. Notice that in (3.15) we retained
only the zero modes for the connection multiplet and the Kéhler component

of the selfdual multiplet, while we did not for the (2,0) part of the selfdual
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multiplet. Actually B9 would have a zero mode structure

BEO = g2 (3.16)
w

up to gauge conjugation by €® and where g € T(19 (%, Adj E). This field
configuration is singular as w ~ 0 and we do not consider it to belong to the
allowed field space.?

In (3.15) we just gave the rescaling of each top member of the Np = 2
multiplets, the others being equal because of BRST invariance. This guar-
antees that such a rescaling does not generate any non-trivial Jacobian from
the quantum measure in the path integral. The configuration A is taken to
satisfy the holonomy assignment and is given, up to gauge conjugation, by

A —a+glm <Dw) )

2 w

To calculate the rescaled gauge fixing action, we apply the rescalings
(3.15) to (3.14) and obtain that if o > 2, then

Fi= / SBEOFY (5AMOD e 4 st dy_ AT +O(1/z)  (3.17)
while F» = O(1/z) and does not contribute in the scaling limit.

In order to integrate the leftover transverse momentum zero modes for
the BRST doublets (¢, H)so and (b, X+ )oo(X—,h)o0, Wwe add to the gauge
fixing action the exact term

5 /E tr(b[®, x ] + H A +[®, )

which path integrates to det(Adjs)? in the fermionic sector and to det
(Adjg)~2 in the bosonic one, so giving no contribution to the partition
function.

Therefore, in the scaling gauge  — oo, the leftover term (3.17) gauge-
fixes all the fluctuation in the connection and in the selfdual Np = 2
multiplets.

Summarizing, in the scaled gauge we then find that all the modes with
non-vanishing transverse momentum get gauge-fixed to zero and the path
integral evaluation reduces to the theory dimensionally reduced on the basis

3Notice that, if one would keep it, this sector would extend the YM; theory on ¥ to a
deformed Hitchin system with equations

f+®R:=[3,8], 0uf=0 and da® =0,
[®,8] =0, dub=0.
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with action (3.11). Notice that, due to the compactness of the holonomy field
®, its path integral measure has to be suitably defined as in [2], therefore,
giving the g-deformation of YMy on 3.

4 Quantum foam on the local CY surface

Let us consider in this section a topological abelian U(1) gauge theory on
a generic CY local surface M = £ — %, where £ = K is the canonical line
bundle of the complex surface ¥ itself. This theory describes a system of
D2/D0 dissolved in a D6-brane wrapping M. The topological partition
function of this theory computes the Donaldson—Thomas invariants of the
CY it is defined on. Moreover, it has been proposed in [22] as weak coupling
expansion in gs for the topological A-model. Our reduction formula works
also if the line bundle £ is not constrained to be K by the Calabi—Yau
condition.

The quantum foam topological action is

Sqf(A):g;/MF/\F/\FJr/Mk:OAFAF, (4.1)

where F' = dA is the abelian curvature and ko € H*(X, Z). By definition,
the topological version to consider is the twisted maximally supersymmetric
one.

As in the four-dimensional case, we can consider the quantization of the
theory from two equivalent points of view. Its partition function can be
evaluated directly, by giving

Z(5d—on0100p)

Z,

af = Zpulk, (4.2)

where Z(5d—oneloop) ig the one-loop path integral of the topological boundary
theory with action

Ssa(A) = % A/\dAAdA+/ ko A AN dA. (4.3)
3 Jom M
The bulk contribution Zy is the partition function of the topological the-
ory on M with vanishing boundary conditions.

A second equivalent calculational scheme is again obtained by specifying

the (abelian) holonomy e = e st A, Therefore, we have also

Zis = [ DltlZ,y(®). (4.4
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By applying the same procedure we developed in the previous sections, we
can now reduce the evaluation of the partition function to that of an abelian
topological gauge theory on the four-dimensional base manifold.

The only peculiar ingredient to be fixed is the observable of the initial
theory to be added in order to produce the equivariant extension of the
action functional. This is given by a suitable linear combination of

1
(’)1:/\11/\\11/\F+¢F/\F and ng/k:o/\<2\I//\\I/+¢F>.
b b))

(4.5)
We can calculate then, by using (2.9)

S Rc R Ry
/F/\F/\F:/[q)3 KA ’C+3<I>2f/\ +3<I>f/\f]
" s 2 "o

and

/ ko/\F/\F:/ko/\[2f¢+RK¢2],
M b 27'['

and we get that the quantum foam reduces to the topological action on the
base X

[ [ Re o ) R Ry
Sqf_4d—gs/z[3<1> L +@fAf+(f+¢2ﬁ>AwAw}
+/k0/\<<I>f+d>2RIC+ wmp) (4.6)
b

that is closed under the reduced BRST action sa = v, s¢p = d® and s® = 0.
The maximally SUSY twisted theory that we are considering is the one
studied in [21] on Kahler threefolds. One can extend in full analogy to
this case too the off-shell localization of the path integral that we discussed
for the Vafa—Witten theory in the previous section. Due to the abelian
nature of the theory, the quantum measure over ® is the usual translational
invariant one for a single S' valued field. We would get an analog of the
g-deformation in a non-abelian version of the topological theory at hand.
Therefore, we find that the calculation scheme at fixed holonomy reduces to
the cohomological gauge theory (4.6)

Zy = /D[a,¢,¢]e‘5qf—4d.

It is tempting to treat the theory defined by (4.6) in a perturbative expan-
sion in gs;. Indeed, the propagators for this theory would be given by the
terms in the second line of (4.6) and as such would be localized on two-
dimensional cycles. Moreover, the interaction terms in the first line give rise
to cubic vertices. This structure is similar to the one found for the topolog-
ical vertex computing Gromov-Witten invariants on toric CYs [1] and their
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generalization to degenerated torus actions studied in [13]. It would be nice
to try to make a closer comparison with these formalisms.

5 Conclusions and open issues

In this paper, we have been developing a general reduction scheme for coho-
mological gauge theories on local spaces. Actually we have been study-
ing in detail the case of twisted maximally supersymmetric gauge theories,
but we believe that a more general reduction scheme holds also for other
cases. In particular, a tempting relation among Donaldson invariants and
two-dimensional Yang—Mills theories would appear in the reduction of the
twisted A/ = 2 theory. Let us here discuss few open issues raised by the
analysis we performed in this paper.

As far as the comparison among the calculation of the D4/D2/D0 par-
tition function in the scheme in four and in two dimensions is concerned,
it remains to fully recognize the precise encoding by the ¢YMs of the bulk
point-like instantons [17,19]. Actually our reduction mechanism gives non-
trivial results only for gauge fields with non-trivial holonomy at infinity,
suggesting the possible existence of a further branch. This could be related
to the fact that in the vicinity of the base manifold we assumed some regular-
ity conditions for the fields, see Section 3.1. It is possible that our criteria are
too strict and that we should include more general field configurations. In
particular, the inclusion of singular fields via a suitable compactification of
the space of U(1)-invariant configurations could provide the missing terms.
From the analysis of [25], one could expect that at least in the rank one case
this compactification contains the symmetric product [ of k copies of the
base manifold ¥, k£ being the instanton number. This would properly take
into account the contribution of point-like instantons.

In Section 4, we generalized the dimensional reduction of the path integral
to the six-dimensional abelian gauge theory on the local CY surface K — 3.
One should be able to compare the calculation of the partition function of
the reduced gauge theory on the four manifold ¥ with the topological string
partition function on the local Calabi-Yau, for example in the case ¥ = CP?
and K = O(-3).

The ability to show that the fields with non-zero vertical momentum do
not really contribute to the topological theory could be extended in other
cases. The mechanism we have shown could generalize to Schwarz-type
theories, like Chern—Simons and holomorphic Chern—Simons, giving an off-
shell reduction for the constructions made in [10]. Moreover, it could extend
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to cohomological gauge theories on more general local spaces with higher
number of non-compact directions.
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