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Abstract

Several Einstein–Sasaki seven-metrics appearing in the physical liter-
ature are fibred over four-dimensional Kahler–Einstein metrics. Instead
we consider here the natural Kahler–Einstein metrics defined over the
twistor space Z of any quaternion Kahler four-space, together with the
corresponding Einstein–Sasaki metrics. We work out an explicit expres-
sion for these metrics and we prove that they are indeed tri-Sasaki.
Moreover, we present a squashed version of them which is of weak G2
holonomy. We focus in examples with three commuting Killing vectors
and we extend them to supergravity backgrounds with T 3 isometry, some
of them with AdS4 × X7 near horizon limit and some others without
this property. We would like to emphasize that there is an underlying
linear structure describing these spaces. We also consider the effect of
the SL(2, R) solution-generating technique presented by Maldacena and
Lunin to these backgrounds and we find some rotating membrane con-
figurations reproducing the E–S logarithmic behaviour.

1 Introduction

A duality between quantum field theories and strings was proposed by t’
Hooft in [1], where it was noticed that any Feynman diagram of an U(N)
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gauge theory with matter fields can be drawn over a two-dimensional surface.
Few of these diagrams corresponds to a plane or to a sphere, higher diagrams
are drawn over a surface with non-trivial genus, such as the torus. Any closed
line contributes with a factor N to the amplitude. The partition function
results in an expansion in terms of the form cg(λ)N2−2hh being the genus
(or the number of holes) of the two-dimensional surface and cg(λ) certain
function of the t’ Hooft coupling λ = g2N . In the large N limit and keeping
fixed λ the powers N2−2h goes all to zero except for diagrams with h = 0, 1.
For this reason this limit is called the planar limit. If λ � 1 then g � 1, this
corresponds to the perturbative regime. On the other hand for λ � 1 the
amplitudes have been found to be a sum of terms of the form Ag(λ)gh−1.
In practice N = 3 can be considered as a large number of colours and this
expansion corresponds to non-perturbative phenomena [1, 2]. If in addition
the variable λ became large then more diagrams contribute and become
dense in the sphere. It was suggested [1] that this diagrammatic expansion
is describing a discrete version of string theory in which Ag is interpreted
as a closed string amplitude. This string theory is defined as the result of
summing all the planar diagrams.

The idea of a duality between strings and gauge theories was devel-
oped further in [3] and led to the AdS/CFT correspondence. As is well
known, D-branes are solitonic objects in superstring theory which admit a
gauge/gravity low energy interpretation. This is because the low energy
dynamic of massless open string states on a Dp brane is, at first order, a
(p + 1)-dimensional supersymmetric gauge theory, and in the closed string
channel a Dp brane is a solution of the low energy supergravity solution
in presence of a Cp Rammond–Rammond p-form. The Yang–Mills cou-
pling constant is related to the string coupling by gY M ∼ gsl

p−3
s . This sug-

gests that it is possible to make gauge theory calculations from supergravity
solutions and this is indeed one of the motivations of the AdS/CFT cor-
respondence [3]. The original statement of AdS/CFT is that N = 4 super
Yang–Mills theory is dual to type IIB strings in AdS5 × S5. In fact SU(N)
N = 4 super Yang–Mills is the field theory on N D3 branes at low ener-
gies, and the near horizon limit of these branes is AdS5 × S5. In addition,
for the specific value p = 3, we have that gY M ∼ gs and one can take the
limit ls → 0 and trust in the supergravity approximation. For N = 4 super
Yang–Mills theory the beta function vanish at all orders and is therefore
conformally invariant, which means that the coupling constant is not renor-
malized. This is reflected in the AdS5 factor of conjectured dual. The theory
is also scale invariant quantum mechanically. As a consequence of the con-
formal symmetry the number of supercharges of the super Yang–Mills side
is 32, the same than IIB superstrings in AdS5 × S5. The supergroups of
both theories are the same. Besides, both sides contains two parameters.
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For the Yang-Mills theory they are gY M and N and for the superstring side
they are the string tension R2/α and gs. In addition to the identification
gY M ∼ gs the AdS/CFT conjecture implies that the t’ Hooft coupling is
given by λ = R4/α2.

The gravity description of string theory, which occurs when the size of
the graviton is much less than the radius of the space, corresponds to the
limit λ � 1. In these limits non-perturbative phenomena of the super Yang–
Mills side can be analysed. This implies that the AdS/CFT correspondence
relates the week coupling limit of one of the theories to the strong coupling
of the other and vice versa, which makes it a powerful tool in order to study
strongly coupled regimes in gauge theories. A precise statement of the corre-
spondence was developed further in [4], where it was stated that composite
operators of the form Oi1...ik(x) = Tr(φi1 . . . φi1) mix and are renormalized,
therefore they acquire anomalous dimensions. These dimensions are identi-
fied with the energy eigenstates of IIB strings over AdS5 × S5.

A more recent advance in understanding AdS/CFT is the BMN correspon-
dence, in which the anomalous dimensions of large R-operators were related
to the spectrum of string theory on the pp-wave limit of AdS5 × S5 [6]. This
idea was refined in [7] by stating that gauge theory operators with large
spin are dual to strings rotating in the AdS space. The main observation
providing this identification is that, for strings rotating in the AdS space,
the difference between the energy and the spin of the configuration depends
logarithmically on the spin. This logarithmic dependence is characteristic of
the anomalous dimensions of the twist operators of the gauge theory. There
is evidence about that the logarithmic dependence does not acquire correc-
tions if we go from the perturbative to the strong coupling regime in the t’
Hooft coupling [8].

Although N = 4 super Yang–Mills cannot be considered as a realistic
theory, the AdS/CFT correspondence could be an useful tool in realistic
calculations. This is because the finite temperature version of N = 4 SYM
has certain analogies with realistic elementary particle models, although the
zero temperature version has not (see for instance [17]). Also, the purely
gravitational aspects of this correspondence are related to a wide variety
of problems in differential geometry (see for instance [14]). Nevertheless,
it is of interest to generalize this duality to other types of theories. This
could be for instance theories with less number of supercharges than 32
[15, 16], or to consider non-conformal field theories duals [5], such as the
Klebanov–Strassler ones [9]. For conformal field theories, the AdS/CFT cor-
respondence has been generalized to the holographic principle [4], in which
is stated that any AdS vacuum of string or M theory define a conformal
field theory. In the case of AdS5 × X5, being X5 an Einstein manifold, the



1062 O.P. SANTILLAN

central charge of the conformal field theory is, in the large N limit, inversely
proportional to the volume of X5 [18]. The holographic principle permits to
consider gauge/string duals with less number of supersymmetries, and have
been generalized for 11-dimensional backgrounds of the form AdS4 × X7,
which are duals to three-dimensional superconformal field theories [4].

The holographic principle renewed the interest in constructing five- and
seven-dimensional Einstein manifolds and in particular those admitting at
least one conformal Killing spinor. The number of such spinors will be
related to the number of supersymmetries of the conformal field theory.
This leads to consider weak G2 holonomy spaces, Einstein–Sasaki spaces
and tri-Sasaki ones. Several examples have been constructed for instance in
[31–44] and there have been certain success for finding gauge/gravity duals
corresponding to these backgrounds [45–62].

A new step for finding gauge/gravity duals with less number of super-
symmetries was achieved in [12], where it was considered a three-parameter
deformations of N = 4 super Yang–Mills superpotential that preserves N = 1
supersymmetry [13] (see also [11]). These deformations are called β defor-
mations. The original superpotential of the theory W = Tr[[Φ1, Φ2], Φ3] is
transformed as

Tr(Φ1Φ2Φ3 − Φ1Φ3Φ2) → h Tr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2)

+ h′Tr(Φ3
1 + Φ3

2 + Φ3
3), (1.1)

h, h′, β being complex parameters, satisfying one condition by conformal
invariance. One election could be h′ = 0. Besides the U(1)R symmetry,
there is a U(1) × U(1) global symmetry generated by

U(1)1 : (Φ1, Φ2, Φ3) → (Φ1, e
iϕ1Φ2, e

−iϕ1Φ3),

U(1)2 : (Φ1, Φ2, Φ3) → (e−iϕ2Φ1, e
iϕ2Φ2, Φ3), (1.2)

which leaves the superpotential and the supercharges invariant. Therefore
there is a two-dimensional manifold of N = 1 CFT with a torus symmetry.
It was found in [12] that the U(1) × U(1) action is realized in gravity part
as an isometry. The effect of the γ-deformation of N = 4 super Yang–Mills
induce in the gravity dual the simple transformation

τ ≡ B + i
√

g −→ τ −→ τ ′ =
τ

1 + γτ
, (1.3)

where
√

g is the volume of the two torus [12]. The transformation (1.3)
indeed comes from a known solution generating-technique explained in [10].

The transformations (1.3) are not the full SL(2, R) transformations.
Indeed (1.3) is the subgroup of SL(2, R) for which τ → 0 implies that τ ′ → 0.
In fact, from (1.3) it follows that τγ = τ + o(τ2) for small τ . Transformations
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with these properties are the only possible ones mapping a ten-dimensional
geometry which is non-singular to a new one also without singularities.
The reason is that the only points where a singularity can be introduced
by performing an SL(2, R) transformation is where the two torus shrinks to
zero size. This shrink happens when τ ′ → 0 but for γ transformations, this
implies that τ → 0. Therefore, if the original metric was non-singular, then
the deformed metric is also non-singular [12]. The transformation (1.3) is the
result of doing a T-duality on one circle, a change of co-ordinates, followed
by another T-duality. This is another reason for which it can be interpreted
as a solution-generating technique [10]. It has been applied recently in order
to find several deformed backgrounds in [63–65], together with an analysis
of their gauge field theory duals.

Sketch of the present work. In the present work we construct an infinite
family of tri-Sasaki metrics in seven dimensions and we find that all these
metrics admit a squashed version which is of weak G2 holonomy. The idea
behind this construction is simple. Our starting point is the Swann hyper-
Kahler metrics [79], which are fibrations over quaternion Kahler metrics g4
of the form

gs = |u|2g4 + |du + ωu|2,

u being a certain quaternion co-ordinate and ω an imaginary quaternion val-
ued one-form associated to the quaternion Kahler space. Under the trans-
formation u → λu these metrics are scaled by a factor gs → λ2gs, thus are
conical and define a family of tri-Sasaki metrics. We find the explicit expres-
sion for this family, which is composed of fibrations over quaternion Kahler
spaces. The six-dimensional space formed by the orbits of the Reeb vector
is indeed well known, it is the twistor space Z associated to the quaternion
Kahler-base. The resulting reduced metric is the natural Kahler–Einstein
metric defined over Z [22]. This result is presented in Proposition 2.1 of
Section 2.

We show that if the quaternion Kahler base is CP(2), the resulting tri-
Sasaki metric is N(1, 1)I , which is known to admit a squashed version
N(1, 1)II of weak G2 holonomy [34]. Guided by this result, we find that the
squashed version of any of the tri-Sasaki metrics that we are presenting are of
weak G2 holonomy. They are indeed the weak G2 holonomy metrics defined
by the exactly conical family of Bryant–Salamon Spin(7) metrics [23].

We then manage to find tri-Sasaki (and weak G2 holonomy) examples
which are locally T 3 fibrations. These seven-dimensional Einstein metrics
are fibred over certian quaternion Kahler orbifolds, the quaternion Kahler
limit of the euclidean AdS–Kerr–Newman–Taub–Nut metrics. These four-
metrics itself corresponds to a Wick rotation of the Minkowski
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Plebanski–Demianski metric [81] and were considered in several contexts
[82–87]. In some limiting cases for the parameters, the euclidean versions
tend to S4 or CP(2), which are smooth. We also consider the most general
quaternion Kahler T 2 fibrations, which were found in [95]. The presence
of orbifold singularities is of interest in the context of AdS/CFT correspon-
dence, because they lead to situations generalizing those analysed by Mandal
et al. in [76].

We then lift these seven-metrics to supergravity solutions possessing near
horizon limit AdS4 × X7, X7 being a tri-Sasaki or weak G2 holonomy space.
We also construct solutions which does not have this horizon limit. In
the manifold limit S4 of the quaternion Kahler base we analyse rotating
membrane configurations and we reproduce the logarithmic behaviour of
E–S, thus these configurations are dual to the “twist” operators of the
dual conformal field theory. The methods we use are analogous to those
appearing in [19].

We also consider the effect of the SL(2,R) deformation and construct new
supergravity solutions, the deformed ones. We reproduce the logarithmic
behaviour for the deformed background corresponding to S4.

For completeness, we discuss another type of Kahler–Einstein example
that is present in the literature and present some Calabi–Yau metrics fibred
over non-symmetric Kahler spaces, by using the methods developed
in [68, 69].

2 Conical internal spaces

A wide variety of supergravity backgrounds can be constructed as fibrations
over Ricci flat conical metrics. An n-dimensional manifold Xn develops a
conical singularity if and only if it is possible to find a co-ordinate system
with a co-ordinate r for which the metric has the local form

gn = dr2 + r2gn−1, (2.1)

gn−1 being a metric tensor independent on r. The metric gn will be singular
at r = 0, except if gn−1 is the round n − 1 dimensional sphere. Any metric
gn of the form (2.1) is called a cone over gn−1. There also exist metrics taking
the form (2.1) for large values of r, such metrics are called asymptotically
conical. If the conical metric gn is Ricci-flat, i.e., its Ricci tensor satisfies
Rij = 0, then gn−1 is Einstein, which means that its Ricci tensor is given
by Rab ∼ gab. In this section we discuss the geometrical properties of such
cones and construct a large family. The geometrical objects that enter in this
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construction are Kahler–Einstein, Einstein–Sasaki, tri-Sasaki, hyperKahler,
weak G2 and Spin(7) holonomy spaces. We use the word space instead
of manifold in order to keep open the possibility of constructing spaces
admitting orbifold or other type of singularities. The reader who is familiar
with these concepts can jump to the the last two subsections, in particular
to Proposition 2.1.

2.1 Spin(7) and weak G2 holonomy

A weak G2 holonomy space X7 is a seven-dimensional space with a metric g7
and admitting at least one conformal Killing spinor, i.e., a spinor satisfying
Djη ∼ λη [107]. Here λ is a constant and Di is the covariant derivative
in spinor representation, which is defined by Di = ∂i + ωiabγ

ab. The one-
form ωab is the spin connection on X7 defined by the first Cartan equation
with zero torsion and γab is the antisymmetric product of Dirac γa matrices
in seven dimensions. If the constant λ is zero, then the spinor will be
covariantly constant and it will be preserved after parallel transport along
any closed curve. This means that the holonomy will be in G2, which is
the subgroup of SO(7) which possess a one-dimensional invariant subspace.
The reduction of the holonomy to G2 is equivalent to the existence of a G2
invariant three-form

Φ = cabce
a ∧ eb ∧ ec

which is covariantly constant, i.e., ∇XΦ = 0 for any vector field X. We
denote as ea seven-soldering forms for which the metric is diagonal, i.e.,
g7 = δabe

a ⊗ eb and cabc are the octonion multiplication constants. This
condition holds if and only if Φ and its dual ∗Φ are closed. Instead for
a weak G2 holonomy space the existence of a conformal Killing vector is
equivalent to the condition dΦ = λ ∗ Φ. Such spaces have generically SO(7)
holonomy and there exists a frame for which the spin connection ωab satisfies

ωab =
cabcd

2
ωcd − λcabce

c,

cabcd being the dual octonion constants. The last condition implies that a
weak G2 holonomy manifold is always Einstein, i.e., Rij = λgij . In the limit
λ → 0 the space will be Ricci flat. This is the case for a G2 holonomy space
or for any euclidean space admitting covariantly constant Killing spinors.

Spaces with holonomy in Spin(7) ∈ SO(8) are eight-dimensional and also
admitting one covariantly constant Killing spinor, thus are Ricci flat. Similar
to its G2 counterpart, they are characterized by a closed Spin(7) invariant
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four-form

Φ4 = c̃abcde
a ∧ eb ∧ ec ∧ ed.

We are in the middle dimension here and Φ4 = ∗Φ4. Here c̃abcd are constants
related to the octonion constants and from its values it follows that Φ4 can
be reexpressed as

Φ4 = e8 ∧ Φ + ∗Φ (2.2)

Φ being a G2 invariant three-form constructed with the seven remaining sol-
dering forms. The expression (2.2) is the origin of a correspondence between
conical Spin(7) holonomy metrics of cohomogeneity one and weak G2 holo-
nomy ones. More precisely, any of such Spin(7) metrics is of the form

g8 = dr2 + r2g7,

g7 being a metric of weak G2 holonomy and conversely, for any weak G2
holonomy metric g7 the cone g8 will be of Spin(7) holonomy. This can be
seen as follows. Let us consider the choice of the frame ẽa given by

ẽ8 = dr, ẽa = −λ

4
rea, (2.3)

ea being seven soldering forms corresponding to g7. In principle there is an
SO(8) freedom to choose our frame, but if the element ẽ8 is fixed as ẽ8 = dr,
then there it remains an SO(7) freedom only. The first Cartan structure

dẽa + ω̃ab ∧ ẽb = 0,

gives the decomposition

ωab = ω̃ab, ω̃8a =
λ

4
ea, (2.4)

ωab being the spin connection for the seven-dimensional part. Let us assume
that the form Φ̂ constructed with (2.3) is closed, this is what we mean about
cohomogeneity one. Then (2.3) and (2.2) give

˜Φ =
(

λr

4

)3

dr ∧ Φ +
(

λr

4

)4

∗ Φ,

d˜Φ = −
(

λr

4

)3

dr ∧
(

dΦ − λ ∗ Φ
)

+
(

λr

4

)4

d ∗ Φ, (2.5)

where Φ and ∗Φ are the usual seven-dimensional three- and four-forms
constructed with the frame ea. It is directly seen from (2.8) that Spin(7)
holonomy condition, namely d˜Φ = 0 is equivalent to weak G2 holonomy of
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the seven-dimensional base space, i.e., to the condition

dΦ − λ ∗ Φ = 0, d ∗ Φ = 0.

The converse of this statement is also true. Indeed, equations (2.3) are
equivalent to

ω̃ab =
1
2
cabcdω̃

cd,

which is the eight-dimensional self-duality condition implying the reduction
of the holonomy to a subgroup of Spin(7). This is the one-to-one correspon-
dence we wanted to show [29] (see also [30]).

For applications to marginal deformations of field theories it is needed to
focus on metrics with weak G2 holonomy admitting T 3 actions. Examples
are the Aloff–Wallach spaces N(k, l) = SU(3)

U(1) , which possess two different
metrics N(k, l)I and N(k, l)II . Except for N(1, 1)I , which is tri-Sasaki,
the remaining metrics are of weak G2 holonomy. For N(1, 1) we have the
isometry group SU(3) × SO(3) while for the other cases we have SU(3) ×
U(1). Another example is the squashed seven sphere SO(5) × SO(3)

SO(3) × SO(3)
with isometry group SO(5) × SO(3). If the manifold is homogeneous, i.e.,
if X7 is of the form G

H then it will be one of this type, see [32, 33] for a
detailed discussion. Our aim is to construct a more large class of weak G2
holonomy manifolds admitting a T 3 action, not necessarily homogeneous.

2.2 Einstein–Sasaki and Kahler–Einstein spaces

As in the previous subsection, let us consider an eight-dimensional space
X8 endowed with a metric g8 and with holonomy in Spin(7). If X8 possess
two Killing spinors instead of one, then the holonomy will be reduced fur-
ther to SU(4) ∈ Spin(7). In fact, SU(4) is the subgroup of SO(8) with a
two-dimensional invariant subspace. As is well known, any 2n-dimensional
metric with holonomy SU(n) is Calabi–Yau, and so is g8. If in addition g8
is conical, then the seven-dimensional metric g7 over which g8 is fibred will
be called Einstein–Sasaki. This metric will possess two conformal Killing
spinors. If there is a third Killing spinor, we have a further reduction of
the holonomy to Sp(2) ∈ SU(4). Any 4n dimensional space with holonomy
in Sp(n) is hyperKahler, in particular g8. In this case g7 will be called tri-
Sasaki because it admits three conformal Killing spinors. We can take this
notion as definition, for any value of n. Clearly, any tri-Sasaki metric is
Einstein–Sasaki and if we are in seven dimensions they will be of weak G2
holonomy. Also any hyperKahler metric is Calabi–Yau, and in d = 8 they
will be Spin(7) metrics. The converse of these statements are obviously
non-true.
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Any Calabi–Yau space is Ricci flat due to the presence of Killing spinors,
and is also Kahler. A Kahler structure over a space X2n is defined by
a doublet (g2n, I) composed by an even dimensional metric g2n, a (1, 1)
antisymmetric tensor I such that I2 = −I which is covariantly constant,
i.e., ∇XI = 0 ∇ being the Levi–Civita connection and for which the met-
ric is quaternion Hermitian (which means that g2n(IX, IY ) = −g2n(X, Y )
for any pair of vector fields X, Y of the tangent space at a given point).
From the antisymmetry of I it follows that the (2, 0) tensor with compo-
nents Ω(X, Y ) = g2n(IX, Y ) is a two-form. The covariance of I implies that
Ω is closed and that I is integrable, i.e., its Nijenhuis tensor vanishes iden-
tically. This implies that X2n is a complex manifold. Sometimes the triplet
(g2n, I,Ω) is identified as the Kahler structure in the literature, but only if
the properties stated here are all satisfied.

An Einstein–Sasaki space X2n+1 is always odd-dimensional and can be
constructed as an R or U(1)-fibration over a Kahler–Einstein metric. The
local form of their metric is

g2n+1 = (dτ + A)2 + g2n, (2.6)

Ω = dA being the Kahler form of the Kahler–Einstein metric g2n. The metric
g2n is assumed to be τ -independent. The vector ∂τ is Killing, and it is called
the Reeb vector. If the orbits of this vector are closed and the action is free,
then X2n is a manifold and the odd-dimensional manifold X2n+1 is regular.
If the action has finite isotropy groups then X2n is an orbifold. In addition,
the Einstein condition Rij ∼ gij for g2n has been shown to be equivalent
to [70]

ρ = ΛΩ (2.7)

ρ = −i∂∂ log det g being the Ricci form of the metric g2n. The scalar cur-
vature of g2n is 2nΛ.

2.3 Quaternion Kahler and hyperKahler spaces

A quaternion Kahler space M is an euclidean 4n dimensional space with
holonomy group Γ included into the Lie group Sp(n) × Sp(1) ⊂ SO(4n) [25–
28]. This affirmation is non-trivial if D > 4, but in D = 4 there is the well-
known isomorphism Sp(1) × Sp(1) � SU(2)L × SU(2)R � SO(4) and so to
state that Γ ⊆ Sp(1) × Sp(1) is equivalent to state that Γ ⊆ SO(4). The
last condition is trivially satisfied for any oriented space and gives almost
no restrictions, therefore the definition of quaternion Kahler spaces should
be modified in d = 4.
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Here we do a brief description of these spaces; more details can be found
in the appendix and in the references therein. For any quaternion, there
exists three automorphism J i (i = 1, 2, 3) of the tangent space TMx at a
given point x with multiplication rule J i · J j = −δij + εijkJ

k. The metric
gq is quaternion Hermitian with respect to this automorphism, i.e.,

gq(X, Y ) = g(J iX, J iY ), (2.8)

X and Y being arbitrary vector fields. The reduction of the holonomy to
Sp(n) × Sp(1) implies that the J i satisfies the fundamental relation

∇XJ i = εijkJ
jωk

−, (2.9)

∇X being the Levi–Civita connection of M and ωi
− its Sp(1) part. As a

consequence of hermiticity of g, the tensor J
i
ab = (J i)c

agcb is antisymmetric,
and the associated two-form

J
i = J

i
abe

a ∧ eb

satisfies

dJ
i = εijkJ

j ∧ ωk
−, (2.10)

d being the usual exterior derivative. Corresponding to the Sp(1) connection
we can define the two-form

F i = dωi
− + εijkω

j
− ∧ ωk

−.

For any quaternion Kahler manifold it follows that

Ri
− = 2nκJ

i
, (2.11)

F i = κJ
i
, (2.12)

Λ being a certain constant and κ the scalar curvature. The tensor Ra
− is

the Sp(1) part of the curvature. The last two conditions imply that g is
Einstein with non-zero cosmological constant, i.e., Rij = 3κ(gq)ijRij being
the Ricci tensor constructed from gq. The (0,4) and (2,2) tensors

Θ = J
1 ∧ J

1 + J
2 ∧ J

2 + J
3 ∧ J

3
,

Ξ = J1 ⊗ J1 + J2 ⊗ J2 + J3 ⊗ J3

are globally defined and covariantly constant with respect to the usual Levi–
Civita connection for any of these spaces. This implies in particular that
any quaternion Kahler space is orientable.
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In four dimensions the Kahler triplet J2 and the one-forms ωa
− are

ωa
− = ωa

0 − εabcω
b
c, J1 = e1 ∧ e2 − e3 ∧ e4,

J2 = e1 ∧ e3 − e4 ∧ e2, J3 = e1 ∧ e4 − e2 ∧ e3.

In this dimension quaternion Kahler spaces are defined by the conditions
(A:.16) and (A:.15). This definition is equivalent to state that quaternion
Kahler spaces are Einstein and with self-dual Weyl tensor.

In the Ricci-flat limit κ → 0 the holonomy of a quaternion Kahler space
is reduced to a subgroup of Sp(n) and the resulting spaces are hyperKahler.
It follows from (A:.16) and (2.9) that the almost complex structures Ji

are covariantly constant in this case. Also, there exists a frame for which
ωi

− goes to zero. In four dimensions this implies that the spin connection
corresponding to this frame is self-dual.

2.4 An infinite tri-Sasaki family in detail

The results of this section are crucial for the purposes of the present work.
For this reason we will make the calculations in detail. As we have stated,
any hyperKahler conical metric g8 defines a tri-Sasaki metric by means of
the formula g8 = dr2 + r2g7. A well-known family of conical hyperKahler
metrics are the Swann metrics [79]; these are 4n dimensional metric but we
will focus only in the case d = 8. The metric reads

g8 = |u|2gq + |du + uω−|2, (2.13)

gq being any four-dimensional quaternion Kahler metric. These metrics rep-
resent a sort of inversion of the hyperKahler quotient introduced in [98] (see
also [106]). In the expression for the metric we have defined the quaternions

u = u0 + u1I + u2J + u3K, u = u0 − u1I − u2J − u3K,

and the quaternion one form

ω− = ω1
−I + ω2

−J + ω3
−K,

constructed with the anti-self-dual spin connection. The multiplication rule
for the quaternions I, J and K is deduced from

I2 = J2 = K2 = −1, IJ = K, JI = −K.

The metric gq is assumed to be independent on the co-ordinates ui. We
easily see that if we scale u0, u1, u2, u3 by t > 0 this scales the metric by
a homothety t, which means that the metrics (2.13) are conical. Therefore
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they define a family of tri-Sasaki metrics, which we will find now. We first
obtain, by defining ũi = ui

u that

|du + uω−|2 = (du0 − uiω
i
−)2 +

(

dui + u0ω
i
− +

εijk

2
ukω

j
−

)2

= (ũ0du + udũ0 − uũiω
i
−)2

+
(

ũidu + udũi + uũ0ω
i
− + u

εijk

2
ũjω

k
−

)2

= du2 + u2(dũ0 − ũiω
i
−)2 + u2

(

dũi + ũ0ω
i
− +

εijk

2
ũjω

k
−

)2

+ 2uu0du(dũ0 − ũiω
i
−) + 2uuidu

(

dũi + ũ0ω
i
− +

εijk

2
ũjω

k
−

)

.

It is not difficult to see that the last two terms are equal to

2uu0du(dũ0 − ũiω
i
−) + 2uuidu(dũi + ũ0ω

i
− + εijkũiũkω

j
−)

=
d(ũ2

i )
2

+
εijk

2
ũiũjω

k
−.

But the second term is a product of an antisymmetric pseudotensor with
a symmetric expression, thus is zero, and the first term is zero due to the
constraint ũ2

i = 1. Therefore this calculation shows that

|du + uω−|2 = du2 + u2(dũ0 − ũiω
i
−)2 + u2

(

dũi + ũ0ω
i
− +

εijk

2
ũjω

k
−

)2
.

(2.14)

By introducing (2.14) into (2.13) we find that g8 is a cone over the following
metric

g7 = gq + (dũ0 − ũiω
i
−)2 + (dũi + ũ0ω

i
− +

εijk

2
ũjω

k
−)2. (2.15)

This is the tri-Sasaki metric we were looking for. By expanding the squares
appearing in (2.15) we find that

g7 = gq + (dũi)2 + (ωi
−)2 + 2ω1

−(ũ0dũ1 − ũ1dũ0 + ũ2dũ3 − ũ3dũ2)

+ 2ω2
−(ũ0dũ2 − ũ2dũ0 + ũ2dũ1 − ũ1dũ3)

+ 2ω3
−(ũ0dũ3 − ũ3dũ0 + ũ1dũ2 − ũ2dũ1). (2.16)

But the expression in parenthesis are a representation of the SU(2) Maurer–
Cartan one-forms, which are defined by

σ1 = −(ũ0dũ1 − ũ1dũ0 + ũ2dũ3 − ũ3dũ2)

σ2 = −(ũ0dũ2 − ũ2dũ0 + ũ2dũ1 − ũ1dũ3)

σ3 = −(ũ0dũ3 − ũ3dũ0 + ũ1dũ2 − ũ2dũ1).
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Therefore the metric (2.15) can be re-expressed in simple fashion as

g7 = gq + (σi − ωi
−)2. (2.17)

This is one of the expressions that we will use along this work.

Let us recall that there exists a co-ordinate system for which the Maurer–
Cartan forms are expressed as

σ1 = cos ϕdθ + sin ϕ sin θdτ, σ2 = − sin ϕdθ + cos ϕ sin θdτ,

σ3 = dϕ + cos θdτ. (2.18)

With the help of this co-ordinate we will write (2.17) in a more customary
form for tri-Sasaki spaces, namely

g7 = (dτ + H)2 + g6, (2.19)

as in (2.6). Here g6 a Kahler–Einstein metric with Kahler form J and H
a one-form such that dH = 2J . A lengthy algebraic calculation shows that
the fibre metric is

(σi − ωi
−)2 = (dτ + cos θdϕ − sin θ sin ϕω1

− − cos θ sin ϕω2
− − cos θω3

−)2

+ (sin θdϕ − cos θ sin ϕω1
− − cos θ cos ϕω2

− + sin θω3
−)2

+ (dθ − sin ϕω2
− + cos ϕω1

−)2,

from where we read that

H = cos θdϕ − sin θ sin ϕω1
− − cos θ sin ϕω2

− − cos θω3
−. (2.20)

The vector ∂τ is the Reeb vector, and is a Killing vector. The six-dimensional
metric

g6 = gq + (dθ − sin ϕω2
− + cos ϕω1

−)2,

+ (sin θdϕ − cos θ sin ϕω1
− − cos θ cos ϕω2

− + sin θω3
−)2, (2.21)

should be Kahler–Einstein. We will check that this is the case next.

Another deduction of the tri-Sasaki metrics (2.17). We will prove now
that the six-dimensional space formed by the orbits of the Reeb vector of
the tri-Sasaki family presented before is the twistor space Z associated to the
quaternion Kahler base. The resulting reduced metric (2.21) is the natural
Kahler–Einstein metric defined over Z [22]. We need first to define what is
Z. Recall that for any quaternion Kahler space M , a linear combination of
the almost complex structures of the form J = ṽiJi will be also an almost
complex structure on M . Here ṽi denote three “scalar fields” ṽi = vi/v

being v =
√

vivi. These fields are assumed to be constant over M and are
obviously constrained by ṽiṽi = 1. This means that the bundle of almost
complex structures over M is parameterized by points on the two sphere S2.
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This bundle is what is known as the twistor space Z of M . The space Z is
endowed with the metric

g6 = θiθi + gq, (2.22)

where θi = d(ṽi) + εijkωj
−ṽk. The constraint ṽiṽi = 1 implies that the metric

(2.22) is six-dimensional. It has been shown that this metric together with
the sympletic two-form [22, 24]

J = −ũiJ i +
εijk

2
ṽiθj ∧ θk, (2.23)

constitutes a Kahler structure. The calculation of the Ricci tensor of g6
shows that it is also Einstein, therefore the space Z is Kahler–Einstein. The
expressions given next are written for a quaternion Kahler metric normal-
ized such that κ = 1; for other normalizations certain coefficients must be
included in (2.23). By parameterizing the co-ordinates ṽi in the spherical
form

ṽ1 = sin θ sin ϕ, ṽ2 = sin θ cos ϕ, ṽ3 = cos θ, (2.24)

we find that (2.22) is the same as (2.21). The isometry group of the Kahler–
Einstein metrics is in general SO(3) × G, G being the isometry group of the
quaternion Kahler basis which also preserves the forms ωi

−. The SO(3) part
is the one which preserves the condition ṽiṽi = 1. Globally the isometry
group could be larger.

From the definition of Einstein–Sasaki geometry, it follows directly that
the seven-dimensional metric

g7 = (dτ + H)2 + g6 = (dτ + H)2 + θiθi + gq, (2.25)

will be Einstein–Sasaki if dH = 2J , and we need to find an explicit expres-
sion for such H. Our aim is to show that this form is indeed (2.20).
The expression (2.23) needs to be simplified as follows. We have that
θi = d(ṽi) + εijkωj

−ṽk. Also by using the condition ṽiṽi = 1 it is found that

ṽiθi = ṽidṽi + εijkṽiωj
−ṽk = ṽidṽi = d(ṽiṽi) = 0.

From the last equality it follows the orthogonality condition ṽiθi = 0 which
is equivalent to

θ3 = −(ṽ1θ1 + ṽ2θ2)
ṽ3

.

The last relation implies that

εijk

2
ṽiθj ∧ θk =

θ1 ∧ θ2

ṽ3
=

dṽ1 ∧ dṽ2

ṽ3
− dṽi ∧ ωi

− +
εijk

2
ṽiω

j
− ∧ ωk

−.

Besides in a quaternion Kahler manifold with κ = 1 we always have

˜Ji = dωi
− +

εijk

2
ωj

− ∧ ωk
−.
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Inserting the last two expressions into (2.23) gives a remarkably simple
expression for J , namely

J = −d(ṽiω
i
−) +

dṽ1 ∧ dṽ2

ṽ3
. (2.26)

By using (2.24) it is obtained that

dṽ1 ∧ dṽ2

ṽ3
= −dϕ ∧ d cos θ.

With the help of the last expression we find that (2.26) can be rewritten as

J = −d(ṽiω
i
−) − dϕ ∧ d cos θ,

from where it is obtained directly that the form H such that dH = J is [67]

H = −ṽiω
i
− + cos θdϕ, (2.27)

up to a total differential term. By introducing (2.24) into (2.27) we find
that H is the same than (2.20), as we wanted to show.

It will be of importance for the purposes of the present work to state these
results in a concise proposition.

Proposition 2.1. Let gq be a four-dimensional Einstein space with self-dual
Weyl tensor, i.e., a quaternion Kahler space. We assume the normalization
κ = 1 for gq. Then the metrics

g6 = gq + (dθ − sin ϕω2
− + cos ϕω1

−)2

+ (sin θdϕ − cos θ sin ϕω1
− − cos θ cos ϕω2

− + sin θω3
−)2

are Kahler–Einstein while

g7 = (σi − ωi
−)2 + gq, g8 = dr2 + r2g7

are tri-Sasaki and hyperKahler, respectively. Here ωi
− is the Sp(1) part of

the spin connection and σi are the usual Maurer–Cartan one-forms over
SO(3). Moreover the “squashed” family

g7 = (σi − ωi
−)2 + 5gq,

is of weak G2 holonomy.

We will consider the last sentence of this proposition in the next section.
In order to complete this section we would like to describe a little more the
Swann bundles. Under the transformation u → Gu with G : M → SU(2)
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the SU(2) instanton ω− is gauge transformed as ω− → Gω−G−1 + GdG−1.
Therefore the form du + ω−u is transformed as

du + uω− → d(Gu) + (Gω−G−1 + GdG−1)Gu

= Gdu + (dG + Gω− − dG)u = G(du + uω−),

and it is seen that du + ω−u is a well-defined quaternion-valued one-form
over the chiral bundle. The metric (2.13) is also well defined over this bundle.
Associated to the metric (2.13) there is a quaternion-valued two-form

˜J = uJu + (du + uω−) ∧ (du + uω−), (2.28)

and it can be checked that the metric (2.29) is Hermitian with respect to
any of the components of (2.28). Also

d˜J = du ∧ (J + dω− − ω− ∧ ω−)u + u ∧ (J + dω− − ω− ∧ ω−)du

+ u(dJ + ω− ∧ dω− − dω− ∧ ω−)u.

The first two terms of the last expression are zero due to (A:.16). Also by
introducing (A:.16) into the relation (2.10) it is seen that

dJ + ω− ∧ dω− − dω− ∧ ω− = 0,

and therefore the third term is also zero. This means that the metric (2.13)
is hyperKahler with respect to the triplet ˜J . The Swann metrics have been
considered in several contexts in physics, as for instance in [80, 109–112].
It is an important tool also in differential geometry because the quaternion
Kahler quotient construction corresponds to hyperKahler quotients on the
Swann fibrations.

2.5 A weak G2 holonomy family by squashing

In [23] there were probably constructed first examples of Spin(7) holonomy
metrics. These examples are fibred over four-dimensional quaternion Kahler
metrics defined over manifold M . This resembles the Swann metrics that
we have presented in (2.13), although the Bryant–Salamon were found first.
The anzatz for the Spin(7) is

g8 = g|u|2g + f |du + uω−|2, (2.29)

where f and g are two unknown functions f(r2) and g(r2) which will be
determined by the requirement that the holonomy is in Spin(7), i.e., the
closure of the associated four-form Φ4. The analogy between the anzatz
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(2.29) and (2.13) is clear, in fact, if f = g = 1 the holonomy will be reduced
to Sp(2). A convenient (but not unique) choice for Φ4 is the following:

Φ̂ = 3fg[α ∧ α ∧ et ∧ e + et ∧ e ∧ α ∧ α]

+ g2et ∧ e ∧ et ∧ e + f2α ∧ α ∧ α ∧ α (2.30)

where α = du + uω−. After imposing the condition dΦ4 = 0 to (2.29) it is
obtained a system of differential equations for f and g with solution

f =
1

(2κr2 + c)2/5 ,

g = (2κr2 + c)3/5,

and the corresponding metric

gs = (2κr2 + c)3/5g +
1

(2κr2 + c)2/5 |α|2. (2.31)

Spaces defined by (2.31) are the Bryant–Salamon Spin(7) ones. The metrics
(2.31) are non-compact (because |u| is not bounded), and asymptotically
conical. They will be exactly conical only if c = 0. This is better seen by
introducing spherical co-ordinates for u

u1 = |u| sin θ cos ϕ cos τ,

u2 = |u| sin θ cos ϕ sin τ,

u3 = |u| sin θ sin ϕ,

u4 = |u| cos θ,

and defining the radial variable

r2 =
9
20

(2κ|u|2 + c)3/5

from which we obtain the spherical form of the metric

g =
dr2

κ(1 − c/r10/3)
+

9
100 κ

r2
(

1 − c

r10/3

)

(

σi − ωi
−
)2 +

9
20

r2 g (2.32)

σi being the left-invariant one-form on SU(2)

σ1 = cos ϕdθ + sin ϕ sin θdτ

σ2 = − sin ϕdθ + cos ϕ sin θdτ

σ3 = dϕ + cos θdτ.

In this case it is clearly seen that (2.32) are of cohomogeneity one and thus,
by the results presented in the previous section, they define a weak G2
holonomy metric.
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Let us fix the normalization κ = 1, as before. Then in the limit r � c the
following behaviour is found

g ≈ dr2 + r2Ω, (2.33)

Ω being a seven-dimensional metric asymptotically independent of the
co-ordinate r, namely

Ω =
(

σi − ωi
−
)2 + 5gq. (2.34)

In particular the subfamilies of (2.32) with c = 0 are exactly conical and
their angular part is (2.34). The metrics (2.34) are of weak G2 holonomy
and possesses an SO(3) isometry action associated with the σi. If the four-
dimensional quaternion Kahler metric also has an isometry group G that
preserves the ωi

−, then the group is enlarged to SO(3) × G.

2.6 An instructive test: the case N(1, 1)I and N(1, 1)II

It is important to compare the weak G2 holonomy metrics (2.34) and the
tri-Sasaki metrics (2.17). The only difference between the two metrics is a
factor 5 in front of gq in (2.34). Both metrics possess the same isometry
group. At first sight it sounds possible to absorb this factor 5 by a simple
rescale of the co-ordinates and therefore to conclude that both metrics are
the same. But this is not true. We are fixing the normalization κ = 1 in
both cases, thus this factor should be absorbed only by a rescaling on the
co-ordinates of the fibre. There is no such rescaling. Therefore, due to this
factor 5, both metrics are different. This is what one expected, since they
are metrics of different types.

We can give an instructive example to understand why this is so. Let us
consider the Fubini–Study metric on CP(2). This metric is Kahler–Einstein
and quaternion Kahler simultaneously and there exists a co-ordinate system
for it takes the form

gf = 2dμ2 +
1
2

sin2 μσ̃2
3 +

1
2

sin2 μ cos2 μ(σ̃2
1 + σ̃2

2). (2.35)

We have denoted the Maurer–Cartan one-forms of this expression as σ̃i in
order to not confuse them with the σi appearing in (2.34) and (2.17). The
anti-self-dual part of the spin connection is

ω1
− = − cos μσ̃1, ω2

− = cos μσ̃2, ω3
− = −1

2
(1 + cos μ)σ̃3. (2.36)
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The two metrics that we obtain by use of (2.34) and (2.17) are

g7 = 2b dμ2 +
1
2

sin2 μσ̃2
3 + b

1
2

sin2 μ cos2 μ(σ̃2
1 + b σ̃2

2) + (σ1 + cos μσ̃1)2

+ (σ2 − cos μσ̃2)2 +
(

σ3 +
1
2
(1 + cos μ)σ̃3

)2

. (2.37)

If (2.34) and (2.17) are correct, then b = 1 corresponds to a tri-Sasaki metric
and b = 5 to a weak G2 holonomy one. This is true. Locally these metrics are
the same as that of N(1, 1)I and N(1, 1)II given in [34], which are known to
be tri-Sasaki and weak G2. We see therefore that this number five in front of
the quaternion Kahler metric is relevant and changes topological properties
of the metric (such as the number of conformal Killing spinors).

3 Examples of quaternion Kahler manifolds and orbifolds

The tri-Sasaki and weak G2 holonomy spaces presented in Proposition 2.1
are fibred over quaternion Kahler spaces in four dimensions. Such spaces can
be extended to a wide variety of supergravity solutions. We are interested in
supergravity solutions with three commuting Killing vectors. In this case the
SL(2,R) deformation technique described in [12] can be applied, which in
many cases corresponds to marginal deformations of the field theory duals.
The Reeb vector is clearly one of the isometries, and by inspection of the
formulae of Proposition 2.1 it is seen that three commuting Killing vectors
will be obtained if the quaternion Kahler base possesses two commuting
isometries which also preserve the one-form, ωi

−. We will refer to these
spaces as toric quaternion Kahler spaces. In this section we describe a large
class of such spaces.

3.1 Quaternion Kahler limit of AdS–Kerr–Newman–Taub–Nut

The spaces that we will present next are obtained by a Wick rotation of the
Plebanski and Demianski solution [81] and have been discussed in detail in
[82–87]. After taking certain scaling limit of the parameters, the distance
element becomes

gq =
x2 − y2

P
dx2 +

x2 − y2

Q
dy2 +

P

x2 − y2 (dα + y2dβ)2

+
Q

x2 − y2 (dα + x2dβ)2 (3.1)
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P (x) and Q(y) being polynomials of the form

P (x) = q − 2sx − tx2 − κx4, Q(y) = −P (y), (3.2)

(q, s, t, κ) being four parameters. These expressions can be rewritten as

P (x) = −κ(x − r1)(x − r2)(x − r3)(x − r4),

Q(y) = −P (y), r1 + r2 + r3 + r4 = 0,

the last condition comes from the fact that P (x) contains no cubic powers
of x. The two commuting Killing vectors are ∂α and ∂β.

The metric (3.1) is invariant under the transformation x ↔ y. The trans-
formations x → −x, y → −y, ri → −ri are also a symmetry of the metric.
In addition the symmetry (x, y, α, β) → (λx, λy, α

λ , β
λ3 ), ri → λri can be used

in order to put one parameter equal to one, so there are only three effective
parameters here. The domains of definition are determined by

(x2 − y2)P (x) ≥ 0, (x2 − y2)Q(y) ≥ 0.

The anti-self-dual part of the spin connection is

ω1
− =

√
PQ

y − x
dβ, ω3

− =
1

x − y

(
√

Q

P
dx +

√

P

Q
dy

)

,

ω2
− = −κ(x − y)dα +

1
x − y

(

q − s(x + y) − txy − κx2y2)dβ, (3.3)

(see for instance [85]). We will need (3.3) in the following.

The metrics (3.1) are the self-dual limit of the AdS–Kerr–Newmann–
Taub–Nut solutions, the last ones correspond to the polynomials

P (x) = q − 2sx − tx2 − κx4, Q(y) = −q + 2s′x + tx2 + κx4,

and are always Einstein. But the self-duality condition holds if and only if
s′ = s, as in (3.2). We will be concerned with this limit in the following,
because it is the one which is quaternion Kahler. If we define the new
co-ordinates

y = r̃, x = a cos ˜θ + N,

α = t +
(

N2

a
+ a

)

˜φ

Ξ
, β = −

˜φ

aΞ
,

where we have introduced the parameters

Ξ = 1 − κa2, q = −a2 + N2(1 − 3κa2 + 3κN2),

s = N(1 − κa2 + 4N2), t = −1 − κa2 − 6κN2,
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then the functions P and Q are expressed as

P = −a2 sin2
˜θ[1 − κ(4aN cos ˜θ + a2 cos2 ˜θ)],

Q = −r̃2 − N2 + 2s′r̃ + a2 + κ(r̃4 − a2r̃2 − 6r̃2N2 + 3a2N2 − 3N4),

and the metric takes the AdS–Kerr–Newman–Taub–Nut form

gq =
sin2

˜θ[1 − κ(a2 cos2 ˜θ + 4aN cos ˜θ)]
R2

[

ad˜t − r2 − a2 − N2

Ξ
d˜φ

]2

+
λ2

R2

[

d˜t +

(

a sin2
˜θ

Ξ
− 2N cos ˜θ

Ξ

)

d˜φ

]2

+
R2

1 − κ(a2 cos2 ˜θ + 4aN cos ˜θ)
d˜θ2 +

R2

λ2 dr2, (3.4)

R and λ being defined by

R = r̃2 − (a cos ˜θ + N)2,

λ = r̃2 + N2 − 2s′r̃ − a2 − κ(r̃4 − a2r̃2 − 6r̃2N2 + 3a2N2 − 3N4).

Notice that the self-dual limit corresponds to the choice s′ = N(1 − κa2 +
4aN2) in all the expressions. The parameter κ is the scalar curvature of the
metric and we fix κ = 1, as we did previously.

These metrics have interesting limits. For a = 0 and N different from zero
becomes the AdS–Taub–Nut solution with local metric

gq = V (r̃)(d˜t − 2N cos ˜θd˜φ)2 +
dr̃2

V (r̃)
+ (r̃2 − N2)(d˜θ2 + sin2

˜θd˜φ2), (3.5)

V (r̃) being given by

V (r̃) =
λ

R2 =
1

r̃2 − N2

(

r̃2 + N2 − (r̃4 − 6N2r̃2 − 3N4) − 2s′r̃

)

.

This metric has been considered in different contexts [82–87]. The parameter
s′ is a mass parameter and N is a nut charge. Both parameters are not
independent in the quaternion Kahler limit, in fact the self-duality condition
s′ = s relates them as s′ = N(1 + 4N2). If the mass were arbitrary then the
metric will possess a “bolt”, but in this case the metric will possess a “nut”,
i.e., a zero-dimensional regular fixed point set. The isometry group of (3.5) is
enhanced from U(1) × U(1) to SU(2) × U(1) in this limit. The anti-self-dual
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part of the spin connection reads

ω1
− = −

√

(r̃ + N)V (r̃) sin ˜θd˜φ, ω3
− =

√

(r̃ + N)V (r̃)d˜θ,

ω2
− = (r̃ − N)d˜t + g(r̃) cos ˜θd˜φ, (3.6)

g(r̃) being defined by

g(r̃) =
(

N2(r̃ − N) + N(1 + 4N2) + (1 + 6N2)r̃ − 2Nr̃2

r̃ − N

)

.

By taking the further limit N = 0, i.e., but switching off the mass and the
charge, we obtain the following distance element after introducing the new
radius: r̃ = sin ρ̃

gq = cos2 ρ̃d˜t 2 + dρ̃ 2 + sin2 ρ̃(d˜θ2 + sin2
˜θd˜φ2).

The anti-self-dual spin connection takes the simple form

ω1
− = cos ρ̃ sin ˜θd˜φ, ω2

− = sin ρ̃d˜t + cos ˜θd˜φ, ω3
− = cos ρ̃d˜θ,

and it follows that we have obtained the metric of the sphere S4 = SO(5)/
SO(4). If we would choose negative scalar curvature instead, this limit would
correspond to the non-compact space SO(4, 1)/SO(4). Both cases are max-
imally symmetric and for this reason this is called the AdS4 limit of the
AdS–Taub–Nut solution.

The other four-dimensional quaternion Kahler manifold is CP(2) with
the Fubbini–Study metric. This case is obtained by defining the new
co-ordinates r̂ = N(r̃ − N) and ˜t = 2Nξ and taking the limit N → ∞.
The result, after defining ρ̃ = r̂2/4(1 + r̂2), is the metric

gq =
ρ̃2

2(1 + ρ̃2)2
(dξ − cos ˜θd˜φ)2 +

2dρ̃2

(1 + ρ̃2)2
+

ρ̃2

2(1 + ρ̃2)2
(d˜θ2 + sin2

˜θd˜φ2).

(3.7)

By noticing that σ3 = dξ − cos ˜θd˜φ and that σ2
1 + σ2

2 = d˜θ2 + sin2
˜θd˜φ2 we

recognize from (3.7) the Bianchi IX form for the Fubbini–Study metric on
CP(2) = SU(3)/SU(2).

Another possible limit of (3.8) is N → 0, the result will be the AdS–Kerr
Euclidean solution, namely

gq =
sin2

˜θ(1 − a2 cos2 ˜θ)

r̃2 − a2 cos2 ˜θ

(

ad˜t − r̃2 − a2

Ξ
d˜φ

)2

+
r̃2 − a2 cos ˜θ2

1 − a2 cos2 ˜θ
d˜θ2

+
r̃2 − a2 cos ˜θ2

(r̃2 − a2)(1 − r̃2)
dr̃2 +

(r̃2 − a2)(1 − r̃2)

r̃2 − a2 cos ˜θ2

(

d˜t +
a sin2

˜θ

Ξ
d˜φ

)2

.

(3.8)
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The anti-self-dual connection ωi
− is in this case

ω1
− = − 1

r̃ − a cos ˜θ

√

(1 − a2 cos ˜θ2)(r̃2 − a2)(1 − r̃2)
sin ˜θ

Ξ
d˜φ,

ω2
− = (r̃ − a cos ˜θ)d˜t +

1

r̃ − a cos ˜θ

W (r̃, ˜θ)
Ξ

d˜φ,

ω3
− =

1

r̃ − a cos ˜θ

⎛

⎝

√

(r̃2 − a)(1 − r̃2)

1 − a2 cos2 ˜θ
d˜θ −

√

1 − a2 cos2 ˜θ

(r̃2 − a2)(1 − r̃2)
a sin ˜θdr̃

⎞

⎠ ,

(3.9)

where we have defined the function

W (r̃, ˜θ) = [(r̃ − a cos ˜θ)2 − a + (1 + a2)r̃ cos ˜θ − ar̃2 cos2 ˜θ]. (3.10)

The parameter a is usually called rotational parameter, although we have
no notion of the rotational black hole in Euclidean signature. The mass
parameter s and the nut charge are zero in this case.

3.2 Toric quaternion Kahler spaces

We turn now to more general toric quaternion Kahler orbifolds, following
[95]. As we have mentioned, in four dimensions quaternion Kahler spaces are
the same than Einstein spaces with self-dual Weyl tensor. The self-duality
condition is conformally invariant. This means that if a metric g is self-dual,
then all the family [g] of metrics obtained by g by conformal transformations
is self-dual. The Einstein condition instead is not invariant under conformal
transformations.

Let us focus first in the construction of self-dual families with U(1) ×
U(1) isometry, the Einstein condition will be considered afterwards. For any
representative g of a toric conformal family [g] there exists a co-ordinate
system for which the metric is expressed in the Gowdy form

g = gabdxadxb + gαβdxαdxβ. (3.11)

The latin and greek indices take values 1 and 2. Both gab and gαβ are sup-
posed to be independent of the co-ordinates xα = (α, β). The Killing vectors
are then ∂α and ∂β and are commuting, so there is a U(1) × U(1) action on
the manifold. This consideration is local and no assumption about the U(1)
actions is made.1

1We are loosely speaking about toric conformal families. If a metric g has two commut-
ing Killing vectors ∂α and ∂β , then by a conformal transformation g → Ω2g depending on
(α, β) we will obtain a new metric which is not toric anymore. Along this section the Ωs
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Clearly, the part gabdxadxb in (3.11) can be interpreted as a two-
dimensional metric. By a theorem due to Gauss it is known that every
two-dimensional metric is conformally flat. Therefore the anzatz (3.11) can
be written as

g = Ω2(dρ2 + dη2) + gαβdxαdxβ, (3.12)
gαβ being the functions of the co-ordinates (ρ, η) and Ω a conformal factor
with the same co-ordinate dependence. Because self-duality is conformally
invariant we can make a conformal transformation to (3.12) and consider
the following metric

g =
(dρ2 + dη2)

ρ2 + gαβdxαdxβ, (3.13)

without loosing generality. The factor ρ2 was introduced by convenience.
It is natural to express gαβdxαdxβ in terms of certain functions Ai and Bi

(i = 1, 2) of (ρ, η) as

gαβdxαdxβ = (A0dθ − B0dϕ)2 + (A1dθ − B1dϕ)2. (3.14)

But this is not the most simplifying form in order to impose the self-duality
condition. It is more convenient to write it as

gαβdxαdxβ =
(A0dθ − B0dϕ)2 + (A1dθ − B1dϕ)2

(A0B1 − A1B0)2
, (3.15)

in terms of new functions Ai and Bi. The relation with the other functions
Ai and Bi is given by comparison of the last two expressions. Although
considering the anzatz (3.15) could seem non-practical, the self-duality con-
dition became a linear differential system in terms of Ai and Bi.2 Therefore

are supposed to be independent on (α, β). In this case it is ensured that ∂α and ∂β will
be the Killing vectors of every metric in [g].

2An intuitive argument to see that an anzatz of the form (3.18) could simplify the
self-duality condition goes as follows. It is known that for any group of four vector fields
ei, the Ashtekar et al. equations [92]

[e1, e2] + [e3, e4] = 0, [e1, e3] + [e4, e2] = 0, [e1, e4] + [e2, e3] = 0,

define a self-dual metric g = δabe
a ⊗ eb (here ei is the dual basis of ea) called hypercomplex

metric. The reader can check that if we select the following soldering forms

e1 = dρ, e2 = dη, e3 =
(

A0dθ − B0dϕ

A0B1 − A1B0

)
, e4 =

(
A1dθ − B1dϕ

A0B1 − A1B0

)

for the metric (3.18) then the inverse basis take the simple form

e1 = ∂ρ, e2 = ∂η (3.16)

e3 = B1∂θ + A1∂ϕ, e4 = B0∂θ + A0∂ϕ, (3.17)

and the Ashtekar conditions became simply Cauchy–Riemann equations

(A1)ρ = (A0)η, (A0)ρ = −(A1)η

(B1)ρ = (B0)η, (B0)ρ = −(B1)η
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it is better to impose the self-duality condition to

g =
(dρ2 + dη2)

ρ2 +
(A0dθ − B0dϕ)2 + (A1dθ − B1dϕ)2

(A0B1 − A1B0)2
. (3.18)

If also the commuting Killing vectors are surface orthogonal, then the con-
dition W = ∗W gives the linear system

(A0)ρ + (A1)η = A0/ρ, (3.19)

(A0)η − (A1)ρ = 0, (3.20)

and the same equations for Bi. This system was found by Joyce in [102].
Surface orthogonality implies that the manifold M corresponding to (3.18)
is of the form M = N × T 2, T 2 being the two-dimensional torus. There
exists other examples (as those in the footnote) which are solution of the
self-duality conditions but for which this decomposition does not hold.

The linear system (3.19) and (3.20) is simple enough. It is easy to check
that (3.20) implies the existence of a potential function G such that

A0 = Gρ; A1 = Gη. (3.21)

Then (3.19) gives that Gρρ + Gηη = Gρ/ρ. Inversely we deduce from (3.19)
the existence of another potential V such that

A0 = −ρVη; A1 = ρVρ, (3.22)

and (3.20) gives the Ward monopole equation [71]

Vηη + ρ−1(ρVρ)ρ = 0. (3.23)

The relations
Gρ = −ρVη; Gη = ρVρ, (3.24)

constitute a Backlund transformation allowing to find a monopole V starting
with a known potential G or vice versa. The functions Bi can be also
expressed in terms of another potential functions G′ and V ′ satisfying the
same equations than V and G.

The next task is to extract the Einstein representatives of the self-dual
families defined in (3.18). This will be automatically quaternion Kahler.
In general, to impose the Einstein condition directly to (3.18) could give no
results. In order to be general, a transformation g → Ω2g should be made to
the metrics (3.18) and the Einstein condition Rij = Λgij should be imposed
to the transformed metrics. This requirement will fix the factor Ω and will

which are linear. If (3.14) is used instead, then the resulting system will take a non-linear
“look.”
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give further relations between Ai and Bi. The result obtained from this
condition is that

A1B0 − A0B1 = ρ(A2
0 + A2

1) − GA0, (3.25)

and that Ω2 = G. From (3.25) it is obtained that B0 = ρA1 + ξ0 and B1 =
G − ρA0 + ξ1 with A1ξ0 = A0ξ1. The functions ξi are determined by the
requirement that Bi also satisfies the Joyce system (3.19) and (3.20), the
result is ξ0 = −ηA0 and ξ1 = −ηA1. Then it is obtained that

A0 = Gρ; A1 = Gη (3.26)

B0 = ηGρ − ρGη; B1 = ρGρ + ηGη − G. (3.27)

By defining G =
√

ρF it follows from the equation Gρρ + Gηη = Gρ/ρ that
F satisfies

Fρρ + Fηη =
3F

4ρ2 .

The final expression of the metric is [93]

gq =
F 2 − 4ρ2(F 2

ρ + F 2
η )

4F 2
dρ2 + dη2

ρ2

+
[(F − 2ρFρ)u − 2ρFηv]2 + [−2ρFηu + (F + 2ρFρ)v]2

F 2[F 2 − 4ρ2(F 2
ρ + F 2

η )]
, (3.28)

where u =
√

ρdα, v = (dβ + ηdα)/
√

ρ and F (ρ, η) is a solution of the
equation

Fρρ + Fηη =
3F

4ρ2 (3.29)

on some open subset of the half-space ρ > 0.

There exists a theorem that insures that a toric quaternion Kahler man-
ifold will always have surface orthogonal Killing vectors [95]. Therefore
the metrics (3.28) are the most general toric quaternion Kahler ones. On
the open set defined by F 2 > 4ρ2(F 2

ρ + F 2
η ) g has positive scalar curvature,

whereas F 2 < 4ρ2(F 2
ρ + F 2

η ) − g is self-dual with negative scalar curvature.
This is known as the Calderbank–Pedersen metrics.

3.3 The manifolds of the family: CP(2) and S4

If we choose a potential F independent on the co-ordinate η, then it is
obtained from (3.29) that it should be of the form F (ρ) = ρ3/2 − cρ−1/2
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c being a constant. In this case the metric (3.28) will have the explicit form

gK =
ρ2 + c

(ρ2 − c)2

(

dρ2 + dη2 +
dα2

4

)

+
ρ2

(ρ2 − c)2(ρ2 + c)
(dβ + ηdα)2,

(3.30)

and the isometry group will be enlarged by the presence of a new Killing
vector ∂η + β∂α. The action of the isometry group on the co-ordinates is
given by

α → α + a1, η → η + a2, β → β + a3 − a2α, (3.31)
ai being constant parameters. It is worthy to mention that the maximally
symmetric quaternion Kahler spaces possess SO(5) or SO(4, 1) isometry
group, therefore there can be at most two commuting isometries in a four-
dimensional quaternion Kahler space. In other words, it is impossible that
the third isometry will commute with the others. Indeed the three Killing
vectors Ti satisfy the three-dimensional Heisenberg algebra

[T1, T3] = T2, [T1, T2] = [T3, T2] = 0. (3.32)

The isometry group (3.31) preserves the triplet (4.5).

If also c = 0 then the potential function is F = ρ3/2 and the expression
for the quaternion Kahler metric will be

gK =
1
ρ2

(

dρ2 + dη2 +
dα2

4

)

+
1
ρ4 (dβ + ηdα)2. (3.33)

Let us introduce the two-form

J
′ =

dα ∧ dη

2ρ2 + d

(

1
2ρ2

)

∧ (dβ + ηdα),

which preserved locally under the action (3.31). The (1, 1) tensor J ′ defined
through the relation gq(·, J ′·) = J

′ is an almost complex structure defined
over the quaternion Kahler space M . The two-form J

′ is evidently closed,
thus sympletic and it can be expressed as J

′ = dA being the one-form A
given by

A = −(dβ + ηdα)
2ρ2 . (3.34)

By introducing the complex quantities

S = ρ2 + i(2β + ηα) + CC, C = iη +
1
2
α, (3.35)

it follows that the metric (3.33) can be written as

gK = u ⊗ u + v ⊗ v (3.36)

where
u =

1
ρ
dC, v =

1
2ρ2 (dS + CdC). (3.37)
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This is the classical metric of the universal dilaton hypermultiplet [105] and
is known to be Kahler with Kahler potential

K = log(S + S − 2CC). (3.38)

This means that space M is not only sympletic, but Kahler. It is also
quaternion Kahler (thus Einstein), therefore is Kahler–Einstein. The form
(3.34) is expressed in the co-ordinates (S, C, S, C) as

A = 2
(

dS − dS + CdC − CdC

S + S − 2CC

)

. (3.39)

By going to the co-ordinate system defined by

z1 =
1 − S

1 + S
, z2 =

2C

1 + S

it is recognized that (3.37) is the Bargmann metric

gq =
dz1dz1 + dz2dz2

1 − |z1|2 − |z2|2
− (z1dz1 + z2dz2)(z1dz1 + z2dz2)

(1 − |z1|2 − |z2|2)2
, (3.40)

defined over the unit open ball in C2 given by |z1|2 + |z2|2 < 1, with Kahler
potential K = log(1 − |z1|2 − |z2|2). This space is topologically equivalent
to the homogeneous symmetric space SU(2, 1)/SU(2) × SU(1). By going
to spherical co-ordinates

z1 = r cos
u

2
exp

(

i
(v + w)

2

)

, z2 = r sin
u

2
exp

(

−i
(v − w)

2

)

,

with 0 < r < 1, 0 < u < π, 0 < v < 2π and 0 < w < 4π, the Bargmann met-
ric takes the Bianchi IX form

gq =
dr2

(1 − r2)2
+

r2σ2
1

(1 − r2)2
+

r2(σ2
2 + σ2

3)
1 − r2 (3.41)

with manifest SU(2) symmetry.

Let us note that the metrics (3.33) can be extended with no difficulty to
an Einstein–Sasaki space in five dimensions by use of (2.6), the local form
of such metrics is

ges =
[

dτ − (dβ + ηdα)
2ρ2

]2

+
1
ρ2

(

dρ2 + dη2 +
dα2

4

)

+
1
ρ4 (dβ + ηdα)2,

(3.42)

and is seen that the isometry group (3.31) is an isometry of (3.42). We have
three commuting Killing vectors, namely ∂α ∂β and ∂τ , and so there is a
T 3 action.
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For the Bargmann metric F 2 < 4ρ2F 2
ρ and this means that κ < 0. Thus

the construction of tri-Sasaki metrics presented in previous sections can-
not be applied to this example. But by making the replacement zi → izi

the Kahler potential of the Bargmann metric will be converted into K =
log(1 + |z1|2 + |z2|2). This is the potential for the Fubbini–Study metric
over CP(2), which is dual to the Bergmann one. This metric is also Kahler–
Einstein and quaternion Kahler. Its metric tensor and the corresponding
potential form A can obtained from the formulae corresponding to the
Bargmann metric by making the replacement zi → izi. But different from
the Bargmann metric, this metric possesses positive scalar curvature and
the construction presented in the previous section can be applied. The anti-
self-dual part of the spin connection of the Fubbini–Study metric is given by

ω1
− = −1

2

(

z2dz1 + z2dz1

(1 + |z1|2)
√

1 + |z1|2 + |z2|2

)

,

ω2
− =

i

2

(

z2dz1 − z2dz1

(1 + |z1|2)
√

1 + |z1|2 + |z2|2

)

, (3.43)

ω3
− =

i

2

(

z1dz1 − z1dz1 + z2dz2 − z2dz2

(1 + |z1|2)

)

.

From (2.17) the tri-Sasaki metric is obtained

g7 = (σi − ωi
−)2 +

dz1dz1 + dz2dz2

1 + |z1|2 + |z2|2
− (z1dz1 + z2dz2)(z1dz1 + z2dz2)

(1 + |z1|2 + |z2|2)2
,

(3.44)

which is fibred over the Fubbini–Study metric. Here σi is the one Maurer–
Cartan forms in (2.4) and ωi

− is given in (3.43).

The same procedure can be applied to the sphere S4, which, together with
CP(2) constitute the unique four-dimensional quaternion Kahler spaces that
are manifolds. The corresponding Kahler–Einstein and tri-Sasaki metrics
are respectively

g6 =
1
2
dΩ2

4 + (dθ − sin ϕA2 + cos ϕA1)2

+ (sin θdϕ − cos θ sin ϕA1 − cos θ cos ϕA2 + sin θA3)2,

g7 = (Ai − σi)2 +
1
2
dΩ2

4,

Ai being the unit charge instantons on S4 and dΩ2
4 the usual metric for the

sphere.
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3.4 More general quaternion Kahler orbifolds

The space of metrics defined in (3.28) is very rich. They encode many well-
known examples in the literature as well as new ones. We briefly describe
some of them, but a much more complete description can be found in the
original references [93, 94].

The Backglund transformation defined in (3.24) is a correspondence
between solutions F of (3.29) and solutions of the Ward monopole equa-
tion (3.23). The Ward monopole equation describes hyperKahler metrics
with two commuting Killing vectors, which in cylindrical co-ordinates take
the form [71]

g =
(dt + ρVρdϕ)2

Vη
+ Vη(dρ2 + dη2 + ρ2dϕ2). (3.45)

Several of these metrics were considered recently in [96, 97]. The commuting
Killing vectors are ∂t and ∂ϕ. It is not difficult to see that these metrics are
hyperKahler. By defining the one-form A = ρVρdϕ and U = Vη, the metrics
(3.45) take the Gibbons–Hawking form [113]

g = V −1(dt + A)2 + V dxidxjδ
ij , (3.46)

and it follows that A and V satisfy the linear system of equations

∇V = ∇ × A. (3.47)

Any element of the family (3.47) is hyperKahler with respect to the hyper-
Kahler triplet

J1 = (dt + A) ∧ dx − V dy ∧ dz

J2 = (dt + A) ∧ dy − V dz ∧ dx (3.48)

J3 = (dt + A) ∧ dz − V dx ∧ dy

which is actually t-independent. Therefore the Killing vector ∂t is tri-
holomorphic. Instead ∂ϕ is not, i.e., it does not preserve (3.48). It follows
that the Backglund transformation is a correspondence between toric
quaternion Kahler spaces and toric hyperKahler spaces with at least one
tri-holomorphic isometry.

The elemental solution of the equation (3.47) is given by the single Wu–
Yang monopole potential A and the scalar field V of the form

V = c +
a

r
, A =

a(ydx − xdy)
r(r + z)

z > 0, ˜A′ =
a(ydx − xdy)

r(r − z)
z ≤ 0,

(3.49)
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r being the radius; r =
√

x2 + y2 + z2. The vector potential A is not glob-
ally defined in R3 due to the presence of Dirac string singularities in the
upper z axis for A and in the lower z axis for ˜A′. In the overlapping
region both potentials differ from one another by a gauge transformation
˜A′ = A − 2a d arctan(y/x). Any array of Dirac monopoles will describe an
hyperKahler metric, but only if such monopoles are aligned along an axis,
then we will have axial symmetry as in the Ward case (3.45). The elementary
Ward solutions are of the form

Ui = ai log(η − ηi +
√

(η − ηi)2 + ρ2)

and represent a monopole located in the position (0, ηi). Any superposition
of such elementary functions will give rise to a toric hyperKahler metric.
The Backglund transformation of the solutions Ui is given by

Fi =

√

a2
i ρ

2 + (aiη − ηi)2
√

ρ
. (3.50)

Any superposition of these solutions, namely

F =
m

∑

k=1

√

a2
kρ

2 + (akη − bk)2
√

ρ
.

will give rise to a toric quaternion Kahler metric. There are also elementary
solutions F = ρ3/2 and F = ρ−1/2, which are η-independent.

For m = 2 the solutions are called two-pole functions and are given by

F1 =
1 +

√

ρ2 + η2
√

ρ
; F2 =

√

(ρ)2 + (η + 1)2
√

ρ
−

√

(ρ)2 + (η − 1)2
√

ρ
.

The first one gives rise to the spherical metric, while the second one gives rise
to the hyperbolic metric. This is seen by defining the co-ordinates (r1, r2)
which are related to the hyperbolic ones (ρ, η) by the relation

(r1 + ir2)2 =
η − 1 + iρ

η + 1 + iρ
.

By writing the corresponding metric in terms of (ρ, η) and making the change
to (r1, r2) gives [93]

g = (1 − r2
1 − r2

2)
−2(dr2

1 + dr2
2 + r2

1dθ2
1 + r2

2dθ2
2), (3.51)

which is the hyperbolic metric on the unit ball on R4. This is a conformally
flat metric.

Now, let us discuss the case of two monopoles on the z axis. Without
loosing generality, it can be considered that the monopoles are located in
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the positions (0, 0,±c). The potentials for this configurations are

V =
1
r+

+
1
r−

, A = A+ + A− =
(

z+

r+
+

z−
r−

)

d arctan
(y

x

)

,

r± =
√

x2 + y2 + (z ± m)2.

This case corresponds to the Eguchi–Hanson instanton, whose metric, in
Cartesian co-ordinates, reads

g =
(

1
r+

+
1
r−

)−1 (

dt +
(

z+

r+
+

z−
r−

)

d arctan
(y

x

)

)2

+
(

1
r+

+
1
r−

)

(dx2 + dy2 + dz2). (3.52)

In order to recognize the Eguchi–Hanson metric in its standard form it
is convenient to introduce a new parameter a2 = 8m, and the elliptic co-
ordinates defined by

x =
r2

8

√

1−
(a

r

)4
sin ϕ cos θ, y =

r2

8

√

1−
(a

r

)4
sin ϕ sin θ, z =

r2

8
cos ϕ.

In this co-ordinate system it can be checked that

r± =
r2

8

(

1 ±
(a

r

)2
cos ϕ

)

, z± =
r2

8

(

cos ϕ ±
(a

r

)2
)

,

V =
16
r2

(

1 −
(a

r

)4
cos2 ϕ

)−1

,

A = 2
(

1 −
(a

r

)4
cos2 ϕ

)−1 (

1 −
(a

r

)4
)

cos ϕdθ,

and, with the help of these expressions, it is found

g =
r2

4

(

1 −
(a

r

)4
)

(dθ + cos ϕdτ)2 +
(

1 −
(a

r

)4
)−1

dr2

+
r2

4
(dϕ2 + sin2 ϕdτ) (3.53)

being τ = 2t. This is actually a more familiar expression for the Eguchi–
Hanson instanton, indeed [114]. Let us also note that the Eguchi–Hanson
metric corresponds to two monopoles in the z axis, but if we choose m2 = −1
this will correspond to the potential for an axially symmetric circle of charge.
The corresponding metric is called Eguchi–Hanson metric of the type I, and
is always incomplete.

Let us go back to the Backglund transformed geometry corresponding
to the Eguchi–Hanson metric. The general “three-pole” solutions can be
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written as

F =
a

√
ρ

+
b + c/m

2

√

ρ2 + (η + m)2
√

ρ
+

b − c/m

2

√

ρ2 + (η − m)2
√

ρ
.

By definition −m2 = ±1, which means that m can be imaginary or real. The
corresponding solutions are denominated as type I and type II, respectively,
by analogy with the hyperKahler case. It is interesting to note that for c = 0
and b = −1 and defining the co-ordinates (t, θ) by η = (cosh2 t − 1) cos θ and
ρ = 2 coth t sinh−1 t sin θ the metric takes the form

gq = 4dt2 + sinh2 t(dθ2 + sin2 θdϕ2) +
sinh2 2t

2
(dψ + cos θdϕ)2.

By making further transformation 2t = log(1 + r) − log(1 − r) this metric
takes the form (3.41) and therefore is the Bargmann metric. The Bargmann
metric can also be obtained with the function F = ρ3/2 and this means that
different solutions of the equation (3.29) can give rise to the same metric.
In fact, the Bargmann metric can be recovered for c = 0 and b = 1 and also
for c = 1 and b = 0. There exists certain freedom in the choice of F that
leaves the metric invariant. This freedom allows in particular to set a = 1.
If c = 0 and b is arbitrary then the metric reduces to the Pedersen metric
[99] (see also [95])

gq =
(w2 + q2)

(w − sqr2)2

(

wr2 + s

1 + qr2 dr2 +
r2

4

(

1 + qr4

wr2 + s
σ2

1 + (wr2 + s)(σ2
2 + σ2

3)
))

,

(3.54)

w, q and s being three parameters. We should be aware that these metrics
possesses only one parameter up to an homothety, the other two can be
selected to one by a suitable rescaling. This is in accordance with that, by
construction, the only parameter is b. The advantage of this notation is that
several limits are better understood. The scalar curvature of this metrics
is −48wq/(w2 + q2) and we see that in the limit w = 0 or q = 0 the metric
will be hyperKahler. In the first case the metric reduces to the Taub–Nut
one [115], in the second corresponds to the I and II Eguchi–Hanson metrics.

It is natural to introduce the cylindrical co-ordinate system

ρ =
√

R2 ± 1 cos θ, η = R sin θ,

where θ takes values in the interval (−π/2, π/2). In these co-ordinates
√

ρF = 1 + bR + c sin θ, (3.55)

ρ−1
[

1
4
F 2 − ρ2(F 2

ρ + F 2
η )

]

=
b(R ∓ b) + c(sin θ + c)

R2 ± sin2 θ
. (3.56)

The zeroes of F are the conformal infinite of the metric, while the zeroes of
1
4F 2 − ρ2(F 2

ρ + F 2
η ) are singularities separating the domains of positive and
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negative scalar curvatures. For the type II metrics the co-ordinate R can
take values between 1 and ∞. For b = 1 and c = 0 the Fubbini–Study metric
on CP(2) is obtained, while for b = −1 and c = 0 or b = 0 and c = ±1 the
Bargmann metric is obtained. By introducing the vector (b, c) we have that
along the lines joining these four points the metrics will be bi-axial Bianchi.
Along the lines joining (1, 0) with the other points there will live Bianchi IX
metrics whereas on the lines between (−1, 0), (0, 1) and (0,−1) the metric
is Bianchi VIII. For the type I metrics the value of R is non-restricted.
The zeroes of F defining the conformal infinite are R∞ = − (1+c sin θ)

b . The
zeroes of 1

4F 2 − ρ2(F 2
ρ + F 2

η ) are R± = (b2 + c2 + c sin θ)/b. The case b = 0
corresponds to Bianchi VIII metrics. If c = 0 we obtain the Pedersen
metrics. The conformal infinite is R∞ = 1/b and R± = b [93].

There have been found certain quaternion Kahler deformations of the
Taub-Nut gravitational instantons and other examples in [100], and the
relation between these metrics and the m-pole solutions has been worked
out in that reference. Also we would like to remark that the orbifolds (3.1)
can be represented in the form (3.28) but the co-ordinate change is rather
complicated and we will not describe it here, see [73, 74]. Higher multi-
instanton solutions, or m-pole solutions are a linear combinations of the form

F =
m

∑

k

√

a2
kρ

2 + (akη − bk)2
√

ρ

for some real parameters (ak, bk) for 1 < k < m. But there is an SL(2, R)
action that leaves the metric invariant up to an overall factor and therefore,
as a vector space, (ak, bk) is 2m − dimSL(2, R) − 1 = 2(m − 2)-dimensional.
The m-pole solutions arise as quaternion-Kahler quotients of HPm−1 by an
(m − 2)-dimensional subtorus of a maximal torus Tm in Sp(m), all these
metrics are therefore defined on a compact orbifolds [77]. Applications
of these to the universal hypermultiplet have been found, for instance in
[103–105]. Other applications have been considered in [88–90].

4 Explicit tri-Sasaki and weak G2 metrics and
supergravity solutions

4.1 Tri-Sasaki and weak G2 over AdS–Kerr and
AdS–Taub–Nut

We are now in a position to construct compact tri-Sasaki and weak G2 holo-
nomy metrics. The main ingredient in this construction is Proposition 2.1,
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applied to limiting cases of the euclidean Plebanski–Demianski solution (3.8)
or to the toric metrics (3.28). But before we start it is convenient to men-
tion that there exists in the literature Einstein–Sasaki spaces fibred over the
so-called “orthotoric” Kahler–Einstein spaces [40, 41]. As was shown in [41]
this space can be obtained by taking certain scaling limit of the Euclidean
Plebanski–Demianski metrics (3.8). In particular, there were found sev-
eral toric Einstein–Sasaki metrics defined over S2 × S3. Nevertheless, those
spaces are five-dimensional and are fibrations over four-dimensional Kahler–
Einstein spaces. Instead, we are presenting a seven-dimensional family which
is fibred over four-dimensional quaternion Kahler spaces. Thus, in principle,
our examples bear no relation to those found in [40, 41].

After this comment, we turn our attention now to the construction of
tri-Sasaki (and weak G2) metrics implicit in Proposition 2.1.

The AdS–Taub–Nut case. It is direct, by using Proposition 2.1 and the
lifting formula (2.34), to work out tri-Sasaki and weak G2 holonomy metrics
fibred over the AdS–Taub–Nut metrics (3.5), the result is

g7 = (
√

(r̃ + N)V (r̃) sin ˜θd˜φ + σ1)2 +
(

(r̃ − N)d˜t + g(r̃) cos ˜θd˜φ − σ2

)2

+ (
√

(r̃ + N)V (r̃)d˜θ − σ3)2 + b
(

V (r̃)(d˜t − 2N cos ˜θd˜φ)2

+
dr̃2

V (r̃)
+ (r̃2 − N2)(d˜θ2 + sin2

˜θd˜φ2)
)

.

Although the base quaternion Kahler space possess SU(2) × U(1) isometry,
this group does not preserve the fibres, so the isometry group is SU(2)′ ×
U(1)2, the SU(2)′ group being related to the Maurer–Cartan forms of the
fibre metric and U(1)2 generated by ∂

˜t and ∂
˜φ
. Let us notice that we have

a third commuting Killing vector, which is the Reeb vector ∂τ , which is
present in the expression for the Maurer–Cartan forms σi. Therefore we
have a T 3 subgroup of isometries. By taking into account the explicit form
of the σis given in (2.4) we obtain the following metric components

g
˜t˜t = (r̃ − N)2 + bV (r̃), g

˜φ˜φ
= 4bN2V (r̃) cos2 ˜θ + (r̃2 − N2) sin2

˜θ

g
˜θ˜θ

= b(r̃2 − N2) + (r̃ + N)V (r̃), gr̃r̃ =
b

V (r̃)
, gττ = gϕϕ = gθθ = 1

g
˜t˜φ

= −2NbV (r̃) cos ˜θ + (r̃ − N)g(r̃) cos ˜θ, g
˜tτ = −(r̃ − N) cos ϕ sin θ

g
˜φτ

=
√

(r̃ + N)V (r̃) sin ˜θ sin θ sin ϕ + g(r̃) cos ˜θ sin θ cos ϕ (4.1)

g
˜φθ

=
√

(r̃ + N)V (r̃) sin ˜θ cos ϕ + g(r̃) cos ˜θ sin ϕ
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g
˜θτ

= −
√

(r̃ + N)V (r̃) cos θ, g
˜θϕ

= −
√

(r̃ + N)V (r̃)

g
˜tθ = −(r̃ − N) sin ϕ sin θ, gτϕ = cos θ,

the remaining components are all zero. The parameter b takes the values 1 or
5, b = 1 corresponds to an Einstein–Sasaki metric, while b = 5 corresponds
to a weak G2 holonomy metric.

The AdS–Kerr–Newman case. For the rotating case, i.e., for the AdS–
Kerr–Newman metrics (3.8) we obtain the metrics

gq =

⎛

⎝

√

f(˜θ)c(r̃)d(r̃)

e(r̃, ˜θ)

sin ˜θ

Ξ
d˜φ − σ1

⎞

⎠

2

+

(

e(r̃, ˜θ)d˜t +
W (r̃, ˜θ)

Ξe(r̃, ˜θ)
d˜φ − σ2

)2

+

⎛

⎝

√

c(r̃)d(r̃)

f(˜θ)

d˜θ

e(r̃, ˜θ)
−

√

f(˜θ)
c(r̃)d(r̃)

a sin ˜θ

e(r̃, ˜θ)
dr̃ − σ3

⎞

⎠

2

+
b f(˜θ) sin2

˜θ

r̃2 − a2 cos2 ˜θ

(

ad˜t − c(r̃)
Ξ

d˜φ

)2

+
b c(r̃)d(r̃)

r̃2 − a2 cos ˜θ2

(

d˜t +
a sin2

˜θ

Ξ
d˜φ

)2

+
r̃2 − a2 cos ˜θ2

f(˜θ)
b d˜θ2 +

r̃2 − a2 cos ˜θ2

c(r̃)d(r̃)
b dr̃2, (4.2)

where we have introduced the functions

f(˜θ) = 1 − a2 cos2 ˜θ, c(r̃) = r̃2 − a2,

d(r̃) = 1 − r̃2, e(r̃, ˜θ) = r̃ − a cos ˜θ.

The local isometry is SU(2) × U(1)2 and as before, the vectors ∂
˜t, ∂

˜φ
and

∂τ generate a T 3 isometry subgroup. From expression (4.2) we read the
following components

g
˜t˜t =

b c(r̃)d(r̃)

r̃2 − a2 cos ˜θ2
+ a2 b f(˜θ) sin2

˜θ

r̃2 − a2 cos2 ˜θ
+ e2(r̃, ˜θ)

g
˜φ˜φ

=
b c(r̃)d(r̃)

r̃2 − a2 cos ˜θ2

a2 sin4
˜θ

Ξ2 +
b f(˜θ) sin2

˜θ

r̃2 − a2 cos2 ˜θ

c2(r̃)
Ξ2 +

W 2(r̃, ˜θ)

Ξ2e2(r̃, ˜θ)

+
f(˜θ)c(r̃)d(r̃)

e2(r̃, ˜θ)

sin2
˜θ

Ξ2
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g
˜θ˜θ

=
r̃2 − a2 cos ˜θ2

f(˜θ)
b +

1

e2(r̃, ˜θ)

c(r̃)d(r̃)

f(˜θ)
,

gr̃r̃ =
r̃2 − a2 cos ˜θ2

c(r̃)d(r̃)
b +

f(˜θ)
c(r̃)d(r̃)

a2 sin2
˜θ

e2(r̃, ˜θ)
,

g
r̃˜θ

= − a sin ˜θ

e2(r̃, ˜θ)
, gr̃ϕ =

√

f(˜θ)
c(r̃)d(r̃)

a sin ˜θ

e(r̃, ˜θ)
,

gr̃τ =

√

f(˜θ) cos θ

c(r̃)d(r̃)
a sin ˜θ cos θ

e(r̃, ˜θ)

g
˜t˜φ

=
b c(r̃)d(r̃)

r̃2 − a2 cos ˜θ2

a sin2
˜θ

Ξ
+ a

b f(˜θ) sin2
˜θ

r̃2 − a2 cos2 ˜θ

c(r̃)
Ξ

+
W (r̃, ˜θ)

Ξ
,

gττ = gϕϕ = gθθ = 1, g
˜tτ = −e(r̃, ˜θ) cos ϕ sin θ

g
˜φτ

= −

√

f(˜θ)c(r̃)d(r̃)

e(r̃, ˜θ)

sin ˜θ

Ξ
sin θ sin ϕ − W (r̃, ˜θ)

Ξe(r̃, ˜θ)
sin θ cos ϕ

g
˜φθ

=
W (r̃, ˜θ)

Ξe(r̃, ˜θ)
sin ϕ +

√

f(˜θ)c(r̃)d(r̃)

e(r̃, ˜θ)

sin ˜θ

Ξ
cos ϕ

g
˜θτ

= −
√

c(r̃)d(r̃)

f(˜θ)

cos θ

e(r̃, ˜θ)
, g

˜θϕ
= −

√

c(r̃)d(r̃)

f(˜θ)

1

e(r̃, ˜θ)

g
˜tθ = −e(r̃, ˜θ) sin ϕ, gτϕ = cos θ (4.3)

and the other components are zero. In the limit a = 0 the base metric
reduces to S4, the resulting tri-Sasaki metrics is

g7 = (sin ρ̃d˜t + cos ˜θd˜φ + sin ϕdθ − cos ϕ sin θdτ)2 + (cos ρ̃d˜θ − dϕ − cos θdτ)2

+ (cos ρ̃ sin ˜θd˜φ − cos ϕdθ − sin ϕ sin θdτ)2 + b cos2 ρ̃d˜t2 + bdρ̃2

+ b sin2 ρ̃(d˜θ2 + sin2
˜θd˜φ2). (4.4)

Finally we should recall that the tri-Sasaki and weak G2 metrics fibred over
CP (2) are those corresponding to the spaces N(1, 1)I and N(1, 1)II and
were given in (2.37), so we will not discuss them again.

4.2 An infinite family of weak G2 and tri-Sasaki orbifolds

Let us now turn our attention to the construction of the tri-Sasaki and
the Kahler–Einstein metrics fibred over the toric quaternion Kahler met-
rics (3.29). The anti-self-dual part of the spin connection ω−i possesses a
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remarkable simple form in terms of the potential function F [93]

ω1
− =

1
F

[

−ρFη
dρ

ρ
+

(

1
2
F + ρFρ

)

dη

ρ

]

, ω2
− =

u

F
, ω3

− =
v

F
. (4.5)

The Kahler–Einstein metric defined over the twistor space Z of (3.28) is
obtained directly from (2.22) and is given by

g6 =
F 2 − 4ρ2(F 2

ρ + F 2
η )

4F 2
dρ2 + dη2

ρ2

+
[(F − 2αFρ)u − 2ρFηv]2 + [−2ρFηu + (F + 2ρFρ)v]2

F 2[F 2 − 4ρ2(F 2
ρ + F 2

η )]

+ (dθ − sin ϕω2
− + cos ϕω1

−)2 + (sin θdϕ − cos θ sin ϕω1
−

− cos θ cos ϕω2
− + sin θω3

−)2. (4.6)

The Kahler form for (4.6) is J = dH where

H =
sin θ sin ϕ

2ρF
(−2ρFηdρ + (F + 2ρFρ)dη) +

sin θ cos ϕu

F

+
cos θv

F
− cos θdϕ, (4.7)

and with the help of this expression we obtain the tri-Sasaki metrics

g7 = (dτ + H)2 + g6,

H being defined in (4.7). Both expressions for the tri-Sasaki and the Kahler–
Einstein metrics are completely determined in terms of a single eigenfunc-
tion F of the hyperbolic Laplacian. Indeed the components of g7 are given
explicitly by

(g7)ρρ = (gq)ρρ +
F 2

η

F 2 , (g7)ρη =
Fη

F 2 (F + 2ρFρ), (g7)ηη = (gq)ηη

+
1

ρ2F 2

(

F

2
+ ρFρ

)2

,

(g7)αα = (gq)αα +
(1 + ρ2)

ρF 2 , (g7)αβ = (gq)αβ

+
2η

ρF 2 , (g7)ββ = (gq)ββ +
1

ρF 2

(g7)ρθ =
2Fη

F
cos θ, (g7)ρτ =

2Fη

F
sin θ sin ϕ
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(g7)ηθ = − 1
ρF

(F + 2ρFρ) cos θ, (g7)ητ = − 1
ρF

(F + 2ρFρ) sin θ sin ϕ

(g7)αθ =
2
√

ρ

F
sin ϕ, (g7)αϕ = − 2η

√
ρF

,

(g7)ατ = −
2
√

ρ

F
sin θ cos ϕ +

2η
√

ρF
cos θ,

(g7)βϕ = − 2
√

ρF
, (g7)βτ = − 2

√
ρF

cos θ

(g7)θθ = (g7)ττ = (g7)ϕϕ = 1, (g7)τϕ = cos θ (4.8)

and the remaining components are zero.

The tri-Sasaki metric possesses an SU(2) isometry group associated with
the σi and a T 2 isometry of the quaternion Kahler base. Therefore the
isometry group is at least SO(3) × T 2. The Killing vectors are

K1 = ∂α, K2 = ∂β, K3 = ∂τ ,

K4 = cos τ∂ϕ − coth ϕ sin τ∂τ +
sin τ

sin ϕ
∂θ,

K5 = − sin τ∂ϕ − coth ϕ cos τ∂τ +
cos τ

sin ϕ
∂θ (4.9)

with commutation rule

[K1, Ki] = [K2, Ki] = 0, i = 1, . . . , 5

[Ki, Kj ] = εijkKk, i, j, k = 3, 4, 5.

Both the tri-Sasaki metric and the Kahler–Einstein possess three commuting
Killing vectors. For the Kahler–Einstein metric the vectors are ∂θ, ∂α and
∂β, for the tri-Sasaki metric they are ∂τ , ∂α and ∂β.

By making the replacement gq → 5gq in the formulae before we obtain a
family of weak G2 holonomy metric. Locally the isometry group will be the
same for them than for the tri-Sasaki ones that we have presented.

4.3 Supergravity solutions fibred over Einstein spaces

Let us describe how to construct supergravity backgrounds fibred over
conical Ricci-flat metrics and their role in the AdS/CFT correspondence.
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Consider an stack of N parallel Dp branes. The general form of such back-
ground is

g10 = H−1/2
p (r)g1,p + H1/2

p (r)(dr2 + r2g8−p),

e2φ−2φ∞ = H(p−3)/2
p , Ap+1 = −1

2
(H−1

p − 1)dx0 ∧ . . . ∧ dxp, (4.10)

where

Hp(r) = 1 + 25−pπ(5−p)/2gsNcΓ
(

7 − p

2

)

α′(7−p)/2

r7−p
.

The metric g8−p is Einstein and is assumed to be independent on r and also
independent on the Minkowski co-ordinates (t, x, y, z). If the Dp branes are
flat, the light open spectrum is U(Nc) super Yang–Mills in p + 1 dimensions.
We have that gY M = 2πp−2gsα

′(p−3)/2 being gs = e2φ∞ . The field theory
limit is obtained by taking α → 0 such that gY M is fixed. For p < 3 the
ten-dimensional Newton constant goes to zero and the theory is decoupled
from the bulk. Instead for p > 3 the constant gs goes to infinite and a
dual description is convenient in order to analyse the decoupling problem.
In order to have finite energy configurations in the field theory limit one
should consider the near horizon limit in the IIB background. Such limit
is obtained by taking r → 0 and α′ → 0 such that the quantity with energy
units U = r/α′ is fixed. For any p the resulting metric will be

gIIB = α′
[

(

dpg
2
Y MN

U7−p

)−1/2

g1,p +
(

dpg
2
Y MN

U7−p

)1/2
(

dU2 + U2dΩ8−p

)

]

eφ = (2π)2−pg2
Y M

(

dpg
2
Y MN

U7−p

)(3−p)/4

, dp = 27−2pπ(9−3p)/2Γ
(

7 − p

2

)

.

The Yang–Mills coupling constant gY M is not dimensionless for any p,
but the effective constant g2

eff ∼ g2
Y MNUp−3 is. The low energy descrip-

tion of super Yang–Mills can be trusted for g2
eff � 1 which means that

U � (g2
Y MN)1/(3−p) for p < 3 and U � (g2

Y MN)1/(3−p) for p > 3. In the
ultraviolet limit U → ∞ the string coupling vanish for p < 3 and the the-
ory is UV free. In the other case a dual description is needed, which is
in accordance with the fact that the corresponding SYM theories are not
renormalizable and new degrees of freedom appears at short distances.
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The situation is different for p = 3, in which the AdS/CFT correspondence
fully applies. The type IIB supergravity solutions of the form

g10 = H−1/2(−dt2 + dx2 + dy2 + dz2) + H1/2(dr2 + r2g5),

e2φ = e2φ∞ , F5 = (1 + ∗)dH−1
3 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3, (4.11)

H(r) being a harmonic function over the Ricci flat metric given by

H(r) = 1 +
L4

r4 , L4 = 4πg8Nα2.

Such solutions represent an stack of N parallel D3 branes separated by some
distance called r. Then it follows that the six-dimensional metric in (4.11)
possesses a conical singularity, except for the round five sphere. It is also
Ricci flat by construction and therefore g5 is Einstein. If the Ricci flat
metric is indeed flat then the theory living in the D3 brane decouples from
the bulk and the branes come close together. The resulting theory is N = 4
super Yang–Mills. Also the near horizon limit of the geometry of (4.11) is
AdS5 × X5, X5 being the Einstein space over which g5 is defined. In the
context of the AdS/CFT correspondence the gauge field theory living on
the D3 brane at the conical singularity is identified as the dual of type IIB
string theory on AdS5 × X5. The open and closed string massive modes
decouple by taking the limit α′ → 0 and the Planck length lp = g

1/2
s α′ goes

to zero because gs is given in terms of the dilaton, which is constant. The
AdS factor reflects that the dual-field theory is conformally invariant. The
number of supersymmetries of the gauge theory is related to the number of
independent Killing vectors, which depends on the holonomy of the cone.
Instead for p is different from 3 the curvature in the near horizon limit is
R ∼ 1

geff
which is U dependent, thus no AdS factor appears. This reflects

that U(Nc) super Yang Mills theory is not conformal invariant. The same
happens for non-flat branes.

There are also of interest 11-dimensional supergravity solutions over a
manifold with local form M3 × X8, the manifold X8 being Ricci flat and
developing a conical singularity. The generic supergravity solution in con-
sideration is of the form

g11 = H−2/3(−dt2 + dx2 + dy2) + H1/3(dr2 + r2g7),

F = ±dx ∧ dy ∧ dt ∧ dH−1 (4.12)

where

H(r) = 1 +
25π2Nl6p

r6 .

This solution describes N M2 branes. The near horizon limit of this geom-
etry is obtained taking the 11-dimensional Planck length lp → 0 and keep-
ing fixed U = r2

l3p
. The resulting background is AdS4 × X7, X7 being an



TRI-SASAKI FAMILY AND MARGINAL DEFORMATIONS 1101

Einstein manifold with cosmological constant Λ = 5, and the radius of AdS4
is 2RAdS = lp(25π2N)1/6. Such solutions have the generic form

g11 = gAdS + g7, F4 ∼ ωAdS , (4.13)

ωAdS being the volume form of AdS4. If X7 is the round sphere the radius
will be the same than the AdS part. This is the flat case and it is conjectured
that the dual theory is the 2+1 dimensional N = 8 superconformal field the-
ory living on the M2 brane. The isometry group SO(7) of the sphere reflects
the fact that a N = 8 SCFT is invariant under SO(7) subgroup instead of
SO(8). The quantization of the flux of the tensor F implies that the constant
α is quantized in units of l611, l11 being the Planck length in 11-dimensions.
The backgrounds are in general associated to three-dimensional conformal
field theories arising as the infrared limit of the world volume theory of N
coincident M2 branes located at the singularity of M3 × X8. Also in this
case, the number of supersymmetries of the field theory is determined by
the holonomy of X8. In the case of Spin(7), SU(4) or Sp(2) holonomies we
have N = 1, 2, 3 supersymmetries, respectively. This implies that the seven-
dimensional cone will be of weak G2 holonomy (if the eight-dimensional
metric is of cohomogenity one, see next), tri-Sasaki or a Sasaki–Einstein,
respectively. If g8 is flat, then we have the maximal number of supersym-
metries, namely eight.

4.4 Supergravity backgrounds over tri-Sasaki and weak G2

Let us construct supergravity backgrounds corresponding to the Einstein
seven-metrics (4.8) or (4.1), (4.3) and (4.4). The generic 11-dimensional
supergravity solution is

g11 = H−2/3(−dt2 + dx2 + dy2)

+ H1/3dr2 + r2H1/3
(

(g7)ααdα2 + (g7)αβdα ⊗ dβ

+ (g7)αφdα ⊗ dφ + (g7)ββdβ2 + (g7)βφdβ ⊗ dφ + (g7)φφdφ2

+ Qαdα + Qβdβ + Qφdφ + ˜H
)

,

F = ±dx ∧ dy ∧ dt ∧ dH−1 (4.14)

H being a harmonic function over the hyperKahler cone. In particular if
H = H(r) we have

H(r) = 1 +
25π2Nl6p

r6 . (4.15)
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In the expression for the metric we have introduced the one-forms Q and
the symmetric tensor ˜H given by

˜H = dθ2 + dϕ2 + (g7)θηdθ ⊗ dη + (g7)ρρdρ2 + (g7)ρηdρ ⊗ dη + (g7)ηηdη2,

Qα = (g7)αθdθ + (g7)αϕdϕ, Qβ = (g7)βϕdϕ, Qφ = (g7)φϕdϕ

+ (g7)φηdη + (g7)φρdρ.

This supergravity solution describes N M2 branes. The near horizon limit of
this geometry is obtained by taking the 11-dimensional Planck length lp → 0
and keeping fixed U = r2/l3p. The resulting background is AdS4 × X7, X7
being an Einstein manifold with cosmological constant Λ = 5, and the radius
of AdS4 is 2RAdS = lp(25π2N)1/6. Such solutions have the generic form

g11 = gAdS + g7, F4 ∼ ωAdS , (4.16)

g7 being an Einstein metric over X7 and ωAdS the volume form of AdS4.

Non-AdS backgrounds and harmonic functions. Non-AdS4 backgrounds
are also of interest because they are related to non-conformal field theories.
Therefore it is of interest to find harmonic functions which are functions not
only of the radius r, but also of other co-ordinates of the internal space.

We will now give here a simple way to construct non-trivial harmonic func-
tions. Let us notice that all the four-dimensional quaternion Kahler orbifolds
that we have constructed have two commuting Killing vectors which also pre-
serve the one-forms ωi

−. This vector also preserves the Kahler triplet dJ =
dω− + ω− ∧ ω−. Consequently they preserve the HyperKahler triplet (2.28)
for the corresponding Swann fibration. Such vectors are therefore Killing
and tri-holomorphic (thus tri-Hamiltonian). For any eight-dimensional
hyperKahler metric with two commuting Killing vectors there exists a
co-ordinate system which takes the form [35]

g8 = Uijdxi · dxj + U ij(dti + Ai)(dtj + Aj), (4.17)

(Uij , Ai) being solutions of the generalized monopole equation

F
xi

μxj
ν

= εμνλ∇xi
λ
Uj ,

∇xi
λ
Uj = ∇

xj
λ
Ui,

Ui = (Ui1, Ui2).

(4.18)

The co-ordinates (x1
i , x

2
i ) with i = 1, 2, 3 are the momentum maps of the tri-

holomorphic vector fields ∂/∂θ and ∂/∂ϕ, but we do not need to go in further
details. In the momentum map system the 11-dimensional supergravity
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solution reads

g11 = H−2/3g2,1 + H1/3[Uijdxi · dxj + U ij(dti + Ai)(dtj + Aj)], (4.19)

F = ±ω(E2,1) ∧ dH−1, (4.20)

and the harmonic condition on H is expressed as

U ij∂i · ∂jH = 0.

All the Swann hyperKahler cones that we have presented are toric, and
therefore they can be expressed as

g8 = dr2 + r2g7 = Uijdxi · dxj + U ij(dti + Ai)(dtj + Aj).

Let us recall that, as a consequence of (4.18), we have that ∂i · ∂jUij = 0,
which implies that U ij∂i · ∂jUij = 0. This means that any entry Uij is a
harmonic function over the hyperKahler cone. The matrix U ij is deter-
mined by the relation U ij = g8(∂i, ∂j), and the inverse matrix Uij will give
us three independent non-trivial harmonic functions for the internal space
in consideration.

As an example we can consider the cone g8 = dr2 + r2g7, g7 being the
tri-Sasaki metric corresponding to the AdS–Taub–Nut solution (4.1). For
this cone we have that

U
˜t˜t = r2(r̃ − N)2 + r2V (r̃ ),

U
˜φ˜φ = 4N2r2V (r̃ ) cos2 ˜θ + (r̃ 2 − N2)r2 sin2

˜θ (4.21)

U
˜t˜φ = −2Nr2V (r̃ ) cos ˜θ + r2(r̃ − N)g(r̃ ) cos ˜θ.

By defining Δ = U˜t˜tU
˜φ˜φ − (U˜t˜φ)2 we obtain the following harmonic

functions

U
˜t˜t =

U
˜φ˜φ

Δ
, U

˜φ˜φ
= −U˜t˜t

Δ
, U

˜t˜φ
=

U˜t˜φ

Δ
. (4.22)

In the S4 manifold limit we obtain more simple expressions, namely

U
˜φ˜φ

= − 1
r2

(

1

sin2
˜θ + sin2 ρ̃ cos2 ˜θ − sin4 ρ̃ cos2 ˜θ

)

,

U
˜φ˜t

=
1
r2

(

sin2
˜θ + sin2 ρ̃ cos2 ˜θ

sin2
˜θ + sin2 ρ̃ cos2 ˜θ − sin4 ρ̃ cos2 ˜θ

)

, (4.23)

U
˜t˜t =

1
r2

(

sin2 ρ̃ cos ˜θ

sin2
˜θ + sin2 ρ̃ cos2 ˜θ − sin4 ρ̃ cos2 ˜θ

)
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For the AdS–Kerr–Newman case (4.3) we have

U
˜t˜t = r2 c(r̃)d(r̃)

r̃2 − a2 cos ˜θ2
+ a2r2 f(˜θ) sin2

˜θ

r̃2 − a2 cos2 ˜θ
+ r2e2(r̃, ˜θ),

U
˜t˜φ = r2 c(r̃)d(r̃)

r̃2 − a2 cos ˜θ2

a sin2
˜θ

Ξ
+ ar2 f(˜θ) sin2

˜θ

r̃2 − a2 cos2 ˜θ

c(r̃)
Ξ

+ r2 W (r̃, ˜θ)
Ξ

,

U
˜φ˜φ = r2 c(r̃)d(r̃)

r̃2 − a2 cos ˜θ2

a2 sin4
˜θ

Ξ2 + r2 f(˜θ) sin2
˜θ

r̃2 − a2 cos2 ˜θ

c2(r̃)
Ξ2

+ r2 W 2(r̃, ˜θ)

Ξ2e2(r̃, ˜θ)
+ r2 f(˜θ)c(r̃)d(r̃)

e2(r̃, ˜θ)

sin2
˜θ

Ξ2

and again, the three functions U ij/Δ are harmonic functions over the inter-
nal hyperKahler space. Notice that Δ ∼ r4 and therefore all these harmonic
functions depend on r as 1/r2. Finally, for the Swann metrics fibred over
the toric orbifolds (3.28) we find

Uαα =
F

r2

(

1
2
F + ρFρ

)

, Uαβ =
ρFηF

r2 , Uββ =
F

r2

(

1
2
F − ρFρ

)

,

(4.24)

are also harmonic functions over the cone, depending on a solution F of a
linear differential equation. All these harmonic functions provide non-AdS4
horizon limits.

5 Gamma deformations of supergravity backgrounds

5.1 Deformations of 11-supergravity solutions

Let us describe in more detail the SL(2, R) solution-generating technique
sketched in the introduction. This technique was applied in order to find
the dual of marginal deformed field theories in [12]. One usually starts
with a solution of the 11-dimensional supergravity with U(1) × U(1) × U(1)
isometry. Any of such solutions can be written in the generic form

g11 = Δ1/3MabDαaDαb + Δ−1/6g̃μνdxμdxν , (5.1)
C3 = CDα1 ∧ Dα2 ∧ Dα3 + C1(ab) ∧ Dαa ∧ Dαb + C2(a) ∧ Dαa + C(3),

with the indices a, b = 1, 2, 3 are associated to three co-ordinates α1, α2 and
α3. The metric and the field C3 does not depend on these co-ordinates
and the greek indices μ, ν run over the remaining eight-dimensional co-
ordinates. We have introduced the covariant derivative Dαi = dαi + Ai, Ai

being a triplet of αi-independent one-forms. The expression (5.13) possesses
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a manifest SL(3, R) symmetry for which the co-ordinates αi of (5.13) and
the tensor fields M and Ai have the following transformation law

⎛

⎝

α1
α2
α3

⎞

⎠

′

= (ΛT )−1

⎛

⎝

α1
α2
α3

⎞

⎠ , (5.2)

M ′ = ΛMΛT

⎛

⎝

A1
A2
A3

⎞

⎠

′

= (ΛT )−1

⎛

⎝

A1
A2
A3

⎞

⎠ . (5.3)

⎛

⎝

C23μ

C31μ

C12μ

⎞

⎠ → (ΛT )−1

⎛

⎝

C23μ

C31μ

C12μ

⎞

⎠ ,

⎛

⎝

C1μν

C2μν

C3μν

⎞

⎠ → Λ

⎛

⎝

C1μν

C2μν

C3μν

⎞

⎠ .

The full isometry group of 11-dimensional supergravity compactified on a
three torus is SL(3, R) × SL(2, R). The SL(3, R) group leaves the back-
ground (5.13) unaltered. Following [12] and [108] we will deform these
T 3 invariant backgrounds by an element of SL(2, R). This deformation
is a solution-generating technique which does not leave the background
unchanged, but gives new supergravity backgrounds. We find convenient
to define a complex parameter τ = C + iΔ1/2 which, under the SL(2, R)
action is transformed as

τ −→ aτ + b

cτ + d
; Λ =

(

a b
c d

)

∈ SL(2, R). (5.4)

The eight-dimensional metric gμν and the tensor C2 are invariant under this
action. The tensor C(1)abμ and Aaμ form a doublet in a similar way that the
RR and NSNS two-form fields do in IIB supergravity, their transformation
law is

Ba =
(

2Aa

−εabcC(1)bc

)

, Ba −→ Λ−T Ba. (5.5)

The field strength C3 also forms a doublet with its magnetic dual with
transformation law

H =
(

F4

Δ
−1
2 ∗8 F4 + C(0)F4

)

, H −→ Λ−T H, (5.6)

the Hodge operation being taken with respect to the eight-dimensional met-
ric g̃. As we discussed in the introduction, this transformation deforms the
original metric (5.13) and the deformed metric will be regular only with
elements of the form [12]

Λ =
(

1 0
γ 1

)

∈ SL(2, R), (5.7)

which constitute a subgroup called γ-transformations. We will be concerned
with such transformations in the following.
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If the fields C, C1 and C2 are zero, it follows that Ai and g̃μν are unchanged
by a γ-transformation and C1 and C2 remains zero. The deformation then
gives the new fields

Δ′ = G2Δ, C ′ = −γGΔ, G =
1

1 + γ2Δ
. (5.8)

By inspection of the transformation rule (5.6) it follows that

F ′
4 = F4 − γΔ−1/2 ∗8 F4 − γd(GΔDα1 ∧ Dα2 ∧ Dα3). (5.9)

The γ-deformed 11-dimensional metric results [108]

g11 = G−1/3(GΔ1/3MabDαaDαb + Δ−1/6g̃μνdxμdxν). (5.10)

Note that if the initial four-form F4 was zero, then from the last term in
(5.9) a non-trivial flux is obtained in the deformed background.

5.2 A family of deformed backgrounds

As we have already mentioned, any eight-dimensional Ricci flat metric g8
can be extended to a 11-dimensional supergravity solution of the form

g11 = H−2/3(−dt2 + dx2 + dy2) + H1/3g8

C3 = ±H−1dx ∧ dy ∧ dt, F 4 = ±dx ∧ dy ∧ dt ∧ dH−1,

H being a harmonic function over g8. If the metric g8 is a cone then we can
re-express the 11-dimensional metric as

g11 = H−2/3(−dt2 + dx2 + dy2) + H1/3(dr2 + r2g7)

g7 being an Einstein metric. If g8 is hyperKahler then g7 will be tri-Sasaki;
if g8 is of Spin(7) holonomy with cohomogeneity one, then g7 will be of
weak G2 holonomy. We have constructed a whole family of tri-Sasaki met-
rics in (4.1), (4.3) and (4.4). In addition, the replacement gq → 5gq in all
these expressions give a family of metrics with weak G2 holonomy. All these
metrics possess three commuting Killing vectors, namely ∂τ , ∂α and ∂β.
Therefore they are suitable to apply the SL(2, R) solution-generating tech-
nique described previously. The corresponding 11-dimensional supergravity
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background with three commuting isometries is

g11 = H−2/3(−dt2 + dx2 + dy2) + H1/3dr2 + H1/3r2
(

(g7)˜t˜td˜t 2 + (g7)
˜t˜φ

d˜t

⊗ d˜φ + (g7)˜tτd˜t ⊗ dτ + (g7)˜φ˜φ
d˜φ2 + (g7)˜φτ

d˜φ ⊗ dτ + (g7)ττdτ2

+Q
˜td

˜t + Q
˜φ
d˜φ + Qτdτ + ˜H

)

,

C3 = ±H−1dx ∧ dy ∧ dt, F 4 = ±dx ∧ dy ∧ dt ∧ dH−1, (5.11)

where we have defined

Q
˜t = (g7)˜tθdθ, Q

˜φ
= (g7)˜φθ

dθ, Qτ = (g7)τϕdϕ + (g7)τ ˜θ
d˜θ + (g7)τ r̃dr̃,

(5.12)
˜H = dθ2 + dϕ2 + (g7)˜θϕ

d˜θ ⊗ dϕ + (g7)r̃r̃dr̃2 + (g7)r̃˜θ
dr̃ ⊗ d˜θ

+ (g7)r̃ϕdr̃ ⊗ dϕ + g
˜θ˜θ

d˜θ2.

Under the replacement gq → 5gq we will obtain a new supergravity solution
which is fibred over a weak G2 holonomy space. The solution-generating
technique applies to both cases exactly in the same manner, but the dual-
field theories will possess different number of supercharges. Let us note that
if the harmonic function is selected to be

H(r) = 1 +
25π2Nl6p

r6 .

then the near horizon limit will be

g11 = gAdS + g7.

But we can consider backgrounds with other horizon limits by considering
harmonic functions such as those constructed in (4.21) to (4.24).

Our task now is to find a local co-ordinate system for which (5.11) takes
the manifest T 3 symmetric form

g11 = Δ1/3MabDφaDφb + Δ−1/6g̃μνdxμdxν (5.13)

with the indices a, b = 1, 2, 3 associated to the isometries φ1 = ˜t, φ2 = ˜φ
and φ3 = τ and the greek indices μ, ν running over the remaining eight-
dimensional co-ordinates. We need to introduce the following quantities

⎛

⎝

A1
A2
A3

⎞

⎠ = (g7)ab

⎛

⎝

Q
˜t

Q
˜φ

Qτ

⎞

⎠

h = ˜H − r2H1/3(g7)abAaAb.

(5.14)

With the help of these quantities it is not difficult to check that the metric
takes the form

g11 = g8 + H1/3r2(g7)ab(dφa + Aa)(dφb + Ab)
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g8 being given by

g8 = H−2/3(−dt2 + dx2 + dy2) + H1/3(dr2 + r2h). (5.15)

By further defining

Δ = [detΩab], g̃ = Δ1/6g8,

Dφa = dφa + Aa, Ωab = r2H1/3(g7)ab, Mab =
Ωab

det(Ωab)1/3 . (5.16)

The metric take the desired form with manifest SL(3, R) symmetry

g11 = Δ1/3MabDφaDφb + Δ−1/6g̃μνdxμdxν , (5.17)

By using these quantities together with formulae (5.8) to (5.10) we obtain
the following deformed backgrounds.

For the orbifolds (4.8) we have that

Qα = (g7)αθdθ + (g7)αϕdϕ, Qβ = (g7)βϕdϕ,

Qφ = (g7)φϕdϕ + (g7)φηdη + (g7)φρdρ,

˜H = dθ2 + dϕ2 + (g7)θηdθ ⊗ dη + (g7)ρρdρ2 + (g7)ρηdρ ⊗ dη + (g7)ηηdη2.

The explicit form of the matrix Ωab turns out to be

Ωab = r2H1/3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −
2
√

ρ

F
sin θ cos ϕ +

2η
√

ρF
cos θ − 2

√
ρF

cos θ

−
2
√

ρ

F
sin θ cos ϕ +

2η
√

ρF
cos θ (gq)αα +

(1 + ρ2)
ρF 2

(gq)αβ +
2η

ρF 2

− 2
√

ρF
cos θ (gq)αβ +

2η

ρF 2
(gq)ββ +

1
ρF 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(5.18)

gq being the quaternion Kahler metric defined in (3.28). All these quantities
are expressed in terms of a single eigenfunction F of the laplacian operator
in the hyperbolic two-dimensional space. By using the formulae (5.8), (5.9)
and (5.10) we obtain directly the deformed backgrounds, as before.

5.3 Explicit formulae for the spherical case

It will be instructive to repeat this procedure to the background (5.31) fibred
over S4. We need to define the relevant quantities first. From the definition
Ωab = gab being a, b = 1, 2, 3 and φ1 = ˜t, φ2 = ˜φ and φ3 = τ , we find the



TRI-SASAKI FAMILY AND MARGINAL DEFORMATIONS 1109

following toric fibre metric

Ω˜t˜t = Ω˜φ˜φ = Ωττ = 1, Ω˜t˜φ = sin ρ̃ cos ˜θ, Ω˜tτ = − sin ρ̃ sin θ cos ϕ,

Ω˜φτ = − sin θ(sin ϕ cos ρ̃ sin ˜θ + cos ϕ cos ˜θ). (5.19)

The determinant Δ = det Ωab of this matrix is

Δ = − sin ρ̃ sin θ cos ϕ[sin ρ̃ cos ˜θ sin θ(sin ϕ cos ρ̃ sin ˜θ + cos ϕ cos ˜θ)

+ sin ρ̃ sin θ cos ϕ] + [1 − sin2 θ(sin ϕ cos ρ̃ sin ˜θ + cos ϕ cos ˜θ)2]

− sin ρ̃ cos ˜θ(sin ρ̃ cos ˜θ + sin ρ̃ sin θ cos ϕ). (5.20)

From (5.19) and (5.20) we define the matrix Mab = Ωab/Δ1/3 with unit
determinant. Also, from the definition Ωab = gab of the inverse matrix we
obtain that

Ω
˜t˜t =

1
Δ

(

1 − sin2 θ(sin ϕ cos ρ̃ sin ˜θ + cos ϕ cos ˜θ)2
)

,

Ω
˜φ˜φ

=
1
Δ

(

1 + sin2 ρ̃ sin2 θ cos2 ϕ

)

, Ωττ =
1
Δ

(

1 − sin2 ρ̃ cos2 ˜θ
)

,

Ω
˜t˜φ

=
1
Δ

(

sin ρ̃ cos ˜θ − sin2 θ sin ρ̃ cos ϕ(sin ϕ cos ρ̃ sin ˜θ + cos ϕ cos ˜θ)
)

,

Ω
˜tτ =

1
Δ

(

sin θ sin ρ̃ cos ϕ − sin ρ̃ cos ˜θ sin θ(sin ϕ cos ρ̃ sin ˜θ + cos ϕ cos ˜θ)
)

,

Ω
˜φτ

=
1
Δ

(

sin θ sin2 ρ̃ cos ˜θ cos ϕ − sin θ(sin ϕ cos ρ̃ sin ˜θ + cos ϕ cos ˜θ)
)

.

(5.21)

The one-forms Qi are

Q
˜t = sin ρ̃ sin ϕdθ, Q

˜φ
= (cos ˜θ sin ϕ − cos ρ̃ sin ˜θ cos ϕ)dθ

Qτ = − cos θ(dϕ + cos ρ̃d˜θ) (5.22)

With the help of (5.21) and (5.22) we define the one-forms Aa and the
covariant derivative Da by

Aa = ΩabQb, Dφa = dφa + Aa. (5.23)

The metric ˜H defined in (5.12) is

˜H = dθ2 + dϕ2 + dρ̃2 + d˜θ2 − 2 cos ρ̃d˜θ ⊗ dϕ, (5.24)

and therefore the metric in (5.2) reads

h = ˜H − (g7)abAaAb. (5.25)



1110 O.P. SANTILLAN

With the help of formulae (5.13) to (5.17) we obtain the deformed back-
ground, the result is

gd = (1 + γ2Δ)1/3
(

g11 − γ2Δ
1 + γ2Δ

ΩabQaQb

)

(5.26)

C = −k sin u

3
sinh3 ρdt ∧ du ∧ dv − γΔ

1 + γ2Δ
D˜t ∧ D˜φ ∧ Dτ,

g11 being the undeformed metric (5.31). Notice that (5.26) is explicit because
all the quantities are defined by (5.20), (5.21) and (5.22). The procedure is
completed.

We will consider IIB reductions of these backgrounds and their deforma-
tions in the appendix.

5.4 Rotating supermembrane solutions

We have presented an infinite family of 11-dimensional supergravity back-
grounds possessing at least three commuting Killing vectors. These
backgrounds are supposed to be dual to three-dimensional conformal field
theories arising as the infrared limit of the world volume theory of N coin-
cident M2 branes located a the singularity of M3 × X8. Because the eight-
dimensional geometry is hyperKahler we expect N = 3 supersymmetry in
the superconformal field theory. But it is difficult to guess which is the
explicit form of the dual-field theory and we are not attempting to obtain
an explicit Lagrangian here. Nevertheless it has been suggested that the
correspondence between semiclassical strings with high angular momentum
and long operators can be generalized to membranes [20]. In the string case
the configurations have energy proportional to the t’ Hooft scale and thus
are dual to operators with large dimensions [7]. For a rotating string in AdS5
the difference between the energy and the spin depends logarithmically on
the spin, therefore the dual operators should possess dimensions with the
same dependence. The operators are twist operators that are responsible
for violations of Bjorken scaling, and it has been shown that no correc-
tions to the logarithmic behaviour appears in the strong coupling limit [8].
This correspondence has been generalized to membranes, in which the rela-
tion between the spin, the J-charges and the energy should be related to the
anomalous dimensions of certain operators of the conformal field theory [20].

Therefore it is of interest to consider rotating membrane configurations
over the supergravity backgrounds that we have constructed. Recall that
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the supermembrane action is given by

S = − 1
2π2l311

∫

(

(−γ)1/2

2

[

γij
∂Xμ

∂σi

∂Xν

∂σj
Gμν − 1

]

+ εijk
∂Xν

∂σi

∂Xν

∂σj

∂Xν

∂σk
Cμνρ

)

d3σ (5.27)

where σi = (τ, σ, λ) are the worldvolume co-ordinates, γij the worldvolume
metric, Xμ is the then target space co-ordinate and Gμν is the target metric.
We have also the three-form Cμνρ and the corresponding field strength is
H = dC. The equations of motion derived from (5.27) is

γij = ∂iXμ∂jXνGμν (5.28)

∂i

(

(−γ)1/2γij∂jX
ρ
)

= −(−γ)1/2γij∂iX
μ∂jX

νΓρ
μν(X)

− εijk∂iX
μ∂jX

ν∂kX
σHρ

μνσ(X).

The three diffeomorphisms of the action can be fixed by a gauge described
by the constraints

γ0α = ∂0X
μ∂αXνGμν(X) = 0, (5.29)

γ00 + L2 det[γαβ ] = ∂0X
μ∂0X

νGμν(X) + L2 det[∂αXμ∂βXνGμν(X)] = 0,

L being a constant fixed by the equations of motion. By imposing the
constraints (5.27) to (5.29) we obtain the following action in gauge fixed
form

S =
1

2(2π)2Ll311

∫

(

∂0X
μ∂0X

νGμν(X) − L2 det[∂αXμ∂βXνGμν(X)]

+ 2Lεijk∂iX
μ∂jX

ν∂kX
ρCμνρ(X)

)

d3σ. (5.30)

In Poincare co-ordinates the AdS4 space is parameterized as

gAdS = − cosh2 ρdt2 + dρ2 + sinh2 ρ(du2 + sin2 udv2).

and the 11-dimensional background becomes
1
l211

g2
11 = − cosh2 ρdt2 + dρ2 + sinh2 ρ(du2 + sin2 udv2) + r12g7,

F4 = k cosh ρ sinh2 ρ sin udt ∧ dρ ∧ du ∧ dv,

C = −k sin u

3
sinh3 ρdt ∧ du ∧ dv,

r12 being the relative radius between the AdS4 and the internal space and
k is a constant determined by the equation of motions.
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We will study now the case when the metric on X7 is the tri-Sasaki metric
fibred over the sphere S4, the metric is given in (4.4). Our 11-dimensional
background is

g11 = − cosh2 ρdt2 + dρ2 + sinh2 ρ(du2 + sin2 udv2)

+ (cos ρ̃ sin ˜θd˜φ − cos ϕdθ − sin ϕ sin θdτ)2

+ (cos ρ̃d˜θ − dϕ − cos θdτ)2

+ (sin ρ̃d˜t + cos ˜θd˜φ + sin ϕdθ − cos ϕ sin θdτ)2

+ cos2 ρ̃d˜t2 + dρ̃2 + sin2 ρ̃(d˜θ2 + sin2
˜θd˜φ2).

(5.31)

The first configuration is one rotating in the AdS background and for which
the third direction is wrapped in the Reeb direction

ρ = ρ(σ), t = kτ̃ , u =
π

2
, v = ωτ̃ , θ =

π

2
, ϕ =

π

2
,

τ = λδ, ρ̃ =
π

2
, ˜θ =

π

2
, ˜φ = νφτ̃ , ˜t = νtτ̃ .

(5.32)

The second configuration we will analyse is one in which the membrane
rotates in the internal space (R-charge) and the third direction is wrapped
in AdS, namely

ρ = ρ(σ), t = kτ̃ , u =
π

2
, v = λδ, θ =

π

2
, ϕ =

π

2
,

τ = ντ̃ , ρ̃ =
π

2
, ˜θ =

π

2
, ˜φ = νφτ̃ , ˜t = νtτ̃ .

For the first configuration by selecting L = 1 we have that

gμν∂σXμ∂τ̃X
ν = gμν∂δX

μ∂τ̃X
ν = gμν∂σXμ∂δX

ν = 0,

gμν∂τ̃X
μ∂τ̃X

ν = −κ2 cosh2 ρ + ω2 sinh2 ρ + ν2
φ + ν2

t ,

gμν∂σXμ∂σXν =
(

dρ

dσ

)2

,

and the equations of motion gives the further relation

dρ

dσ
=

√

−κ2 cosh2 ρ + ω2 sinh2 ρ + ν2
φ + ν2

t .

Inserting this equation into the action gives us

S = −P

∫

dτ̃

∫ ρ0

0

√

−κ2 cosh2 ρ + ω2 sinh2 ρ + ν2
φ + ν2

t . (5.33)
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We have that

E = −δS

δk
∼

∫ ρ0

0

cosh2 ρ
√

−κ2 cosh2 ρ + ω2 sinh2 ρ + ν2
φ + ν2

t

,

S =
δS

δω
∼

∫ ρ0

0

sinh2 ρ
√

−κ2 cosh2 ρ + ω2 sinh2 ρ + ν2
φ + ν2

t

.

But the integral (5.33) is one of those appearing in [7], and we obtain from
here that E − S ∼ log S, which is what we wanted to show.

For the other configuration we have that

S = −P

∫

dτ̃

∫ ρ0

0
sinh ρ

√

−κ2 cosh2 ρ + ν2 + ν2
φ + ν2

t . (5.34)

In this case we have no place for spin; but, we have energy and R-charge
angular momentum J

E = −δS

δk
, J =

δS

δν
.

From (5.34) it is obtained that for long membranes, we have E = J + · · ·

Let us consider now the rotating configuration (5.32) in the deformed
background (5.26). For this configuration we have that Δ = 1, Ωab = 1 and
Qi and D˜t ∧ D˜φ ∧ Dτ are zero. This means that the effective metric that
the membrane sees rotating over (5.26) or (5.31) is essentially the same.
Thus the logarithmic behaviour of the difference E − S is reproduced for
the deformed background. We find this interesting because, while the unde-
formed background is a direct product of AdS4 with a seven space, the
deformation is not.

6 Kahler–Einstein over Kahler–Einstein and
other examples

Till the moment have found an explicit expression for Kahler–Einstein met-
rics defined over the twistor space Z of any four-dimensional quaternion
Kahler space. We also have found the corresponding Einstein–Sassaki met-
rics and we have checked, in accordance with [79], that the eight-dimensional
cone over them is hyperKahler. It is indeed a Swann metric. Thus such
Einstein–Sasaki metrics admit three conformal Killing vectors and are tri-
Sasaki. This is different than other Kahler–Einstein spaces appearing in
the literature, for which the Einstein–Sasaki metrics admit only two confor-
mal Killing vectors. In this section we review some Kahler–Einstein metrics
which are fibred over Kahler metrics of lower dimensions [66]. In general
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they correspond to Einstein–Sasaki metrics which are not tri-Sasaki. We
consider their construction important, because they encode several known
spaces appearing in the literature.

6.1 The Pedersen–Poon Hamiltonian approach

We consider a Kahler space M with metric g, a Kahler form Ω and a com-
plex structure J . We assume the presence of n Killing vectors (X1, . . . , XN )
for which LXiΩ = 0 which means that the generalized torus Tn act through
holomorphic isometries over M . A holomorphic isometry is also Hamilton-
ian, i.e., LXiJ = 0. The Killing vectors are linearly independent in a dense
open set of M , and are isotropic, i.e., Ω(X, X) = 0. This implies that JX
is orthogonal to every component of X. From the relation

LXiΩ = iXidΩ + d(iXiΩ) = d(iXiΩ) = 0,

iXi being the contraction of the vector field Xi with the two-form Ω, it
follows the existence of N functions zi, called momentum maps, defined
through the relations

dzi = iXiΩ. (6.1)
The manifold M can be viewed as a torus bundle over a real manifold of
dimension 2m − N , m being the complex dimension of M . By denoting the
N fibre co-ordinates as (t1, . . . , tN ) it follows that the metric takes the form

g = h + wijdzidzj + (w−1)ij(dti + θi)(dtj + θj), (6.2)

in the momentum map system, θi being certain one-forms defined over the
base space h of the bundle. The matrix wij is symmetric and positively
definite.

The manifold obtained by the quotient of M by the torus TN is described
by the co-ordinates zi and other complex co-ordinates ξν with ν = 1, . . . ,
m −N . The metric h is 2(m − N) dimensional, but depends on the
co-ordinates zi as evolution parameters. In other words h is the metric
on the quotient space of each level set of the momentum maps. Both the
matrix u and the base metric h are in principle zi dependent and ti indepen-
dent. The metric h is Kahler [75] and therefore complex, and can be written
in complex form

h = habdξadξ
b
. (6.3)

From the definition of Ω it follows directly that

g(JXi, Xj) = Ω(Xi, Xj) = dzi(Xj), (6.4)

and therefore
−J(dti + θi) = wijdzj .



TRI-SASAKI FAMILY AND MARGINAL DEFORMATIONS 1115

This implies that
i(dti + θi) + wijdzj ,

are (0, 1) type forms. The metric (6.2) can be expressed in complex form as

g = habdξadξ
b + (w−1)iji[wijdzj + i(dti + θi)][wijdzj − i(dti + θi)], (6.5)

and the corresponding Kahler form is

Ω = Ωh + dzi ∧ (dti + θi). (6.6)

From the fact that Ω is closed, a differential system involving u, the Kahler
metric hab and θi is obtained. The resulting equation is

dθk =
i

2
∂hab

∂zk
dξa ∧ dξ

b + i
∂wkl

∂ξk
dzj ∧ dξk − i

∂wkl

∂ξ
k

dzj ∧ dξ
k
, (6.7)

and the integrability condition d(dθk) = 0 is equivalent to the equation

∂2hab

∂zi∂zj
+

∂2wij

∂ξa∂ξ
b

= 0. (6.8)

The constructed metric is Kahler. It will be also Einstein if

ρ = ΛΩ (6.9)

ρ = Ric(J ·, ·) = −i∂∂ log det g being the Ricci form of the metric g, and the
scalar curvature will be 2mΛ. The resulting system for Kahler–Einstein
metrics was worked out in [66]. By defining the function u by

u = log deth − log det w, (6.10)

and using that in a Kahler manifold −i∂∂ = dJd it follows that the system
(6.9) is equivalent to

d(Jdu) = AΩ, (6.11)

where we have defined A = −2Λ. By taking into account the expression of
Ω (6.6), the following differential system is obtained from the last condition

4
∂2u

∂ξλ∂ξμ

+
∂u

∂zk
(w−1)kl

∂hλμ

∂zl
= Ahλμ,

∂(∂u/∂zk(w−1)kl)
∂ξλ

= 0,
∂(∂u/∂zk(w−1)kl)

∂zi
= Aδil.

The last equation implies that

∂u

∂zk
(w−1)kl = Azl + B.
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From all this discussion it follows that our toric Kahler–Einstein metrics are
described by the system

4
∂2u

∂ξλ∂ξμ

+ (Azl + Bl)
∂hλμ

∂zl
= Ahλμ,

∂u

∂zk
(w−1)kl = Azl + Bl,

∂2hab

∂zi∂zj
+

∂2wij

∂ξa∂ξ
b

= 0.

(6.12)

These equations describe metrics with commuting Killing vectors. But in
order to have a free torus action the co-ordinates tk should be periodically
identified. This is achieved if the closed form

dθk =
i

2
∂hab

∂zk
dξa ∧ dξ

b + i
∂wkl

∂ξk
dzj ∧ dξk − i

∂wkl

∂ξ
k

dzj ∧ dξ
k (6.13)

is an integral form for any k. In this case there will not be singularities if
the co-ordinate tk is periodic.

In the N = 1 case, i.e., when there is only one U(1) holomorphic isometry,
the system (6.12) is reduced to

4
∂2u

∂ξλ∂ξμ

+ (Az + Bl)
∂hλμ

∂z
= Ahλμ,

∂u

∂zk
(w−1) = Az + B, (6.14)

∂2hab

∂z2 +
∂2w

∂ξa∂ξ
b

= 0.

Following [66] it is known that the system can be simplified by imposing that
the Kahler quotient metrics obtained from each set of levels are homothetic,
i.e., h = f(z)q being the metric q independent on the z co-ordinate. A
further simplification is obtained if the length function w is just a function
of z. In this case it follows from (6.14) that f(z) = Cz + D C and D being
constants, and that

−∂2 log det q

∂ξλ∂ξν
= kqλν ,

the constant k being defined by 4k = BC − AD. This means that q is also
a Kahler–Einstein metric with scalar curvature 4nk. The class Fk reduces
in this case to the Chern form of the Kahler–Einstein base, which takes
values 2πZ for any Kahler–Einstein metric. Thus the metric that we are
presenting is defined on a circle bundle. The length function w is obtained
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from the second (6.12). The result shows that there is no loss of generality
in selecting C = 1 and D = 0; the solution is given by

w =
zn

pzn+2 + qzn+1 + s
(6.15)

where p = A/n + 2, q = B/n + 1 and s another constant. The local form of
this subfamily of metrics is

g′ = zq + wdz2 +
(dτ + A)2

w
. (6.16)

A being given by
dA = Ωq.

The Kahler form of the new metric is simply

Ω′ = zΩq + dz ∧ (dτ + A), (6.17)

and can also be expressed as

Ω′ = d(zA) + dz ∧ dτ = dA′, A′ = zA + zdτ. (6.18)

The co-ordinate z plays a role of a momentum map of the isometry ∂τ .

6.2 Complete metrics

Let us consider a 2n-dimensional Kahler–Einstein metric with sectional cur-
vature normalized to one. This condition together with B = 4κ fix the value
B = n + 1. The metric (6.16) takes in this case the following form

g6 =
dr2

V
+

r2

4
V (dt + A)2 +

r2

4
gfs, (6.19)

V being given by

V = 1 −
(a

r

)2n+2
− Λ

2(n + 2)
r2. (6.20)

There is an apparent singularity at the zeroes r0 of V . Nevertheless such
singularities can be removed for certain values of the parameters of the
metric [36–66]. If Λ > 0 then the metric will be complete if and only if
a = 0 and the base space is CP (n) with its canonical metric. In this case
the total space will be CP (n + 1) with the Fubbini–Study metric [36]. If
instead Λ < 0 there exists another complete metrics for certain values of the
parameters [66]. This is seen as follows. Let us consider the fibre metric

gf =
dr2

V
+

r2

4
V dt2,

and let us introduce the radial co-ordinate R2 = r2V . The fibre metric has
apparent singularities at the zeroes of V and the co-ordinate R tends to zero
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near the singularities. By differentiating (6.20) it is obtained that

dV

dr
=

2
r
U, U = (n + 1)

(a

r

)2n+2
− Λ

2(n + 2)
r2, (6.21)

and in terms of these quantities the fibre can be re-expressed as

gf =
(

1 +
R2r2

U

)−2
dR2

U2 +
R2

4
dt2. (6.22)

In a singularity point r0 we have that V (r0) = 0. Let us also suppose that
U(r0) = p ∈ Z. In this specific case the fibre metric (6.22) near the singu-
larity takes the form

gf � 1
p2 (dR2 + R2dτ2),

where 2pτ = t. This means that the fibre metric extends smoothly across
the singularity R = 0. The question now is to find values of the parameters
Λ and a such that the conditions U(r0) = p ∈ Z and V (r0) = 0 are realized.
By using the expressions (6.21) for U and V it is found that these conditions
reduce to an algebraic equation for Λ and a with solution

Λ =
2(n + 1 − p)

r2
0

, a2n+2 = (r0)2n+2 p + 1
n + 2

, (6.23)

which gives a further relation

(a2Λ)n+1 = (2n + 2 − 2p)n+1 p + 1
n + 2

. (6.24)

Thus, the metric extends smoothly across the singularity only if the param-
eters a and Λ are related by (6.24). We see from (6.23) that if Λ < 0 then
p ≥ n + 2. Also

dV

dr
=

2n + 2
r2n+3 a2n+2 − Λ

n + 2
r > 0

for r > 0. This means that the metric is non-singular for r > r0. In particu-
lar if the Fubbini–Study metric is used as the base space, then the desingu-
larization procedure presented before corresponds to the desingularization
O(−p) → Cn+1/Zp, O(−(n + 1)) being the canonical bundle of Pn [66].

Also, the case Λ < 0 corresponds to the parameters p ≥ 0 and s ≤ 0 in
(6.15). The fibre metric gf is two-dimensional and by Gauss theorem, it is
conformally flat. This means that there exists a co-ordinate system (ρ, τ)
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such that

p2gf = p2wdz2 +
4dτ2

w
= Ω2(ρ)(dρ2 + ρ2dτ2), (6.25)

Ω2 being a conformal factor. From this equality we get the relation

dρ

dz
= p

w1/2

Ω
,

4
w

= ρ2Ω2.

By differentiating the second one we get

4
dw−1

dz
= 2ρ2Ω

dΩ
dz

+ 2ρΩ2 dρ

dz
= 2Ωρ2 dΩ

dz
+ 2pΩ2ρ

w1/2

Ω
.

By introducing the first relation one obtains

4
dw−1

dz
=

2
wΩ

dΩ
dz

+ p ⇐⇒ d log(wΩ2)
dz

= −pw.

From the last equation we obtain

Ω2w = C exp{−p

∫ z

0
wdz}

and this, together with the second (6.25) yields

ρ2 =
4

wΩ2 = 4C−1 exp{p

∫ z

0
wdz}.

From (6.15) it is obtained that

w−1 = pz2 + q +
s

zn

and using that for Λ ≤ 0 we have p ≥ 0 and s ≤ 0; it follows that for any
positive constant C0 there exists a value z0 >

√
r0 such that any z > z0 we

have that

w−1 ≥ p

n + 2
z2 + C2

0 ,

from where it follows that
∫ z

√
r0

w ≤
∫ z0

√
r0

w +
A0

C2
0

(

arctan
z

A0
− arctan

z0

A0

)

, A0 = C0

√

n + 2
A

.

From the last inequality it is seen that for z → ∞ the function ρ approaches
to a constant. In other words ρ is a bounded function and hence the fibre
metrics are defined on an open disk. This result is independent on the choice
of the base space and is one of the key ingredient to prove that the open
disk bundle of O(−p) → Pn admits a complete Kahler–Einstein metric with
negative scalar curvature with SU(n + 1) × U(1) invariant [66].
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6.3 The Calabi–Yau limit

It is of interest to consider the Ricci flat limit of the metrics defined by (6.19)
and (6.20). The resulting metric will be Ricci flat Kahler, thus Calabi–Yau,
and its holonomy will be included in SU(3). But we have already mentioned
that these metrics are complete only if the parameters are constrained by
(6.23). In the Ricci flat limit this condition is not satisfied and thus we do
not have criteria to know if the result will be a complete metric, except in
the case a = 0 for which V = 1. We see that it deserves the attention to
study the Ricci flat limit A = −2Λ = 0 of equations (6.12) directly, instead
of taking the limit to known solutions.

In references [68, 69] there have been made certain advances in construct-
ing complete Calabi–Yau metrics, which we describe here briefly. The Ricci
flat limit of the system (6.12) is

4
∂2u

∂ξλ∂ξμ

+ B
∂hλμ

∂z
= 0,

∂u

∂z
= w, (6.26)

4
∂2hab

∂z2 +
∂2w

∂ξa∂ξ
b

= 0.

From (6.10) it is obtained that u = log w−1 det h. From this equality together
with the second equation (6.26) it is deduced that

w−1 =

∫ z
0 det h

det h
. (6.27)

In addition, by multiplying the first of (6.26) by dξλ ∧ ξμ and summing over
the repeated indices gives

d

dz
Ωh(z) = −i∂∂u. (6.28)

Combining formula (6.28) with the definition of u gives

d

dz
Ωh(z) = ρ(h) − i∂∂ log w (6.29)

and from the last formula together with (6.27) we obtain

d

dz
Ωh(z) = −i∂∂

∫ z

0
det h. (6.30)

If we were able to find a triplet (h(z), Ωh(z), w) solving these equations then
we will construct a Calabi–Yau metric in six dimensions with local form

g = h + wdz2 + w−1(dτ + A)2, (6.31)
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A being a one-form obtained from (6.7), which in our case reduces to

dA =
i

2
∂zhabdξa ∧ dξ

b + i
∂w

∂ξk
dz ∧ dξk − i

∂w

∂ξ
k
dz ∧ dξ

k
.

Here (ξk, ξ
k) are complex co-ordinates for h(z).

A simple solution can be found starting with a four-dimensional Kahler–
Einstein metric g4 with Kahler form K defined over a manifold X4, as in
the previous subsection. Let us consider the two-form

Ωh(z) = J + zρ(J), (6.32)

J being the Kahler form for g4. Because g4 is Kahler–Einstein we have that
ρ(J) = ΛJ . This implies that

Ωh(z) = (1 + Λz)J.

We also have that
Ωh(z) ∧ Ωh(z) = P (z)J ∧ J

where P (z) = (1 + Λz)2 and therefore ρ(J) = ρ(Ωh). By introducing (6.32)
in (6.29) and using ρ(J) = ρ(Ωh) we see that Ωh(z) is a solution of (6.29).
The corresponding metric h(z) is simply a z-dependent dilatation of g4,
namely

h(z) = (1 + Λz)g4, (6.33)
and from (6.27) we see that

w−1 =

∫ z
0 (1 + Λx)2dx

(1 + Λz)2
=

(1 + Λz)3 − 1
3Λ(1 + Λz)2

. (6.34)

By defining r2 = 1 + Λz the metric takes the following asymptotically coni-
cal form

g6 =
r2

9

(

1 − 1
r6

)

(dτ + A)2 +
r6

(r6 − 1)
dr2 +

Λ
3

r2g4 (6.35)

with dA = J . This metric possesses holonomy in SU(3) and depends on Λ
and the other parameters of the basis g4. An important result given in [68]
is that if Λ > 0 then the metric (6.35) is complete over the canonical bundle
KX of X4. In addition it is clear that (6.35) is asymptotically conical, i.e.,
for large values of r it tends to a cone of the form dr2 + r2g5, g5 being the
Einstein–Sasaki metric given by

g5 =
1
9
(dt + A)2 +

Λ
3

g4.

Nevertheless this metric is Calabi–Yau for any value of r, not only asymptot-
ically, and thus (6.35) provides a deformation of such cones without spoiling
the Calabi–Yau condition.
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In order to illustrate this construction, we can extend the Kahler–Einstein
metrics obtained in [40–44] to an asymptotically conical Calabi–Yau metric.
The result is

g6 =
r6

(r6 − 1)
dr2 +

r2

9

(

1 − 1
r6

)

(dτ − cos θdϕ + y(dβ + c cos θdϕ))2

+ 2r2 (1 − cy)
6

(dθ2 + sin2 θdϕ2)

+
2r2dy2

w(y)q(y)
+

2w(y)q(y)
36

(dβ + c cos θdϕ)2 (6.36)

where we have defined

w(y) =
2(a − y2)
1 − cy

, q(y) =
a − 3y2 + 2cy3

a − y2 .

If we select c = 0 and a = 3 the metric will be asymptotically a cone over
T 1,1. If we select instead c = a = 1 then the five-dimensional metric will
be S5.

There exist other solutions (h(z), Ωh(z), w) of the system (6.27) to (6.29)
that can be found starting with a Kahler manifold M with metric g4 which is
not Einstein, but possess constant eigenvalues of the Ricci curvature. Let us
consider first the case in which the metric possesses two different eigenvalues
λ1 and λ2 with multiplicity two. This case has been studied recently in [72].
We will show that (6.32) still represents a solution although in this case
ρ(J) �= ΛJ . For any Kahler manifold M with constant eigenvalues of the
Ricci curvature the Ricci form ρ and the Kahler form J will be generically

J = J1 + J2, ρ = λ1J1 + λ2J2.

In addition we always have that

ρ ∧ J = sω

ω being the volume form of M and s the scalar curvature, which in our case
is s = 2λ1 + 2λ2. We also have that

J1 ∧ J1 = J2 ∧ J2 = 0, J1 ∧ J2 = 2ω.

By using this relation it is direct to check that

Ωh(z) ∧ Ωh(z) = P (z)J ∧ J,

where P (z) = (1 + λ1z)(1 + λ2z). Therefore we have again that ρ(J) =
ρ(Ωh) and thus (6.32) is a solution of (6.29). The function w is given by



TRI-SASAKI FAMILY AND MARGINAL DEFORMATIONS 1123

(6.27), the result is

w−1 =

∫ z
0 P (x)dx

P (z)
=

1 + λ1z

2λ1
+

1 + λ2z

2λ2

− 1
(1 + λ1z)(1 + λ2z)

(

1
2λ1

+
1

2λ2

)

. (6.37)

The metric h(z) is the metric for which Ωh(z) is the Kahler form. The
procedure in order to find it is as follows. One needs to find a basis of
soldering forms ẽi(z) such that

Ωh(z) = ẽ1(z) ∧ ẽ2(z) + ẽ3(z) ∧ ẽ4(z).

The metric h(z) will be given by h(z) = ẽi(z) ⊗ ẽi(z).

A special case of Kahler spaces with two degenerate eigenvalues is given
as follows. The two forms J i are characterized by

J1 = J(π1X, π1Y ), J2 = J − J1

π1 being the projection from TM to E1, E1 being the corresponding J
invariant subspace associated to the eigenvalue λ1. The closure of J and
ρ implies that J i are also closed. The almost complex structure ˜J defined
by ˜J |E1 = J |E1 and ˜J |E2 = −J |E2 commutes with J and the corresponding
two-form

˜J = J1 − J2,

is sympletic and possesses opposite orientation with respect to the one
defined by J . This means that

˜J ∧ ˜J = −J ∧ J = 2ω.

It has been shown that the sympletic two-form ˜J is integrable if and only
if the base space M is a direct product of two Kahler–Einstein spaces [72].
In this case (g4, ˜J) will be a Kahler structure with orientation opposite
to (g4, J), and J1 and J2 will be the Kahler forms for such metrics. As
an example we can consider the product of the two-dimensional Fubbini–
Study metric gfs with the Bergmann one gb. We normalize the curvature as
λ = ±1. With the corresponding Kahler forms Jfs and Jb we consider the
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two-form
Ωh(z) = (1 + z)J1 + (1 − z)J2,

which by construction is a solution of (6.27). The corresponding metric h(z)
is given by

h(z) = (1 + z)gfs + (1 − z)gb.

From (6.37) we see that w = 1/z in this case, and the Calabi–Yau met-
ric reads

g6 = (1 + z)gfs + (1 − z)gb +
1
z
dz2 + z(dτ + A)2, (6.38)

A being given by dA = J1 − J2. Observe that in general dA = ρ(J).

Another class of Kahler manifolds with constant Ricci eigenvalues are
homogeneous Kahler manifolds, for which the holomorphic isometries act
transitively. There also exist non-homogeneous Kahler metrics in the liter-
ature with constant eigenvalues of the Ricci curvature. An example is the
family

g = eux(dx2 + dy2) + xdz2 +
1
x

(dt + ydz)2, (6.39)

which possesses this property if u is a function that satisfies

uxx + uyy = sxeu. (6.40)

The constant s is the scalar curvature of the metric. The family (6.39) is
Kahler and in general non-homogeneous, except for certain subcases. For
instance by selecting u = 3 log x the Kahler metric is obtained

g =
dx2

x2 +
dy2

x2 + xdz2 +
(dt + ydz)2

x2 , (6.41)

with Kahler form

J = −dz2 ∧ dy + dy ∧ d

(

1
x

)

.

This metric possesses two different eigenvalues of the curvature tensor. If
we make the variable change

u1 =
x2 + y2 − 1

2x
, v1 = −y

x
, u2 = t, v2 = z (6.42)

then the metric takes the form

g =
(

−u1 +
√

u2
1 + v2

1 + 1
)

du2
2 +

(

u1 +
√

u2
1 + v2

1 + 1
)

dv2
2

− 2v1du2dv2
1

(u2
1 + v2

1 + 1)
[(1 + v2

1)du2
1 + (1 + u2

1)dv2
1 − 2u1v1du1dv1].

(6.43)

It has been shown that this metric is homogeneous and non-symmetric in
[73] and the Ricci eigenvalues are (0, 0,−3

8 ,−3
8). But the metrics (6.39) are

non-homogeneous in general.
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It has been shown that in general, the resulting Calabi–Yau metric will
be complete if the Ricci eigenvalues are all positive [68]. This is not the
case for many of the examples that we have constructed so we cannot decide
whether or not the resulting Calabi–Yau metrics are complete. It is then of
interest to classify which solutions of the equation (6.39) give rise to metrics
with positive eigenvalues. Nevertheless this could be a hard task, due to the
non-linear nature of (6.39).

7 Discussion

Along this paper we considered an infinite family of tri-Sasaki seven-metrics
and its squashed version, which are of weak G2 holonomy. We have found
in particular, a large class of examples with T 3 isometry. We constructed
several new supergravity backgrounds and their deformation by use of the
Maldacena–Lunin prescription. This should correspond to a marginal defor-
mation in the dual theory. We have found in certain manifold limit a rotat-
ing configuration reproducing the logarithmic behaviour of the difference
between the spin and the energy. We have found the same behaviour for the
deformed background, although this is not a direct product of AdS4 with a
seven-dimensional space.

We want to emphasize that there is an underlying linear structure describ-
ing all the backgrounds presented along this work. This is given by (3.29)
and in fact, all the spaces that we have presented here are completely deter-
mined in terms of solutions of this equation. It will be nice to make a more
deep analysis of the dual conformal theories of these backgrounds. Notice
that the complete examples that we have presented are defined in terms
of certain twistors. This is in part, a consequence of the underlying linear
structure. It will be interesting to understand how these twistors are real-
ized in the dual conformal field theory. Perhaps the methods presented in
[61] could be useful for this purpose. Another interesting task is to figure
out the pp wave limit of the metrics we presented and to obtain realization
of the holographic renormalization group in the lines described in [91]. We
will return with this subject in a future investigation.

Appendix A: Quaternionic Kahler spaces in dimension
higher than four

The generators J i of the Lie algebra sp(1) of Sp(1) � SU(2) have the
multiplication rule

J i · J j = −δijI + εijkJ
k, (A:.1)
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which implies the so(3) � su(2) commutation rule

[J i, J j ] = εijkJ
k. (A:.2)

We see that J iJ i = −I and therefore J i will be called almost complex struc-
tures. An useful 4n × 4n representation is

J1 =

⎛

⎜

⎜

⎝

0 −In×n 0 0
In×n 0 0 0

0 0 0 −In×n

0 0 In×n 0

⎞

⎟

⎟

⎠

,

J2 =

⎛

⎜

⎜

⎝

0 0 −In×n 0
0 0 0 In×n

In×n 0 0 0
0 −In×n 0 0

⎞

⎟

⎟

⎠

J3 = J1J2 =

⎛

⎜

⎜

⎝

0 0 0 −In×n

0 0 −In×n 0
0 In×n 0 0

In×n 0 0 0

⎞

⎟

⎟

⎠

. (A:.3)

The group SO(4n) is a Lie group and this means in particular that for any
SO(4n) tensor Aa

b the commutator [A, J i] will take also values in SO(4n).
We will say that A belongs to the subgroup Sp(n) of SO(4n) if and only if

[A, J i] = 0. (A:.4)

Condition (A:.4) together with (A:.2) implies that a tensor Ba
b belongs to

the subgroup Sp(n) × Sp(1) if and only if

[B, J i] = εijkJ
jBk

−,

Bk
− being the component of B in the basis Jk. Both conditions are indepen-

dent of the representation.

We will write a metric over a 4n-dimensional manifold M as g = δabe
a ⊗

eb, ea being the 4n-basis for which g is diagonal (or vielbein basis). Let us
define the triplet of (1, 1) tensors

J i = (J i)a
bea ⊗ eb, (A:.5)

defined by the matrices (A:.3). If the holonomy is in Sp(n) × Sp(1), then
from the beginning ωa

b will take values on its Lie algebra sp(n) ⊕ sp(1). As
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we saw before, this implies that

[ω, J i] = εijkJ
jAk. (A:.6)

As usual, the connection ωa
b is defined through

∇Xea = −ωa
b (X)eb,

together with the Levi–Civita conditions ∇g = 0 and T (X, Y ) = 0. Using
the chain rule ∇(A ⊗ B) = (∇A) ⊗ B + A ⊗ (∇B) for tensorial products
show us that in the vielbein basis

[ω, J i] = ∇XJ i. (A:.7)

Comparing (A:.6) and (A:.7) we see that quaternionic Kahler manifold is
defined by the relation

∇XJ i = εijkJ
jAk,

which is independent on the election of the frame ea. This proves that (2.9)
describes quaternion Kahler metrics [28] in dimension higher than four.

The basis ea for a metric g is defined up to an SO(4n) rotation. Under
this SO(4n) transformation the tensors (A:.5) are also transformed, but it
can be shown that the multiplication (A:.1) is unaffected. In other words,
given the tensors J i one can construct a new set of complex structures

J ′i = Ci
jJ

j , J ′i · J ′j = −δijI + εijkJ
′k ⇐⇒ Ci

kC
k
j = δi

j (A:.8)

This can be paraphrased by saying that a quaternionic Kahler manifold has
a bundle V of complex structures parameterized by the sphere S2. Using
the textbook properties of ∇ it can be seen that (2.9) is unaltered under
such rotations.

Let us define three new tensors (J i)ab by (J i)ab = (J i)c
aδcb. From (A:.3)

it follows that
(J i)a

b = −(J i)b
a ⇐⇒ (J i)ab = −(J i)ba.

This show that (J i)ab are the components of the two-forms J
i defined by

J
i = (J i)abe

a ∧ eb. (A:.9)

The forms (A:.9) are known as the hyperKahler forms. From (2.9) it is
obtained that

∇XJ i = εijkJ
jAk =⇒ dJ

i = εijkA
j ∧ J

k
,

d being the usual exterior derivative. The last implication proves the relation
(2.10).

If we change the frame ea to a new one xμ then the definition (J i)ab =
(J i)c

aδcb should be modified by the covariant (J i)αβ = (J i)γ
αgγβ . Here the
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greek index indicates the components in the new basis and gγβ are the
corresponding components of the metric. Therefore

(J i)ab = −(J i)ba ⇐⇒ (J i)γ
αgγβ = (J i)γ

βgγα.

The last relation is equivalent to

g(J iX, Y ) = g(X, J iY ) ⇐⇒ g(X, Y ) = g(J iX, J iY )

for arbitrary vector fields X and Y in TM . Then the metric g will be always
quaternion Hermitian with respect to the complex structures. Relation (2.8)
is also invariant under the automorphism of the complex structures.

In general, if in a given manifold there exist three complex structures
satisfying (A:.1), and we take intersecting co-ordinate neighbourhoods U
and U ′, then we have two associated bases J i and J ′i. Both bases should
be related by an SO(3) transformation in order to satisfy (A:.1). This
means that any quaternion Kahler space is orientable [28]. Consider now
the fundamental four-form

Θ = J
1 ∧ J

1 + J
2 ∧ J

2 + J
3 ∧ J

3
, (A:.10)

and the globally defined (2, 2) tensor

Ξ = J1 ⊗ J1 + J2 ⊗ J2 + J3 ⊗ J3. (A:.11)

By means of the formula (A:.8) it follows that both tensors (A:.10) and
(A:.11) are globally defined on the manifold M . For a quaternionic Kahler
manifold it is obtained directly from (2.9) and (2.10) that [28]

∇Θ = 0, ∇Ξ = 0.

In D = 8 for a quaternion Kahler manifold dΘ = 0 and if the manifold is
of dimension at least 12 then dΘ determines ∇Θ completely. In particular
dΘ = 0 implies ∇Θ = 0 [79].

One of the most important consequences of (2.9) is that quaternionic
Kahler spaces are always Einstein with cosmological constant [26]. The proof
is briefly as follows. From the definition of the curvature tensor R(X, Y ) =
[∇X ,∇Y ] − ∇[X,Y ] together with (2.9) it follows in the vielbein basis that

Rl
ijm(Ja)m

k − Rm
ijk(J

a)l
m = εabc(F b)ij(Jc)l

k (A:.12)

where Rl
ijm are the components of the curvature tensor and the two-form

F a was defined as3

F a = dωa
− + εabcω

b
− ∧ ωc

−.

3In the physical literature sometimes the three components ω− are referred to as an
SU(2) vector potential and F a as the corresponding strength tensor.
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We can rewrite (A:.12) as a commutator

[R(X, Y ), Ja] = εabcF
bJc,

X and Y being arbitrary vector fields. Multiplying (A:.12) by (Ja)s
l and

contracting indices, and then multiplying by (Jb)k
l and using the identity4

(Ja)s
l (J

b)l
s = 4nδab,

gives the formula

F a
ij =

1
2n

Rl
ijk(J

a)k
l . (A:.13)

Inserting (A:.13) into (A:.12) yields

Rl
ijk(J

a)k
l =

2n

2 + n
Rim(Ja)m

j ,

which can also be expressed as

Ri
− =

2n

2 + n
RJ

i
, (A:.14)

R being the scalar curvature and Ri
− the Sp(1) components of the curvature

tensor. The second Bianchi identities together with (A:.14) shows that R
is constant and thus Rij ∼ gij [26]. Thus, in any dimension, quaternionic
Kahler spaces are always Einstein with non-zero cosmological constant λ.

Because R is a constant we see from (A:.14) that

Ri
− = ΛJ

i
, (A:.15)

Λ being a certain constant. We also have from (A:.13) that

F i = Λ′J
i
, (A:.16)

Λ′ being another constant. In the limit λ → 0 the constants Λ and Λ′ go
simultaneously to zero.

If there exists a rotation of the local frame for which ω− = 0 then the
complex structures are locally covariantly constant, i.e.,

∇XJ i = 0. (A:.17)

In this case Ri
− = F i = 0 thus the space has self-dual curvature, which

implies Ricci flatness. This space is called hyperKahler, and (A:.17) shows

4This is clearly true in the representation (A:.3).
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that they are Kahler with respect to any of the complex structures. Condi-
tion (A:.17) implies that the holonomy is in Sp(n) and that

dJ
a = 0 (A:.18)

together with the annulation of the Niejenhuis tensor given by

N(X, Y ) = [X, Y ] + J [X, JY ] + J [JX, Y ] − [JX, JY ]. (A:.19)

A complex structure for which N(X, Y ) = 0 is called integrable.

Appendix B: Quaternion Kahler manifolds in
dimension four

As we saw starting from the previous section, in four dimensions the state-
ment that the holonomy is Γ ⊆ Sp(n) × Sp(1) is trivial due to the isomor-
phism SO(4) � SU(2)L × SU(2)R � Sp(1) × Sp(1). We will modify this
definition and we will say that a four-dimensional manifold M is quater-
nionic Kahler if (A:.15) holds. This condition is not trivial, we will show
next that quaternion Kahler spaces in d = 4 are Einstein (as in the higher
dimensional case) and with self-dual Weyl tensor.

Let us consider a four-dimensional metric g = δabe
a ⊗ eb and the connec-

tion ωa
b given by the first Cartan equation

dea + ωa
b ∧ eb = 0, ωa

ib = −ωa
bi.

The notation SU(2)± denotes the SU(2)L and SU(2)R groups, respectively.
The SU(2)± components of the spin connection are explicitly

ωa
± = ωa

0 ± εabcω
b
c. (B:.1)

The curvature tensor is given by the second Cartan equation

Ra
b = dωa

b + ωa
s ∧ ωs

b = Ra
b,ste

s ∧ et

and the SU(2) parts are

Ra
± = Ra

0 ± εabcR
b
c. (B:.2)

The Ricci tensor is defined in the diagonal basis by Rij = Ra
i,aj and the

scalar curvature is Rii = R.

Instead of using the basis ea ∧ eb we can use the basis J
a
± = e0 ∧ ea ±

εabce
b ∧ ec. Then it follows that J

a
± are separately complex structures with
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definite self-duality properties, i.e.,

∗J
a
± = ±J

a
±.

In this basis

Ra
+ = AabJ

b
+ + BabJ

b
−, Ra

− = Bt
abJ

b
+ + CabJ

b
− (B:.3)

where the matrices A and C are symmetric. The components of the Ricci
tensor are

R00 = Tr(A + B), R0a =
εabc

2
(Bt

bc − Bbc),

Rab = Tr(A − B)δab + Bab + Bt
ab, (B:.4)

and the scalar curvature is

R = 4Tr(A) = 4Tr(C). (B:.5)

It is clearly seen from (B:.4) that the Einstein condition Rij = Λδij is equiv-
alent to B = 0 and Tr(A) = Tr(C) = Λ.

The components of the Weyl tensor in the diagonal basis are given by

W a
bcd = Ra

bcd − 1
2
(δacRbd − δadRbc + δbdRac − δbcRad) +

R

6
(δacδbd − δadδbc).

(B:.6)

The tensor W is invariant under a conformal transformation g → Ω2g and
the associated two-form is

W a
b = W a

bcde
c ∧ ed.

An explicit calculation shows that the SU(2)± of W are

W a
+ = W a

0 + εabcW
b
c =

(

Aab − 1
3
Tr(A)δab

)

J
b
+,

W a
− = W a

0 − εabcW
b
c =

(

Cab − 1
3
Tr(C)δab

)

J
b
−.

From this expression we see that an Einstein space is self-dual (i.e., W a
− = 0)

if it is equivalent to

Cab =
Λ
3

δab ⇐⇒ Ra
− =

Λ
3

J
a
−. (B:.7)

The second (B:.7) is the same as (A:.15) in four dimensions. Thus we con-
clude then that in D = 4 quaternionic Kahler is the same as self-dual Ein-
stein.
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Appendix C: The solution-generating technique for
IIB backgrounds

The 11 supergravity backgrounds constructed in (5.13) possess three com-
muting Killing vectors. We can obtain T 2 IIA supergravity solutions by
reduction along one isometry, say φ3. Also, by making a T-duality along
another isometry, say φ1, we will obtain IIB supergravity backgrounds which
are also toric. Now if we make the SL(2, R) deformation of the original 11-
dimensional backgrounds and we make the IIB reduction we will obtain a
new background, the IIB deformed one. Comparison between the resulting
expression will give a technique in order to deform a IIB background into
another one. The result will be a one-parameter deformation. This is a par-
ticular case of a two-parameter deformation that is known in the literature,
which we will describe now.

Recall that any IIB background can be casted in the form

gIIB = F

[

1√
Δ

(Dα1 − C(Dφ2))2 +
√

Δ(Dα2)2
]

+
e2Φ/3

F 1/3 g̃,

B = B12(Dφ1) ∧ (Dφ2) + Dφ1 ∧ B1 + Dφ2 ∧ B2 − 1
2
Am ∧ Bm +

1
2
b̃,

C(2) = C12(Dφ1) ∧ (Dφ2) + Dφ1 ∧ C1 + Dφ2 ∧ C2 − 1
2
Am ∧ Cm +

1
2
c̃,

e2Φ = e2φ, C(0) = χ,

C(4) = −1
2
(d̃ + B12c̃ − εmnBm ∧ Cn − B12Am ∧ Cm) ∧ Dφ1 ∧ Dφ2

+
1
6

[

C + 3(b̃ + A1 ∧ B1 − A2 ∧ B2) ∧ C(1)

]

∧ Dφ1 + d4 + d̂3 ∧ Dφ2,

(C:.1)

where
Dφ2 = dφ2 + A2, Dφ1 = dφ1 + A1.

The effect of the SL(3, R) transformation over these backgrounds is the
following. We have three objects which transform as vectors and tensors

V (1) =

⎛

⎝

−B2

A1

C2

⎞

⎠ , V (2) =

⎛

⎝

B1

A2

−C1

⎞

⎠ : V (i) −→ (ΛT )−1V (i);

W =

⎛

⎜

⎝

c̃

d̃

b̃

⎞

⎟

⎠
−→ ΛW (C:.2)
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and one matrix

M = ggT ,

gT =

⎛

⎝

e−φ/3F−1/3 0 0
0 e−φ/3F 2/3 0
0 0 e2φ/3F−1/3

⎞

⎠

⎛

⎝

1 B12 0
0 1 0
χ −C12 + χB12 1

⎞

⎠ ,

with transformation law

M −→ ΛMΛT . (C:.3)

The scalars Δ, C as well as the three-form Cμνλ stay invariant under these
SL(3, R) transformations. From this expression one can read the generic
transformation of any of the fields.

We will restrict ourselves with a matrix of the form

Λ =

⎛

⎝

1 γ 0
0 1 0
0 σ 1

⎞

⎠ , ΛT =

⎛

⎝

1 0 0
γ 1 σ
0 0 1

⎞

⎠

Λ−1 =

⎛

⎝

1 −γ 0
0 1 0
0 −σ 1

⎞

⎠ , (ΛT )−1 =

⎛

⎝

1 0 0
−γ 1 −σ
0 0 1

⎞

⎠ .

Then the transformed fields are

A′
1 = A1, A′

2 = A2 − σA3, A′
3 = A3, c̃′ = γ ˜d, ˜d′ = ˜d, ˜b′ = σ ˜d.

In addition, the transformation law (C:.3) implies that gT should transform
as gT → RgT ΛT , R being an SO(3) transformation. The Euler angles of
this rotation should be selected in order that the non-diagonal matrix in the
expression for gT conserves its form, i.e., the components (2, 1), (1, 3) and
(2, 3) should be zero. We have that

gT ΛT =

⎛

⎝

e−φ/3F−1/3 0 0
0 e−φ/3F 2/3 0
0 0 e2φ/3F−1/3

⎞

⎠

×

⎛

⎝

1 + γB12 B12 σB12
γ 1 σ

χ + γ(χB12 − C12) χB12 − C12 1 + σ(χB12 − C12)

⎞

⎠

which is not of the desired form. We have to multiply this expression for a
rotation matrix R(α1, α2, α3) and the condition that the components (2, 1),
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(1, 3) and (2, 3) vanish give the following system of equations:

cot α2B12 = − cos α3,

sin α2 + cos α3 cos α2B12 = −(1 + σG) sin α3,

(sin α1 cos α2 + cos α3 sin α2 cos α1)(1 + γB12)

+ (sinα1 sin α2 − cos α3 cos α2 cos α1)γ

− (χ + γG) cos α1 sin α3 = 0.

The first two equations involve only α2 and α3. The angle α1 is then defined
by the third equation, which turns out to be

tanα1 = −cos α3 cos α2γ − cos α3 sin α2(1 + γB12) − (χ + γG) sin α3

(1 + γB12) cos α2 + γ sin α2
.

The transformation of F and φ is then obtained by requiring that for the non-
diagonal matrix in g′T the diagonal elements are gT

ii = 1. The transformed
components were worked out for instance in [21], the result is

gT
11 =

e−φ/3κ

μ
, gT

12 =
e5/3φ

μκ
(B12 + γB2

12 − B12C12σ + F 2(γ − χσ)),

gT
2,2 =

(e2φF 2)1/3

κ
,

gT
32 =

e−φ/3

μ
(B12χe2φ + C2

12σe2φ + B2
12σ(1 + χ2e2φ)

+ F 2σ − C12e
2φ(1 + 2B12χσ)),

gT
31 =

e−φ/3

μ
(−C12γe2φ + C2

12γσe2φ + B12χ
2e2φσ(1 + B12γ)

+ σ(B12 + B2
12γ + F 2γ) − χe2φ(−1 + C12σ + B12γ(2C12σ − 1)))

gT
3,3 =

(

e−φ

F

)1/3 √

(B2
12 + F 2)σ2 + e2φ(1 − C12σ + B12χσ)2,

μ = F 1/3
√

(B2
12 + F 2)σ2 + e2φ(1 − C12σ + B12σχ)2,

κ2 = F 2σ2 + e2φ((B12γ)2 − 2B12γ(C12σ − 1)

+ (C12σ − 1)2 + F 2(γ − σχ)2). (C:.4)

The transformed fields are then

B′
12 =

gT
12

gT
11

, eφ′
=

gT
33

gT
11

, χ′ =
(

gT
22g

T
11

gT
33

)1/3

gT
31, C ′

12 = χ′B′
12 − gT

32g
T
22g

T
11,

(C:.5)
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and are completely determined in terms of the fields of the original IIB
supergravity solution. The procedure is explicitly defined.

Appendix D: IIB deformed superbackgrounds for the
spherical case

Let us consider now the IIA reduction of our T 3 supergravity backgrounds
of Section 5. In order to perform the reduction we need to make the decom-
position

MabDφaDφb = e−2φD/3
˜hmnDφmDφn + e4φD/3(Dφ3 + NmDφm)2, (D:.1)

with m, n = 1, 2. The metric ˜h should not be confused with the h appearing
in (5.15)! We find that

φD =
3
4

log(M33), Nm =
M3m

M33
, ˜hmn =

MmnM33 − M3mM3n√
M33

and is straightforward to find the IIA reduced background. By making a
T-duality [101] to the resulting IIA background we obtain the IIB solution

gIIB =
1

h11

[

1√
Δ

(Dφ1 − CDφ2)2 +
√

Δ(Dφ2)2
]

+ e2φ/3g̃,

B =
h12

h11
Dφ1 ∧ Dφ2 − Dφ2 ∧ C(32) + Dφ1 ∧ A1 − 1

2
C(3) + C(31) ∧ A1,

C(2) = −
(

N2 − h12

h11
N1

)

Dφ1 ∧ Dφ2 − Dφ2 ∧ C(12)

− Dφ1 ∧ A3 − 1
2
C1 + C(31) ∧ A3,

e2Φ =
e2φ

h11
, C(0) = N1

C(4) = −1
2
Dφ2 ∧ Dφ1 ∧

(

C(2) + 2C32 ∧ A3 − h12

h11
C(1) + 2C(31) ∧ A3

)

+
1
6
(C + 3C(3) ∧ A3) ∧ Dφ1 + d4 + d̂3 ∧ Dφ1,

Dφ1 = dφ1 − C(31), Dα2 = dφ2 + A2. (D:.2)

The forms d4, d̂3 are determined by the self-duality conditions for the five-
form field strength.
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It will interesting to see how this procedure works for our example (5.31)
associated to S4. The relevant quantities that we need are

φD =
3
4

log Mττ = −1
4

log Δ,

N1 = − sin ρ̃ sin θ cos ϕ, N2 = − sin θ(sin ϕ cos ρ̃ sin ˜θ + cos ϕ cos ˜θ),

˜h11 =
1 − (sin ρ̃ sin θ cos ϕ)2

Δ1/2 ,

˜h22 =
1 − sin2 θ(cos ρ̃ cos ˜θ sin ϕ + cos ˜θ cos ϕ)2

Δ1/2 ,

˜h12 =
sin ρ̃ cos ˜θ + sin ρ̃ sin2 θ cos ϕ cos ρ̃ cos ˜θ sin ϕ + cos ˜θ cos ϕ)

Δ1/2 . (D:.3)

We have that g̃ = Δ1/6(gAdS + h) h being given in (5.25) and Δ given in
(5.20). The resulting IIB background is in this case

gIIB =
1

˜h11
[

1√
Δ

(Dφ1)2 +
√

Δ(Dφ2)2] + e2φD/3g̃μνdxμdxν ,

B =
˜h12

˜h11
Dφ1 ∧ Dφ2 + Dφ1 ∧ A1, e2Φ =

e2φD

˜h11
, C0 = N1

C2 = −
(

N2 −
˜h12

˜h11
N1

)

Dφ1 ∧ Dφ2 − Dφ1 ∧ A3,

C4 =
1
6
C3 ∧ Dφ1 + d4 + ̂d3 ∧ Dφ2, Dφ1 = dφ1.

(D:.4)

The one-forms Ai are defined in (5.23). The three-form ̂d3 and the four-
form d4 takes values in the eight-dimensional metric and are determined by
imposing that the five-form field strength F5 = dC4 is self-dual, i.e., F5 =
∗10F5. In our case we have that

C3 = −k sin u

3
sinh3 ρdt ∧ du ∧ dv,

1
6
d(C3 ∧ Dφ1) = −k

6
sin u sinh2 ρdρ ∧ dt ∧ du ∧ dv ∧ dφ1

and the self-duality condition is satisfied if d4 is zero and

C4 =
1
6
(C3 ∧ dφ1 +

√
Δ ̂C3 ∧ Dφ2)

̂C3 being such that d ̂C3 =
√

Δ ∗8 dC3. The hodge star operation ∗8 concerns
the eight-dimensional metric g̃. By comparing these expressions with (C:.1)
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we obtain that

F = ˜h11, B12 =
˜h12

˜h11
, B1 = B2 = 0, ˜b = c̃ = 0,

C12 =
˜h12

˜h11
N1 − N2, C1 = A3, C = N1

and it follows that all these quantities are defined by formulae (D:.3). From
(C:.4) and (C:.5) we obtain directly the explicit deformed fields. The pro-
cedure is complete.
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