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Abstract

We derive the Standard model gauge group together with chiral
fermion generations from the heterotic string by turning on a Wilson
line on a non-simply connected Calabi–Yau 3-fold with an SU(5) gauge
group. For this we construct stable Z2-invariant SU(4) × U(1) bundles
on an elliptically fibered cover Calabi–Yau 3-fold of special fibration type
(the B-fibration). The construction makes use of a modified spectral
cover approach giving just invariant bundles.

1 Introduction

Attempts to get a (supersymmetric) phenomenological spectrum with gauge
group GSM and chiral matter content of the Standard model from the E8 ×
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E8 heterotic string on a Calabi–Yau space X started with embedding the
spin connection in the gauge connection giving an unbroken E6 (times a
hidden E8 coupling only gravitationally). More generally [1], one can instead
of the tangent bundle embed a G = SU(n) bundle for n = 4 or 5, leading to
unbroken H = SO(10) or SU(5) of even greater phenomenological interest.

If there is a freely acting group G on the usually simply-connected X, one
can work on X ′ = X/G with π1(X ′) = G allowing a further breaking of H
by turning on Wilson lines; the enhanced structure group G × G leads to a
reduced commutator.

On X ′ one turns on a Z2 Wilson line of generator 13 ⊕ −12 breaking
H = SU(5) to GSM

SU(5) −→ GSM = SU(3)c × SU(2)ew × U(1)Y

(up to a Z6). The Wilson line W can be considered as a flat bundle on
X ′ induced from the Z2-cover ρ : X → X ′ via the given embedding of Z2 in
H = SU(5). This gives, from1 5̄ = d̄ ⊕ L and 10 = Q ⊕ ū ⊕ ē, the fermionic
matter content of the Standard model

SM fermions = Q ⊕ L ⊕ ū ⊕ d̄ ⊕ ē

= (3,2)1/3 ⊕ (1,2)−1 ⊕ (3̄,1)−4/3 ⊕ (3̄,1)2/3 ⊕ (1,1)2. (1.1)

From the decompositions of adE8 under G × H = SU(4) × SO(10) resp.
SU(5) × SU(5)

248 = (4,16) ⊕ (4,16) ⊕ (6,10) ⊕ (15,1) ⊕ (1,45) (1.2)

= (5,10) ⊕ (5,10) ⊕ (10,5) ⊕ (10,5) ⊕ (24,1) ⊕ (1,24), (1.3)

one finds that for unbroken SO(10) a consideration of the fundamental V = 4
is enough as all fermions, including a right-handed neutrino singlet, sit in the
16 → 5̄ ⊕ 10 ⊕ 1. For unbroken SU(5) also Λ2V = 10 has to be considered;
but as the 10 and the 5̄ come in the same number of families (as also
demanded by anomaly considerations), it is enough to adjust χ(X, V ) (the
V -related matter) to get all the Standard model fermions.

To describe explicitely the bundle we choose X elliptically fibered π :
X → B in a specific way. For the Hirzebruch surfaces B = Fm, m = 0, 1, 2,
X turns out to be smooth. As π1(X) �= 0, one is actually working with a G =
SU(5) bundle leading to an H = SU(5) gauge group on a space admitting
a free involution τX (leaving the holomorphic 3-form Ω invariant) to get a
smooth Calabi–Yau X ′ = X/Z2 over a base B′.

1the properly normalized hypercharge Y arises by a normalization factor 1/3.
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To compute the generation number, one has to work on X as X ′ does not
have a section but only a bi-section (left over from the two sections of X),
and so one can not use the spectral cover method there directly. On X ′, the
generation number is reduced by |G|.

If the bundle V ′ over X ′ is a 3-generation bundle, then the bundle V =
ρ∗V ′ on X has six generations and is “moddable” by construction. Con-
versely, having constructed a bundle above on X with six generations, one
assures that it can be modded out by τX (to get the searched for bundle
on X ′) by demanding that V should be τX -invariant. So one has to spec-
ify a τX -invariant SU(5) bundle on X that, besides fulfilling some further
requirements of the spectral cover construction (cf. below), leads to six gen-
erations. For important work related to this question, cf. [4–8] and literature
cited there.

As it will be our goal to “mod” not just the Calabi–Yau spaces but also
the geometric data describing the bundle (and this transformation of bundle
data into geometric data uses in an essential way the elliptic fibration struc-
ture), we will search only for actions which preserve the fibration structure,
i.e., τB · π = π · τX with τB an action on the base

X
τX−→ X

π ↓ ↓ π

B
τB−→ B

(1.4)

Therefore, our elliptically fibered Calabi–Yau spaces will actually have two
sections2 σ1 and σ2 = τXσ1 (B-model spaces). Turning this around, if one
wants to construct τX by choosing a specific X, we will look for a Calabi–Yau
X with a type of elliptic fibration which has besides the usually assumed
single section (A-model) a second one (B-model); this will then lead to a
free involution τX on Z.

When investigating the invariance of V , we are led to consider a version
of the spectral cover method especially adapted to the situation with two
sections. Concretely, we will work with a modified spectral surface and
Poincaré bundle (with Σ = σ1 + σ2)

C =
n

2
Σ + η, (1.5)

P = O(2Δ − ΣI − ΣII − c1). (1.6)

Obviously, this assumes that V has even rank n. Therefore the original
strategy to obtain an SU(5) gauge group (in the observable sector) from an
SU(5) bundle has to be modified. Concretely, one chooses an SU(4) bundle

2We will use the same notation for a section, its image and its cohomology class.
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(of commutator SO(10) in E8) and twists this with a further invariant line
bundle L (of c1(L) = D = xΣ + α)

V = V ⊗ L(D). (1.7)

The structure group is U(4) = SU(4) · U(1)X but as the difference to
SU(4) × U(1)X is only a discrete group Z4, and group-theoretical statements
are here meant on the level of Lie algebras, we will refer to SU(4) × U(1)X

as structure group giving SU(5) × U(1)X as gauge group. The anomalous
U(1)X becomes massive by the Green–Schwarz mechanism.

This bundle V is then embedded in E8 as a sum of stable bundles Ṽ = V ⊕
det−1(V) = V ⊗ L ⊕ L−4 with c1(Ṽ) = 0. From the condition of effectivity
of the 5-brane W in

c2(V ) − 10D2 + W = c2(X), (1.8)

one realizes that3 one is forced to allow for an additional twist by an
invariant line bundle with x �= 0. This however leads to a problem in
the Donaldson–Uhlenbeck–Yau (DUY) condition c1(V )J2 = 0, where J =
εJ0 + HB is a Kahler potential for which stability of V can be guaranteed
(here HB is a Kahler class on the base). As the concrete bound ε ≤ ε∗ from
which on J is appropriate is not known explicitely one has to solve the DUY
equation in every oder in ε individually which leads for the constant term
to 2xH2

B = 0.

Therefore, one must go beyond tree-level here and invoke the 1-loop cor-
rection to the DUY equation [19] which in turn leads to further conditions
assuring positivity of the dilaton φ and of the gauge kinetic function. These
two inequalities taken together with the two inequalities assuring effectivity
of W and the further inequality assuring irreducibility (resp. ampleness) of
C turn out to be quite restrictive.

So we will construct rank 4 vector bundles V on X which fulfill the
following conditions

• Ṽ is τX -invariant and satisfies 1-loop modified DUY condition;
• c1(Ṽ) ≡ 0(mod 2), c2(X) − (c2(V ) − 10c1(L)2) is effective, χ(X, Ṽ) =

Ngen.

Having obtained the chiral fermions of the Standard Model, one would like
to count also the number of Higgs multiplets and moduli. This will be
considered elsewhere.

3Apart from a case, not treated in this paper, which has special features.
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In Section 2, the B-model spaces along with their cohomological data are
introduced. In Section 3, the modified spectral cover construction of bundles
is introduced and the Chern classes of V and its twist are computed. In
Section 4, we are writing down for F0 and F2 a free involution and the
τX -action on V is described in detail. In Section 5, we give some group-
theoretical details and describe the embedding in E8; then we make the
condition for the effectivity of the ensuing 5-brane explicit. In Section 6, the
stability condition is made explicit and the relation with the 1-loop modified
DUY equation is described. Finally, in Section 7, we list all numerical
conditions which result from the analysis of these models.

B.A. is supported by DFG-SFB 647/A1.

2 Calabi−Yau 3-fold with two sections

In this paper, we will consider a Calabi–Yau 3-fold X which is elliptically
fibered over a Hirzebruch surface Fm and whose generic fiber is described
by the so-called B-fiber P1,2,1(4) instead of the usual A-fiber P2,3,1(6) (the
subscripts indicate the weights of x, y, z). X is described by a generalized
Weierstrass equation which embeds X in a weighted projective space bundle
over Fm

y2 + x4 + a2x
2z2 + b3xz3 + c4z

4 = 0, (2.1)

where x, y, z and a, b, c are sections of K−i
B with i = 1, 2, 0 and i = 2, 3, 4,

respectively.

X admits two cohomologically inequivalent section σ1, σ2. For this con-
sider equation (2.1) at the locus z = 0, i.e., y2 = x4 (after y → iy). One
finds eight solutions which constitute the two equivalence classes (x, y, z) =
(1,±1, 0) in P1,2,1. We choose y = +1, corresponding to the section σ1, as
zero in the group law, while the other one can be brought, for special points
in the moduli space, to a half-division point (in the group law) leading to the
shift-involution, cf. Section 4.1. Let us keep on record the relation of divisors

(z) = Σ := σ1 + σ2, σ1 · σ2 = 0 (2.2)

One finds for the Chern classes of X (cf. [13]; we use the notation ci =
π∗ci(B))

c2(X) = 6 Σc1 + c2 + 5 c2
1, c3(X) = −36 c2

1. (2.3)
From the weights a2, b3 and c4 of the defining equation, one gets 52 + 72 +
92 − 3 − 3 − 1 = 148 complex structure deformations over F0. This is con-
sistent with the Euler number and the h1,1(X) = 4 Kähler classes

h1,1(X) = 4, h2,1(X) = 148, e(X) = −288 (2.4)
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For later use let us also note the adjunction relations (with σi := σi(B),
i = 1, 2)

σ2
i = −c1σi, Σ2 = −c1Σ. (2.5)

In this paper the base B of X is given by a Hirzebruch surface Fm (with
m = 0, 2) with H2(B,Z) generated by the effective base and fiber classes
b and f (with the intersection relations b2 = −m, b · f = 1 and f2 = 0).
η = xb + yf effective, denoted as η ≥ 0, means then x ≥ 0 and y ≥ 0. The
Kähler cone is described in the appendix.

3 Bundles from spectral covers

For the description of vector bundles V on B-fibered Calabi–Yau 3-fold
X, we will apply the spectral cover construction (equivalently a relative
Fourier–Mukai transform). The spectral data are an effective divisor C of
X (“the spectral surface”) and a line bundle L on C. The correspondence
between (C, L) and V was described for bundles on A-fibered Calabi–Yau
in [2, 3, 11,12,14] and for the B-fibered case in [13,15].

For our applications, let us briefly recall some facts about the spectral
cover construction for the A-models. One first forms the fiber product X ×B

X̂ and denote the projections on X and X̂ by p and p̂, respectively. Points
q on the fiber Êb of X̂ will parametrize degree zero line bundles Lq on Eb

for each b ∈ B; as it is usual, we will identify X ∼→ ̂X. There exists the
so-called universal Poincaré line bundle P on X ×B

̂X = XI ×B XII whose
restrictions to the Eb × qb are just the Lq. P is defined only up to a tensor
product by the pullback of a line bundle on XII and one can normalize
it by letting P|σ1×B

̂X
 OX leading to c1(P) = Δ − σ1,I − σ1,II − c1. One

then considers the spectral cover surface C ⊂ X of class C = nσ1 + η which
is an n-fold cover of B and forms the fiber product X ×B C. The relative
Fourier–Mukai transform constructs a vector bundle V from its spectral data
(C, L) (where p̂C : X ×B C → C)

V = p∗((p̂∗
CL) ⊗ P). (3.1)

We introduce now a new procedure where we make the whole bundle con-
struction symmetric (τ -invariant) from the beginning. For this we define for
even n (with suitable pull-backs via p and pII = p̂ understood in (3.3); Δ is
the diagonal in X ×B X)

C =
n

2
Σ + η, (3.2)

c1(P ) = 2Δ − ΣI − ΣII − c1 (p∗c1(P ) = 0) (3.3)
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As we will usually assume that C is effective and irreducible, let us review
the conditions which we have to impose on η to assure this. C is effec-
tive exactly if η is, what we denote by η ≥ 0, and C is irreducible when
(cf. [10])

η · b ≥ 0, η − n

2
c1 ≥ 0. (3.4)

Actually we will even assume that C is ample (cf. appendix) so that the
classification of line bundles on C is discrete and L is determined by c1(L)
up to isomorphism. For then h1,0(C) = 0 as h1(C,OC) = h2(X, OX(−C))
by the long exact sequence associated to 0 → OX(−C) → OX → OC → 0;
then h2(X, OX(−C)) = h1(X, OX(C)) = 0 by the Kodaira vanishing
theorem.

Applying the Grothendieck–Riemann–Roch theorem to the covering
πC : C → B gives

ch(πC∗L)Td(B) = πC∗(ch(L)Td(C)) (3.5)

From c1(V ) = 0, one derives thereby the general4 expression for L (with
ρ := μ + n

2 λ)

c1(L) =
C + c1

2
+ γ ((πC)∗γ = 0), (3.6)

γ = λ
(

nσ1 −
(

η − n

2
c1

))

+ μ(σ1 − σ2)

= λ
(n

2
Σ −

(

η − n

2
c1

))

+ ρ(σ1 − σ2). (3.7)

So for n = 4, and ρ = 0 as we later have to assure invariance of V (we
had chosen c1 even), c1(L) is an integral class if λ ∈ Z + 1

2 or if λ ∈ Z and
η is even.

The Grothendieck–Riemann–Roch theorem for the covering p :
X ×B C → X gives

ch(V )Td(X) = p∗((p̂∗
C ch(L)) ch(P )Td(X ×B C)), (3.8)

c2(V ) = 2
(

η +
n

4
c1

)

Σ − 2ρ
(

η − n

2
c1

)

(σ1 − σ2) − ρ2c1

(

η − n

2
c1

)

+ 2ηc1 +
1
2

(

λ2 − 1
4

)

nη
(

η − n

2
c1

)

− n((n2/4) − 1)
24

c2
1,

(3.9)
1
2
c3(V ) = 4λη

(

η − n

2
c1

)

. (3.10)

4The space of line bundles Pic(C) on C is generically not simply characterized by
pullbacks of bundles from X; new divisor classes on C can appear.
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Twisting by L(D)

For group-theoretical reasons explained later and for reasons of effectivity
of the ensuing 5-brane class, we still have to twist our SU(n) vector bundle
by an invariant line bundle L(D) where D = xΣ + α to get V = V ⊗ L and
actually then to consider Ṽ = V ⊗ L ⊕ L−4. Now let us compute the gen-
eration number. For the double covering ρ : X → X ′ with vector bundles
Ṽ and Ṽ ′, one has χ(X, Ṽ) = 2χ(X ′, Ṽ ′) (here Ṽ ′ with Ṽ = ρ∗Ṽ ′ exists pre-
cisely because Ṽ is invariant). Ngen can be computed from the index χ(X, Ṽ).
The net number of chiral matter multiplets (the “number of generations”)
is given by (note that c1(Ṽ) = 0 and c2 = 4, c2

1 = 8, n = 4)

Ngen = χ(X, V ⊗ L ⊕ L−4) =
∫

X
ch3(V ⊗ L) + ch3(L−4)

=
1
2
c3(V ) − c2(V )D − 10D3

= 4
[

λ − x

(

λ2 − 1
4

)]

η(η − 2c1) + 40x(1 − 4x2)

− 4α(η + c1) − 60xα(α − xc1).

4 Involution and invariant bundles

4.1 Existence of a free Z2 operation

We give a free involution τX on X which leaves the holomorphic 3-form
invariant; then X ′ = X/τX is a smooth Calabi–Yau. We assume τX com-
patible with the fibration, i.e., we assume the existence of an involution τB

on the base B with τB · π = π · τX .

We will choose for τB the following operation in local (affine) coordinates

b = (z1, z2)
τB−→ −b = τB(b) = (−z1,−z2). (4.1)

The idea for the construction of τX is to combine τB with an operation on
the fibers. A free involution on a smooth elliptic curve is given by translation
by a half-division point. Such an object has to exist globally; this is the
reason we have chosen the B-fibration where X possesses a second section.
If we would tune σ2(b) ∈ Eb to be a half-division point, the condition b3 = 0
would ensue and X would become singular. Therefore this idea has to be
enhanced. Furthermore, even for a B-fibered X, those fibers lying over the
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discriminant locus in the base will be singular where the freeness of the shift
might be lost. As the fixed point locus of τB is a finite set of (four) points,
we can assume that it is disjoint from the discriminant locus (so points in
the potentially dangerous singular fibers are still not fixed points of τX ; for
discussion cf. [13, 15]).

One finds [13] as τX over Fm with m even (i.e., m being 0 or 2) the free
involution

(z1, z2; x, y, z) τX−→ (−z1,−z2; −x,−y, z). (4.2)

This exchanges the points σ1(b) = (b; 1, 1, 0) and σ2(−b) = (−b; 1,−1, 0)
between the fibers Eb and E−b = EτB(b); in P1,2,1, the sign in the x-coordinate
can be scaled away here in contrast to the sign in the y-coordinate. As indi-
cated above, an involution like in equation (4.2) could not exist on the fiber
alone, i.e., as a map (x, y, z) −→ (−x,−y, z), because this would from equa-
tion (2.1) force one to the locus b3 = 0 where X becomes singular (so only
then is this defined on the fiber and so, being a free involution, a shift by a
half-division point). But it can exist combined with the base involution τB

on a subspace of the moduli space where the generic member is still smooth,
from equation (2.1), the coefficient functions should transform under τX as
a+

2 , b−
3 , c+

4 , i.e., over F0, say, only monomials zp
1z

q
2 within b6,6 with p + q

even are forbidden; similarly in a4,4 and c8,8, p + q odd is forbidden. So the
number of deformations drops to h2,1(X) = (52 + 1)/2 + (72 − 1)/2 + (92 +
1)/2 − 1 − 1 − 1 = 75. The discriminant remains generic since enough terms
in a, b, c survive, so Z is still smooth (cf. [13]). The Hodge numbers (4,148)
and (3, 75) of X and X ′ show that indeed e(X ′) = e(X)/2 (X ′ has lost one
divisor as the two sections are identified).

4.2 Invariance of the bundles

We describe conditions on the spectral data (C, L) for the τX -invariance of
V . The surface C lies actually in the dual Calabi–Yau X̂ where τ̂ operates
(cf. the next subsection): Ṽ = τ∗V turns out to be again a spectral cover
bundle with C̃ := τ̂(C) as spectral surface. As fiberwise semistable bundle,
it is fixed up to the datum L̃. More precisely the argument for invariance
now goes as follows. The symmetric form (in σ1 and σ2) of P suggests that
V should be invariant if L is chosen also symmetric, i.e., ρ = 0. However, one
has to take into account that on the part of P in XII = X̂, and similarly on L
which sits in XII, actually τ̂ operates. The conclusion remains nevertheless
correct. Ṽ = τ∗V will always be chosen to have again C as its spectral
surface (cf. next subsection) and is of the same general form as V , i.e., a
spectral cover bundle of c1(Ṽ ) = 0, just with different input parameters λ̃, ρ̃.



766 BJÖRN ANDREAS AND GOTTFRIED CURIO

But these can be read off from c2(τ∗V ) = τ∗c2(V ) (where the latter is the
usual operation in X, resp. its cohomology, interchanging σ1 and σ2). This
gives ρ = 0 as necessary and sufficient condition for invariance.

Remark on Fourier–Mukai transformation

Usually the spectral cover construction of V from (C, L) is interpreted as
an equivalence of data in the framework of Fourier–Mukai transformations.
Because of the difference between C and Ceff (cf. next subsection) occurring
in our construction, we will not employ the idea of an inverse transform here.
Let us nevertheless point to some facts related to the discussion above and
related invariance arguments.

Ṽ = τ∗V is the Fourier–Mukai transform FM0 of a line bundle L̃ = j∗ l̃
supported on C̃ = τ̂(C), where j : C̃ ↪→ X, i.e., τ∗FM0i∗i∗l = FM0j∗j∗ l̃,
where L = i∗l was the line bundle datum on C for V (here i : C ↪→ X).
For this, recall that for Ṽ a semistable vector bundle of rank n and degree
zero on the fibers of its inverse Fourier–Mukai transform FM1(Ṽ ) is a torsion
sheaf of pure dimension 2 on X and of rank 1 over its support which is a sur-
face j : C̃ ↪→ X, finite of degree n over B. For C̃ smooth FM1(Ṽ ) = j∗L̃ is
just the extension by zero of some torsion-free rank 1 sheaf which is actually
a line bundle L̃ ∈ Pic(C̃): for πC̃∗L̃ = Ṽ |B is locally free and πC̃ : C̃ → B is
a finite flat surjective morphism, so L̃ is locally free as well.

Now for a Poincaré bundle which would be strictly invariant in the sense
that (τ × τ̂)∗P = P , one can indeed show that τ∗FM0(E) = FM0(τ∗E) (here
E = i∗L). For this, note that

τ∗FM0(E) = τ∗π∗(π̂∗E ⊗ P ) = π∗(π̂∗(τ̂∗E) ⊗ P )

= FM0(τ̂∗E) (4.3)

Thus one gets invariance if FM0(τ̂∗E) = FM0(E) for which it is sufficient
that τ̂∗E = E.

4.3 Operation on the dual Calabi–Yau X̂

Let us see how τX operates effectively in the dual Calabi–Yau X̂. Eb has
the equation

y2 = x4 + a+
2 (b)x2z2 + b−

3 (b)xz3 + c+
4 (b)z4. (4.4)

Similarly E−b with −b := τB(b) has the equation

y2 = x4 + a+
2 (b)x2z2 − b−

3 (b)xz3 + c+
4 (b)z4. (4.5)
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τ maps E−b to Eb and one gets for the transformed bundle

V |Eb
=

n
⊕

i=1

OEb
(qi(b) − σ1(b)) =⇒ (τ∗V )|Eb

=
n

⊕

i=1

OEb
(τqi(−b) − σ2(b)). (4.6)

As OEb
(τqi(−b) − σ2(b)) ∼= OEb

(t−1
σ2(b)τqi(−b) − σ1(b)), where tσ2(b) is the

translation in the group law, one finds that τ∗V = V amounts fiberwise
to the relation {qi(b)} = {t−1

σ2(b)τqi(−b)}, i.e., to t−1
σ2

τC = C. So τ̂ := t−1
σ2

◦ τ

is the relevant operation τ̂ on X̂

τX = tσ2 ◦ τ̂ . (4.7)

We did not assume that σ2(b) is a half-division point (so tσ2 is not an invo-
lution); if one would do so by tuning b3 = 0, the space X would become
singular and only then acts tσ2 as (b; x, y, z) → (b; −x,−y, z).

Actions in coordinates and in the group structure

Involutions τX covering τB (in the sense of equation (1.4)) are determined
by involutions α (which turns out to be τ̂ in our case) covering τB with
ασ1/2 = (−1)σ1/2 (the minus refers to the inversion in the group law) (cf.
also [6]).

Now let us define a decomposition of τ in the coordinate involutions

τ = ι ◦ β (4.8)

with (ι, covering 1B, is fiberwise the covering involution for the obvious map
to P1

x,z)

ι : (b; x, y, z) −→ (b; x,−y, z), β : (b; x, y, z) −→ (−b; −x, y, z) (4.9)

(β keeps σi fixed). One has the following relation between coordinate map
and the structural maps (note that both sides just act on the fiber and
interchange the σi)

ι = tσ2 ◦ (−1). (4.10)

First note here that ι is independent of the element q chosen as group zero;
similarly the translation becomes in general (tσ2)q = tσ2 ◦ t−1

q and the inver-
sion (−1)q = tq ◦ (−1), so the right-hand side is independent of the zero
chosen.

Concerning the proof of equation (4.10) note that a holomorphic map
on the fiber C/Λ is tq ◦ ρ with ρ a group homomorphism, tq a translation
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(here q must be σ2). ρ lifts to a linear transformation z → az + b of C
(b ∈ Λ), so a, keeping invariant the lattice Λ, is in Z (C/Λ in general has no
complex multiplication); ρ is an isomorphism as ι is, so a = ±1 and a = −1
as ρσ2 = (−1)σ2.

τ = ι ◦ β = tσ2 ◦ (−1) ◦ β = tσ2 ◦ τ̂ . (4.11)

Application to the spectral points

For the choice of our Poincare bundle in V = p∗(p∗
CL ⊗ P ), one finds

P |E×q = L((2q − σ2) − σ1), (4.12)

giving effective spectral points Ceff = {2q − σ2|q ∈ C} (“2” and “–” refer to
the group).

What we actually want to achieve is that τ̂Ceff = Ceff as the τ̂ -invariance
condition concerns the points qeff

i corresponding to line bundle summands
on the fiber. β, being holomorphic and sending σ1 to itself, is a group homo-
morphism between respective fibers. With 2q − σ2 = q − ιq (operations in
the group) from equation (4.10), one gets as condition

(−1)β(1 − ι)qi(b) = (1 − ι)qi(−b). (4.13)

As (−1) and β are group homomorphisms, this will be fulfilled if we can
assure that

qi(−b) = ιβqi(b). (4.14)

That is, the reduction achieved amounts to (note that fiberwise Ceff =
(1 − ι)C)

ι β C = C =⇒ (−1)βCeff = Ceff . (4.15)

The equation of the spectral cover surface

To show how this condition can be implemented we give the coordinate
description of our spectral cover surface C. In the appendix, we recall
the corresponding relations in the A-model elliptic fibration and derive the
expression for our case.

From there one gets the equation of a spectral cover surface C (for n = 4)

w = α20x
2 + α02y + α10xz + α00z

2 = 0. (4.16)

This shows that invariance of C under β would mean that the coefficient
functions αij transform invariantly under τB except α10 which should
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transform anti-invariantly (or the other way around); similarly invariance
of C under ιβ as in equation (4.14) (to assure the necessary τ̂ = (−1)β-
invariance of Ceff) means that α02 and α10 have to transform with the other
sign than α20 and α00, a condition which can easily be imposed.

5 The E8 embedding and the massive U (1)

We will explain now more precisely our strategy outlined in the introduction
how to get an SU(5) GUT group and describe the embedding of the structure
group into E8.

The spectral cover construction leads in general to U(n) bundles V (the
“non-split case”) with c1(V) = α, cf. [9]. For us it will be enough to consider
the “split case”

V = V ⊗ L(D), (5.1)

where V is an SU(n) bundle and L(D) is a line bundle of c1(L(D)) = D =
xΣ + α. So c1(V) ≡ 0(n) as D is integral. Conversely, if c1(V) ≡ 0(n), one
can split off an integral class D of c1(V) = nD and define a corresponding
line bundle L(D) such that V := V ⊗ L(−D) is an SU(n) bundle, i.e., one
can think of V then as V ⊗ L(D).

Note that the structure group U(n) arises in this case from SU(n) · U(1)
(the latter factor is understood here always as embedded by multiples of
the identity matrix), whereas for a bundle V ⊕ L(D), the structure group
would be the direct product SU(n) × U(1). Note that there is a morphism
f : SU(n) × U(1) → U(n) sending (a, b) �→ a · b. The image of this morphism
is U(n) = SU(n) · U(1), so SU(n) · U(1) = (SU(n) × U(1))/ker(f). The sub-
group ker(f) is formed by all pairs (λ · Idn, λ−1) where λ ∈ C with λ · Idn ∈
SU(n), i.e., λn = 1 and ker(f) = Zn (the group of nth roots of unity). As
the difference between the direct product and the product is just a discrete
group, and since all group-theoretical statements in this paper are under-
stood on the level of Lie algebras, we will write SU(4) × U(1) instead of
SU(4) · U(1) for our structure group G.

Let us make the embedding of G in E8 more explicit. One embeds a U(4)
bundle block diagonally via U(4) � A −→

(

A 0
0 det−1 A

)

∈ SU(5). In our case
V = V ⊗ L with c1(V) = 4c1(L), so in this sense one works actually with the
bundle Ṽ = V ⊕ L−4.

The commutator of G = SU(4) × U(1)X in E8 is given by H = SU(5) ×
U(1)X , the observed gauge group. The adjoint representation of E8
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decomposes under SU(4) × SU(5) × U(1)X as follows (with ad(E8) =
⊕

i U
SU(4)
i ⊗ R

SO(10)
i =

⊕

i(Ui, Ri) =
⊕

i(Ui, S
SU(5)
i )

t
U(1)
i

)

248
SU(5)×SU(5)−→ (5,10) ⊕ (5,10) ⊕ (10,5) ⊕ (10,5) ⊕ (24,1) ⊕ (1,24),
SU(4)×SU(5)×U(1)X−→ ((4,1)−5 ⊕ (4,5)3 ⊕ (4,10)−1)

⊕ ((4,1)5 ⊕ (4,5)−3 ⊕ (4,10)1) ⊕ (6,5)2 ⊕ (6,5)−2

⊕ (15,1)0 ⊕ (1,1)0 ⊕ (1,10)4 ⊕ (1,10)−4 ⊕ (1,24)0. (5.2)

The SU(5) representations are given as an auxiliary step. The full decom-
position, identical to an auxiliary SU(4) × SO(10) step, leads to the right-
handed neutrino νR.

The massless (charged) matter content is
⊕

(Sk)tk = 1−5 ⊕ 5̄3 ⊕ 10−1 ⊕
5̄−2 ⊕ 104; one can write conditions for the absence of net generations of
the exotic matter given by the last tow summands; additionally (besides the
gauge bosons (1,1)0 ⊕ (1,24)0 of H), some neutral matter given by singlets
(moduli) arises from End(V ), i.e., (15,1)0.

Precisely, those U(1)’s in H which occur already in G (a so-called U(1) of
type I; other U(1)’s in H are called to be of type II) are anomalous [16–19].
The anomalous U(1)X can gain a mass by absorbing some of the would be
massless axions via the Green–Schwarz mechanism, that is, the gauge field
is eliminated from the low energy spectrum by combining with an axion and
so becoming massive. One has to check that the anomalies related to U(1)X

do not cancel accidentally (i.e., that the mixed abelian-gravitational, the
mixed abelian–non-abelian and the pure cubic abelian anomaly do not all
vanish). Computing the anomaly coefficients of U(1)X , we find (cf. [19])

AU(1)−G2
μν

=
∑

tr(Sk)tk
q · χ(X, Uk ⊗ tk)

= 10D · (12 · (−c2(V ) + 10D2) + 5c2(X)), (5.3)

AU(1)−SU(5)2 =
∑

qtkC2(Sk) · χ(X, Uk ⊗ tk)

= 10D · (2(−c2(V ) + 10D2) + c2(X)), (5.4)

AU(1)3 =
∑

tr(Sk)tk
q3 · χ(X, Uk ⊗ tk)

= 200D · (6(−c2(V ) + 10D2) + 40D2 + 3c2(X)). (5.5)

(with C2 normalized to give C2(f̄) = 1, C2(Λ2f) = 3 for SU(5)). For x �= 0
(the case of interest for us, cf. below), the last two conditions are not
proportional as D3 �= 0. In any case, the first condition is independent, so
not all three coefficients will vanish.
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5.1 Effectivity of the 5-brane

In the presence of magnetic 5-branes, the Bianchi identity H-field reads

dH = trR ∧ R − 1
30

Tr F ∧ F +
∑

5-branes

δ
(4)
5 , (5.6)

where R and F are the associated curvature forms of the spin connection
on X and the gauge connection on V, and the last term is the source term
contributed by the 5-branes. Here tr refers to the trace of the endomor-
phism of the tangent bundle of X and Tr denotes the trace in the adjoint
representation of G.

This leads in our case of

Ṽ = V ⊕ L−4 (5.7)

to the anomaly equation

−ch2(X) = −ch2(V) − ch2(L−4) + W. (5.8)

This gives with c1(V) = −c1(L−4) and c1(L) = D

c2(X) = c2(V) − c2
1(L−4) + W

= c2(V ) − 10D2 + W. (5.9)

Note that the last term in equation (5.6) is formally a current that integrates
to one in the direction transverse to a 5-brane whose class we denote by W .
The class W is the Poincaré dual of the sum of all sources and represents
a class in H2(X,Z). Supersymmetry demands W to be the class of an
effective curve in X. For simplicity, we will think of the curve of W as being
irreducible.

We have a factorization V = V ⊗ L(D) where V is a SU(n) bundle and
L(D) is an line bundle with c1(L(D)) = D. With the decomposition
of W

W = WB + WF = wBΣ + afF (5.10)

(where WB is an effective curve class and af ≥ 0), one finds

W = c2(X) − c2(V ) + 10D2

=
(

6c1Σ + c2 + 5c2
1

)

− 2
(

η +
n

4
c1

)

Σ − kF + 10D2

=
(

6c1 − 2
(

η +
n

4
c1

)

+ 10x(2α − xc1)
)

Σ +
(

c2 + 5c2
1 − kF + 10α2

)

,

(5.11)
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giving the effectivity conditions (with c2
1 = 8, c2 = 4, n = 4)

wB = 4c1 − 2η + 10x(2α − xc1) ≥ 0, (5.12)

af = 48 − 2
(

λ2 − 1
4

)

η(η − 2c1) − 2ηc1 + 10α2 ≥ 0. (5.13)

Note that (5.12) amounts to η ≤ 2c1 for x = 0, i.e., to η = 2c1 where C
is not ample and h1,0(C) �= 0.

6 The DUY constraint and its 1-loop modification

Like the Calabi–Yau condition on the underlying space X, the holomor-
phicity and stability of the vector bundle V are direct consequences of the
required four-dimensional supersymmetry. The demand is that a connection
A on V has to satisfy (at string tree-level) the DUY equation (J denotes a
Kähler form on X)

F 2,0
A = F 0,2

A = 0, F 1,1
A ∧ J2 = 0. (6.1)

The first equation implies the holomorphicity of V ; the second equation is
the Hermitian-Yang–Mills equation F 1,1

A ∧ Jn−1 = c · IF · Jn (for n = 3 with
c ∈ C vanishing) with the integrability condition (condition for the existence
of a unique solution in case V is polystable, i.e., a sum of μ-stable bundles
with the same slope) [22,23]

∫

X
c1(V ) ∧ J2 = 0 (6.2)

V is called μ-stable with respect to some Kähler class J if its slope
μ(V ) = 1

rk(V )

∫

c1(V ) ∧ J2 is bigger than the slope of each subbundle V ′

of smaller rank.

If C is irreducible, then V will be stable for sufficiently small ε with respect
to [3]

J = εJ0 + π∗HB, ε > 0. (6.3)

Here J0 = x1σ1 + x2σ2 + h with x1 + x2 > 0 and HB is an ample divisor in
B. So the volume of the fiber F of X is kept arbitrarily small compared to
volumes of effective curves in the base. For details on the stability properties
and generalizations, we refer to [3, 24]. Note that working on B-fibered
Calabi–Yau 3-folds does not effect the stability proof of [3]. Thus our bundles
are stable with respect to the Kähler class in equation (6.3).

The bundle V = V ⊗ L(D) is stable with respect to J = εJ0 + HB with
ε small positive, HB ∈ CB and J0 = x1σ1 + x2σ2 (with CB the Kähler cone
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of B). The DUY constraint is

0 = DJ2 = −ε2c1(α − xc1)
(
∑

x2
i

)

+ 2ε
(
∑

xi

)

HB(α − xc1) + 2xH2
B.

(6.4)

If one tries to argue that the Kähler moduli in J are tuned such that DJ2 =
0, one encounters the difficulty that the relevant ε (for which stability is
known) depends itself on the chosen J0 and HB. So one rather has to make
vanish the coefficients of the three different ε-powers individually, so that
DJ2 = 0 independently of the actual, unknown value of ε. But the constant
term gives x = 0 for which equation (5.12) can not be relaxed.

For a rank n bundle V = ⊕Vi composed of U(ni) bundles of slopes μi =
1
ni

∫

J2c1(Vi) =: μ (they must coincide for V to be polystable), one finds
∫

J2c1(Vi) = 0 for all i as 0 =
∫

J2c1(V) =
∑

riμi = μn. For us, having
c1(Vi) = ±4D means

∫

J2D = 0.

The 1-loop modification

We discuss now an approach which leads to a rank 5 physical bundle for
a split extension and non-vanishing x. This causes the slope to be non-zero
and so one has to invoke the quantum corrected version of it. This will make
the slope vanish at the 1-loop level and fix the dilaton.

From the condition of effectivity of the 5-brane W in c2(V ) − 10D2 + W =
c2(X), one realizes that5 one is forced to allow for an additional twist by
an invariant line bundle with x �= 0. This however leads to a problem in the
DUY condition c1(V )J2 = 0 where J = εJ0 + HB is a Kahler class for which
stability of V can be guaranteed (here HB is a Kahler class on the base). As
the concrete bound ε ≤ ε∗ for which J is appropriate is not known explicitely,
one has to solve the DUY equation in every order in ε individually which
leads for the constant term to 2xH2

B = 0.

Therefore, one must go beyond tree-level here and invoke the 1-loop cor-
rection to the DUY equation [19] which in turn leads to further conditions
assuring positivity of the dilaton φ and of the gauge kinetic function. These
two inequalities taken together with the two inequalities assuring effectivity
of W and the further inequality assuring irreducibility (resp. ampleness) of
C turn out to be quite restrictive.

So we invoke the 1-loop correction of the DUY integrability constraint
[19–21] (here z ∈

[

−1
2 , +1

2

]

refers to the position of W in the interval between

5Apart from a “separation case”, which has special features.
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the two E8-walls)6

0 =
∫

X
c1(L)J2 − φ

∫

X
c1(L)

(

−c2(V ) + 10c1(L)2 +
1
2
c2(X) −

(

1
2

− z

)2

W

)

(6.5)

= DJ2 − φD

[(

1 −
(

1
2

− z

)2
)

W − 1
2
c2(X)

]

(6.6)

(corresponding to a deformed DUY equation) with φ = l4sg
2
s giving

φ =
DJ2

D((3/4)W − (1/2)c2(X))

=
O(ε) + xH2

B

(α − xc1)((3/4)wB − 3c1) + x((3/4)af − 22)
> 0 (6.7)

as condition. So it is enough to have (for x > 0; otherwise one has the
reverse inequality)

(α − xc1)
(

3
4
wB − 3c1

)

+ x

(

3
4
af − 22

)

> 0. (6.8)

The positivity of the 1-loop corrected gauge kinetic function requires
[19–21]

0 < J3 − 3φ

[

J

(

W − 1
2
c2(X) −

(

1
2

− z

)2

W

)]

= O(ε) − 3φ

[(

1 −
(

1
2

− z

)2
)

W − 1
2
c2(X)

]

HB.

As stability will hold for all small enough ε, it will be enough to show
(

3
4
[4c1 − 2η + 10x(2α − xc1)] − 3c1

)

HB < 0. (6.9)

7 Model constraints and conclusions

Let us collect all conditions on the bundle. Note that λ can be integral or
half-integral if η is even (actually α could be half-integral by considering
genuine U(n) bundles V).

6We choose z = 0 to illustrate; to determine zW , open membrane instanton effects have
to be included.
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We obtain the equation for the generation number of Ṽ = V ⊗ L ⊕ L−4

with D = xΣ + α

Ngen = 4
[

λ − x

(

λ2 − 1
4

)]

η(η − 2c1) + 40x(1 − 4x2)

− 4α(η + c1) − 60xα(α − xc1). (7.1)

One notes that Ngen is manifestly divisible by 4, except perhaps the first
term. For n = 4 and ρ = 0 is λ either Z + 1

2 or λ ∈ Z with η even. It remains
to discuss the term η(η − 2c1). If λ ∈ 1

2 + Z, this term is divisible by 2; if
λ ∈ Z as c1 is even and η ≡ c1 mod 2, this term is divisible by 4. In total,
also the first term is divisible by 4.

Therefore, the physical generation number Ngen/2 downstairs on X/Z2
turns out to be even.

Furthermore, one obtains five inequalities as conditions: one for the irre-
ducibility of C (this is on F0; when checking effectivity and irreducibility of
C, note that η ≥ 0 implies on F0 also η · b ≥ 0); actually for C ample, one
gets a slightly sharper inequality; then two for the effectivity of W and two
from the 1-loop considerations, concerning positivity of φ (where (7.4) is
meant for x > 0; otherwise one has the reverse inequality) and of the gauge
kinetic term7

η ≥ 2c1, (7.2)

wB = 4c1 − 2η + 10x(2α − xc1) ≥ 0, (7.3)

af = 48 − 2
(

λ2 − 1
4

)

η(η − 2c1) − 2ηc1 + 10α2 ≥ 0,

(7.4)

1
2
D

[

3
4
W − 1

2
c2(X)

]

= (α − xc1)
(

3
4
wB − 3c1

)

+ x

(

3
4
af − 22

)

> 0,

(7.5)

1
2
HB

[

3
4
W − 1

2
c2(X)

]

=
3
4
(

−2η + 10x(2α − xc1)
)

HB < 0. (7.6)

Therefore, we have constructed invariant bundles on B-fibered Calabi–
Yau spaces. Thereby we can get downstairs on X/Z2 a number of Ngen/2
net generations of chiral fermions of the Standard model (plus an additional
right-handed neutrino).

7From (7.3) and (7.6), one may try to choose 0 ≤ wB ≤ 4c1 (with wB �= 4c1). But
this is unnecessarily restrictive: (7.6) is satisfied for all ample HB for wB − 4c1 ≤ 0 (with
wB �= 4c1); but if wB − 4c1 = (s, t) with already only one of them negative, then one can
find a certain HB for which (7.6) holds.
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Appendix A

A.1 Equation of the spectral cover

Recall that in the A-model with elliptic curve zy2 = 4x3 − g2x − g3 in P2 =
P1,1,1 with zero point p = (0, 1, 0), the (z) = l in P2 becomes (z)|E = 3p
on E. To encode n points on E, one chooses a homogeneous polynomial
w

(hom)
n/2 (x, y, z) of degree n/2. One realizes that from its 3n/2 zeroes on E

(after Bezout’s theorem) only n, say qi, carry information as n/2 of them
are always at p: for the rewriting w

(hom)
n/2 (x, y, z) = zn/2waff

n/2(x/z, y/z) shows
manifestly 3n/2 zeroes at p from the z-power and n poles at p and n zeroes
at the qi (note that x/z and y/z have a pole at p of order −(1 − 3) = 2 and
−(0 − 3) = 3, resp., so the meromorphic function waff |E has that divisor).
Concretely for n = 4

w(hom)(x, y, z) = a4x
2 + a3yz + a2xz + a0z

2 = z2waff
(x

z
,
y

z

)

. (A.1)

This gives on E for the divisor of w(hom) = w resp. for the divisor of zeroes
of waff

(w|E) =
n

2
σ +

∑

qi, (waff |E)0 =
∑

qi. (A.2)

Globally, as (x, y, z) have L = K−1
B -weights (2, 3, 0), one has ai ∈ H0

(B,O(η − ic1)).

Now in the B-model with the elliptic curve in P1,2,1, one has the group
zero p1 = (1, 1, 0) and the point p2 = (1,−1, 0); let (z)|E = p1 + p2 =: P .
The well-defined meromorphic functions x/z and y/z2 on E have polar divi-
sors P and 2P , respectively. For n = 4

waff
n/2

(x

z
,

y

z2

)

= α20

(x

z

)2
+ α02

y

z2 + α10
x

z
+ α00. (A.3)

From the polar divisor of the meromorphic function waff |E , one reads off its
total divisor8 (waff |E) = 2P −

∑4 qi. So the corresponding homogeneous

8The divisor 2(σ1 + σ2) −
∑4 qi (in each fiber) of the meromorphic function w/z2 gives

the relation
∑4 qi = 2(σ1 + σ2) or

∑4(qi − σ1) = 2(σ2 − σ1) in the divisor class group, or
∑4 qi = 2σ2 in the group structure; so

∑4(2qi − σ2) =
∑4 qeff

i = 0, i.e., one has fiberwise
an SU(n)-bundle, cf. Section 4.3.
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polynomial w(hom) = w

w
(hom)
n/2 (x, y, z) = α20x

2 + α02y + α10xz + α00z
2 = z2waff

n/2 (A.4)

has on E just the divisor given by the four zeroes qi (as the double zeroes
at the pi of the z-power cancel with the double poles there of waff), i.e.,

(w|E) =
∑

qi = (waff |E)0. (A.5)

(So this case is simpler than the A-model as no n/2 further zeroes at p are
carried along.)

Concerning the L = K−1
B -weights of the αij , i.e., the transformation prop-

erties of the coefficient functions along the base of the fibration, x, y, z have
L-weights 1, 2, 0 (do not confuse them with their indicated P1,2,1 weights),
so αij ∈ H0(B,O(η − (i + j)c1)).

A.2 The Kähler cone

Concerning the base surface B = Fm, note that the base and fiber classes
b and f represent actual curves. The effective cone (non-negative linear
combinations of classes of actual curves) is given by the condition p ≥ 0, q ≥
0 on ρ = pb + qf ; this we denote by ρ ≥ 0. The Kähler cone CB of B (where
ρ ∈ CB means ρζ > 0 for all actual curves of classes ζ or equivalently ρb >
0, ρf > 0) is given by CB = {t1b

+ + t2f |ti > 0} (with b+ = b + mf). For
example on F2 one has c1 /∈ CB as c1b = 0.

Let J = x1σ1 + x2σ2 + H be an element in the Kähler cone CX (H ∈ CB).
Then demanding that its intersections with the curves F and σiα are non-
negative amounts to

x1 + x2 > 0, (A.6)

(H − xic1)α > 0. (A.7)

Similarly, intersecting J2 with σi and α and building also J3 gives

(H − xic1)2 > 0, (A.8)
(

2
∑

xiH −
∑

x2
i c1

)

α > 0, (A.9)

∑

xi(H − xic1)2 +
(

2
∑

xiH −
∑

x2
i c1

)

H > 0. (A.10)
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From this, one gets9 the condition for J to be ample (positive)

J = x1σ1 + x2σ2 + H ∈ CX ⇐⇒ x1 + x2 > 0, H − xic1 ∈ CB (A.11)

So the condition for C = n
2 Σ + η to be ample (not only effective, cf. (3.4)) is

η − n

2
c1 ∈ CB. (A.12)
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