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Abstract

The noncommutative self-dual φ3 model in six dimensions is quan-
tized and essentially solved, by mapping it to the Kontsevich model.
The model is shown to be renormalizable and asymptotically free, and
solvable genus by genus. It requires both wavefunction and coupling
constant renormalization. The exact (“all-order”) renormalization of the
bare parameters is determined explicitly, which turns out to depend on
the genus 0 sector only. The running coupling constant is also com-
puted exactly, which decreases more rapidly than predicted by the 1-loop
beta-function. A phase transition to an unstable phase is found.
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1 Introduction

This paper is the third part of a series of papers [1, 2] studying the
quantization of a noncommutative “self-dual” φ3 model, by mapping it to
the Kontsevich model. The model is characterized by an additional potential
term in the action, which takes care of the UV/IR mixing following [3–6].
In the previous papers, we discussed the cases of two and four dimensions
and showed that the model is renormalizable and essentially solvable. These
cases are in some sense simpler because they are super-renormalizable. This
is no longer the case in six dimensions, where new renormalization is required
at each order, and the full complexity of an interacting quantum field the-
ory is found with both wavefunction and coupling constant renormalization.
Indeed, the commutative φ3 model in six dimensions is known [7] to be
asymptotically free.

Generalizing [1,2], we show in this paper that the self-dual NC φ3 model in
six dimensions can be renormalized and essentially solved in terms of a genus
expansion. This is possible using the results of [8, 9] on the Kontsevich
model, which must however be properly renormalized. The model has
six relevant parameters. In particular, both coupling constant and wave-
function renormalization are required in the six-dimensional case, in addi-
tion to tadpole and mass renormalization which were sufficient in two and
four dimensions. Remarkably, we find again that the renormalization is
determined by the genus 0 sector only, as in the case of two and four
dimensions.

After renormalization, all n-point functions can be computed in principle
in terms of a genus expansion, and we give explicit expressions for the 1-, 2-,
and some 3-point functions. We also find a critical surface α = 0 in moduli
space, which separates two different phases. This provides a model which
contains the full complexity of renormalization of a nonsuper-renormalizable
asymptotically free quantum field theory, while being solvable and hence
fully under control. It is very remarkable that a six-dimensional interacting
NC field theory allows such a detailed analytical description. It can therefore
also serve as a testing ground for various approximation methods, which is
of interest also in a more general context.

In particular, we are able to determine exactly the RG flow of the bare
parameters, as well as the running of the “physical” coupling constant i.e.,
the 1PI 3-point function. We find that the 1-loop beta-function for the cou-
pling constant correctly predicts asymptotic freedom, but wrongly predicts
a (log N)−1/2 dependence on the scale as opposed to the correct (log N)−2

dependence.
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Beyond the self-dual case Ω = 1, perturbative renormalizability of similar
models has been established using variants of a renormalization group
approach, see e.g., [3–5, 10–12]. The present approach using matrix model
methods is certainly appropriate for the case Ω = 1. We indicate in
Section 5 how it might be extended to Ω �= 1, which however is not carried
out here. For a related matrix approach to NC field theory, see also [13,14].

Being a continuation of our previous work on the two- and four-
dimensional case, we will be brief in certain issues which have already been
discussed there, and which apply without change. Nevertheless, the present
paper is essentially self-contained. In Section 2, we define the φ3 model under
consideration and rewrite it as Kontsevich model. We then briefly recall the
most important facts about the Kontsevich model in Section 3. The main
technical analysis is contained in Section 4.1, while the main results of this
paper are collected in Section 4.2. The asymptotic behavior of the 1-, 2-
and 3-point functions is determined in Section 4.3, and further aspects such
as relation with string field theory are briefly discussed in Section 5. The
perturbative results such as the 1-loop beta-function are given in Section 6,
and we conclude with a general discussion and outlook.

2 The noncommutative self-dual φ3 model

We consider the noncommutative φ3 model on the six-dimensional quantum
plane R

6
θ, which is generated by self-adjoint operators1 xi satisfying the

canonical commutation relations

[xi, xj ] = iθij , (2.1)

for i, j = 1, . . . , 6. We also introduce

x̃i = θ−1
ij xj , [x̃i, x̃j ] = iθ−1

ji (2.2)

assuming that θij is nondegenerate. The model to be studied is defined by
the action

S̃ =
∫

R
6
θ

1
2
∂iφ∂iφ +

μ2

2
φ2 + Ω2(x̃iφ)(x̃iφ) +

iλ0

3!
φ3. (2.3)

An additional oscillator-type potential Ω2(x̃iφ)(x̃iφ) is included following
[3–6], making the model covariant under Langmann–Szabo duality and tak-
ing care of the UV/IR mixing. The dynamical object is the scalar field
φ = φ†, which is a self-adjoint operator acting on the representation space

1We ignore operator-technical subtleties, since the model will be regularized using a
cutoff N .
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H of the algebra (2.1). The action is written with imaginary coupling iλ0,
so that the quantization is well defined for real λ0; otherwise the action
would be unbounded. We will see however that after quantization, one can
perform an analytic continuation to real λ′

0 = iλ0.

Noting that the ∂i are inner derivatives ∂if = −i[x̃i, f ], the action can be
written as

S̃ =
∫

−(x̃iφx̃iφ − x̃ix̃iφφ) + Ω2x̃iφx̃iφ +
μ2

2
φ2 +

iλ0

3!
φ3 (2.4)

using the cyclic property of the integral. For the “self-dual” point Ω = 1,
this simplifies further to

S̃ =
∫ (

x̃ix̃i +
μ2

2

)
φ2 +

iλ0

3!
φ3. (2.5)

In order to quantize the theory, we need to include a linear (tadpole) coun-
terterm −Tr(iλ)Aφ to the action (the explicit factor iλ is inserted for con-
venience). Replacing the integral by

∫
→ (2πθ)3 Tr and adding a constant

term for convenience, we are led to consider the action

S = Tr
(

1
2
Jφ2 +

iλ

3!
φ3 − (iλ)Aφ − 1

3(iλ)2
J3 − JA

)
. (2.6)

Here J = 2Z(2πθ)3(
∑

i x̃ix̃i + μ2

2 ) is essentially the Hamiltonian of a three-
dimensional quantum mechanical harmonic oscillator. A wavefunction renor-
malization Z has also been introduced, which for the cubic term is absorbed
in the redefined coupling constant λ, in order to simplify the notation. The
field φ will be the renormalized, finite physical field. In the usual basis of
eigenstates, J then diagonalizes as

J |n1, n2, n3〉 = 16π3θ2Z

(
n1 + n2 + n3 +

μ2θ + 3
2

)
|n1, n2, n3〉,

ni ∈ {0, 1, 2, . . .} (2.7)

assuming that θij has the canonical form θ12 = −θ21 = θ34 = −θ43 = · · ·=: θ.
To simplify the notation, we will use the convention

n ≡ (n1, n2, n3), n ≡ n1 + n2 + n3 (2.8)

throughout this paper, keeping in mind that n denotes a triple index. It
turns out that we need

A = a0 + a1J + a2J
2. (2.9)
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By suitable shifts2 in the field φ

φ̃ = φ +
1
iλ

J = X +
1
iλ

M (2.10)

one can now either eliminate the linear term or the quadratic term in the
action,

S = Tr
(

− 1
2iλ

M2φ̃ +
iλ

3!
φ̃3

)
= Tr

(
1
2
MX2 +

iλ

3!
X3 − 1

3(iλ)2
M3

)
, (2.11)

where

M =
√

J2 + 2(iλ)2A = xZ
√

J̃2 + d, (2.12)

J̃ =
J

Z
+

(iλ)2a1

x2Z
, (2.13)

x =
√

1 + 2(iλ)2a2, (2.14)

d = −
(

(iλ)2a1

x2Z

)2
+ 2

(iλ)2a0

x2Z2 . (2.15)

Equation (2.11) has precisely the form of the Kontsevich model [9]. The
linear coupling of the field to the source M2 resp. J̃2 will be very useful for
computing correlation functions. J̃ now has eigenvalues

J̃ |n1, n2, n3〉 = 16π3θ2
(

n1 + n2 + n3 +
μ2

Rθ + 3
2

)
|n1, n2, n3〉, (2.16)

which will be finite after renormalization, and

δμ2θ = μ2θ − μ2
Rθ = − 2

16π3θ2
(iλ)2a1

x2Z
. (2.17)

2.1 Quantization, partition function and correlators

The quantization of model (2.6) resp. (2.11) is defined by an integral over
all hermitian N3 × N3 matrices φ, where N serves as a UV and IR cutoff.
The partition function

Z(M) =
∫

Dφ̃ exp
(

−Tr
(

− 1
2iλ

M2φ̃ +
iλ

3!
φ̃3

))
= eF (M) (2.18)

defines the “free energy” F (M), which is a function of the eigenvalues of
M resp. J̃ . Since N is finite, we can freely switch between the various

2For the quantization, the integral for the diagonal elements is then defined via ana-
lytical continuation, and the off-diagonal elements remain hermitian since J is diagonal.
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parametrizations (2.6), (2.11) involving M , J , φ, or φ̃. Correlators or
“n-point functions” are defined through

〈φi1j1 · · ·φinjn〉 =
1

Z(M)

∫
Dφ exp(−S)φi1j1 · · ·φinjn , (2.19)

keeping in mind that each index denotes a multi-index (2.8). Using the
symmetry Z(M) = Z(U−1MU) for U ∈ U(N3), we can assume that M is
diagonalized with ordered eigenvalues mi. There is a residual U(1) × U(3) ×
U(6) × · · · symmetry, reflecting the degeneracy of J . This implies certain
obvious “index conservation laws”, such as 〈φkl〉 = δkl〈φll〉, etc.

The nontrivial task is to show that all these n-point functions with finite
indices have a well-defined and nontrivial limit N → ∞, for a suitable scaling
of the bare parameters. In addition, the index dependence of these n-point
functions must be nontrivial. Recall that the wavefunction renormalization
is already taken into account in (2.7), so that φ is the finite, physical field.
The free parameters should in principle be determined by choosing renor-
malization conditions, such as 〈φ00φ00〉 = 1

2π
1

μ2
Rθ+1 , etc. These conditions

can easily be solved using the explicit results given in Sections 4.1 and 4.2,
relating the bare parameters with the “physical” quantities.

Noting that the field φ̃ couples linearly to M2 resp. J̃2 in (2.18), one
can compute the connected n-point functions by acting with the derivative
operator 2iλ ∂

∂J2 = 2i λ
x2Z2

∂
∂J̃2 on F . Anticipating some results below, we

introduce the quantities

iλR =
iλ

x2Z2 , r =
1

x2Z
, (2.20)

which turn out to be finite after renormalization. Then

〈φ̃i1j1 · · · φ̃injn〉c =

(
2iλR

∂

∂J̃2
i1j1

)
· · · ·

(
2iλR

∂

∂J̃2
injn

)
F (J̃2). (2.21)

Since the connected n-point functions are independent of the shifts φ̃ =
φ + J

iλ (2.10) for n ≥ 2, the lhs coincides with the desired correlator 〈φi1j1 · · ·
φinjn〉c for n ≥ 2. This strongly suggests that λR should be finite.

Using the Dyson–Schwinger equations for the path integral (2.18), one
can derive a number of nontrivial identities for the n-point functions. Since
their derivation was already given in [1], we simply quote them here with
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the appropriate substitutions. In particular, one finds for the propagator

〈φ̃klφ̃lk〉 =
2iλ

m2
k − m2

l

〈φ̃kk − φ̃ll〉 (2.22)

for k �= l (no sum), where mk denotes the eigenvalues of M . This gives

〈φklφlk〉 =
2r

J̃k + J̃l

+
2iλR

J̃2
k − J̃2

l

〈φkk − φll〉 (2.23)

using (2.12). The first term has the form of the free contribution, and
the second is a quantum correction. The latter reduces to the 1-point
functions, which will be obtained from the Kontsevich model. Similarly,
one can show [1]

〈
φ̃klφ̃lkφ̃kk

〉
=

2iλ

m2
k − m2

l

〈
(φ̃kk − φ̃ll)φ̃kk − φ̃klφ̃lk

〉
(2.24)

(no sum) for k �= l. Using (2.23), this gives the connected part

〈φklφlkφkk〉c =
2iλ

m2
k − m2

l

(
〈(φkk − φll)φkk〉c − 〈φklφlk〉

)
. (2.25)

Clearly these relations can be generalized, greatly reducing the number
of independent correlators. However, we will establish finiteness of the
general correlation functions directly, by showing that the appropriate deri-
vatives of the generating function F (J̃) are finite and well defined after
renormalization.

3 The Kontsevich model: facts and background

The Kontsevich model is defined as a matrix integral

ZKont(M̃) = eFKont
=

∫
dX exp{Tr(−(M̃X2/2) + i(X3/6))}∫

dX exp{−Tr(M̃X2/2)}
(3.1)

over hermitian N3 × N3 matrices X, where the parameter M̃ is some given
hermitian N3 × N3 matrix. This model has been introduced by Kontsevich
[9] as a combinatorial way of computing certain topological quantities
(intersection numbers) on moduli spaces of Riemann surfaces with punc-
tures. It turns out to have an extremely rich structure related to integrable
models (KdV flows) and Virasoro constraints. For our purpose, the most
important results are those of [8, 9, 15], which provide explicit expressions
for the genus expansion of the free energy. Note that λ can be introduced
by rescaling the variables, writing M = λ2/3M̃ .
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The matrix integral in (3.1) and its large N limit can be defined rigorously
in terms of its asymptotic series. This involves the variables [9]

tr := −(2r + 1)!! θ2r+1, θr :=
1
r
Tr M̃−r. (3.2)

Then the large N limit of the partition function ZKont(M̃) can be rigorously
defined [8, 9], which turns out to be a function of these new variables only,
ZKont(M̃) = ZKont(θi). In our case, θr is divergent for r = 1, 2, 3, which
indicates that the model requires renormalization.

One can furthermore consider the genus expansion

ln ZKont = FKont =
∑
g≥0

FKont
g (3.3)

by drawing the Feynman diagrams on the appropriate Riemann surface, as
usual for matrix models. In [8] it was shown that all FKont

g can be computed
using the KdV equations and the Virasoro constraints, which allows to find
closed expressions for any genus g. They are given in terms of the following
variables

Ik(u0, ti) =
∑
p≥0

tk+p
up

0
p!

= −(2k − 1)!!
∑

i

1
(m̃2

i − 2u0)k+(1/2) , (3.4)

where u0 is given by the solution of the implicit equation

u0 = I0(u0, ti) = −
∑

i

1√
m̃2

i − 2u0

. (3.5)

These variables turn out to be more useful for our purpose. Using the KdV
equations, [8] obtain the following explicit formulas:

FKont
0 =

1
3

∑
i

m̃3
i − 1

3

∑
i

(m̃2
i − 2u0)3/2 − u0

∑
i

(m̃2
i − 2u0)1/2

+
u3

0
6

− 1
2

∑
i,k

ln

{
(m̃2

i − 2u0)1/2 + (m̃2
k − 2u0)1/2

m̃i + m̃k

}
(3.6)

FKont
1 =

1
24

ln
1

1 − I1
, (3.7)

FKont
2 =

1
5760

[
5

I4

(1 − I1)3
+ 29

I3I2

(1 − I1)4
+ 28

I3
2

(1 − I1)5

]
, (3.8)

etc. This form of F0 was first found in [15]. The sums over multi-indices
(2.8) are to be interpreted as

∑
i

≡
N−1∑

i1,i2,i3=0
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truncating the harmonic oscillators in (2.7). For our purpose, the most
important result is that all FKont

g with g ≥ 2 are given by polynomials

FKont
g =

∑
χ{lk}x

l2
2 · · ·xl3g−2

3g−2 in xk = Ik/(1 − I1)(2k+1)/3 with the constraint

∑
2≤k≤3g−2

(k − 1)lk = 3g − 3, (3.9)

where lk is the power of xk, and χ{lk} is some (rational) intersection number.

While many of these expressions are divergent as N → ∞ for J̃ given
by (2.16), the physically relevant observables will be convergent after renor-
malization.

4 The Kontsevich model applied to the φ3 model

In order to apply the above results to the noncommutative φ3 model, we
need the following slightly modified version of the Kontsevich model, corre-
sponding to the action (2.11):

Z(M) = exp(F (M)) = ZKont[M̃ ]Zfree[M̃ ] exp
(

1
3(iλ)2

TrM3
)
, (4.1)

where

F0 := FKont
0 + Ffree +

1
3(iλ)2

Tr M3

= −1
3

∑
i

3
√

m̃2
i − 2u0 − u0

∑
i

√
m̃2

i − 2u0

+
u3

0
6

− 1
2

∑
i,k

ln
(√

m̃2
i − 2u0 +

√
m̃2

k − 2u0

)
. (4.2)

and Fg = FKont
g for g ≥ 1. In the present case, the eigenvalues m̃i are given

by (2.12)

m̃i = λ−2/3xZ

√
J̃2

i + d. (4.3)

The model as it stands is ill-defined for N → ∞, since u0 and many of the
above sums are divergent. However, we can recast (4.2) using more appro-
priate variables, which suggests how to renormalize the various parameters,

i.e., how to scale them with N . Note that only the combinations
√

m̃2
i − 2u0
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enter in (3.4) and (4.2), which can be rewritten using (2.12) as√
m̃2

i − 2u0 = xZλ−2/3
√

J̃2
k + 2b. (4.4)

Here b is defined through

x3Z3

(iλ)2

(
b − 1

2
d

)
= xZλ−2/3u0 = −

∑
i

1√
J̃2

i + 2b
(4.5)

using the constraint (3.5), which is replaced by (4.5) henceforth. Eliminating
u0 using (4.5) and expressing λ in terms of λR, F0 takes the form

F0 =
1

3(iλR)2xZ

∑
i

3
√

J̃2
i + 2b − b − (1/2)d

(iλR)2xZ

∑
i

√
J̃2

i + 2b

− (b − (1/2)d)3

6(iλR)4x2Z2 − 1
2

∑
i,k

ln
1

(λ2
RxZ)1/3

(√
J̃2

i + 2b +
√

J̃2
k + 2b

)
.

(4.6)

The quantities J̃ , b, and λR will be finite after renormalization, rendering the
model well-defined. We consider F = F (J̃2) as a function of (the eigenvalues
of) J̃2 from now on, while b is implicitly determined by (4.5). Since the

eigenvalues J̃k only enter through the combination
√

J̃2
k + 2b, we note that

the eigenvalues can be analytically continued as long as this square-root is
well-defined.

We can now compute various n-point functions by taking partial deriva-
tives of F =

∑
g Fg with respect to J̃2, as indicated in Section 2.1. For

the “diagonal” n-point functions 〈φ̃ii · · · φ̃kk〉c, this amounts to varying the
eigenvalues J̃2

k . In doing so, we must remember that b depends implicitly
on J̃2

k through the constraint (4.5). However, some of these computations
simplify recalling that the constraint (4.5) for b arises automatically through
the e.o.m: using

∂

∂b
F0(J̃2

i ; b) = −1
2

⎛
⎝b − (1/2)d

(iλR)2xZ
+

∑
i

1√
J̃2

i + 2b

⎞
⎠
2

= 0 (4.7)

we can write
d

dJ̃2
i

F0(J̃2
i ) =

∂

∂J̃2
i

F0(J̃2
i ; b) +

∂

∂b
F0(J̃2

i ; b)
∂

∂J̃2
i

b =
∂

∂J̃2
i

F0(J̃2
i ; b). (4.8)

Thus for derivatives of order ≤2 w.r.t. J̃2
k , we can simply ignore b and treat

it as independent variable, since the omitted terms (4.7) vanish anyway once
the constraint is imposed.
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4.1 Renormalization

This section contains some computations required to show finiteness of
the n-point functions for any genus g. This will establish Theorem 4.1 in
Section 4.2.

The 1-point function We can now determine the required renormalization
by considering the 1-point function. Using (4.6), (4.7), and (4.5), the genus
0 contribution is

〈φkk〉g=0 = 2iλR
∂

∂J̃2
k

F0(J̃2) − Jk

iλRx2Z2

=
1

iλRxZ
yk + (iλR)

∑
j

1

yk

√
J̃2

j + 2b + (J̃2
j + 2b)

− r

iλR
J̃k + iλRZ2a1

=: W (yk) (4.9)

using (2.20), which must be finite and well defined as N → ∞. Here we
define

yk =
√

J̃2
k + 2b. (4.10)

We will find that W (y) becomes a smooth function of y after renormal-
ization, which amounts to the statement that the index dependence of the
1-point function is “smooth”. This is a typical feature of matrix models,
reflecting some “smooth” distribution of eigenvalues. This becomes here
part of the statement of renormalizability. To proceed, we need to under-
stand the function

f(y) :=
∑

j

1

y
√

J̃2
j + 2b + (J̃2

j + 2b)
(4.11)

which as it stands is ill-defined for N → ∞.

4.1.1 Renormalization of f (y)

In order to make sense of f(y), we consider the Taylor expansion of

f(y; J̃) =
∑

j

1

y
√

J̃2
j + 2b + (J̃2

j + 2b)
= f0(J̃) + yf1(J̃) + fR(y; J̃) (4.12)
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in y, in analogy to the usual strategy in renormalization. Here

f0(J̃) =
∑

j

1
J̃2

j + 2b
= f0 + f0,R(δJ̃) (4.13)

f1(J̃) = −
∑

j

1
(J̃2

j + 2b)3/2
= f1 + f1,R(δJ̃), (4.14)

fR(y; J̃) = y2
∑

j

1

(J̃2
j + 2b)

(
y
√

J̃2
j + 2b + (J̃2

j + 2b)
) , (4.15)

where f1, f2 are divergent constants obtained by fixing J̃ as in (2.16), while
the fi,R(δJ̃) are regular (convergent) functions obtained by taking into
account variations δJ̃ of the eigenvalues. This is necessary e.g., to com-
pute partial derivatives w.r.t. J̃ . Thus

f0 =
1

(16π3θ2)2

∫ N

0
dx1dx2dx3

1
(x1 + x2 + x3 + (3 + μ2

Rθ)/2)2
+ finite

=
1

(16π3θ2)2

(
(6 log(2) − 3 log(3))N − 3 + μ2

Rθ

2
log(N)

)
+ finite,

(4.16)

and similarly

f1 = −1
2

1
(16π3θ2)3

log(N) + finite. (4.17)

The remaining part fR(y; J̃) is well defined and convergent, provided b and J̃k

i.e., μR are finite, which will be assumed from now on.3 To understand it
better, we note that

f ′′
R(y) = f ′′(y) = 2

∑
j

J̃2
j + 2b(

y
√

J̃2
j + 2b + (J̃2

j + 2b)
)3

is positive, and similarly f ′
R(y) ≥ 0. Hence fR(y) is a rather simple convex

smooth function of y > 0, which satisfies fR(0) = f ′
R(0) = 0, and it remains

only to determine its asymptotic behavior for large y ≈ J̃N , i.e., small x.

3We do not pursue the possibility of divergent μR, which does not appear to be
interesting.
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This can be obtained by writing

fR(y) ≈ y

(16π3θ2)3

∫ J̃N/y

J̃0/y
d3x

1

(x2 + 2b/y2)
(√

x2 + 2b/y2 + (x2 + 2b/y2)
) ,

(4.18)
where x = J̃

y . This integral is convergent for large x, but logarithmically
divergent at the origin i.e., for large y ∼ JN . We can hence replace the upper
integration limit in (4.18) by x = 1, to obtain the asymptotic behavior for
large y:

fR(y) ≈ y

(16π3θ2)3

∫ 1

J̃0/y
d3x

1
(x2 + 2b/y2)3/2 ≈ 1

2
1

(16π3θ2)3
y log

(
y

J̃0

)
.

(4.19)

4.1.2 Renormalization of 〈φkk〉g=0

We have seen that only f0 and f1 are divergent in (4.12), while fR(yk) is
finite and well defined as N → ∞. Then (4.9) becomes

〈φkk〉g=0 =
yk

iλRxZ
− rJ̃k

(iλR)
+ iλRZ2a1 + iλR(f0(J̃) + ykf1(J̃) + fR(yk; J̃))

= (iλRZ2a1 + iλRf0) +
(

1
iλRxZ

+ iλRf1

)
yk − rJ̃k

iλR

+ iλR

(
fR(yk; J̃) + f0,R(δJ̃) + ykf1,R(δJ̃)

)

= c − yk

iλRα
− rJ̃k

iλR
+ iλR

(
fR(yk) + f0,R(δJ̃) + ykf1,R(δJ̃)

)
.

(4.20)

Here we define the quantities

α = − xZ

1 + (iλR)2xZf1
= − 1

1/xZ + (iλR)2f1
, (4.21)

c = iλR(Z2a1 + f0). (4.22)

Since J̃k, yk, and fR(yk) are independent functions of k (as long as b �= 0),
it follows that 〈φkk〉g=0 is finite if and only if the four quantities(

iλR, c,
1

iλRα
,

r

iλR

)
(4.23)

are finite. Remarkably, the condition that α be finite will also guarantee that
the higher genus contributions are finite. The second form of (4.21) implies
that this is possible only for real coupling (iλR), since x and Z should be
positive, while f1 ∼ − log N .
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4.1.3 Higher derivatives and higher genus contributions

The connected part of the n-point functions for diagonal entries 〈φ̃i1i1 · · ·
φ̃inin〉c are obtained by taking higher derivatives (iλR)n ∂

∂J̃2
i1

· · · ∂
∂J̃2

in

of F (J̃2)

resp. (4.20). Since the (infinite) shift φ̃ = φ + J
iλ drops out from the con-

nected n-point function for n ≥ 2, these coincide with 〈φi1i1 · · ·φinin〉c for
n ≥ 2, and we have to show that they are finite.

Consider first the genus 0 contributions. To compute higher derivatives
of F0 w.r.t. J̃2, we must also take into account the implicit dependence of b
on J̃2. Indeed b is a smooth function of J̃ as shown in (4.32). Furthermore,
recall that ∂

∂bF0(J̃2
i ; b) vanishes through the constraint (4.7), however this is

no longer true for the higher derivatives. In particular, taking derivatives of
(4.7), we find

− ∂2

∂b2 F0(J̃2
i ; b) =

∂

∂b

⎛
⎝b − (1/2)d

(iλR)2xZ
+

∑
i

1√
J̃2

i + 2b

⎞
⎠ =

1 − I1

(iλR)2xZ
,

− ∂2

∂J̃2
k∂b

F0(J̃2
i ; b) =

∂

∂J̃2
k

⎛
⎝b − (1/2)d

(iλR)2xZ
+

∑
i

1√
J̃2

i + 2b

⎞
⎠ =

1
3
√

J̃2
i + 2b

(4.24)

which are both finite and smooth using (4.28) below. Combining this with
the explicit form (4.20) and using the results of Section 4.1.1, it follows that
all higher derivatives of F0(J̃2) w.r.t. J̃2

k are finite.

For the higher genus contributions, we also need the derivatives of the
quantities

Ik(J̃2
i , b) = −(2k − 1)!!(λ2

RxZ)(2k+1)/3
∑

i

1
(J̃2

i + 2b)k+(1/2)
. (4.25)

In particular,

I1(J̃2
k , b) = −λ2

RxZ
∑

i

1
(J̃2

i + 2b)3/2
= λ2

RxZf1(J̃)

= λ2
RxZ(f1 + f1,R(δJ̃)), (4.26)

where f1,R(δJ̃) is a finite and smooth function (4.14) of J̃2
k and b (which

vanishes for δJ̃ = 0). Hence for I1 to be finite we need

1
λ2

RxZ
∼ f1 ∼ log(N), (4.27)
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which using (4.25) implies that all higher Ik vanish for N → ∞ unless
(1 − I1) ∼ 0. Hence the higher genus contributions can be nontrivial only
if we carefully take a “double-scaling” limit4 and require Ik

(1−I1)(2k+1)/3 to be
finite, while I1 → 1. Using (4.26), we have

1
λ2

RxZ
(1 − I1) =

1
α(iλR)2

− f1,R(δJ̃) (4.28)

where α is defined in (4.21). It follows that

Ik

(1 − I1)(2k+1)/3 = − (2k − 1)!!(
1

(iλR)2α
− f1,R(δJ̃)

)(2k+1)/3

∑
i

1
(J̃2

i + 2b)k+(1/2)

∼ −(2k − 1)!!((iλR)2α)(2k+1)/3
∑

i

1
(J̃2

i + 2b)k+(1/2)
(4.29)

(the last form holds for δJ̃ = 0) is finite and nontrivial for k ≥ 2, provided

α = finite, (4.30)

assuming that iλR is finite. In particular, all derivatives of Fg for g ≥ 2
w.r.t. J̃2

k are manifestly finite, and thus all genus g ≥ 2 contributions to the
diagonal n-point functions are finite. Using (4.28) and (3.7), this also holds
for genus 1.

Finally, from the constraint (4.5), we derive

∂

∂J̃2
k

b = −(iλR)2xZ
∂

∂J̃2
k

⎛
⎝∑

i

1√
J̃2

i + 2b

⎞
⎠

=
1
2
(iλR)2xZ

⎛
⎝ 1

3
√

J̃2
k + 2b

+
∑

i

2
3
√

J̃2
k + 2b

∂

∂J̃2
k

b

⎞
⎠, (4.31)

which using (4.28) gives
∂

∂J̃2
k

b = −1
2

1
3
√

J̃2
k + 2b

1
1/(iλR)2α − f1,R(δJ̃)

. (4.32)

This is again finite, using the above assumptions. Hence b depends smoothly
on the variations in J̃k provided α is finite. If α = ∞, then the constraint
(4.5) cannot be solved any more for b as a function of the eigenvalues J̃
(and their variation), rendering the model nonrenormalizable. This implies
that the genus 0 sector fully determines the required renormalization, as was
found previously in two and four dimensions [1, 2].

4This is quite reminiscent of the double-scaling limit of matrix models in the context
of 2D gravity.
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4.2 Main result and renormalization group flow

We have now established all required formulas for the derivatives of F (J̃),
and hence for the diagonal n-point functions. We also showed that all of
these are finite and have a well-defined as N → ∞, provided a few renor-
malization conditions hold. Let us collect these conditions and use them to
determine the required scaling of the bare parameters.

Assume first that λR = 0. Imposing this exactly (i.e., independent of N)
implies α = −xZ and iλ = iλRα2 = 0. This is the free case with x and Z
finite,5 as can be seen e.g., from (4.20) and (4.49).

Hence assume λR �= 0. We assume also that b �= 0 (we will see that this
restriction is in fact not important), so that the four quantities in (4.23) are
finite. By taking products, this implies that r and 1

α are also finite, hence
α �= 0. Finite α is in fact also required for the higher genus contributions to
be finite. Using (4.21), we then obtain

1
xZ

= −(iλR)2f1 − 1
α

=
1
2

(iλR)2

(16π3θ2)3
log(N) − 1

α
, (4.33)

which implies6

iλ = iλRx2Z2 =
(iλR)

(−(1/α) + (1/2)((iλR)2 log(N)/(16π3θ2)3))2

∼ (iλR)−3 log(N)−2 (4.34)

for large N . Note that in a perturbative approach i.e., if this is formally
expanded in terms of λR, this is divergent and requires renormalization
at each order. Nevertheless, the closed form (4.34) is rather simple, with
leading behavior (iλR)−3 log(N)−2. Z is then determined through

Z = r
iλ

iλR
∼ log(N)−2 (4.35)

since r = 1
x2Z

is finite, and similarly

x =
1√
rZ

∼ log(N). (4.36)

This gives a2 using (2.14). a1 is determined from (4.22),

Z2a1 =
c

iλR
− f0 (4.37)

5We shall not pursue here the possibility of other more subtle scaling limits.
6Note also that (4.33) implies that (iλR) should be real, since xZ should be positive.
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whose leading term is linearly divergent in N , and gives the mass renormal-
ization

δμ2θ = −2(iλR)2

16π3θ2
1
r
Z2a1 ≈ 2(iλR)2

16π3θ2
f0

r
(4.38)

using (2.17) up to finite corrections. Its leading dependence on N is given
by (4.16). Finally, d is determined by the constraint (4.5),

d = 2b + 2(iλR)2xZ
∑

i

1√
J̃2

i + 2b
, (4.39)

which involves the further finite parameter b. Then a0 follows from (2.15),
which is quadratically divergent in N in agreement with the perturbative
result (6.22).

Finally, (4.20) shows that α = 0 marks some singularity or phase tran-
sition, dividing the moduli space into two disconnected components with
α ≷ 0. The explicit form of the 2-point function (4.49) below shows that
the phase with α < 0 is the “physically relevant” one, while 〈φijφji〉 < 0 for
α > 0 for small indices i, j. Since the matrices are supposed to be hermit-
ian, this signals an instability or condensation for the low modes, i.e., some
kind of tachyonic behavior. Observe also that e.g., 〈φ00〉 = 0 can only be
realized for α < 0. Nevertheless, the renormalized n-point functions remain
well defined for α > 0. This phase transition is only seen in the genus 0
sector.

Finally consider the case b = 0, so that yk ≡ J̃k. Then finiteness of the
1-point function requires only that the three quantities

(
iλR, c,

1
iλRα

+
r

iλR

)
(4.40)

are finite. However, the genus 0 result for the 2-point function (4.49) shows
that 1

α must also be finite, and we are back to the previous analysis with
finite α �= 0.

Putting these results together and recalling the structure of the higher
genus contributions Fg stated below (3.8), we have established the following:

Theorem 4.1. All derivatives of Fg w.r.t. J̃2
k for g ≥ 0 (as well as all

functions Fg for g ≥ 2) are finite and have a well-defined limit N → ∞,
provided the six quantities (iλR, α, μ2

R, r, c, b) are finite and fixed, and α �= 0.
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This determines the scaling of the six bare parameters

(iλ(N), Z(N), μ2(N), a0(N), a1(N), a2(N)) (4.41)

as a function of N through (4.34), (4.35), (4.38), (4.39) resp. (2.15), (4.37),
and (4.36). This defines a renormalization group flow in the space of free
parameters. If desired, we could now impose some specific renormalization
conditions such as 〈φ00〉 = 0, etc. These would then determine the renor-
malized parameters iλR, etc., which in turn would determine the bare ones.

The most interesting “real” sector is given by iλR ∈ R, α < 0, r > 0, μ2
R >

−3, and b ∈ R such that J̃2
k + 2b > 0 for all k. Then iλ ∈ R for large enough

N , and Z and x are positive. The case α = 0 is a singularity of the genus 0
sector.

Since the connected n-point functions are given by the derivatives of F =∑
g≥0 Fg w.r.t. J̃ , this implies that all contributions in a genus expansion

of the correlation functions for diagonal entries 〈φkk · · ·φll〉 are finite and
well defined. The general nondiagonal correlation functions are discussed
in Section 4.2.2, and also turn out to be finite for arbitrary genus g under
the same conditions. Putting these results together, we have established
renormalizability of the model to all orders in a genus expansion, i.e.,

Theorem 4.2. All connected genus g contributions to any given n-point
function 〈φi1j1 · · ·φinjn〉c are finite and have a well-defined limit N → ∞ for
all g, under the above conditions.

Moreover, they can in principle be computed explicitly using the above
formulas. This immediately extends to nonconnected diagrams 〈φi1j1 · · ·
φinjn〉. Furthermore, (4.61) shows that any contribution to Fg has order
at least ((iλR)2α)2g−1. This implies (but is stronger than) perturbative
renormalizability to all orders in λR. This might not seem surprising in
view of the results in [3–5], however, note that the present model is more
complicated than the φ4 model where the beta-function was found to be
zero at one loop for Ω = 1 [16].

It is worth pointing out that only the genus 0 contribution requires renor-
malization, while all higher genus contributions are then automatically finite.
This is very interesting because the genus 0 contribution can be obtained by
various techniques in more general models, see e.g., [17]. A related approach
was studied in [13,14] without the oscillator potential.

It may appear surprising to find a well-defined φ3 model for real coupling,
where the action is not bounded from below. This is possible because we
first quantize the model for imaginary coupling, where the Kontsevich model
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is well defined. The full genus expansion is then available, and the limit
N → ∞ is under control upon proper renormalization. This allows in a
second step to define the model for real coupling i.e., real iλR, through
analytic continuation. Similar behavior is well known in the context of
pure matrix models, which typically allow extension to seemingly unstable
potentials [18]; this is usually interpreted as suppression of tunneling from
a local minimum.

4.2.1 Exact renormalization and fine tuning

The scaling (4.34) of the bare coupling is derived assuming that the
1-point function (4.20) and therefore its coefficients α and λR are kept fixed
and independent of N . This is the usual way to proceed in perturbative
renormalization, and it would lead to new infinite renormalization at each
order of perturbation theory, as can be seen by expanding (4.34) formally
in terms of λR.

On the other hand, we have the full renormalization in closed form avail-
able, which shows a simple leading scaling law for large N . It is then natural
to ask what would happen if we scale the bare coupling in a simpler way,
e.g., respecting only the leading scaling

iλ = cλ log(N)−2, Z = cZ log(N)−2, x = cx log(N) (4.42)

for some constant cλ, cZ , cx rather than the exact form (4.34), etc. It turns
out that this is not sufficient, and the renormalization must respect the
exact form of (4.34–4.39), rather than just their leading terms.

To see this, we determine the quantities (λR, α, r, . . .) for the simpler
scaling (4.42), and check whether they also converge as N → ∞. This is
obviously the case for λR ∼ cλ

c2xc2Z
and r ∼ 1

c2xcZ
, while α is given by (4.33)

1
α

= − 1
xZ

− (iλR)2f1 = − 1
cxcZ

log(N) +
1
2

c2
λ

c4
xc4

Z

1
(16π3θ2)3

log(N). (4.43)

For this to have a well-defined limit N → ∞, the above scaling (4.42) is not
sufficient, but the constants of proportionality must satisfy 1

cxcZ
= 1

2
c2λ

c4xc4Z
1

(16π3θ2)3 , and moreover the scaling must be refined to give the sub-leading
constant (4.43).

This shows that even this relatively simple, solvable asymptotically free
model has a rather severe “fine-tuning problem”, i.e., there is no obvious
naturalness in the scaling of the bare parameters.
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4.2.2 General n-point functions

Finally we show that all contributions in the genus expansion (and therefore
perturbative expansion) of any n-point functions of the form

〈φi1j1 · · · · φinjn〉 (4.44)

have a well-defined and finite limit as N → ∞, provided the above renor-
malization conditions hold. The argument is the same as in [2], which we
repeat here for convenience.

Recall that the insertion of a factor φ̃ij can be obtained by acting with
2iλR

∂
∂J̃2

ij

on Z(J̃2), resp. Fg(J̃2). Now any given correlation function of

type (4.44) involves only a finite set of indices i, j, . . . Thus taking derivatives
w.r.t. J̃2

ij amounts to considering matrices J̃ of the form

J̃ =

(
diag(J̃1, . . . , J̃k) + δJ̃k×k 0

0 diag(J̃k+1, . . . , J̃N )

)
, (4.45)

where k is chosen large enough such that all required variations are accom-
modated by the general hermitian k × k matrix

J̃k×k := (diag(J̃1, . . . , J̃k) + δJ̃k×k) (4.46)

in (4.45), while the higher eigenvalues J̃k+1, . . . , J̃N are fixed and given by
(2.16). Therefore, we can restrict ourselves to this k × k matrix, which is
independent of N . As was shown in Section 4.1, all Fg are in the limit
N → ∞ smooth (in fact analytic) symmetric functions of the first k eigen-
values squared, hence of the eigenvalues of (J̃k×k)2. Such a function can
always be written as a smooth (analytic) function of some basis of symmet-
ric polynomials in the J̃2

a , in particular

Fg(J̃2
1 , . . . , J̃2

k ) = fg(Tr(J̃2
k×k), . . . ,Tr(J̃2k

k×k)). (4.47)

This can be seen by approximating the analytic function Fg(z1, .., zk) at
the point zi = J̃2

i by a totally symmetric polynomial in the zi, which cor-
rectly reproduces the partial derivatives up to some order n. According to
a well-known theorem, that polynomial can be rewritten as polynomial in
the elementary symmetric polynomials, or equivalently as a polynomial in
the variables sn :=

∑
zn
i , n = 1, 2, . . . , k. This amounts to the rhs of (4.47).

In the form (4.47), it is obvious that all partial derivatives ∂
∂J̃2

ij

of Fg exist

to any given order and could be worked out in principle. This completes the
proof that each genus g contribution to the general (connected) correlators
〈φi1j1 · · ·φinjn〉 is finite and convergent as N → ∞.
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4.3 Asymptotic behavior of the correlation functions

4.3.1 〈φkk〉

Using (4.19), the behavior of 〈φkk〉 for large k is dominated by fR(yk),
so that

〈φkk〉g=0 ∼ 1
2

iλR

(16π3θ2)3
yk log

(
yk

J̃0

)
for k → ∞. (4.48)

4.3.2 〈φklφlk〉

We can use (2.23) to obtain the genus 0 contribution to the 2-point function
〈φklφlk〉 for k �= l. Using (4.20), we obtain the exact expression

〈φklφlk〉g=0 = − 2α−1

yk + yl
+ 2(iλR)2

fR(yk) − fR(yl)
y2

k − y2
l

. (4.49)

Note that the free case corresponds to iλR = 0 and α = −1. Then indeed
also the higher genus contributions vanish.

Consider the behavior for large k ≈ l, which for large indices is dominated
by the terms involving fR:

〈φklφlk〉 ≈ 2(iλR)2
fR(yk) − fR(yl)

y2
k − y2

l

≈ (iλR)2
1
yk

d

dyk
fR(yk)

≈ (iλR)2
1

2(16π3θ2)3
log(yk/J0)

yk
∼ log(k)

k
(4.50)

for large k ≈ l. It is worth pointing out that this 2-point function (and
similar the 3-point function (4.56) below, etc.) is essentially determined
by a function of a single variable y, which describes the dependence of the
1-point function 〈φkk〉 on the index k. This is characteristic for the genus 0
sector, which is essentially determined by an eigenvalue distribution.

4.3.3 〈φllφkk〉

As a further example, consider the 2-point function 〈φllφkk〉 for k �= l, which
vanishes in the free case. To compute it from the effective action, we need
in principle

〈φllφkk〉c = 〈φ̃llφ̃kk〉 − 〈φ̃kk〉〈φ̃ll〉 = (2iλR)2
∂

∂J̃2
l

∂

∂J̃2
k

(F0 + F1 + · · · ). (4.51)

Even though this corresponds to a nonplanar diagram with external legs, it is
obtained by taking derivatives of a closed genus 0 ring diagram. Therefore,
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we expect that only F0 will contribute, and indeed the derivatives of F1
contribute only to order λ4

R. For k �= l, the genus 0 contribution is

〈φllφkk〉c = (2iλR)2
∂

∂J̃2
l

∂

∂J̃2
k

F0

= (iλR)2
1√

J̃2
k + 2b

1√
J̃2

l + 2b

⎛
⎝ 1√

J̃2
k + 2b +

√
J̃2

l + 2b

⎞
⎠
2

≈ (iλR)2
(

1
J̃2

k + 2b

)2
(4.52)

as k ≈ l → ∞, using again (4.7). For k = l, we need

〈φkkφkk〉c = (2iλR)2
∂2

∂(J̃2
k )2

F0 ≈ (2iλR)2

2
∂

∂J̃2
k

fR(y; δJ̃), (4.53)

since fR(y) is the leading contribution for large k. Writing

d

dJ̃2
k

fR(y; δJ̃) =
dy

dJ̃2
k

∂

∂y
fR(y; δJ̃)

+
∂

∂J̃2
k

⎛
⎜⎜⎝y2

k

1

(J̃2
k + 2b)

(
yk

√
J̃2

k + 2b + (J̃2
k + 2b)

)
⎞
⎟⎟⎠,

(4.54)

we note that the first term (involving the sum) is dominant, while the second
is only one term in a large sum. This then gives the same asymptotic
behavior as the usual propagator,

〈φkkφkk〉c ≈ (2iλR)2

2
∂

∂y2
k

fR(yk; δJ̃) ≈ 〈φklφlk〉 (4.55)

for large k, using (4.50). On the other hand, it is very different from 〈φllφkk〉c

given by (4.52). This should not be a surprise, since the latter corresponds
to nonplanar diagrams as in figure 2.

Note that in (4.54), a derivative w.r.t. J̃2
k has essentially been replaced

by a derivative w.r.t. y ≡ yk. This is again characteristic for the genus 0
sector. In fact, F0 can be obtained from the Dyson–Schwinger equation by
making precisely this approximation.
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4.4 The 3-point function

We can similarly use the exact expression (2.25) for the 3-point function to
determine the asymptotic behavior of the 3-point function at genus 0:

〈φklφlkφkk〉c = 2iλR
1

J̃2
k − J̃2

l

(〈(φkk − φll)φkk〉c − 〈φklφlk〉)

≈ 2iλR
1

J̃2
k − J̃2

l

(〈φkkφkk〉c − 〈φklφlk〉)

≈ (2iλR)3
1

y2
k − y2

l

1
2

(
∂

∂y2
k

fR(y; δJ̃) − fR(yk) − fR(yl)
y2

k − y2
l

)

≈ (iλR)32
(

1
2yk

d

dyk

)2
fR(yk; δJ̃)

≈ −(iλR)3
1
4

1
(16π3θ2)3

1
y3

k

log
(

yk

J̃0

)
(4.56)

for large k ≈ l, using (4.52), (4.50), and (4.19). The same behavior is
found for

〈φkkφkkφkk〉c = (2iλR)3
∂3

∂(J̃2
k )3

F0 ≈ (2iλR)3
1
2

∂2

∂(y2
k)

2 fR(yk), (4.57)

up to a factor 2 which reflects the exchange symmetry between the external
“legs” φkl and φlk for k = l. Combining (4.56) with (4.50) and (4.55), the
1PI vertex behaves like

〈φklφlkφkk〉1PI =
1

〈φklφlk〉c

1
〈φklφlk〉c

1
〈φkkφkk〉c

〈φklφlkφkk〉c

≈ −2(iλR)−3(16π3θ2)6
(

1
log(yk/J̃0)

)2

∼ −
(

1
log k

)2

(4.58)

for large k ≈ l. This result is exact, because the higher genus contributions
decay more rapidly as discussed in the next section. In particular, this
establishes asymptotic freedom.

Several remarks are in order. First we note that this vertex function
decays like 1

(log k)2 rather than 1
(log k)1/2 , which would be found by a 1-loop

computation as shown in Section 6. Moreover, (4.58) is in nice agreement
with (4.34), demonstrating that the 1PI vertex approaches the bare coupling
− iλ

2 for k → N . Finally, note that the effective coupling constant for this
asymptotic domain is 1

λ3
R

rather than λR. This is clearly a purely “quan-
tum” effect, which is again due to higher order correction to the 1-loop RG
result (6.14).
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4.5 Higher genus contributions

We illustrate here the stronger decay behavior of the higher genus n-point
functions, in the example of the 1-point function. Consider

〈φkk〉g=1 = 2iλR
∂

∂J̃2
l

F1 = −2iλR

24
∂

∂J̃2
k

ln(1 − I1)

=
(iλR)3α

12
∂

∂J̃2
k

f1,R(δJ̃)

=
(iλR)3α

8
1

(J̃2
k + 2b)5/2

(
1 + 2

∂

∂J̃2
k

b

)

=
(iλR)3α

8
1

(J̃2
k + 2b)5/2

⎛
⎝1 − (iλR)2α

3
√

J̃2
k + 2b

⎞
⎠ (4.59)

using (4.28) and (4.32). This asymptotically behaves like

〈φkk〉g=1 ∼ 1
k5 (4.60)

for k → ∞. Looking at (3.8), it is obvious that the higher genus contribu-
tions are also decaying at least as rapidly as the genus 1 contribution (4.60),
and similar results could be derived for the n-point functions.

Finally, it follows from (4.29) that each term in Fg contains the factor

Fg ∼ ((iλR)2α)2(g−1)+
∑

lp (4.61)

for g ≥ 2, which is at least α2(g−1)+1. Hence (iλR)2α is the parameter which
controls the genus expansion.

5 Further aspects

Structural remarks

We briefly add some heuristic remarks which might shed new light on the
formal results obtained above.

The model considered here is characterized by a function F of J̃ which
is invariant under conjugation with U(N3). This implies in particular that
F = FN (J̃k) is a totally symmetric function of the eigenvalues J̃k, i.e., it is a
function on the quotient space R

N3
/SN3 where SN3 denotes the permutation
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group. Since the observables are obtained by taking partial derivatives w.r.t.
J̃ , we are interested in

Wk(J̃) =
∂

∂J̃k

FN (J̃),

Wk,l(J̃) =
∂

∂J̃k

∂

∂J̃l

FN (J̃), (5.1)

etc. Renormalizability requires that all these derivatives exist and have
a well-defined limit N → ∞, hence that FN (J̃i) converges to an infinitely
differentiable function F (J̃i). This must hold at the point J̃ with eigenvalues
given by (2.16), or preferably in some “good” neighborhood U � J̃ in R

N3
,

with an appropriate limit N → ∞. Furthermore, these partial derivatives
should have suitable decay properties such as indicated above.

Now consider the dependence of Wk(J̃) on the index k. It is a physical
requirement that this dependence on the indices is mild.7 This can be
understood analytically as follows. Note that Wk(J̃) is related to Wl(J̃)
by exchanging the arguments J̃k and J̃l, i.e., by applying the permutation
operator σk,l on the space R

N3
of J̃k,

Wk = Wl ◦ σk,l. (5.2)

This means that the index dependence may be traded for a “small” change
(a permutation) of the eigenvalues. Since the eigenvalues are ordered and
approach a simple distribution, it is plausible that σk,l respects the neigh-
borhood U . Smoothness in U would then naturally imply that the depen-
dence on the indices is mild. Indeed, we found explicitly that the index
dependence at genus 0 becomes translated into the dependence of a smooth
function W (y) (4.9) on the variable y.

Extension to Ω �= 1

Once a suitable domain U is established where F [J̃ ] is smooth with suitable
decay properties of its partial derivatives, then the following strategy to
extend our results to Ω �= 1 can be envisaged. The partition function for
0 �= Ω �= 1 can be obtained from the results for Ω = 1 using

Z[J̃ ] = 〈eε Tr[x̃i,φ][x̃i,φ]〉Ω=1 = eε Tr[x̃i,∂/∂J̃2][x̃i,∂/∂J̃2]Z[J̃ ]Ω=1

= eε Tr[x̃i,∂/∂J̃2][x̃i,∂/∂J̃2]eF [J̃ ]Ω=1 =: eF [J̃ ] (5.3)

7Some mild singularities for coinciding indices might be allowed however.
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for small ε, accompanied by a change of wavefunction normalization. Hence
we should consider the operator

ΔJ := Tr
[
x̃i,

∂

∂J̃2

] [
x̃i,

∂

∂J̃2

]
(5.4)

acting on functions of J̃ . It does not commute with U(N3), hence Z[J̃ ]
will be a function of J̃ which no longer depends on the eigenvalues only.
We have established in this paper that Z[J̃ ]Ω=1 is a well-defined, infinitely
differentiable function (after subtracting a possible infinite constant from
F ). The question of renormalizability for Ω �= 1 is whether F [J̃ ] is also a
well-defined, infinitely differentiable function, possibly after further renor-
malization. To establish this using the methods of the present paper might
therefore be feasible, by studying the operator ΔJ and establishing careful
estimates on the partial derivatives of F [J̃ ]Ω=1 and their asymptotic behav-
ior for large N . However, we will not attempt to do this in the present
paper.

Remarks on the relation with string theory

The Kontsevich model has been related to string theory in [19] as follows.
The matrix Xij of the Kontsevich model is interpreted as coefficient of the
open string field, more precisely the tachyon, connecting the (Liouville)
D-brane with label i to the D-brane with label j. The eigenvalues M̃i of
the external potential in the Kontsevich model are interpreted as boundary
cosmological constants on the brane with label i, and the Kontsevich model
(3.1) describes the (topological sector of) open string field theory in this
situation.

Applying this interpretation to our model, we are led to a picture of
open string tachyons in string field theory with N3 D-branes, with spe-
cific cosmological constant Ji ∼ i1 + i2 + i3 on the brane i = (i1, i2, i3). The
fact that our model is renormalizable implies that the correlators become
essentially smooth functions of these three coordinates i1, i2, i3, with a well-
defined large N limit. This could be interpreted by saying that the endpoints
i, j of the open strings effectively live in three dimensions with coordinates
i1, i2, i3 ≥ 0, forming a three-dimensional wedge R

3
+ with a potential deter-

mined by Ji. In other words, three extra dimensions appear from the string
point of view by some kind of stringy “deconstruction” of dimensions. On
the other hand, we have the interpretation as six-dimensional noncommuta-
tive field theory. This points to interesting directions for further studies.
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6 Perturbative computations

We write the bare action (2.6) as

S = Tr
(

1
4
(Jφ2 + φ2J) +

iλ

3!
φ3 − (iλ)Aφ

)

= Tr
(

1
2
φi

j(GR)j;l
i;kφ

k
l +

iλR

3!
φ3

)
+ δS. (6.1)

The finite kinetic term (GR)j;l
i;k = 1

2δi
lδ

k
j (J̃i + J̃j) defines the renormalized

propagator

Δi;k
j;l = 〈φi

jφ
k
l 〉 = δi

lδ
k
j

2
J̃i + J̃j

= δi
lδ

k
j

1/(4π2θ)
i + j + (μ2

Rθ + 3)
, (6.2)

corresponding to the finite (renormalized) matrix

J̃ |n1, n2, n3〉 = 16π3θ2
(

n +
3 + μ2

Rθ

2

)
|n1, n2, n3〉, (6.3)

using the notation n = n1 + n2 + n3 (2.8). Here λR is the renormalized
coupling constant, valid at a “scale” given by m, i.e., assuming that the
indices of the interaction vertex approximately satisfy

i ≈ j ≈ k = m. (6.4)

The counterterms are collected in

δS = Tr
(

−(iλR)ZλAφ +
1
4
(δJφ2 + φ2δJ) +

iδλ

3!
φ3

)
, (6.5)

where

δJ |n1, n2, n3〉 = 16π3θ2
((

Z
δμ2θ

2

)
+ (Z − 1)JR

)
|n1, n2, n3〉,

λR = Z−1
λ λ,

δλ = λR(Zλ − 1) (6.6)

is part of the counterterm, and δμ2 = (μ2 − μ2
R). It is then easy to see that

the usual power counting rules apply (with suitable extensions to the case
of higher genus [20]), where N plays the role of the cutoff Λ2. This can be
seen in the following 1-loop examples.
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3-point function In six dimensions, the interaction vertex requires renor-
malization, induced by the planar 1-loop 1PI graph (without external legs)
in figure 1. This gives

〈φijφjkφki〉1PI = − iλR

2
+

(
− iλR

2

)3 ∑
l

2
JR

k + JR
l

2
JR

i + JR
l

2
JR

j + JR
l

− iδλ

2

≈ − iλR

2
+ (−iλR)3

∑
l

1
(JR

l + JR
m)3

− iδλ

2
+ finite

≈ − iλR

2
+

(−iλR)3

(16π3θ2)3
∑

l

1
(l + m)3

− iδλ

2
+ finite

≈ − iλR

2
+

(−iλR)3

(16π3θ2)3
1
2

log
N + m

8m
− iδλ

2
+ finite. (6.7)

All nonplanar contributions are finite. This gives the counterterm to the
coupling constant

iδλ = − (iλR)3

(16π3θ2)3
log

N + m

8m
+ finite, (6.8)

so that

(iλ) = (iλR)
(

1 +
(iδλ)
(iλR)

)
=

(iλR)
1 + (iλR)2/(16π3θ2)3 log(N/m)

+ O(λ5
R).

(6.9)
The minus sign indicates asymptotic freedom. However, the last formula
(6.9) is only suggestive, and such a 1-loop result should be used with caution.
Note that we could equally well write

(iλ) =
(iλR)

(1 + (1/2)((iλR)2/(16π3θ2)3) log(N/m))2
+ O(λ5

R), (6.10)

which in fact agrees much better with the exact scaling (4.34) of the bare
coupling. A better way to understand the coupling constant renormalization

Figure 1: 1-loop contribution to 1PI vertex.
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is to determine its dependence on the “scale” m, i.e., the running coupling
constant

g(m) = −iλR(m) = 2〈φijφjkφki〉1PI (6.11)

for i ≈ j ≈ k = m (6.4). An extra factor 2 is inserted for convenience. The
corresponding 1-loop beta-function can be obtained from (6.7),

β := 2m
∂〈φijφjkφki〉1PI

∂m
=

g(m)3

(16π3θ2)3
m

∂ log(N/m)
∂m

= − g(m)3

(16π3θ2)3
, (6.12)

indicating asymptotic freedom. This gives

dg(m)
g(m)3

= − 1
(16π3θ2)3

dm

m
, (6.13)

which can be integrated to give the running (1PI) coupling constant

g(m)2 =
g(m0)2

1 + 2g(m0)2/(16π3θ2)3 log(m/m0)
. (6.14)

This decreases with increasing scale m, which means asymptotic freedom.
However, note that the exact scale dependence g(m) ∼ − 1

(log m)2 for large m

which was determined in (4.58) is not correctly reproduced by this
1-loop RG computation. This shows that the common practice of using the
1-loop RG results for the running coupling constant may not be sufficiently
accurate for large scales.

It is worth pointing out that the coupling constant runs here even at
1-loop, in contrast to the case of the φ4 model in four dimensions [16].

1-point function The 1-loop contribution to the 1-point function gives

〈φii〉1-loop =
iλRZλ

J̃i

Ai − iλR

2
1
J̃i

∑
k

2
J̃i + J̃k

= − iλR

J̃i

(
−ZλAi +

1
16π3θ2

∑
k

1
i + k + 3 + μ2

Rθ

)
. (6.15)

To proceed, we expand

h(i) :=
∑

k

1
i + k + 3 + μ2

Rθ
= h(0) + (i)h′(0) +

1
2
(i)2h′′(0) + hR(i), (6.16)
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where hR(i) is a finite nontrivial function of i, and

h(0) =
∑

k

1
k + μ2

Rθ + 3
=

(
−6 log 2 +

9
2

log 3
)

N2

+ (−6(μ2
Rθ + 3) log 2 + 3(μ2

Rθ + 3) log 3)N +
1
2
(μ2

Rθ + 3)2 log N,

h′(0) = −
∑

k

1
(k + μ2

Rθ + 3)2
= −(16π3θ2)2f0 − (16π3θ2)3(3 + μ2

Rθ)f1

= −(6 log(2) − 3 log(3))N +
3 + μ2

Rθ

2
log(N), (6.17)

h′′(0) = 2
∑

k

1
(k + μ2

Rθ + 3)3
= −(16π3θ2)32f1 = log(N) (6.18)

up to finite corrections, using the results of Section 4.1.1. We note in par-
ticular that the i-dependent term (i)h′(0) + 1

2(i)2h′′(0) in (6.15) forces us
to introduce a corresponding counterterm to the action as in (2.9), A =
a0 + a1J + a2J

2. As discussed in Section 2, this is no longer equivalent to
an infinite shift (2.10) of φ. Taking this into account, we have

〈φii〉1-loop = − iλR

J̃i

(
−(a0 + a1J + a2J

2)Zλ

+
1

16π3θ2

(
h(0) + (i)h′(0) +

1
2
(i)2h′′(0) + hR(i)

))
. (6.19)

Finiteness and the condition 〈φ00〉 = 0 implies to lowest order

a2 =
1

(16π3θ2)3
1
2

log N = −f1 + finite, (6.20)

a1 = −(16π3θ2)(μ2
Rθ + 3)a2 +

1
(16π3θ2)2

h′(0) = −f0 + finite, (6.21)

a0 =
1

16π3θ2 h(0) − (8π3θ2)(μ2
Rθ + 3)a1 − (8π3θ2)2(μ2

Rθ + 3)2a2 (6.22)

up to finite corrections. These renormalization conditions guarantee that
the 1-point function 〈φii〉 has a well-defined and nontrivial limit N → ∞.
In particular, (6.20) and (2.14) imply

x =

√
1 +

(iλR)2

(16π3θ2)3
log N = 1 +

1
2

(iλR)2

(16π3θ2)3
log N, (6.23)

to lowest order, and (6.21) together with (2.17) gives

δμ2θ =
2(iλR)2

(16π3θ2)
f0 + finite. (6.24)

This is consistent with the exact result (4.38).
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Finally, it is interesting to consider the behavior of 〈φii〉 for large i. After
imposing the above renormalization conditions, we observe that the dom-
inating term in (6.19) is iλR

J̃i

1
2(i)2h′′(0). Here h′′(0) ∼ log(N) should more

properly be replaced by log(N/i), which implies

〈φii〉 ∼ i log(i) (6.25)

for large i. This is in agreement with (4.48).

2-point function Next we compute the leading contribution to the 2-point
function 〈φllφkk〉 for l �= k, which vanishes at tree level. The leading contri-
bution comes from the nonplanar graph in figure 2, which gives

〈φllφkk〉 = 〈φkk〉〈φll〉 +
1
4

(iλR)2

J̃kJ̃l

(
2

J̃k + J̃l

)2

(6.26)

(for l �= k) indicating the symmetry factors, where the disconnected contri-
butions are given by (6.15). This is consistent with the result (4.52) obtained
from the Kontsevich model approach. Note that the counterterm δJ does
not enter here.

Similarly, the leading contribution to the 2-point function 〈φklφlk〉 for
l �= k has the contribution indicated in figure 3, involving also the

Figure 2: 1-loop contribution to 〈φllφkk〉.

Figure 3: 1-loop contribution to 〈φklφlk〉.
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counterterm δJ . This gives

〈φklφlk〉1-loop =
2

JR
k + JR

l

− 2(iλR)
〈φkk + φll〉
(JR

k + JR
l )2

+
4

(JR
k + JR

l )2

⎛
⎝∑

j

(iλR)2

JR
k + JR

j

1
JR

l + JR
j

− δJl + δJk

2

⎞
⎠.

(6.27)

The first term is the free propagator, the next term the tadpole contri-
butions, and the last them the 1-loop contribution in figure 3 with
counterterm δJ .

We have to adjust the parameters such that the result is well defined and
nontrivial. Using (6.17) and (6.18), we can write

∑
j

1
JR

k + JR
j

1
JR

l + JR
j

=
1

(16π3θ2)2
∑

j

(
1

(j + μ2
Rθ + 3)2

− k + l

(j + μ2
Rθ + 3)3

)
+ finite

=
1

(16π3θ2)2

(
−h′(0) − (k + l)

1
2
h′′(0) + finite

)
. (6.28)

Therefore,

δJl + δJk =
2(iλR)2

(16π3θ2)2

(
−h′(0) − (k + l)

1
2
h′′(0)

)
+ finite, (6.29)

which using (6.17) and (6.18) imply

(Z − 1)(k + l) = 2(iλR)2(k + l)f1 (6.30)

and

Z(δμ2θ) + (Z − 1)(3 + μ2
R
θ) =

2(iλR)2

(16π3θ2)
f0 + 2(iλR)2(3 + μ2

Rθ)f1 (6.31)

up to finite corrections. Hence we obtain the lowest order mass and wave-
function renormalization:

Z = 1 + 2(iλR)2f1 =
1

(1 + (1/2)((iλR)2/(16π3θ2)3) log N)2
+ O(λ4

R)

δμ2θ =
2(iλR)2

(16π3θ2)
f0 (6.32)

up to finite corrections, in agreement with (6.24).
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Note that in eight or higher dimensions, divergent mixed terms (k)(l)
would occur in (6.28), which can no longer be absorbed. Then the model is
no longer renormalizable, as in the commutative case.

7 Summary and discussion

We have shown that the self-dual NC φ3 model in six dimensions can be
renormalized and essentially solved in terms of a genus expansion, by using
the Kontsevich model. This provides a model which contains essentially the
full complexity of renormalization of a not super-renormalizable asymptoti-
cally free quantum field theory, while being solvable and hence fully under
control. In principle, all n-point functions can be computed in a genus
expansion, and we give explicit expressions for the 1-, 2-, and some 3-point
functions.

In particular, we were able to determine exactly the RG flow of the bare
parameters as a function of the cutoff N , as well as the running of the
“physical” coupling constant i.e., the 1PI 3-point function. As in the case of
two and four dimensions [1,2], it turns out that the renormalization is fully
determined by the genus 0 sector. In particular, we can compare the exact
results with the standard perturbative methods. For example, it turns out
that the 1-loop beta-function for the coupling constant gives roughly the cor-
rect behavior and correctly predicts asymptotic freedom, but wrongly gives
a (log N)−1 dependence on the scale as opposed to the correct (log N)−2

dependence.

We also show that the model has a critical surface defined by α = 0,
which separates two different phases. One phase has the expected “physical”
properties, while in the other some modes become unstable.

It is very remarkable that a nontrivial, asymptotically free six-dimensional
NC φ3 field theory allows such a detailed analytical description. There is
no commutative analog where this has been achieved to our knowledge.
Therefore, this model can serve as a testing ground for various ideas and
methods for renormalization. It also shows that the noncommutative world
in some cases is more accessible to analytical methods than the commutative
case. While the techniques used in this paper are more-or-less restricted
to the φ3 interaction, it is worth pointing out that the renormalization is
determined by the genus 0 contribution only, which is accessible in a wider
class of models; see also [13,14] in this context.

One of the open problems is the lack of control over the sum over all
genera g. We have not shown that the sum over g converges in a suitable
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sense, which would amount to a full construction of the model. Furthermore,
it would be extremely interesting to extend the analysis beyond the case of
Ω = 1. We propose a strategy in Section 5 how such an extension might be
possible, and we also comment on a relation with open string field theory.
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