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Abstract

It is well known that there are a great many apparently consistent
vacua of string theory. We draw attention to the fact that there appear
to be very few Calabi–Yau manifolds with the Hodge numbers h11 and h21

both small. Of these, the case (h11, h21) = (3, 3) corresponds to a mani-
fold on which a three-generation heterotic model has recently been con-
structed. We point out also that there is a very close relation between this
manifold and several familiar manifolds including the “three-generation”
manifolds with χ = −6 that were found by Tian and Yau, and by Schimm-
rigk, during early investigations. It is an intriguing possibility that we
may live in a naturally defined corner of the landscape. The location of
these three-generation models with respect to a corner of the landscape
is so striking that we are led to consider the possibility of transitions
between heterotic vacua. The possibility of these transitions, that we
here refer to as transgressions, is an old idea that goes back to Witten.
Here we apply this idea to connect three-generation vacua on different
Calabi–Yau manifolds.

Triadophilia from G. a love of three-ness, a nostalgia for a world of three generations.
Less precise but also less cumbersome than tritogeneia-philia.
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1 Introduction and summary

1.1 Survey of constructions of Calabi–Yau manifolds

Until the interest in Calabi–Yau manifolds that derived from string theory,
very few of these were known explicitly; the manifolds had, at that time,
only recently been shown to exist. Owing to the interest from string theory,
increasingly large classes of Calabi–Yau manifolds were constructed. Since,
however, it seems to be impossible to construct classes of manifolds with
desired properties, one must perforce construct large classes of manifolds
that are then searched for cases that are phenomenologically interesting.
Tian and Yau [1] were nevertheless able, at a very early stage, to find two
manifolds with Euler number χ = −6 leading to a model with three gener-
ations of particles. Both of these have Hodge numbers (h11, h21) = (6, 9).
Motivated by these examples, Schimmrigk [2] found a third manifold with
χ = −6, and with the same Hodge numbers. This same manifold was redis-
covered, shortly afterwards, by Gepner [3] in the process of constructing
rational conformal field theories. We can denote the three families of mani-
folds, families because they have parameters, in the following way:

M ′′ = N ′′/A, M ′ = ̂N ′/A × B and M = ̂N/A × B × C, (1.1)

where

N ′′ = P

3

P

3

[
1 3 0
1 0 3

]
−18

, N ′ = P

2

P

3

[
3 0
1 3

]
−54

, N = P

2

P

2

[
3
3

]
−162

. (1.2)

The notation denotes that N ′′, for example, is realized in the product
P

3 × P

3 by three equations whose degrees, in the variables of the two projec-
tive spaces, are given by the columns of the matrix. The subscripts appended
to the matrix are the Euler numbers of the manifolds and the notation
in (1.1) indicates that the manifolds are quotiented by certain groups A, B
and C. Each of these groups is abstractly a Z3. The group A acts freely
but B and C each leave fixed a certain curve, in fact a torus, within the
manifold and the hats indicate that these fixed tori are resolved. It was
suspected, on the basis of the identity of the Hodge numbers together with
the fact that they fall into a sequence, that the manifolds in fact belong to
the same irreducible family, and this was shown to be the case in [4].

Despite the ease with which these early examples had been found, further
examples of manifolds with χ = ±6 proved much more elusive. The class
of all Calabi–Yau manifolds that can be realised as a complete intersection
of polynomials in a product of projective spaces, known as the Complete
Intersection Calabi–Yau manifolds or CICYs, generalizing the construction
of the manifolds of (1.2), was constructed in [5–7]. This class, consisting
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Figure 1: A plot of the Hodge numbers of the Kreuzer–Skarke list. χ =
2(h11 − h21) is plotted horizontally and h11 + h21 is plotted vertically. The
oblique axes bound the region h11 ≥ 0, h21 ≥ 0.

of almost 8000 manifolds, was searched for manifolds with χ = −6, and for
manifolds whose quotients by a freely acting group could have χ = −6. None
was found beyond the three above which inspired the construction.

The number of examples of Calabi–Yau manifolds was increased by the
construction of manifolds [8–10] given by polynomials in weighted P

4 and
increased again very greatly by the construction of manifolds as hypersur-
faces in toric varieties following the methods introduced by Batyrev [11]. In
a tour de force of computer calculation [12, 13] Kreuzer and Skarke compiled
a list of all 4-dimensional reflexive polyhedra, each of which corresponds to
a family of anticanonical hypersurface Calabi–Yau manifolds in the corre-
sponding toric variety. The list runs to almost 500,000,000 polyhedra and
gives rise to some 30,000 distinct pairs of Hodge numbers1 which we plot in
figure 1.

For comparison, we include a plot in figure 2 of the Hodge numbers of
the 264 distinct pairs of Hodge numbers for the CICY’s plotted to the same

1It is not known how many of these manifolds are distinct. Manifolds with distinct
Hodge numbers are certainly distinct, however, the converse is not true in general, so
the number of distinct manifolds is somewhere between 30,000 and 500,000,000. For the
CICY’s there are 264 pairs of Hodge numbers and roughly 8,000 manifolds. For this case
it is known [14] that at least 2590 of the manifolds are distinct as classical manifolds.
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Figure 2: A plot of the 264 distinct pairs of Hodge Numbers for the CICY’s.

scale. This is something of a cautionary tale showing what can happen when
a seemingly large class of manifolds turns out to be rather special.

The Kreuzer–Skarke list, vast though it is, does not exhaust all possibili-
ties. An obvious extension is to include the possibility of higher codimension
corresponding to the case of more than one polynomial in a toric variety of
higher dimension; these one might term toric CICY’s. A correspondence
with lattice polyhedra that generalizes the construction of Batyrev for the
case of a single polynomial has been given by Batyrev and Borisov [15]. Two
simple examples of such manifolds will appear later and it is worth writing
one of them here to explain the notation and to give an idea of the immense
number of possible members of this class. Consider the manifold that is
denoted by

P

(
1 1 1 1 1 1 0
1 1 0 0 0 0 1

) [
3 3
3 0

]
.

The first matrix is the weight matrix and the second one is the degree matrix.
Each column of the weight matrix corresponds to a coordinate, so in this
case we have coordinates (z1, z2, . . . , z7) and the two rows of the first matrix
indicate that there are two independent scalings with the columns of the
matrix corresponding to the weights of each coordinate. Under a scaling the
coordinates transform as

(z1, z2, z3, z4, z5, z6, z7) → (λμz1, λμz2, λz3, λz4, λz5, λz6, μz7),
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with λ, μ nonzero complex numbers. The second matrix indicates that there
are two polynomials p1 and p2 and that under a scaling p1 → λ3μ3p1 and
p2 → λ3p2. The fact that the manifold has vanishing first Chern class is
ensured by the condition that the row sum of each row of the weight matrix
is equal to the row sum of the corresponding row of the degree matrix.
The dimension count, in this case, is that we have seven coordinates that
are identified under two scalings and subject to two polynomial constraints
yielding a manifold of dimension 7 − 2 − 2 = 3. The question of when a
configuration of this type gives rise to a nonsingular manifold is answered by
the Batyrev–Borisov procedure. The Kreuzer–Skarke list corresponds to the
special case that the degree matrix has only one column, the hypersurfaces
in weighted P

4 correspond to the case that the weight matrix has only one
row, and the CICY’s to the very special case that all the entries of the weight
matrix are either 1 or 0 and moreover that each column of the weight matrix
contain precisely one 1. The number of possible configurations would seem
to be immense and the scale of the enterprise of examining this class would
seem to preclude any complete listing, though several hundred new pairs of
Hodge numbers have been found by studying the interesting region along
the edges of the plots where one of the Hodge numbers is small [16, 17].

Batyrev and Kreuzer [18] have also found many new pairs of Hodge num-
bers by examining reflexive polyhedra for hypersurfaces in toric varieties
that admit conifold singularities, blowing down the P

1’s and smoothing the
resulting manifolds.

Even this of course is not everything, since there are Calabi–Yau manifolds
that are not covered by these constructions; we are, moreover, also interested
in heterotic vacua corresponding to vector bundles V on the Calabi–Yau
manifold for which c1(V) = 0. If V = T , the tangent bundle, then the num-
ber of generations is

∣∣1
2c3(T )

∣∣ =
∣∣1
2χ

∣∣ so three generations corresponds to χ =
±6 as is the case for N = 2 compactifications. For general heterotic vacua,
however, there is much greater freedom. The restrictions on V are that it
be stable, have c1(V) = 0 and have c2(V) satisfy a certain condition. The
number of generations of particles is then

∣∣1
2c3(V)

∣∣. There are presumably
a great many of these heterotic vacua; while toric geometry has afforded
us a considerable degree of control over Calabi–Yau manifolds, it is not yet
known how to extend this degree of control to bundles over these manifolds.

Special cases can, however, be studied and the group at the University
of Pennsylvania [19–22] has developed a small number of three-generation
heterotic models based on quotients of a special2 CICY, the split bicubic

2The split bicubic is special in so far as it has (h11, h21) = (19, 19) the value for h11 being
the largest for any CICY. All the CICY’s have Euler numbers in the range −200 ≤ χ ≤ 0
and the split bicubic, together with a manifold with Hodge numbers (15,15), are the only
two CICY’s which have χ = 0 and can possibly be self-mirror.
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family

X19,19 =
P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

19, 19

0

(1.3)

where we append superscripts to record the values of (h11, h21). One special
feature of the split bicubic is that it is a bi-elliptic fibration. To see this,
consider the form of the equations [23] for this space

t1

( 3∑
j=1

ξ3
j − 3a ξ1ξ2ξ3

)
+ 3ct2

3∑
j=1

ξ2
j ξj−1 = 0

3ct1

3∑
j=1

η2
j ηj−1 + t2

( 3∑
j=1

η3
j − 3b η1η2η3

)
= 0 ,

(1.4)

where we have chosen coordinates t for the P

1 and ξ and η for the two P

2’s.
These are particularly symmetric polynomials of the given degrees of a form
to which we will return later; the most general polynomials would contain 19
parameters. However this simple choice is sufficient to illustrate the following
point. Consider the equations for fixed (t1, t2) ∈ P

1; each equation is then
a cubic in a P

2, generically an elliptic curve (i.e., a 2-torus). Thus the split
bicubic is a fibration over P

1 with fibre E1(t)×E2(t), where for generic t,
both Ei(t) are elliptic curves, which degenerate for certain special values of t.

Holomorphic vector bundles on elliptic curves were classified by Atiyah
[24] and the extension to spaces that are fibred by elliptic curves was consid-
ered by Donagi [25] and by Friedman, Morgan and Witten [26, 27]. Further
work investigated the problem of constructing stable SU(n) bundles, for
n = 3, 4, 5, on the large class of Calabi–Yau 3-folds that are elliptically fibred,
that is for which there is a map to a P

1 for which the generic fibre is an
elliptic curve [21, 28]. An explicit construction of a heterotic model whose
low energy effective theory has the particle content of the minimum super-
symmeteric standard model (MSSM) nevertheless proved elusive until such
a model based on a stable SU(4) vector bundle, corresponding to a gauge
group SO(10) in spacetime, was presented in [20]. The manifold of this model
is a Z3×Z3 quotient of the split bicubic. A breaking of the SO(10) symme-
try via the Hosotani mechanism, that takes advantage of the fundamental
group Z3×Z3, yields the particle spectrum of the MSSM, without exotics,
and with no anti-generations. A version with SU(5) vector bundle, and
hence also SU(5) in spacetime, was also found [22].

Returning to figure 1 and the Kreuzer–Skarke list, it is apparent that the
central part of the plot is very dense with essentially every site occupied.
The main point that we wish to make here is that the tip of the diagram
where (h11, h21) are both small is thinly populated and this remains true
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even if we include the CICY’s, the Klemm–Kreuzer toric CICY’s, the toric
conifolds and other examples of which we are aware. One way of attempting
to populate the tip is to seek Calabi–Yau manifolds that are free quotients,
with a nontrivial fundamental group. Such manifolds seem, however, to be
genuinely rare and especially so for larger fundamental groups that would
produce small Hodge numbers. This was apparent for the CICY’s from the
first investigations [6, 7].

Recently Batyrev and Kreuzer [29] have searched the Kreuzer–Skarke list
for manifolds with a nontrivial fundamental group and find just 16 examples;
moreover the fundamental groups that they find are: one occurrence of Z5
and two occurrences of Z3, with the remaining 13 instances corresponding
to Z2’s. This is not everything: a quotient manifold will only appear in the
Kreuzer–Skarke list if the quotient is realized torically. Thus the occurrence
of the Z5 corresponds to a quotient of the quintic 3-fold

P

4[5]/Z5
, (h11, h21) = (1, 21)

with the generator of the group corresponding to the action xj → ζjxj on
the coordinates of the embedding space, for ζ a nontrivial fifth root of unity.
The further quotient

P

4[5]/Z5×Z5
, (h11, h21) = (1, 5)

is not present in the list owing to the fact that the generator of the second
symmetry group acts by cyclic permutation of the coordinates, not by mul-
tiplying the coordinates by roots of unity.3 One of the two occurrences of
Z3 also involves a familiar manifold

P

2

P

2

[
3
3

]
/Z3

, (h11, h21) = (2, 29),

where the Z3 can be chosen to be either the symmetry A of (1.1) or a certain
diagonal subgroup of B×C. The other Z3 quotient is

P(1 1 1 3 3)[9]/Z3
, (h11, h21) = (2, 38).

The Batyrev–Kreuzer search does not find

P

3

P

3

[
1 3 0
1 0 3

]
/Z3

, (h11, h21) = (6, 9)

because this space is described by three polynomials while the Kreuzer–
Skarke list corresponds to spaces that are defined by a single polynomial.

3It is possible to choose coordinates so that the first generator acts cyclically on the
coordinates and the second acts by multiplication by fifth roots of unity. It is, however,
not possible to arrange for both generators to act torically.
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The Kreuzer–Skarke list.
The CICY’s and their mirrors.
The toric CICY’s together with the toric conifolds, and their mirrors.
Quotients by freely acting groups and their mirrors.
The Gross–Popescu and Tonoli manifolds.

Figure 3: The underpopulated corner of the landscape. χ = 2(h11−h21) is
plotted horizontally, h11+h21 is plotted vertically and the oblique axes bound
the region h11 ≥ 0, h21 ≥ 0. In the electronic version of this figure the points
are coloured according to provenance and have partial transparency in order
to show overlays. The manifolds with h11+h21 ≤ 22 are identified in table 1.

In a recent article, Bouchard and Donagi [32] make a detailed classifica-
tion of quotients of the split bicubic and find quotients with (h11, h21) =
(11, 11), (7, 7), (5, 5), (3, 3) that are included in table 1.

To emphasize the paucity of manifolds with both Hodge numbers small we
present in figure 3 and table 1 the tip of the plot of Hodge numbers for h11 +
h21 ≤ 40 including the CICY’s together with their mirrors, the toric CICY’s,
the toric conifolds, the quotient manifolds of which we are aware, a special
class of manifolds fibred by abelian surfaces due to Gross and Popescu [34],
manifolds constructed by Borisov and Hua [35] and by Hua [36], and cer-
tain interesting examples due to Rødland [31], and Tonoli [39]. For two
of these manifolds, those with (h11, h21) = (1, 23), (1, 31), we do not show
the points corresponding to the mirror manifolds since the constructions are
such that the mirror manifolds are not known to exist. Our observation is
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that the tip is sparcely populated with some of the lowest points correspond-
ing to manifolds we have discussed explicitly above or their quotients. The
Kreuzer–Skarke list contains many pairs of points with χ = ±6. These have
Hodge numbers (h, h + 3) and (h + 3, h) for certain values of h in the range
13 ≤ h ≤ 128 and it is easier to state the values of h that are not found.
These excluded values are h = 102, 103, 115, 117, 119–126. It is interesting
that the Tian–Yau manifold, with (h11, h21) = (6, 9) has Hodge numbers
that are smaller than these other manifolds, which are simply connected.

Conifold resolutions of certain symmetric members of the P

7[2, 2, 2, 2] fam-
ily and their quotients play an interesting role in the tip and we pause to
comment on these. In a very early paper, Strominger and Witten [33] note
that there is a system of four quadrics for P

7 that are invariant under Z8×Z8
and are fixed point free. These quadrics are equivalent to

pα = z2
α + z2

α+4 + a zα+2zα+6 + b (zα+1zα−1 + zα+3zα−3) (1.5)

where the affix α is understood mod 8 and we see from the form of the
equation that pα+4 = pα. The locus pα = 0 is invariant under the symmetries

A : zα → zα+1 and B : zα → ζαzα

with ζ a nontrivial eighth root of unity. These quadrics are however not
transverse since one can check that the form dp1∧dp2∧dp3∧dp4 vanishes at
64 points which correspond to a single group orbit. Thus the variety defined
by the quadrics is singular. Owing to this Strominger and Witten deform
the quadrics to

pα = z2
α + z2

α+4 + a zα+2zα+6 + b (zα+1zα−1 + zα+3zα−3)

+ c (zα+1zα+3 + zα+5zα−1)

With this extra term the quadrics are invariant under the subgroup Z8×Z4
generated by A and B2 : zα → iαzα and the equations are moreover trans-
verse. The quotient is a manifold with (h11, h21) = (1, 3) and fundamental
group Z8×Z4. It is noted also that there are several symmetry groups G
of order 32, both abelian and nonabelian, for which the quadrics are fixed
point free and transverse. Curiously, among the possible symmetries noted
in this paper is the quaternion group, H, a fact that was rediscovered later
by Beauville [37].

The question of finding all possible quotients of P

7[2, 2, 2, 2] has been
investigated by Borisov and Hua [35] and by Hua [36]. On returning to the
Z8×Z8-invariant quadrics (1.5), it is noted that the 64 singular points of the
variety are nodes, that is conifold points, and that, somewhat remarkably,
they can be simultaneously resolved to give a simply connected Calabi–
Yau manifold with (h11, h21) = (2, 2). This resolution is one of the Gross-
Popescu manifolds that was constructed by completely different reason-
ing. It is noted also that there are 3 groups of order 64 that preserve the
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quadrics (1.5) and a further two groups of order 64 that preserve another
two-parameter family of quadrics. This second family of quadrics also have
the property that they are fixed point free but not transverse and have
64 nodes that can be simultaneously resolved to give a Calabi–Yau mani-
fold which, in this case, have (h11, h21) = (10, 10). For the family (1.5) the
groups lift to the resolutions and remain fixed point free. Taking the quo-
tient by the group does not affect the Picard group or the number of param-
eters, since the locus pα = 0 is invariant. Thus these quotients also have
(h11, h21) = (2, 2) and have fundamental groups of order 64, which are the
largest known. It follows that it is possible to take the quotient by any sub-
group of the relevant group of order 64 and this yields further manifolds with
the same Hodge numbers. The groups of order 64 have the property that all
the subgroups of order 32 preserve 3-parameter families of quadrics that are
fixed point free and transverse. Quotients by these groups yield manifolds
with (h11, h21) = (1, 3). Taking quotients by smaller subgroups yields man-
ifolds with (h11, h21) = (1, 2n + 1) for n = 2, . . . , 5. For the second family of
quadrics only a two-dimensional subspace of the ten-dimensional family of
resolutions admit a group action and it is conjectured that the quotients of
the manifolds of the subspace have (h11, h21) = (2, 2). The Gross-Popescu
manifolds merit further study but we shall mention just one further fact:
which is that the manifold with (h11, h21) = (6, 6) is the resolution of a
conifold of P

5[3, 3] that is symmetric under Z6×Z6. This symmetry lifts to
the resolution where it is fixed point free. Taking quotients by subgroups
yields nonsimply connected manifolds with the same Hodge numbers.

We have made the observation that in order to find manifolds with low
values of h11 + h12 it is good to seek manifolds with a nontrivial fundamental
group. The fundamental group, however, cannot be quite the right attribute
since it is not respected by mirror symmetry. In figure 3, for example,
P

4[5]/Z5 has fundamental group Z5 while its mirror has trivial fundamental
group. The attribute that we are after, for a manifold Y , is torsion in the
integer cohomology ring H•(Y, Z); for a clear discussion see [29]. The torsion
is a finite component of the cohomology ring that is absent if we work over
C or R. For the case that H1(Y, Z) ∼= 0 the cohomology groups take the
general form

H0(Y, Z) ∼= Z H6(Y, Z) ∼= Z

H1(Y, Z) ∼= 0 H5(Y, Z) ∼= A(Y )∗

H2(Y, Z) ∼= A(Y ) ⊕ Z

h11
H4(Y, Z) ∼= B(Y )∗ ⊕ Z

h11

H3(Y, Z) ∼= B(Y ) ⊕ Z

2h21+2

where A(Y ) and B(Y ) are finite groups and A(Y )∗ and B(Y )∗ are the
corresponding dual groups. The group B(Y ) is the torsion of H3(Y, Z) and
is known as the Brauer group. The group A(Y ) is closely related to the
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fundamental group through the isomorphism

A(Y ) ∼= Hom(π1(Y ), Q/Z).

On the other hand, it is conjectured that under mirror symmetry, there is a
relation

A(Y ∗) ⊕ B(Y ∗)∗ ∼= A(Y )∗ ⊕ B(Y ),

where Y ∗ is the mirror of Y .

For the 16 examples of toric free group actions found by Batyrev and
Kreuzer, it is the case that if a manifold Y has a nontrivial fundamental
group then its Brauer group is trivial and the mirror Y ∗ has trivial funda-
mental group but nontrivial Brauer group. For manifolds defined by more
than one polynomial, however, there are manifolds for which both A and
B are simultaneously nontrivial. Thus the attribute that we are seeking is
nontrivial torsion in the homology ring. Indeed, one of the manifolds [34,
Theorem 6.9] at the current tip of the cone with Hodge numbers (2,2), a
resolution of a very special nodal P

7[2, 2, 2, 2], is simply connected, but has
recently been shown [40] to have Brauer group B(Y ) ∼= Z8×Z8, the largest
known; its mirror [40, Remark 1.5] is conjectured to have torsion in both its
fundamental group and Brauer group.

Let us remark finally that string compactifications are often asymmet-
rical with respect to mirror symmetry. For both the models based on the
Tian–Yau manifold and the quotient of the split bicubic, the Hosotani mech-
anism is used to reduce the spacetime gauge group, which requires a non-
trivial fundamental group. It is compelling that there should be a mirror
description of these models with the role of the fundamental group reflected
onto the Brauer group. It would be of considerable interest to understand
this relation.

1.2 Key points

This has been a long introduction, perhaps overly beset by detail, so let us
summarize our three main points.

• The geography of Calabi–Yau manifolds has a “tip” which appears to
be sparsely populated. The sparse population seems to be a reflection
of the fact that Calabi–Yau manifolds whose homology has nontrivial
torsion seem to be genuinely rare. It is striking that the tip contains
the manifold, that we shall call X3,3, a quotient of X19,19 introduced
in (1.3), for which there is a heterotic model that has the particle
content of the MSSM. The tip also contains the Tian–Yau manifold
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for which there is also a three-generation model. The fact that the tip
is sparsely populated makes the fact that we find two three-generation
models here more surprising. The fact that X3,3 is almost at the very
end of the tip is a fact that would still be true even if new constructions
increase the population.

• It is natural to ask if the two three-generation models are related and
an answer is that the manifolds on which they are based are indeed
closely related by conifold transitions. The most direct relation is that
the Tian–Yau manifold is related via a conifold transition to a manifold
X7,7 which is a 3-fold covering space of X3,3.

• It is also natural to ask, in relation to transitions between heterotic
models, if it is possible to transfer bundles across a conifold transition.
We refer to this process here as a transgression of bundles. A necessary
condition for a bundle to arise as a transgression on the split manifold
is that the bundle should be trivial on the lines that arise as the blow
ups of the nodes. Remarkably this is the case for the heterotic bundle
on X3,3, suggesting that the heterotic bundle can be thought of as
arising in this way.

We have explained the first point in this introduction. In the remainder
of the paper we elaborate on the second and third points. In §2 we discuss
the relations between the bicubic and the split bicubic and their quotients.
An interesting fact that is not obvious at the outset is that we may pass
from the covering space of the Tian–Yau manifold to the split bicubic via a
conifold transition

P

3

P

3

[
1 3 0
1 0 3

]
�

P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦ .

It follows, upon taking the quotient by A ∼= Z3, that the Tian–Yau manifold
is related via a conifold transition to the quotient X7,7 = X19,19/A of the
split bicubic, a manifold also in the tip with (h11, h21) = (7, 7) and which is
a 3-fold cover of X3,3.

Given that the three-generation manifolds that we are considering are
related by conifold transitions, we turn in §3 to the question of whether the
vector bundles of their heterotic models are related. It is an old suggestion
that it should, in certain circumstances, be possible to transfer bundles
across a conifold transition. We examine this process. Although we have
not been able to relate the tangent bundle of the Tian–Yau manifold to the
vector bundle of X3,3 directly, we note that it should be possible to transgress
the tangent bundle of the Tian–Yau manifold to a, hitherto unknown, bundle
on the X7,7-manifold with χ = −6. The fact that the vector bundle on X3,3
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is trivial on the “conifold lines”, that is on the P

1s that arise from the split

P

2

P

2

[
3
3

]2,11

/A×D
�

P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

3,3

/A×D

suggests that the bundle can be thought of as arising from the manifold on
the left. We examine this process and find, via a monad construction, some
candidate bundles with the right Chern classes although we are not yet able
to answer the question in the affirmative.

Seeing the tip of the landscape in figure 3 it is hard not to speculate on the
possibility of a dynamical mechanism that would allow the universe to drift
towards the tip. This of course is what makes the possibility of transgression
so interesting. The burden of our discussion of transgression in §3 is that
although the manifolds that we discuss seem to be discretely different, and
the plots reinforce that impression, nevertheless the parameter spaces of
different heterotic models meet in certain mildly singular manifolds and it is
natural to ask if it is possible for the universe to move among these models.
We conclude with a brief speculation along these lines in §4.

1.3 Dramatis personæ

Here we list the principal actors of the story for reference and to fix notation
for the rest of the paper.

• In the Tian–Yau sequence, we have the three families of spaces

(N ′′)14,23 = P

3

P

3

[
1 3 0
1 0 3

]
, (N ′)8,35 = P

2

P

3

[
3 0
1 3

]
, N2,83 = P

2

P

2

[
3
3

]

together with (resolutions of) respective quotients

(M ′′)6,9 = (N ′′)14,23/A ,

(M ′)6,9 = ̂(N ′)8,35/A×B ,

M6,9 = ̂N 2,83/A×B×C .

The actions of the groups A, B and C are explained in §2.1; the hats
indicate resolutions of singularities of the quotients. We will show
that M , M ′ and M ′′ all belong to the same irreducible family and so
following §2.1, they will all be denoted by M6,9.
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• The bicubic N2,83 admit further free quotients

N2,29 = P

2

P

2

[
3
3

]
/A

and N2,11 = P

2

P

2

[
3
3

]
/A×D

that are studied in §2.2.
• In the split bicubic sequence, we have the family

X19,19 =
P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

as well as free quotients

X7,7 = X19,19/A and X3,3 = X19,19/A×D,

where the actions of the groups A and D are explained in §2.3.

2 Relations between three-generation manifolds

In this section, we first explain the relation between the three equivalent pre-
sentations of the Tian–Yau manifold. Then we will examine the various coni-
fold transitions between the bicubic and the split bicubic and their quotients.

2.1 Three families of three-generation manifolds

Consider the three families of manifolds N ′′, N ′ and N from §1.3 as well as
resolutions of certain quotients M ′′, M ′ and M . The groups A, B and C
are all abstractly isomorphic to Z3. The group A acts freely, while B and
C have fixed curves that are tori. The upshot is that the Euler numbers
χ = 2(h11−h21) of the (resolved) quotient manifolds are obtained from that
of the covering manifold by dividing by the orders of the groups, with the
result that M , M ′ and M ′′ all have χ = −6. We will see also that the
three manifolds also all have Hodge numbers (h11, h21) = (6, 9). As stated
previously, these families of manifolds have been shown to belong to the
same irreducible component of the moduli space in [4], but it is useful to
review some aspects of this correspondence in order to establish conventions
and notation. A detailed study of the Tian–Yau manifold (M ′′)6,9, and of a
three-generation model based on this manifold, is to be found in [41].

We begin by discussing the Tian–Yau manifold. The covering space
(N ′′)14,23 is described by three equations of the indicated bidegrees. One
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may take, for example, the equations

F = f0x0y0 + f1
∑

j

xjyj + f2
∑

j

xjyj+1 + f3
∑

j

xj+1yj

+ f4x0
∑

j

yj + f5

( ∑
j

xj

)
y0,

G = x3
0 − x1x2x3 + g1

∑
j

x3
j + g2x0

∑
j

xjxj+1,

H = y3
0 − y1y2y3 + h1

∑
j

y3
j + h2y0

∑
j

yjyj+1. (2.1)

where the (x0, xj) and (y0, yj), j = 1, 2, 3, are projective coordinates for the
two P

3’s and fa, ga and ha are coefficients. The separate treatment of the
zeroth coordinate anticipates the action of the symmetry group A ∼= Z3 with
generator

A : (x0, xj)×(y0, yk) −→ (x0, xj+1)×(y0, yk+1), (2.2)
with the j and k indices understood as being reduced mod 3. The freedom
to make changes of coordinates has been used to ensure that, in G, the term
x1x2x3 appears with coefficient −1 and the terms of the form x2

μxν , with
μ 
= ν, appear with coefficient zero, and similarly for H. The polynomial F
may be redefined by an overall scale, but apart from this all the coefficients
are significant. Apart from this freedom to make coordinate changes and
scale F , these are the most general polynomials invariant under A, yielding
a total of 10−1 = 9 parameters. To check that A acts on (M ′′)6,9 without
fixed points, note that the fixed point set of A in the first P

3 consists of
the curve (x0, x1, x1, x1) and two points of the form (0, 1, ω, ω2) with ω a
nontrivial cube root of unity. The two isolated points do not satisfy the
equation G = 0, for general values of the parameters, and so do not lie on
(M ′′)6,9. It remains to check the points of the form

(x0, x1, x1, x1) × (y0, y1, y1, y1).

and it is easy to see that these points do not satisfy the equations for gen-
eral values of the parameters. Thus the quotient is smooth and has Euler
number −6. The Hodge numbers may be calculated individually by apply-
ing the Lefschetz hyperplane theorem; however, a counting of the number of
ways in which the equations may be deformed works in this case and gives
h21 = 9, so h11 = 6.

Next we turn to

(N ′)8,35 = P

2

P

3

[
3 0
1 3

]
−54

and write (ξ1, ξ2, ξ3) for the projective coordinates of the P

2 and, as before,
(y0, yj) for the coordinates of the P

3. We write the equations for this space
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in the form

F = f0x0y0 + f1
∑

j

xjyj + f2
∑

j

xjyj+1 + f3
∑

j

xj+1yj

+ f4x0
∑

j

yj + f5

( ∑
j

xj

)
y0,

H = y3
0 − y1y2y3 + h1

∑
j

y3
j + h2y0

∑
j

yjyj+1.

The polynomials F and H are as before but we take now

x0 = ξ1ξ2ξ3, xj = ξ3
j , j = 1, 2, 3. (2.3)

Note that with this identification the x’s satisfy the singular cubic

G0 = x3
0 − x1x2x3 = 0.

We have a symmetry A that acts cyclically as before and also a new sym-
metry, B, that acts on the ξj leaving the x’s and y’s unchanged:

A : ξj −→ ξj+1, (y0, yj) −→ (y0, yj+1),

B : ξj −→ ωjξj .

Note that one consequence of identifying the ξ’s under B is to render the
map ξ → x injective.

The symmetry A acts without fixed points, as before, but B has fixed
points in its action on ξ which are {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. These lead,
via F , to a linear constraint on the y’s which, in conjunction with the equa-
tion H = 0, leads to three fixed tori which are identified under the action
of A. Since the fixed point set has Euler number zero the Euler number of
the singular quotient is −6 and the Euler number of the resolved quotient is
also −6 since the resolution replaces the singular torus by a torus multiplied
pointwise by the A2 Eguchi–Hanson surface. The parameter count proceeds
by noting that we now have 2 + 5 = 7 parameters in the equations and the
A2 Eguchi–Hanson surface has two (1,1)-forms from which one may form
two (2,1)-forms on the 3-fold by multiplying these by the holomorphic form
of the torus. Thus we have h21 = 7 + 2 = 9 and hence also h11 = 6 as before.

In fact, it is easy to see from our discussion that a resolved quotient
(M ′)6,9 deforms back smoothly to a Tian–Yau manifold (M ′′)6,9. After
taking the quotient by A × B, the space is given by the equations F, G0
and H, and contains a curve of A2 singularities along the torus discussed
above. To obtain (M ′)6,9, we resolve this singularity; to obtain (M ′′)6,9,
we smooth the defining equation G0 to a smooth G. However, it is well
known that the resolution and the deformation of a surface A2 singularity
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are smooth deformation equivalent, and this also works for the family of sin-
gularities parametrized by the torus. Hence indeed, (M ′)6,9 can be deformed
to (M ′′)6,9.

For the third manifold

N2,83 = P

2

P

2

[
3
3

]
−162

the construction is performed twice taking the equation to be

F = f0x0y0 + f1
∑

j

xjyj + f2
∑

j

xjyj+1 + f3
∑

j

xj+1yj

+ f4x0
∑

j

yj + f5

( ∑
j

xj

)
y0,

where now

x0 = ξ1ξ2ξ3, xj = ξ3
j , j = 1, 2, 3 and y0 = η1η2η3, yj = η3

j , j = 1, 2, 3.

We now have symmetries A and B as before and a new symmetry C, for
which it is convenient to take the generator to be

C : ηj −→ ω−jηj .

The symmetry A acts without fixed points while B and C each have a fixed
torus. The equation F is transverse as a function of the ξ’s and η’s for
general values of the coefficients. A transverse F is obtained by taking, for
example, f0 = f1 = 1, f2 = f3 = c and f4 = f5 = 0 providing c 
= 0, 1. The
parameter count is again h21 = 5 + 2 + 2 = 9 with 5 parameters coming from
F and two each from the resolution of the two fixed tori. The same argument
as before shows that M6,9 also deforms smoothly to (M ′)6,9, and hence to
(M ′′)6,9.

We have shown that M , M ′ and M ′′ all have Hodge numbers (6, 9), and
that these three manifolds belong to the same irreducible family. From now
on we will omit the primes since no confusion can arise and will choose at
various times whichever presentation is convenient.

2.2 Some quotients of the bicubic

We now examine briefly two related quotients of the manifold N2,83. First,
there is

N2,29 = P

2

P

2

[
3
3

]
/A

,
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a free quotient with Euler number χ = −54. Next, we also have

N2,11 = P

2

P

2

[
3
3

]
/A×D

that we will need in the following, where we denote by D the diagonal
subgroup of B×C with generator

D : ξj → ωjξj , ηk → ω−kηk.

There are a total of 12 independent polynomials invariant under A×D that
are given in the following table:

Number Polynomial

6
∑

j ξ2
j ξj±1η

2
j+kηj+k±1

3
∑

j ξ3
j η3

j+k

1 ξ1ξ2ξ3
∑

j η3
j

1
(∑

j ξ3
j

)
η1η2η3

1 ξ1ξ2ξ3 η1η2η3

It is easy to see that A×D acts without fixed points for generic coefficients
of the defining polynomial. Since there are 12 coefficients and an overall scale
is irrelevant we have h21 = 11 and since the group action is fixed point free
we have χ = −18 so h11 = 2.

2.3 Quotients of the split bicubic

Having addressed the three avatars of the Tian–Yau manifold that were
central to the discussion of three generation models in early investigations,
we turn now to the split bicubic X19,19 and its quotients

X7,7 =
P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

7,7

/A

and X3,3 =
P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

3,3

/A×D

.

For these manifolds take coordinates tr, r = 1, 2 on the P

1, and coordinates
ξj and ηj on the two P

2’s as previously. The generator of A can be chosen
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to act cyclically as before leaving the t’s invariant [23]:

A : ξj → ξj+1, ηj → ηj+1, tr → tr.

The group D is the diagonal subgroup of B×C considered above and which
we also take to leave the coordinates of the P

1 invariant:

D : ξj → ωjξj , ηj → ω−jηj , tr → tr.

Under A×D the only cubic monomials in the ξj that are invariant are
∑

j ξ3
j

and ξ1ξ2ξ3 and similarly for the ηk. With a certain choice of t coordinate
we may write the polynomials for the A×D quotient in the form

F 1 = t1

(
3∑

j=1
ξ3
j − 3aξ1ξ2ξ3

)
+ 3ct2ξ1ξ2ξ3

F 2 = 3ct1η1η2η3 + t2

(
3∑

j=1
η3

j − 3bη1η2η3

) (2.4)

and the coefficients a, b, c give the correct count for h21(X3,3) = 3. Under A
the fixed point set, in the embedding space, is of the form

(t1, t2) × (1, α, α2) × (1, β, β2); α3 = β3 = 1.

and these points do not satisfy the equations unless c2 = (a − 1)(b − 1). The
fixed point set under D is

(t1, t2) × {(1, 0, 0), (0, 1, 0), (0, 0, 1)} × {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

and these points do not satisfy the equations for (t1, t2) a point in P

1.

The equations that we have introduced in (2.4) are different from the
original defining polynomials (1.4). The action of D is also different since
the action on the original polynomials extends to a nontrivial action on the
coordinates of the P

1:

D : ξj → ωjξj , ηj → ω−jηj , (t1, t2) → (t1, ωt2) .

Let us denote by Y 3,3 the quotient of (1.4) by this action of A×D. We
assume, for the purposes of this article, that X3,3 and Y 3,3 are holomor-
phically equivalent manifolds. We follow [23] in adopting the representation
(2.4). It is known that the Hodge numbers are the same for both quotients
as are the Yukawa couplings over R and the action of the second Chern class
on H2. That is, for both X3,3 and Y 3,3, it is known that there is a basis
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{τ1, τ2, φ} for H2 over R such that

τ3
i = 0 φ τi = 3 τ2

i ; i = 1, 2 ;

τ2
1 τ2 = τ1τ

2
2 = 3 , φ2 = 0 ;

c2 = 12(τ2
1 + τ2

2 ) .

(2.5)

Rather than repeat our analysis for the two cases we shall focus on the
representation given in (2.4). The discussion of the transgression that we
will give in §3.4 requires only certain features of the heterotic bundle and
does not require the precise form of the polynomials or of the D-action.
Our argument therefore applies to the manifold Y 3,3 in the event that the
manifolds are different.

If the equations for X19,19 are merely to be invariant under A, then we
are allowed the terms

∑
j ξ2

j ξj±1 and
∑

j η2
j ηj±1. We are also now free to

make coordinate redefinitions ξj → ξj + rξj+1 + sξj−1 and similarly for η.
We may use this freedom to bring the equations to the form

F 1 = t1

⎛
⎝ 3∑

j=1

ξ3
j − 3aξ1ξ2ξ3 + d+

3∑
j=1

ξ2
j ξj+1 + d−

3∑
j=1

ξ2
j ξj−1

⎞
⎠ + 3ct2ξ1ξ2ξ3

F 2 = 3ct1η1η2η3 + t2

⎛
⎝ 3∑

j=1

η3
j − 3bη1η2η3 + e+

3∑
j=1

η2
j ηj+1 + e−

3∑
j=1

η2
j ηj−1

⎞
⎠

(2.8)

which exhibit the seven complex structure parameters corresponding to
h21(X7,7) = 7.

2.4 Conifold transitions between the manifolds

We have introduced two sequences of manifolds: (i) the Tian–Yau sequence

N2,83 → N2,29 → N2,11,

of interest since the early days of string phenomenology and (ii) the split-
bicubic sequence

X19,19 → X7,7 → X3,3,
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recently of interest in constructing the MSSM. In this section, we show the
remarkable relation that the two are related by a conifold transition, and
moreover, in the next section, how bundles on one may be transferred to
another by the process of transgression. Table 2 below shows the intricate
web of relations between the various manifolds we have been examining.
These show the birational relations between the various quotients of the bicu-
bic, split bicubic and the Tian–Yau manifold. The vertical arrows denote
quotients by freely acting groups while the harpoons above the last row
denote the process of taking a quotient by C and then resolving the singu-
larities. The relation expressed by the � is that of a conifold transition [42].

Let us first briefly recall how a conifold transition works in the context
of CICY’s. This is the “splitting” process of which a good account may be
found in [42]. Let us take as an example the top row of table 2. To the right
is the split bicubic X19,19. As in §2.3, we can write its defining equations as

t1U(ξ) + t2W (ξ) = 0, t1Z(η) + t2V (η) = 0, (2.9)

where as before t1,2 are the coordinates of the P

1, ξj , ηj are, respectively, the
coordinates of the two P

2’s, and U, V, W, Z are cubic polynomials. We can
regard (2.9) as a matrix equation in t1,2. Now, because t1,2 are projective
coordinates on P

1 they cannot vanish simultaneously, and hence (2.9) can

Table 2: Birational relations between quotients of the bicubic, split bicubic
and the Tian–Yau manifold; hats denote resolutions of quotients.

P
2

P
2

[
3
3

]2,83

�
P

1

P
2

P
2

⎡
⎣

1 1
3 0
0 3

⎤
⎦

19,19

↓ ↓

P
2

P
2

[
3
3

]2,29

/A
�

P
1

P
2

P
2

⎡
⎣

1 1
3 0
0 3

⎤
⎦

7,7

/A
↓ ↓

P
2

P
2

[
3
3

]2,11

/A×D
�

P
1

P
2

P
2

⎡
⎣

1 1
3 0
0 3

⎤
⎦

3,3

/A×D
� �

P
3

P
3

[
1 3 0
1 0 3

]6,9

/A

∼=
̂
P

2

P
2

[
3
3

]6,9

/A×B×C
�

̂
P

1

P
2

P
2

⎡
⎣

1 1
3 0
0 3

⎤
⎦

7,7

/A×B×C

∼=
P

1

P
2

P
2

⎡
⎣

1 1
3 0
0 3

⎤
⎦

7,7

/A
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only hold if

F0 = det
∣∣∣∣U(ξ) W (ξ)
Z(η) V (η)

∣∣∣∣ = U(ξ)V (η) − W (ξ)Z(η) = 0. (2.10)

This is, a bicubic equation in the ξ and η coordinates. In fact it is a singular
limit of the manifold N2,83. The limit is singular owing to the fact that
all the derivatives of F0 vanish precisely at the points where U , V , W , Z
are all zero and this happens, in this case, in 34 points. We have seen that
a point (t, ξ, η) that satisfies (2.9) must be such that (ξ, η) satisfy (2.10).
Conversely suppose that (ξ, η) satisfy (2.10) and that for these values the
cubics U , V , W , Z are not all zero. The equations (2.9) will then determine
a unique ratio t1/t2 hence a unique point t ∈ P

1. If, however, all four of the
cubics vanish then the equations (2.9) are satisfied for all values of t ∈ P

1.
For suitable cubics the split manifold defined by (2.9) is smooth while the
conifold defined by F0 = 0 is singular at a certain number of nodes. The
split manifold projects down onto the conifold such that a unique point
projects to every nonsingular point of the conifold but an entire P

1 of the
split manifold projects down onto each node. Alternatively we pass from
the conifold to the split manifold by blowing up each node to a P

1.

The first three rows of table 2 are simply conifold transitions between
N2,83 and X19,19 as well as their quotients. The relation between the extreme
ends of the last row is less obvious and corresponds to the relation

P

3

P

3

[
1 3 0
1 0 3

]6,9

/A
�

P

1

P

3

P

3

⎡
⎣1 1 0 0

1 0 3 0
0 1 0 3

⎤
⎦

7,7

/A

∼=
P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

7,7

/A

(2.11)

which we explain in the following. The relation is true whether or not we
take the A-quotient, so we shall first explain the relation before taking the
quotient. The isomorphism between the second and third families in the
above relation may be surprising; it is this that we will now explain.

2.4.1 Three avatars of the split bicubic

Consider the family of complete intersection Calabi–Yau manifolds

t
ξ
η
x
y

P

1

P

2

P

2

P

3

P

3

G̃0 H̃0 G1 G2 G3 H1 H2 H3⎡
⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1
1 0 1 1 1 0 0 0
0 1 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎦ = X, (2.12)

where we have indicated the coordinates of the projective spaces and have
also named the polynomials whose degrees correspond to the columns of the
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matrix. We will soon see that calling this manifold X is justified since we
shall show that X/A is isomorphic to both the second and third CICY’s
in (2.11). This is a matter of showing, first, that we obtain maps between
the various manifolds by eliminating variables from the defining equations
and, secondly, that these maps are isomorphisms rather than being merely
birational equivalences.

Consider the three equations Gj . These are bilinear in the coordinates ξ
and x of the first P

2 and first P

3

Gj = Gj
kα ξkxα = G(x)j

k ξk ; G(x)j
k = Gj

kα xα ,

where we are using a summation convention and j, k = 1, 2, 3 while α =
0, . . . , 3. Now, the equations G(x)j

k ξk = 0 are three equations in the three
ξk and these coordinates are not all zero. So we have

G(x) = det
(
G(x)j

k

)
= 0.

We see that G(x) is the determinant of a 3×3 matrix of linear forms and so is
a cubic. It is also a classical fact that any cubic in variables xα, α = 0, . . . , 3
can be written as the determinant of a matrix of linear forms (for a review
of this and related facts see [43]; the original reference is [44]). Analogous
considerations apply also to the equations Hj leading to a determinant H(y).

We have now reduced the triple Gj (and, respectively, Hj) into a single
equation G (and, respectively, H). It thus remains to the show that

t
x
y

P

1

P

3

P

3

G̃0 H̃0 G H⎡
⎣1 1 0 0

1 0 3 0
0 1 0 3

⎤
⎦ (2.13)

is another avatar of X. This is done by simply remarking that the rank of
the matrix G(x)j

k is at most 2 owing to the fact that it has zero determinant.
For a general point x, the rank is 2 and in fact this is true for all x since to
have rank 1 would impose 4 independent linear relations on x ∈ P

3 which
cannot be satisfied in a 3-dimensional space. This being so there is a one-to-
one relation between allowed points ξ and allowed points x and the manifold
that results from eliminating ξ and η in this way is smooth. This establishes
that the CICY (2.13) is isomorphic to X.

Finally, we show that X is indeed the familiar split bicubic, X19,19. This
is done by eliminating variables in another way. The four equations G̃0 = 0
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and Gj = 0 can be written

G̃(t, ξ)α
βxβ = 0 where G̃(ξ)j

β = Gj
kβξk.

Thus we have a set of four equations for the four coordinates xβ, which
cannot all be zero. It follows that

F 1 = det(G̃(t, ξ)α
β) = 0.

Since G̃(t, ξ)0β is independent of ξ and the G̃(t, ξ)j
β are independent of t we

see that F 1 has bidegree (1, 3) in t and ξ. Analogous considerations apply
also to the matrix H̃(t, η)α

β and to

F 2 = det(H̃(t, η)α
β).

One checks, analogously to the previous case, that the matrices G̃(t, ξ)α
β

and H̃(t, η)α
β always have rank 3. We have now shown that indeed the

manifold
⎡
⎣

F 1 F 2

t P

1 1 1
ξ P

2 3 0
η P

2 0 3

⎤
⎦ = X.

2.4.2 The conifold transition between M and X7,7

We have now seen three equivalent representations of X19,19. Next, we
proceed to show the relation proposed in (2.11). This is seen easily since
the determinants G and H become the cubics of the covering space of the
Tian–Yau manifold

[ F G H

x P

3 1 3 0
y P

3 1 0 3

]

On making the conifold transition it is possible to approach the conifold from
the Tian–Yau side by singularizing the bilinear equation F while leaving G

and H fixed. The coordinates t can be chosen such that the equations G̃0

and H̃0 take the form

G̃0 = t1

( ∑
j

xj − 3ax0

)
+ 3ct2x0

H̃0 = 3ct1y0 + t2

( ∑
j

yj − 3by0

)
.

Again we have two equations in the coordinates (t1, t2), which cannot both
be zero, so the determinant must vanish

F0 =
( ∑

j

xj − 3ax0

)( ∑
j

yj − 3by0

)
− 9c2x0y0 = 0 (2.14)
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and the polynomial F is a deformation of F0. Comparing with (2.4) we
see that the parameter count is that there are two parameters in each of
G and H and three in F0. This accounts for the seven complex structure
parameters of the split bicubic.

Consider now the manifold

P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

3,3

/A×D

One might at first seek to relate this to the Tian–Yau manifold by taking
a quotient of (2.11) by D but this cannot be done, owing to the fact that
D does not act on the Tian–Yau manifold. Another reason why this fails is
that it is not possible to find a nonsingular CICY of the form (2.12) that is
invariant under A×D.

We have, instead, the splitting

P

2

P

2

[
3
3

]2,11

/A×D
�

P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

3,3

/A×D

(2.15)

as in table 2 and we have seen previously that the group A×D acts freely
on both manifolds. We can take the quotient by C and then resolve. This
gives us the Tian–Yau manifold on the left but the relation that we find is

P

3

P

3

[
1 3 0
1 0 3

]6,9

/A
�

̂

P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

7,7

/A×B×C

=
P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

7,7

/A

where it should be noted that B and C have fixed points whose resolution
is implicit in this identity. We also know from the previous subsection that

P

3

P

3

[
1 3 0
1 0 3

]6,9

/A
�

P

1

P

2

P

2

⎡
⎣1 1

3 0
0 3

⎤
⎦

7,7

/A

.

The upshot is that we again relate the Tian–Yau manifold to X7,7 rather
than to X3,3.

3 Transgression of vector bundles

Given the close relation between the Tian–Yau manifold and the quotient
of the split bicubic, it is natural to ask how the tangent bundle of the
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Figure 4: The manifolds with h11 + h21 ≤ 22 showing the two transgressions
that we propose here between the Tian–Yau manifold and X7,7, and between
N2,11 and X3,3.

Tian–Yau manifold is related to the vector bundles of the heterotic models
based on the split bicubic. We will describe here a process of transferring
a bundle between two manifolds that are related by a conifold transition.
Every manifold comes equipped with a tangent bundle, T , and a conifold
transition induces a change in the tangent bundles of the manifolds. This
change is rather drastic since c3(T ) is the Euler number of the manifold and,
as the result of a conifold transition, this changes by twice the number of
nodes of the conifold. This jump is the inevitable consequence of the fact
that the tangent bundle is singular where the manifold fails to have a well-
defined tangent space. It was pointed out to one of the present authors, by
E. Witten, many years ago, that other bundles are better behaved and can
be expected to deform smoothly across the transition. This fits in well with
heterotic models since there is no reason, in general, to prefer the tangent
bundle over others. We will here apply this idea to the three-generation
models that we have been discussing. As a matter of language, we prefer to
refer to the process of transferring bundles across a conifold transition as a
transgression4 of bundles. In figure 4 we illustrate two transgressions that
we shall propose here.

4transgress from L. transgredior = trans + egredior, to go across, to cross over.
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3.1 Local analysis of transgressions

In coordinates wj = (u, v, w, z), a conifold singularity at the origin in C

4 is
described locally by the vanishing of the equation

f0 = uv − wz.

The conifold is smoothed to a manifold, that we denote by Ms, by deforming
f0 to fs = f0 + sg, where g is any function such that the derivatives of fs

can no longer all vanish simultaneously. The split manifold, M̌ , is realized
in C

4×P

1 by the equations

t1u + t2w = 0,

t1z + t2v = 0.
(3.1)

The sections of the tangent bundle Ts of Ms consist of the set of vector fields
V j that are tangent to Ms; this condition can be written as

V j ∂fs

∂wj
= 0. (3.2)

For s 
= 0, this condition ensures that Ts has rank 3. However, at the conifold
point wj = 0 all derivatives of f0 vanish, and the dimension of the space of
solutions to (3.2) jumps from 3 to 4. It is this behaviour that we understand
as characterizing the singularity of the tangent bundle at the conifold.

We can however first deform Ts by replacing (3.2) by the condition

V j

(
∂fs

∂wj
+ hj

)
= 0, (3.3)

where the hj are functions that are not all zero at wj = 0 and are not
the derivatives of a function h, the latter condition ensuring that we are
deforming Ts while keeping the underlying space Ms fixed. Then, with the
deformed bundle, we may proceed to the limit fs → f0 and the space of
allowed sections remains 3-dimensional even at the conifold point. The key
point is that we have divorced the bundle from being the tangent bundle.
We would expect “most” bundles to remain nonsingular at the conifold in
the same way as the deformation of the tangent bundle.

We may also think of Equations (3.3) as defining sections of a rank 3
vector bundle on M̌ . The sections thus defined are independent of position
on the P

1 of the resolution, and hence the obtained bundle is trivial as a
bundle over the P

1. This bundle is therefore not a deformation of the tangent
bundle of M̌ . It is clear that the bundle we have defined on M̌ deforms
back to a bundle on Ms.



TRIADOPHILIA: A SPECIAL CORNER IN THE LANDSCAPE 459

3.2 Deformation of the tangent bundle for the quintic 3-fold

We wish to pass from a local to a global description of transgression for
compact Calabi–Yau manifolds. Our interest is primarily with the deforma-
tions of the tangent bundle of Tian–Yau manifold and its close relatives and
the relation of these to bundles on the quotients of the split bicubic. These
exhibit certain interesting complications so before examining this case, we
recall the corresponding situation for the quintic 3-fold P

4[5]. We will first
give a standard “explicit” construction [45] and then a more general account
of a type that is more favoured by mathematicians. This has the advantage
of being applicable in situations where the explicit construction fails and of
generalizing in a straightforward way to other bundles. We will repeat this
analysis in the following subsection for the Tian–Yau manifold which is a
case for which the naive construction fails.

To save writing, we denote P

4[5] by Q and take the manifold to be defined
by a quintic p(x) in the homogeneous coordinates xj , j = 1, . . . , 5 of the P

4.
The tangent bundle, TQ, is the set of pairs (x, V ) with x a point of Q and
V = V j ∂

∂xj a vector that now satisfies

V j ∂p

∂xj
= μp (3.4)

for some μ, and is, additionally, subject to the identification

V j + ρxj � V j (3.5)

for all ρ. These conditions are consistent owing to the fact that p is a
homogeneous quintic and therefore satisfies the Euler relation xj ∂p

∂xj = 5p.
The two conditions reduce the dimension of the space of allowed vectors, at
a given point, from 5 to the correct value of 3.

The tangent bundle can be deformed by deforming (3.4) by quartic poly-
nomials rj such that

V j

(
∂p

∂xj
+ rj

)
= μp. (3.6)

In order to maintain the identification (3.5), we need to require that

xjrj = 0. (3.7)

We could have imposed the weaker condition xjrj = μ′p; however, an
adjustment

rj → rj − μ′

5
∂p

∂xj
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can be made so as to enforce (3.7). This constraint also prevents the rj from
being the derivatives ∂r

∂xj of a quintic r; such a deformation would represent
a deformation of Q, rather than that of TQ on a fixed Q.

This construction can be used to estimate the dimension of
H1(Q,EndQ) = H1(Q, TQ⊗T ∗

Q), the space of first order deformations of TQ.
Having come this far we cannot resist completing the calculation. Each rj is
a homogeneous polynomial of degree 4 in five variables. In these, there are
a total of 5

(4+5−1
4

)
= 350 parameters. The constraint (3.7), which, being of

degree 5 in five variables, imposes
(5+5−1

5

)
= 126 conditions. We conclude

that the number of deformations to TQ is at least 350 − 126 = 224. In this
case, in fact h1(Q, TQ⊗T ∗

Q) = 224; for a recent discussion of the deformation
of the tangent bundle for the quintic, see [46, 47]. The quintic is some-
what exceptional; it can happen that the tangent bundle of a manifold has
deformations that are not accounted for in this way.

We now take a more abstract approach, in order to consider deformations
of bundles other than the tangent bundle, in particular, the direct sum of
the tangent bundle and trivial bundles. The adjunction formula [48] states
that for a projective variety Y embedded in P

n, the tangent bundle TY and
the normal bundle NY fit into the short-exact sequence

0 → TY → TPn |Y → NY → 0, (3.8)

where TPn |Y is the tangent bundle of P

n restricted to Y . Next, the Euler
sequence on P

n, restricted to Y , reads

0 → OY → OY (1)⊕n+1 → TPn |Y → 0,

and thus, composing the right-hand maps in the two sequences, there is a
third sequence [49]

0 → F → OY (1)⊕n+1 f−→ NY → 0,

where F is defined by F = ker(f), in order to make the sequence exact. The
map f is the analogue of (3.7). For the quintic Q, we get

0 → F → OQ(1)⊕5 f−→ OQ(5) → 0, f =
(

∂p

∂xj

)
, (3.9)

with f now explicitly written as a specific 5 × 1 matrix of degree 4 homo-
geneous polynomials, the partial derivatives of p, mapping from OQ(1)⊕5 to
OQ(5).



TRIADOPHILIA: A SPECIAL CORNER IN THE LANDSCAPE 461

Fitting (3.8) and (3.9) together yields the following intertwined diagram
of short exact sequences:

0 0
↑ ↑

0 → TQ → TP4 |Q −→ OQ(5) → 0
↑ ↑

0 → F → OQ(1)⊕5 f−→ OQ(5) → 0
↑ ↑

OQ = OQ

↑ ↑
0 0

(3.10)

The important fact is that the lowest term in the two vertical sequences is
the trivial bundle OQ on the quintic.

From (3.10) we see that the bundle F is an extension of TQ by OQ, and
hence is a deformation of the direct sum TQ ⊕ OQ (as explained in [49], F
is a nonsplit extension). Deformations of F are obtained by deforming the
map f , given by the partial derivatives ( ∂p

∂xj ), to a map ( ∂p
∂xj + rj), for some

quartics rj as in (3.6). Imposing (3.7) corresponds, in this language, to the
statement that the deformed f maps the distinguished sub-bundle OQ of
OQ(1)⊕5 to zero, and thus we obtain a deformation of TQ. If (3.7) fails,
then we obtain a deformation of F , and hence of TQ ⊕ OQ.

3.3 Deforming the tangent bundle of the Tian–Yau manifold

Let us move on to the manifold of our principal interest here. It is instruc-
tive to first run through the explicit construction of the deformation of the
tangent bundle to see how this fails.

To avoid possible complications related to the resolution of the fixed point
sets of B×C let us focus on M , presented as

x
y

P

3

P

3

F G H[
1 3 0
1 0 3

]
/A

= M

There are now three defining equations, which we will also denote by pα =
(F, G, H). We can think of the tangent vector as a differential operator

V = X + Y ; X = Xa ∂

∂xa
, Y = Y b ∂

∂yb
,
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where the indices a, b = 0, . . . , 3 run through the two P

3’s. We will also,
as previously, have need of indices j, k that run over the range 1, 2, 3, and
which are understood to take values modulo 3.

The analogue to (3.6), requiring V to be tangent to M , is the condition

V (pα) = mα
βpβ, (3.11)

where now mα
β is, in general, a matrix of polynomials but which in this case,

owing to the degrees of the polynomials, is a diagonal matrix of constants.
The Euler relations now read

xa ∂pα

∂xa
= degx(pα)pα, yb ∂pα

∂yb
= degy(p

α)pα,

where here degx(pα) denotes the degree of pα as a function of x and similarly
for degy(pα). We also identify

(Xa + ρxa, Y b + σyb) � (Xa, Y b). (3.12)

the tangent bundle TM is now deformed by requiring that V = X + Y satisfy

Xa

(
∂pα

∂xa
+ rα

a

)
+ Y b

(
∂pα

∂yb
+ sα

b

)
= mα

βpβ, (3.13)

where the quantities rα
a and sα

b are matrices of polynomials of the same
degrees as ∂pα

∂xa and ∂pα

∂yb , respectively, while mα
β is a matrix of constants. In

order to maintain the identification (3.12), we write

Rα
a =

∂pα

∂xa
+ rα

a and Sα
b =

∂pα

∂yb
+ sα

b

and require
xaRα

a = nα
βpβ, ybSα

b = ñα
βpβ (3.14)

for some constant matrices nα
β, ñα

β.

Note first that, since the second defining equation, p2 = G, has zero degree
in ya and similarly, p3 = H has zero degree in xa, the quantities S2

b and
R3

a both vanish. A little thought then shows that the most general form
for r2

a that is invariant under A and satisfies (3.14) has the form

r2
adxa =

∑
j

(
κx0 + λxj +

∑
±

μ±xj±1

)
(xjdx0 − x0dxj)

+
∑

j

∑
±

ν±(x2
j±1 − xjxj∓1)dxj .

and contains six parameters. A similar expression holds for s3
b.
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A problem, however, arises in relation to the deformation corresponding
to p1 = F . This polynomial is bilinear so the conditions (3.14), applied to
this case, force the relations

R1
a = u

∂F

∂xa
and S1

b = v
∂F

∂yb

for some constants u and v. Our previous observation concerning trans-
gression of deformation of tangent bundles, as in (3.3), was that once the
tangent bundle has been deformed sufficiently generally, then the analogues
of our quantities Rα

a and Sα
b are all nonzero at the conifold and prevent

the bundle from becoming singular. Here this fails since at the conifold (as
in (2.14)) F is necessarily of the form F0 = UV − WZ, for some polynomials
U, V, W, Z, that vanish at the nodes. Thus all the derivatives of F vanish
at the nodes and hence also the quantities R1

a and S1
b. So in this case,

the deformation does not help to avoid the singularity associated with the
tangent bundle at the conifold point.

We can however save the situation by abandoning the identification in
(3.12). Our bundle is then no longer a deformation of the tangent bundle
of M , but a deformation of TM ⊕ O ⊕ O. Alternatively we could abandon
just one of the identifications of (3.12), in which case the bundle becomes a
deformation of TM ⊕ O.

We can also study deformations in the language of intertwined short exact
sequences. As we have seen, the key equation is F ; we take MF as the
(5-dimensional) hypersurface given by the vanishing of F in the ambient
space P

3 × P

3 (we can impose the other equations later). In complete anal-
ogy with (3.10), we have

0 0
↑ ↑

0 → TMF → TP3×P3 |MF −→ OMF (1, 1) → 0
↑ ↑ ϕ

0 → F → OMF (1, 0)⊕4 ⊕ OMF (0, 1)⊕4 f−→ OMF (1, 1) → 0
↑ ↑

O⊕2
MF = O⊕2

MF

↑ ↑
0 0 (3.15)

The important facts to notice are the following. The map f is now given
by an 8 × 1 matrix with four entries of bidegree (1,0) and four entries of
bidegree (0,1), corresponding to the operators ∂

∂xa and ∂
∂ya . The kernel

of the map ϕ now is actually O⊕2
MF , two copies of the trivial bundle on

MF . Therefore the bundle F , which is the kernel of f , and hence whose
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deformations are measured by (3.13), is a deformation of TMF ⊕ O⊕2
MF , a

rank 5 bundle. Varying the map f results in further deformations of this
bundle. If either u or v vanished, then we would be deforming the rank 4
bundle TMF ⊕ OMF ; in case the both vanish, we are back to deformations
of TMF .

It is interesting that, on the split bicubic side, the motivation for study-
ing bundles of higher rank derives from the fact that the commutant of the
background gauge group in E8 is the gauge group of the low energy effective
theory. For the “standard embedding”, the bundle associated with the back-
ground gauge group is identified with the tangent bundle, the background
gauge group is SU(3) and the gauge group of the low energy effective the-
ory is E6, the commutant of SU(3) in E8. A bundle of higher rank can
have a larger background gauge group leading to a gauge group for the low
energy theory that is a subgroup of E6. In particular a rank 4 bundle on
the Calabi–Yau manifold can give rise to a gauge group SO(10) in space-
time and a rank 5 bundle can give rise to a gauge group SU(5). Bundles
of higher rank are therefore of interest because they can lead to appealing
phenomenology. It is curious that we are here driven to rank 5 bundles by
a wish to transgress.

3.4 On the geometry of X3,3 and the heterotic vector
bundle it carries

The manifold X3,3 is a Z3×Z3 quotient of the split bicubic X19,19. The
latter is the fibre product of two ninth del Pezzo (dP9) surfaces [20],

t P

1

ξ P

2

[
1
3

]
= B1 and t P

1

η P

2

[
1
3

]
= B2.

The equations for the split bicubic X19,19 are of the form

F 1 = t1U(ξ) + t2W (ξ)

F 2 = t1Z(η) + t2V (η)

with U and W cubics in ξ, and V and Z cubics in η. Particular equations
invariant under A×D are given by (2.4). The surfaces B1 and B2 correspond
to the vanishing of F 1 and F 2, respectively. Consider the surface B1. The
two cubics U(ξ) and V (ξ) vanish simultaneously in nine points and for each
t the locus F 1 = 0 is a cubic curve, E1(t), in P

2 which passes through these
nine points. It is easy to see that for each ξ ∈ P

2, that is not one of these
nine special points, there is a unique t ∈ P

1 such that E1(t) contains ξ. As t
varies, E1(t) sweeps out the surface B1. Apart from the nine special points,
each point of B1 derives from a unique point of P

2. Consider the map that
projects the points of B1 back onto the corresponding points of P

2 in this
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way. For ξ∗ one of the special points, the equation F 1 = 0 is satisfied for
every t. Thus an entire P

1 of B1 projects down to ξ∗. We shall refer to the
P

1’s that project down to the nine special points as exceptional lines. We
have just worked through the classical fact that the surfaces Bi above are
dP9’s, surfaces obtained by blowing up P

2 in nine points. Along with the
birational morphims Bi → P

2 just discussed, there are also the projections
Bi → P

1, which exhibit the dP9’s as elliptic fibrations.

We turn now to a description of the homology [19] of the quotient manifold
X3,3. The space H2(X3,3, C) = H2(X19,19, C)Z3×Z3 is 3-dimensional, with
basis (τ1, τ2, φ). Here the τi are the pull-backs of the Z3 × Z3-invariant
divisors in Bi, the hyperplane classes pulled back from P

2. The class φ
is the pull-back of the common fibre class f, the fibre of the projection of
the 3-fold to P

1. The intersection numbers are given by (2.5) in particular,
H4(X3,3, C) = H4(X19,19, C)Z3×Z3 is spanned by the classes (τ2

1 , τ2
2 , τ1τ2).

The stable Z3 × Z3-equivariant SU(4) bundle5 V on X3,3 which gives the
MSSM spectrum [20] descends from an Z3 × Z3-equivariant bundle Ṽ on
X19,19. The bundle Ṽ in turn is given by the short-exact sequence

0 −→ V1 −→ Ṽ −→ V2 −→ 0 (3.16)

of two rank 2 bundles, V1 and V2. Each of these is itself the tensor product
of a line bundle with a rank 2 bundle pulled back from a dP9 factor of X19,19:

V1 = OX(−τ1 + τ2) ⊗ π∗
1(W1), V2 = OX(τ1 − τ2) ⊗ π∗

2(W2),

where

0 −→ α1OB1(−f) −→ W1 −→ α2
1OB1(f) ⊗ IB1

3 −→ 0,

0 −→ α2OB2(−f) −→ W2 −→ α2
2OB2(f) ⊗ IB2

6 −→ 0;

here IB1
3 and IB2

6 denote the ideal sheaf of 3 and 6 points in B1 and B2,
respectively, and α1 and α2 are third roots of unity. The Chern classes of Ṽ
can be computed from these sequences to be

c1(Ṽ) = 0, c2(Ṽ) = τ2
1 + 4τ2

2 + 4τ1τ2, c3(Ṽ) = −54. (3.17)

3.5 Transgression between N 2,11 and X 3,3

Recall from §2.4 (compare table 2) that there is a conifold transition between
the quotient X3,3 of the split bicubic, and the manifold N2,11. We wish to

5The following construction applies to the manifold Y 3,3 discussed in §2.3. We remind
the reader that we are assuming that X3,3 and Y 3,3 are holomorphically equivalent. In the
event that they are not then the following discussion should be taken as applying to Y 3,3.
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investigate the possibility that the heterotic bundle discussed above can
arise as a transgression under this transition. Before we do that, we make
one further remark concerning the relation between exceptional lines on the
dP9’s to the conifold lines of the split bicubic X19,19, the P

1’s of the split
bicubic that project down to the nodes of the conifold. We have seen that
the conifold lines correspond to the solutions of

U(ξ) = W (ξ) = 0 and V (η) = Z(η) = 0.

These equations are solved precisely where (ξ, η) = (ξ∗, η∗). In this way we
see that the 81 conifold lines of the split bicubic are in correspondence to
the 81 pairs of exceptional lines on B1×B2.

3.5.1 Triviality of the heterotic bundle on conifold lines

A necessary condition for a bundle to be a transgression through a conifold
is that the bundle be trivial on the conifold lines. For the present case,
we denote the homology class of the conifold lines of the quotient X3,3 by
L ∈ H4(X3,3, C).

The nonsingular manifold N2,11 has a 2-dimensional cohomology group
H2(N2,11, C) spanned by classes H1 and H2, the two hyperplane classes
restricted from P

2 × P

2. The hyperplane classes also give cohomology classes
in H2(N2,11

0 ), the conifold degeneration. On the other hand, we have an
inclusion H2(N2,11

0 , C) ↪→ H2(X3,3, C), where X3,3 is the split manifold after
the conifold transition; under this map, the classes Hi map to the classes
τi for i = 1, 2, the latter being hyperplane sections from the two individual
P

2’s. Indeed, for the manifold N2,11 we have the intersection numbers

H3
1 = H3

2 = 0, H2
1H2 = H2

2H1 = 3.

which agrees with (3.15) under the identification Hi �→ τi.

Since the classes τi arise as pullbacks from N2,11
0 under the resolution

map X3,3 → N2,11
0 , we know by the projection formula that the curve class

L ∈ H4(X3,3, C) must be perpendicular to τ1 and τ2. Hence we can write L
in terms of our homology basis as

L = −τ2
1 − τ2

2 + τ1τ2, (3.18)

where we also used the condition that since φ is an effective class on X3,3,
we must have φ · L ≥ 0.
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We learn about the restriction of Ṽ to a conifold curve L ∼= P

1 ⊂ X19,19

in the cover by restricting the exact sequence (3.16) to get

0 → (OX(−τ1 + τ2) ⊗ π∗
1(W1))|L → Ṽ|L → (OX(τ1 − τ2) ⊗ π∗

2(W2))|L → 0.

Now, from (3.15) and (3.18), we see that

OX(−τ1 + τ2)|L ∼= OL(τ2
1 τ2 + τ1τ

2
2 ) ∼= OL

and similarly for OX(τ1 − τ2)|L. Hence,

0 → π∗
1(W1)|L → Ṽ|L → π∗

2(W2)|L → 0. (3.19)

On the other hand, we claim that both restrictions π∗
i (Wi)|L are trivial.

From the definition of Wi,

0 → OBi(−f)|L → Wi|L → OBi(f)|L → 0,

where we used the fact that the points which define the ideal sheaves I3 and
I6 can be moved away from L. Thus the extension class of Wi|L lives in

Ext1(OBi(f)|L,OBi(−f)|L → 0) ∼= H1(L,OL(2f|L)) = H1(P1,OP1(6)) 
= 0

since f · πi(τi) = 3. The generic element of this Ext-group corresponds to the
extension Wi|L ∼= O2

P1 ; since the extensions defining the Wi can be chosen to
be generic, we are dealing here with a generic extension as well. Substituting
into (3.19), we conclude that

Ṽ|L ∼= O⊕4
X

on the conifold curves L ⊂ X.

3.5.2 Candidate bundles

We now approach the transition from the other side, attempting to construct
some bundles on the manifold N2,11 with the right Chern classes. The first
salient feature of the bundle Ṽ is that c3(Ṽ) = −6 on X3,3. The bundle
descends from an equivariant bundle on the covering space X19,19 with c3 =
−54. For the transgression we should seek a bundle with c3 = −6 on N2,11

or an equivariant bundle also with c3 = −54 on the bicubic N2,83.

There has been some recent revival in interest in CICY’s, especially in
constructing bundles over them [50]. A large class of bundles can be con-
structed over algebraic manifolds via the monad construction. Over projec-
tive spaces, for example, all bundles arise this way. Let us try, therefore,
to construct a monad-type bundle, as the kernel of bundle maps between
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sums of line-bundles, over the bicubic. Such bundles V are defined by the
short-exact sequence

0 → V → B f−→ C → 0,

with

B =
rB⊕
i=1

OX(bi
1, b

i
2), C =

rC⊕
j=1

OX(cj
1, c

j
2). (3.20)

where O(a, b) is the line bundle of bidegree (a, b) on the bicubic. In terms of
the hyperplane classes, this line bundle is to be thought of as O(aH1, bH2).
The bi

s and cj
s are integers such that for s = 1, 2 and all i, j, cj

s ≥ bi
s ≥ 0 in

order that f be a well-defined polynomial map. In particular, V has the
following topological properties (r, s, t = 1, 2):

rk(V) = rB − rC ,

[c1(V)]s =
rB∑
i=1

bi
s −

rC∑
j=1

c j
s ,

[c2(V)]r =
1
2

k∑
s,t=1

ytop
rst

( rC∑
j=1

c j
s c j

t −
rB∑
i=1

bi
sb

i
t

)
, (3.21)

c3(V) =
1
3

k∑
r,s,t=1

ytop
rst

( rB∑
i=1

bi
rb

i
sb

i
t −

rC∑
j=1

c j
r c j

s c j
t

)
,

where ytop
rst is the intersection form on the bicubic. Finally, we must descend

this bundle onto the A×D quotient X3,3. This can be done by finding an
A×D-equivariant map.

It is now a matter of solving for non-negative integer values for bi
s and

cj
s such that first of all c1(V) = 0 and c3(V) = −54. Then, in the (H1, H2)

basis, we can form the integer 2-vector c2(V) · (H1, H2). This should then
be compared, with c2(Ṽ) expressed in the (τ1, τ2) basis. Examining (3.17),
we see that in this basis

c2(Ṽ) = (τ2
1 + 4τ2

2 + 4τ1τ2) · (τ1, τ2) = (24, 15).

After performing a computer scan for possible solutions, we find the following
rank 4 candidate monad bundles with all the above requisite properties.
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B C

O(0, 1)⊕3 ⊕ O(0, 2) ⊕ O(1, 0)⊕2 O(1, 2) ⊕ O(1, 3)

O(0, 1)⊕3 ⊕ O(1, 0) ⊕ O(1, 1)⊕3 O(1, 2) ⊕ O(1, 3) ⊕ O(2, 1)

O(0, 1)⊕3 ⊕ O(1, 1)⊕6 O(1, 2)⊕4 ⊕ O(2, 1)

O(0, 1)⊕3 ⊕ O(0, 2) ⊕ O(1, 0) ⊕ O(1, 1)⊕3 O(1, 2)⊕4

In this section we have, inspired by the intimate relation between the
Tian–Yau and the bicubic sequences of manifolds, discussed in detail how
one may transgress a bundle from a manifold to another through a conifold
transition. Though the transgressions of bundles are old ideas in principle,
here we have considered an explicit example. Our construction predicts a
bundle on N2,11, which is a transgression of the heterotic MSSM bundle on
X3,3 and which may afford here a simpler description. This is an intriguing
investigation to which we intend to return in a future publication.

4 Concluding speculations

We began by plotting discretely different Calabi–Yau manifolds and were
naturally drawn to the fact that each manifold has a parameter space and
these spaces meet in loci corresponding to certain singular manifolds. For
the cases we have been considering the relationship between the manifolds
is close and the singular manifolds in which the parameter spaces meet are
the conifolds which are only mildly singular. It is an old speculation [51]
that the space of all Calabi–Yau manifolds may be connected in this way.

At a technical level, it is known that the parameter spaces of a great many
Calabi–Yau manifolds form a connected web. For example, it is known that
all CICY’s are connected by a series of conifold transitions [42, 52]. It is
known also that the parameter spaces of all the manifolds of the Kreuzer–
Skarke list form a connected web [53], which is moreover connected to the
web of CICY’s, though the singular manifolds can be more singular than
conifolds. Much work has been done on string theory compactified on coni-
folds and related spaces subsequent to [54] and in many cases conifold tran-
sitions seem to be physically acceptable. Nevertheless it is not known to
what extent it is possible for the universe to move from one Calabi–Yau
manifold to another. However if it is possible in heterotic string theory then
transgression will be an important part of the story.
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Looking at the tip of the landscape, it is hard not to speculate that there
may be a physical mechanism allowing transitions between what appear
classically to be different vacua thereby permitting the universe to trickle
down to a very special corner of the landscape, an oasis where only very few
Calabi–Yau manifolds reside.
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