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Abstract

BF theory is a topological theory that can be seen as a natural gener-
alization of three-dimensional gravity to arbitrary dimensions. Here, we
show that the coupling to point particles that is natural in three dimen-
sions generalizes in a direct way to BF theory in d dimensions coupled
to (d − 3)-branes. In the resulting model, the connection is flat except
along the membrane world-sheet, where it has a conical singularity whose
strength is proportional to the membrane tension. As a step towards
canonically quantizing these models, we show that a basis of kinematical
states is given by “membrane spin networks”, which are spin networks
equipped with extra data where their edges end on a brane.

Interest in the quantization of 2 + 1 gravity coupled to point particles
has been revived in the context of the spin foam [1] and loop quantum
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gravity [2] approaches to the nonperturbative and background-independent
quantization of gravity. On the one hand this simple system provides a non-
trivial example where the strict relation between the covariant and canonical
approaches can be demonstrated [3]. On the other hand, intriguing relation-
ships with field theories with infinitely many degrees of freedom have been
obtained [4].

The idea of generalizing this construction to higher dimensions is very
appealing. We will argue that in 3 + 1 dimensions, the natural objects
replacing point particles are strings. This idea has already been studied in
a companion paper [5], which treated these strings merely as defects in the
gauge field, i.e., places where it has a conical singularity. Here, we propose
a specific dynamics for the theory and a strategy for quantizing it. More
generally, in d-dimensional spacetime we describe a way to couple (d − 3)-
branes to BF theory.

To understand this, first recall that in three dimensions, Einstein’s equa-
tions force the curvature to vanish at every point of spacetime. Therefore,
except for global topological excitations, three-dimensional pure gravity does
not have local degrees of freedom. However, it is precisely this local rigidity
of Einstein’s gravity in three dimensions that makes it easy to couple the
theory to point particles. The presence of massive point particles in three-
dimensional gravity modifies the classical solutions by producing conical cur-
vature singularities along the particles’ world-lines. With this idea in mind,
one can write an action for a single particle coupled to gravity by introducing
a source term to the standard action in the first order formalism, namely:

S(A, e) =
∫

M
tr[e ∧ F (A)] + m

∫
γ
tr[e v], (1)

where m is the mass of the particle, v is a fixed unit vector in the Lie algebra
su(2), and γ is the world-line of the particle. It is easy to see that the previ-
ous action leads to equations of motion whose solutions are flat everywhere
except for a conical singularity along γ, as desired.

Unfortunately, this action suffers two drawbacks. First, it is no longer
invariant under the standard gauge symmetries of pure gravity. Second,
there is no explicit dependence on the particle degrees of freedom: one is
describing the particle simply as a gauge defect along γ. One can solve both
problems in one stroke by adding degrees of freedom for the particles, and
choosing an action invariant under an appropriate extension of the gauge
group of the system. The result is the Sousa Gerbert action [6] for a spinless
point particle of mass m coupled to three-dimensional Riemannian gravity:

S(A, e, q, λ) =
∫

M
tr[e ∧ F (A)] + m

∫
γ
tr[(e + dAq) λvλ−1]. (2)
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Here v is a fixed unit vector in su(2) as before, while the particle’s degrees
of freedom are described by an su(2)-valued function q and an SU(2)-valued
function λ defined on the world-line γ. The physical interpretation of q is
a bit obscure, but we can think of it as ‘position in an internal space’. In
a similar way, p = mλvλ−1 represents the particle’s momentum, which is
treated as an independent variable in this first-order formulation.

This action is invariant under the gauge transformations

e �−→ geg−1

A �−→ gAg−1 + gdg−1

q �−→ gqg−1

λ �−→ gλ,

(3)

where g ∈ C∞(M , SU(2)) and

e �−→ e + dAη

q �−→ q − η,
(4)

where η ∈ C∞(M , su(2)). In addition to these gauge symmetries, the action
is invariant under λ �→ λh where h ∈ C∞(γ, H) and H ⊂ SU(2) is the sub-
group consisting of elements g ∈ SU(2) that stabilize the vector v, meaning
that gvg−1 = v. The action is also invariant under reparametrization of the
world-line γ.

A generalization of the naive action (1) to arbitrary dimensions can be
constructed as follows. Let G be a Lie group such that its Lie algebra g is
equipped with an inner product invariant under the adjoint action of G. Let
M be a d-dimensional smooth-oriented manifold equipped with an oriented
(d − 2)-dimensional submanifold W , which we call the “membrane world-
sheet”. Let P be a principal G-bundle over M ; to simplify the discussion
we shall assume P is trivial, but this is not essential. One can define the
action

S(A, B) =
∫

M
tr[B ∧ F (A)] + τ

∫
W

tr[B v] (5)

where τ is the membrane tension, B is a g-valued (d − 2)-form, A is a
connection on P , v is a fixed but arbitrary unit vector in g, and “tr” stands
for the invariant inner product in g. The first term is the standard BF
theory action, whereas the second is a source term that couples BF theory
to the membrane world-sheet.

As with the action in equation (1), the above action is only gauge-
invariant if we restrict gauge transformations to be trivial on the mem-
brane world-sheet. We can relax this condition by introducing appropriate
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degrees of freedom for the (d − 3)-brane whose world-sheet is W . The result-
ing action is

S(A, B, q, λ) =
∫

M
tr[B ∧ F (A)] + τ

∫
W

tr[(B + dAq) λvλ−1], (6)

where q is a g-valued (d − 3)-form on W and λ is a G-valued function on W .

This action is invariant under the gauge transformations:

B �−→ gBg−1

A �−→ gAg−1 + gdg−1,

q �−→ gqg−1,

λ �−→ gλ,

(7)

where g ∈ C∞(M , G) and

B �−→ B + dAη,

q �−→ q − η,
(8)

where η is any g-valued (d − 3)-form. As in the particle case, the action
is also invariant under λ �→ λh, where h ∈ C∞(W , H) and H ⊆ G is the
subgroup stabilizing v, and under reparametrization of the membrane world-
sheet.

Perhaps the most intuitive equation of motion comes from varying the B
field. This says that the connection A is flat except at W :

F = −pδW , (9)

where p = τλvλ−1 and δW is the distributional 2-form (current) associated
to the membrane world-sheet. So, the membrane causes a conical singular-
ity in the otherwise flat connection A. The strength of this singularity is
determined by the field p, which plays the role of a “momentum density”
for the brane. Note that while the connection A is singular in the directions
transverse to W , it is smooth and indeed flat when restricted to W . Thus
the equation of motion obtained from varying q makes sense:

dAp = 0. (10)

This expresses conservation of momentum density.

1 The canonical analysis for d = 4

In this section, we work out the other equations of motion as part of a canon-
ical analysis of the action (6). But, in order to simplify the presentation, we
restrict for the moment to the case d = 4 — that is, the coupling of a string
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to four-dimensional BF theory. In Section 3, we generalize the calculations
to arbitrary dimensions.

For this canonical analysis, we assume the spacetime manifold is of the
form M = Σ × R. We choose local coordinates (t, xa) for which Σ is given
as the hypersurface {t = 0}. By definition, xa with a = 1, 2, 3 are local coor-
dinates on Σ. We also choose local coordinates (t, s) on the two-dimensional
world-sheet W , where s ∈ [0, 2π] is a coordinate along the one-dimensional
string formed by the intersection of W with Σ. We pick a basis, ei, of the
Lie algebra g, raise and lower Lie algebra indices using the inner product,
and define structure constants by [ei, ej ] = ck

ijek.

Performing the standard Legendre transformation one obtains Ea
i = εabc

Bibc as the momentum canonically conjugate to Ai
a. Similarly, πa

i = τ(∂xa)/
(∂s)tr[eiλvλ−1] is the momentum canonically conjugate to qi

a. This is a
version of the p field mentioned in the previous section. There are also
certain fields σi defined on the string, which are essentially1 the momenta
conjugate to λ. These phase space variables satisfy the following primary
constraints:

σi = 0 (11)

πa
i = τ

∂xa

∂s
tr[eiλvλ−1] (12)

Daπ
a
i = 0 (13)

DaE
a
i =

∫
S

ck
ijq

j
aπ

a
k δ(3)(x − xS (s)) (14)

εabcFibc(x) = −
∫

S
πa

i δ(3)(x − xS (s)). (15)

Here, S ⊂ Σ denotes the one-dimensional curve representing the string,
parametrized by xS (s). Equation (11) expresses the fact that no time deriva-
tives of λ appear in the action. Equation (12) relates the conjugate momen-
tum π to the field λ. The constraint (13) implies that the momentum πa

i

1The field λ takes values in the group G, so if we think of it as a kind of “position”
variable, position-momentum pairs lie in T ∗G. Each basis element ei of g gives a left-
invariant vector field on G and thus a function σi on T ∗G, which describes one component
of the “momentum”. The usual symplectic structure on T ∗G gives

{σi, σj} = ck
ijσk,

but recalling that λ and thus its conjugate momentum is actually a function of the coor-
dinate s on the string world-sheet, we expect

{σi(s), σj(s′)} = ck
ijσk(s)δ(1)(s − s′)

and indeed this holds, in analogy to Sousa Gerbert’s [6] calculation for the three-
dimensional case.
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is covariantly constant along the string. This constraint is redundant, since
it could be obtained by taking the covariant derivative of (15) and applying
the Bianchi identity. However, this argument requires some regularization
due to the presence of the δ distribution on the right. The constraint (14)
is the modified Gauss law of BF theory due to the presence of the string.

Finally, (15) is the modified curvature constraint containing the dynam-
ical information of the theory. This constraint implies that the connection
A is flat away from the string S . Some care must be taken to correctly
intepret the constraint for points on S . By analogy with the case of three-
dimensional gravity, the correct interpretation is that the holonomy of an
infinitesimal loop circling the string at some point x ∈ S is exp(−p(x)) ∈ G,
where p = τλvλ−1 as before. This describes the conical singularity of the
connection at the string world-sheet.

The BF phase space variables satisfy the standard commutation relations:

{Ea
i (x), Aj

b(y)} = δa
b δj

i δ(3)(x − y) (16)

{Ea
i (x), Eb

j (y)} = {Ai
a(x), Aj

b(y)} = 0. (17)

Concerning the string canonical variables, there are second class constraints
(this can be seen from the consistency conditions which say that the time
derivatives of (11) and (12) vanish).

They can be solved in a way analogous to the point particle case [6, 7]. As
in the latter, this leads to a convenient parametrization of the phase space of
the string in terms of the momentum πa

i and the “total angular momentum”
Ji = ck

ijq
j
aπa

k + σi. The Poisson brackets of these variables are given by

{πa
i (s), Jj(s′)} = ck

ijπ
a
k(s)δ(1)(s − s′) (18)

{Ji(s), Jj(s′)} = ck
ijJk(s)δ(1)(s − s′). (19)

It is important to calculate the Poisson bracket2

{Ji(s), λ(s′)} = −eiλ(s)δ(1)(s − s′). (20)

The string variables are still subject to the following first class constraints:

tr[eiλzλ−1]J i = 0 (21)

tr[πaλzλ−1] = τ
∂xa

∂s
tr[vz], (22)

2The presence of second class constraints in the phase space of the string means that
instead of the standard Poisson bracket one should use the appropriate Dirac bracket.
However, due to the fact that both πa

i and Ji commute with the constraints, the Dirac
bracket and the standard Poisson bracket coincide for the previous two equations as well
as for the following one.
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where z ∈ g is such that [z, v] = 0. The last constraint is the generalization
of the mass shell condition for point particles in three-dimensional gravity.

The Poisson bracket of the string variables with the BF variables is trivial,
as well as the Poisson brackets among the πa

i . In the next section, we
shall find a representation of the previous variables as self-adjoint operators
acting on an auxiliary Hilbert space Haux. The constraints above will also
be quantized and imposed on Haux in order to construct the physical Hilbert
space Hphys.

2 Quantization

The auxiliary Hilbert space has the tensor product structure

Haux = HBF ⊗ HST,

where HBF and HST are the BF theory and string auxiliary Hilbert spaces,
respectively. In the following two subsections, we describe the construc-
tion of such Hilbert spaces; in the third we define the so-called kinematical
Hilbert space Hkin by quantizing and imposing all the constraints but the
curvature constraint (15). In the last subsection, we sketch the definition of
the physical Hilbert space.

2.1 The BF auxiliary Hilbert space

When the group G is compact, we may quantize the BF theory degrees of
freedom just as in standard loop quantum gravity. For this reason, we only
provide a quick review of how to construct the relevant Hilbert space. A
detailed description of this construction can be found in [8].

Briefly, the auxiliary Hilbert space for BF theory, HBF, is given by
L2(Ā, μ) where Ā is a certain completion of the space A of smooth con-
nections on P , and μ is the standard gauge- and diffeomorphism-invariant
measure on Ā. A bit more precisely, the construction goes as follows.

One starts from a certain algebra CylBF of so-called “cylinder functions”
of the connection A. The basic building blocks of this algebra are the
holonomies hγ(A) ∈ G of A along paths γ in the manifold Σ representing
space:

hγ(A) = P exp
(

−
∫

γ
A

)
(23)
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where P stands for the path-ordered exponential. An element of CylBF is a
function

Ψγ,f : A −→ C,

where γ is a finite directed graph embedded in Σ and f : Gm → C is any
continuous function, m being the number of edges of γ. This function Ψγ,f

is given by

Ψγ,f (A) = f(h1(A), . . . , hm(A)) (24)

where hi(A) is the holonomy along the ith edge of the graph γ and m is the
number of edges.

Given any larger graph γ′ formed by adding vertices and edges to γ,
the function Ψγ,f equals Ψγ′,f ′ for some continuous function f ′ : Gm′ → C,
where m′ is the number of edges of γ′. Using this fact, we can define an
inner product on cylinder functions. Given any two elements of CylBF, we
can write them as Ψγ,f and Ψγ,g where γ is a sufficiently large graph. Their
inner product is then defined by:

〈Ψγ,f , Ψγ,g〉 =
∫

Gm

f(h1, . . . , hm) g(h1, . . . , hm) dh1 · · · dhm (25)

where dhi is the normalized Haar measure on G.

The auxiliary Hilbert space HBF is defined as the Cauchy completion of
CylBF under the inner product in (25). Using projective techniques it has
been shown [8] that HBF is also the space of square-integrable functions
on a certain space Ā containing the space A of smooth connections on
Σ. Elements of Ā are called “generalized connections”. The measure μ
in equation (25) is actually a measure on Ā, and we have HBF = L2(Ā, μ).
In other words, we have

〈Ψγ,f , Ψγ,g〉 =
∫

Ā
Ψγ,f (A) Ψγ,g(A) dμ(A). (26)

The (generalized) connection is quantized by promoting the holonomy (23)
to an operator acting by multiplication on cylinder functions as follows:

ĥγ(A)Ψ(A) = hγ(A)Ψ(A) . (27)

It is easy to check that this defines a self-adjoint operator on HBF. Similarly,
the conjugate momentum Ea

j is promoted to a self-adjoint operator val-
ued distribution that acts by differentiation on smooth cylinder functions,
namely:

Êa
j = −i

δ

δAj
a

. (28)
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Next, one can introduce an orthonormal basis of states in HBF using
harmonic analysis on the compact group G. Thanks to the Peter–Weyl
theorem, any continuous function f : G → C can be expanded as follows:

f(g) =
∑

ρ∈Irrep(G)

〈fρ, ρ(g)〉. (29)

Here, Irrep(G) is a set of unitary irreducible representations of G con-
taining one from each equivalence class. For any g ∈ G, a representation
ρ ∈ Irrep(G) gives a linear transformation ρ(g) : Hρ → Hρ for some finite-
dimensional Hilbert space Hρ. We may think of ρ(g) as an element of the
Hilbert space Hρ ⊗ H∗

ρ . The “Fourier component” fρ is another element of
H ⊗ H∗, and 〈fρ, ρ(g)〉 is their inner product.

The straightforward generalization of this decomposition to functions
f : Gm → C allows us to write any cylindrical function (24) as:

Ψγ,f (A) =
∑

ρ1,...,ρm∈Irrep(G)

m∏
i=1

〈fρi , ρi(hi(A))〉, (30)

where the “Fourier component” fρi associated to the ith edge of the graph
γ is an element of Hρi ⊗ H∗

ρi
. We call the functions appearing in this sum

open spin networks. A general open spin network is of the form

Ψ
γ,�ρ, �f

(A) =
m∏

i=1

〈fρi , ρi(hi(A))〉. (31)

Here, �ρ is an abbreviation for the list of representations (ρ1, . . . , ρm) labelling
the edges of the graph, and �f is an abbreviation for the tensor product
fρ1 ⊗ · · · ⊗ fρm . Note that Ψ

γ,�ρ, �f
depends in a multilinear way on the vectors

fρi , so it indeed depends only on their tensor product �f .

2.2 The string auxiliary Hilbert space

The auxiliary Hilbert space for the string degrees of freedom, HST, is
obtained in an analogous fashion. Just as we built the auxiliary Hilbert
space for BF theory starting from continuous functions of the connection’s
holonomies along edges in space, we build the space HST starting from con-
tinuous functions of the λ field’s values at points on the string. This space
HST can be described as L2(Λ̄, μST), where Λ̄ is a certain completion of the
space of G-valued functions on the string S , and μST is the natural measure
on this space (see for instance [9]).
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To achieve this, we first define an algebra CylST of “cylinder functions”
on the space of λ fields, Λ = C∞(S , G). An element of CylST is a function

Φp,f : Λ −→ C,

where p = {p1, . . . , pn} is a finite set of points in S and f : Gn → C is any
continuous function. This function Φp,f is given by

Φp,f (λ) = f(λ(p1), . . . , λ(pn)). (32)

As in the previous section, if p′ is a finite set of points in S with p ⊂
p′, then the function Φp,f is equal to Φp′,f ′ for some continuous function
f ′ : Gn′ → C. This lets us define an inner product on CylST. Given any
two cylinder functions, we can write them as Φp,f and Φp,g, where p is a
sufficiently large finite set of points in S . We define their inner product by

〈Φp,f , Φp,g〉 =
∫

Gn

f(h1, . . . , hn) g(h1, . . . , hn) dh1 · · · dhn (33)

where dhi is the normalized Haar measure on G. One can check that this is
independent of the choices involved.

The auxiliary Hilbert space HST is then defined to be the Cauchy com-
pletion of CylST under this inner product. Using projective techniques [9] it
has been shown that HST is L2(Λ̄, μST) for some measure μST on a certain
space Λ̄ containing the space Λ:

〈Φp,f , Φp,g〉 =
∫

Λ̄
Φγ,f (λ) Φγ,g(λ) dμST(λ). (34)

In fact, Λ̄ is just the space of all functions λ : S → G. Though very large,
this is actually a compact topological group by Tychonoff’s theorem, and
μST is the Haar measure on this group.

The field λ is quantized in terms of operators acting by multiplication
in HST. Therefore, the wave functional Φ(λ) gives the momentum repre-
sentation of the quantum state of the string. More precisely, in this rep-
resentation the momentum operator πa

i = τ(∂xa)/(∂s)tr[eiλvλ−1] acts by
multiplication, namely:

π̂a
i (λ)Φ(λ) = τ

∂xa

∂s
tr[eiλvλ−1]Φ(λ). (35)

It is easy to check that the momentum operator is self-adjoint on HBF.
According to (20), the “total angular momentum” Ji ≡ ck

ijq
j
aπa

k + σi is
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promoted to a self-adjoint operator-valued distribution that acts as a deriva-
tion, namely

J j = −i
δ

δλj
. (36)

An application of harmonic analysis on the group G, analogous to what
was done in the previous section, lets us write any cylinder function (32) as

Φp,f (λ) =
∑

ρ1,...,ρn∈Irrep(G)

n∏
i=1

〈fρi , ρi(λ(pi))〉, (37)

where ρi runs over irreducible unitary representations of G on finite-
dimensional Hilbert spaces Hρi , and the “Fourier component” fρi is an
element of Hρi ⊗ H∗

ρi
. We call the functions appearing in the sum n-point

spin states. A typical n-point spin state is of the form

Φ
p,�ρ, �f

(λ) =
n∏

i=1

〈fρi , ρi(λ(pi))〉. (38)

Here, �ρ is an abbreviation for the list of representations (ρ1, . . . , ρn) labelling
the points in p, and �f is an abbreviation for the tensor product fρ1 ⊗ · · · ⊗ fρn .

We hope the strong similarity between the BF and string auxiliary Hilbert
spaces is clear. The only real difference is that the A field assigns group
elements to edges, while the λ field assigns group elements to points. So,
we need one-dimensional spin networks to describes states of BF theory, but
their zero-dimensional analogues for the λ field.

2.3 The kinematical Hilbert space

The next step in the Dirac program is to implement the first class constraints
found above as operator equations in order to define the physical Hilbert
space. Here, we implement the constraints (14), (21), and (22). The states
in the kernel of these quantum constraints define a proper subspace of Haux
that we call the kinematical Hilbert space

Hkin ⊂ Haux = HBF ⊗ HST.

The implementation of the remaining curvature constraint (15) (which also
implies (13)) will be discussed in the next subsection.

The constraint (22) is automatically satisfied. This can be easily checked
using the fact that one is working in the momentum representation where
equation (35) holds.
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The Gauss constraint (14) acts on the connection A generating gauge
transformations g ∈ C∞(Σ, G) whose action transforms the holonomies
along edges of any graph as follows:

he(A) �−→ g(s(e))he(A)g(t(e))−1 (39)

where s(e), t(e) ∈ Σ are the source and target vertices of the edge e, respec-
tively. As a result, such gauge transformations act on open spin networks
in HBF as follows:

n∏
i=1

〈fρi , ρi(hi(A)〉 �−→
n∏

i=1

〈fρi , ρi(g(s(ei))hi(A)g(t(ei))−1)〉. (40)

Such gauge transformations also act on the λ field:

λ �−→ gλ, (41)

so they act on n-point spin states in HST as follows:

n∏
i=1

〈fρi , ρi(λ(pi))〉 �−→
n∏

i=1

〈fρi , ρi(g(pi)λ(pi))〉. (42)

Combining these representations, we obtain a unitary representation of the
group C∞(Σ, G) on Haux = HBF ⊗ HST. Gauge-invariant states are those
invariant under this action.

A spanning set of gauge-invariant states can then be constructed in anal-
ogy with the known construction for three-dimensional quantum gravity
coupled to point particles [3]. We form such states by taking the tensor
product of an open spin network Ψ

γ,�ρ, �f
and an n-point spin state Φ

p,�ρ′, �f ′ .
Such a tensor product state will be invariant under the action of C∞(Σ, G)
if we:

(1) Require the graph γ for the open spin network to have vertices that
include the points {p1, . . . , pn} forming the set p.

(2) Associate an intertwining operator to each vertex v of the graph γ as
follows:

(a) If the vertex v is not on the string, then choose an intertwining
operator

ιv : ρi1 ⊗ · · · ⊗ ρit −→ ρj1 ⊗ · · · ⊗ ρjs ,

where i1, . . . , it are the edges of γ whose target is v, and j1, . . . , js

are the edges of γ whose source is v.
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(b) If the vertex v is on the string, it coincides with some point pk ∈ p.
Then choose an intertwining operator

ιv : ρi1 ⊗ · · · ⊗ ρit −→ (ρj1 ⊗ · · · ⊗ ρjs) ⊗ ρ′
k,

where ρ′
k is the representation labelling the point pk in the n-point

spin state Φ
p,�ρ′, �f ′ .

(3) Tensor all the intertwining operators ιv. The result is an element of
m⊗

i=1

(Hρi ⊗ H∗
ρi

) ⊗
n⊗

i=1

(Hρ′
i
⊗ H∗

ρ′
i
).

Demand that this equals �f ⊗ �f ′. This fixes our choice of �f for the open
spin network and �f ′ for the n-point spin state.

One can check that such states actually span the space of states in H that
are invariant under gauge transformations in C∞(Σ, G). So, we have solved
the Gauss constraint.

Finally, constraint (21) generates gauge transformations

λ �−→ λh (43)

for any h ∈ C∞(S , H), where H ⊆ G is the subgroup stabilizing the vector
v. These transformations are unitarily represented on HST. The gauge
transformation h acts on n-point spin functions as follows:

n∏
i=1

〈fρi , ρi(λ(pi))〉 �−→
n∏

i=1

〈fρi , ρi(λ(pi)h(pi))〉. (44)

We can find n-point spin functions Φ
p,�ρ′, �f ′ that are invariant under these

transformations by choosing the vectors �f ′ in such a way that each vector
f ′

ρ′
j

is invariant under the action of the group H.

We call the resulting states Ψ
γ,�ρ, �f

⊗ Φ
p,�ρ′, �f ′ string spin networks. They

span Hkin. A typical string spin network state appears in figure 1. The
interplay between the quantum degrees of freedom in the “bulk” and those
on the string (or membrane, in the general setting of the next section) is
reminiscent of that appearing in the loop quantization of the degrees of
freedom of an isolated horizon in loop quantum gravity [10].

2.4 The physical Hilbert space

In order to construct the physical Hilbert space Hphys, we have to impose
the remaining curvature constraint (15). This can be achieved by an appli-
cation of the techniques developed in [3]. The physical inner product can be
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e

x

Figure 1: A typical string spin network. The Gauss law implies that if a
single spin network edge e ends at some point x on the string, the represen-
tation ρe is evaluated on the product of the associated holonomy he(A) and
the value of the λ field at x.

represented as a sum over spin foam amplitudes, which are a simple gener-
alization of the amplitudes in three dimensions. The associated state sum
invariants can be directly derived from the canonical perspective presented
here. The details of the construction will be provided elsewhere.

3 The general case: membranes coupled to BF theory

Let us now describe the phase space of the general case in detail. Recall that
G is a general Lie group with Lie algebra g equipped with an invariant inner
product. Performing the canonical analysis along the same lines as in Sec-
tion 1 one obtains Ea

i = εaa1···ad−2Bia1···ad−2 as the momentum canonically
conjugate to Ai

a, where as before i labels a basis ei of g. The momentum
canonically conjugate to qi

a is given by

π
a1···ad−3
i = τ

∂x[a1

∂s1

∂xa2

∂s2
· · · ∂xad−3]

∂sd−3
tr[eiλvλ−1],

where t, s1, . . . , sd−3 are local coordinates on the membrane world-sheet.
The Gauss law now becomes

DaE
a
i =

∫
B

ck
ijq

j
a1···ad−3

π
a1···ad−3
k δ(d−1)(x − xB), (45)

where B denotes the brane, i.e., the intersection of the membrane world-
sheet W with Σ. The curvature constraint becomes

εa1···ad−3bcFibc = −
∫

B
π

a1···ad−3
i δ(d−1)(x − xB). (46)
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We also have
Daπ

aa1···ad−4
i = 0. (47)

There are additional constraints for the degrees of freedom of the (d − 3)-
branes, namely

tr[eiλzλ−1]J i = 0 where Ji ≡ ck
ijq

j
a1···ad−3

π
a1···ad−3
k + σi (48)

and

tr[πa1···ad−3λzλ−1] = τ
∂x[a1

∂s1

∂xa2

∂s2
· · · ∂xad−3]

∂sd−3
tr[vz], (49)

for [z, v] = 0.

The quantization of the general d-dimensional BF theory coupled to
(d − 3)-branes can be achieved by following an essentially analogous path
as the one described in detail for four-dimensional BF theory coupled to
strings. As long as the gauge group G is compact, the techniques used in
the construction of the auxiliary Hilbert spaces as well as the definition of
the kinematical Hilbert space and finally the physical Hilbert space can be
directly generalized. In particular, the kinematical Hilbert space is spanned
by membrane spin networks, which generalize the string spin networks of
the four-dimensional case.

4 Conclusions

There are formulations of gravity in four dimensions that are closely related
to BF theory. The results presented here could lead to natural candidates
for the introduction of matter in those models. Examples of interest are
the MacDowell–Mansouri formulation of gravity [13], which is a perturbed
version of BF theory with gauge group SO(3,2), SO(4,1) or SO(5) depending
on the signature of the metric and sign of the cosmological constant. Another
interesting approach to gravity is the Plebanski formulation, obtained by
imposing extra constraints on BF theory with gauge group SO(3,1) or SO(4).
The well-known Barrett–Crane model [14] is a tentative quantization of this
theory. At least classically, the BF theories associated to all these theories
can be coupled to strings using the techniques developed here.

When the gauge group G is compact, we can also quantize these theo-
ries. However, for Lorentzian models G is typically not compact. In the
noncompact case, it seems that there is no good measure on the space of
generalized connections, which precludes the construction of the auxiliary
Hilbert spaces used above. The main obstacle is the non-normalizability of
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the Haar measure. As long as G is “unimodular” i.e., as long as it admits
a measure invariant under both right and left translations, as in all the
examples mentioned above — formulas (25) and (33) can still be given a
meaning on a fixed graph [11]. However, it is no longer possible to promote
this inner product to an inner product on cylindrical functions [12]. One
can still attempt to deal with the theory in a more restricted setting by
defining it on a fixed cellular decomposition of spacetime and then showing
that physical amplitudes are independent of this choice. This is expected
for topological theories such as the ones defined here, but the study of these
models still presents interesting challenges.

Another subtlety of the noncompact case is that while the Lie algebra g

may still admit an invariant nondegenerate inner product, this inner product
typically fails to be positive definite. Indeed, this happens for all noncom-
pact semisimple groups, such as SO(p, q) for p + q > 2. This affects the
interpretation of the action (6) for our theory. Recall that we imposed the
normalization condition v · v = 1 for the vector v ∈ g. We used this condition
to give a meaning to the tension parameter τ , but the action only depends
on the combination p = τλvλ−1. As we have seen in the four-dimensional
case, the field p has a simple meaning: the holonomy of the connection A
around any small loop encircling the membrane world-sheet is exp(−p) ∈ G.
The same is true in any dimension.

This suggests a simpler action:

S(A, B, q, p) =
∫

M
tr[B ∧ F (A)] +

∫
W

tr[(B + dAq) p], (50)

where p is a g-valued function on the world-sheet W which under the gauge
transformations (7) transforms in the adjoint representation: p �→ gpg−1.
One can check that the equations of motion still imply A is flat except at
points on W . If W is connected, this implies that the holonomy around
any small loop encircling the world-sheet is in the same conjugacy class. As
before, the holonomy around an infinitesimal loop around some point x ∈ W
is exp(−p(x)). It follows that p remains in the same adjoint orbit over the
whole world-sheet. So, we can write p as τλvλ−1 for some fixed vector v ∈ g

and some G-valued field λ on the world-sheet.

When the inner product on g is positive definite, we can then fix τ by
normalizing v to have v · v = 1. However, when the inner product is not
positive definite, the new action (50) is more general than the old one, even
for a connected world-sheet, since it allows the momentum density of the
membrane to be space-like (p · p > 0) or null (p · p = 0), as well as time-
like (p · p < 0). One can check that with this new action, the canonical
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analysis of Section 1 requires only mild modifications, and the kinematical
construction of the quantum theory presented in Section 2 can still be used,
with the precautions described above for noncompact Lie groups.

It will be interesting to carry out the study of four-dimensional BF
theory coupled to strings in analogy to what has already been done for
three-dimensional gravity coupled to point particles. For example, point
particles in three-dimensional gravity are known to obey exotic statistics
governed by the braid group. Similarly, we have argued in the companion to
this paper that strings coupled to four-dimensional BF theory obey exotic
statistics governed by the “loop braid group” [5]. In that paper, we studied
these statistics in detail for the case G = SO(3, 1), but we treated the strings
merely as gauge defects. It would be good to study this issue more carefully
with the help of the framework developed here.
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