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Abstract

We show that type IIB string theory on AdS3 × S3 × M4 with p units
of NS flux contains an integrable subsector, isomorphic to the minimal
(p, 1) bosonic string. To this end, we construct a topological string theory
with target space Euclidean AdS3 × S3. We use a variant of Hamiltonian
reduction to prove its equivalence to the minimal (p, 1) string. The topo-
logical theory is then embedded in the physical 10-dimensional IIB string
theory. Correlators of tachyons in the minimal string are mapped to cor-
relators of spacetime chiral primaries in the IIB theory, in the presence
of background 5-form RR flux. We also uncover a ground ring structure
in AdS3 × S3 analogous to the well-known ground ring of the minimal
string. This tractable model provides a literal incarnation of the idea that
the holographic direction of AdS space is the Liouville field. We discuss
a few generalizations; in particular, we show that the N = 4 topological
string on an Ap−1 ALE singularity also reduces to the (p, 1) minimal
string.
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1 Introduction and summary

Exactly solvable models have played an important historical role in physics.
In string theory, topological strings and strings in low dimensions are two
related classes of models often amenable to exact treatment. Apart from
their intrinsic value as tractable toy models, topological strings can also
be embedded in physical superstring theories; the topological observables
correspond to a subsector of BPS quantities of the physical theory. The
best known examples are type II compactifications on Calabi–Yau 3-folds,
where the topological string of the Calabi–Yau computes certain F -terms of
the four-dimensional effective action [1, 2].

It is of great interest to extend these ideas to backgrounds involving an
Anti-de Sitter factor, with the prospect of obtaining new insights into the
AdS/CFT correspondence and the workings of open/closed duality. Recent
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results [3–5] about 1/2 BPS configurations in AdS spaces and their dual
field theories are strongly suggestive of a topological string structure. In
fact there is a natural class of exactly solvable models that seem tailor-made
to be embedded into backgrounds of the form AdS × X, for X a compact
manifold: the string theories defined by coupling (minimal) c ≤ 1 matter to
gravity. Computations of special BPS quantities should be captured by the
topological string on AdS × X. Moreover — one is tempted to speculate —
the AdS factor of the topological sigma model may be replaced by Liouville
CFT, whereas the X factor may reduce to c ≤ 1 matter.

In this paper, we show that this general guess is precisely realized in what
is, in some technical sense, the simplest AdS background: IIB string theory
on AdS3 × S3 × M4, with p units of NS flux. This well-known background
arises as the near horizon geometry of Q1 fundamental strings and Q5 ≡ p
NS5 branes wrapping the four-manifold M4, which can be either K3 or T 4. In
this concrete example, the worldsheet description is under complete control
[6] and we can carry out a very explicit analysis. We are going to prove
that the B-model with target space (Euclidean) AdS3 × S3 is equivalent to
the (p, 1) bosonic string, to all orders in the topological genus expansion.
This equivalence could be phrased as “taking seriously” the SL(2) current
algebra in the KPZ description [7] of worldsheet gravity for the minimal
string: the SL(2) is given a literal spacetime interpretation as the AdS3
factor of the sigma model. Similarly, the minimal matter is carved out
of the SU(2) current algebra for the S3 factor of the sigma model. As
in the Calabi–Yau case, the topological theory can be viewed as a BPS
subsector of the physical theory. Special correlators of chiral primaries in
the IIB theory, in the presence of background 5-form RR flux, are thus
reduced to computations in the minimal (p, 1) string. We hasten to add
that the minimal (p, 1) theory considered in this paper is not quite the same
as the purely topological theory discussed, e.g., in [8–10] and which can be
realized as an N = 2 minimal model coupled to topological gravity. This
latter theory only captures the “resonant” Liouville amplitudes of the (p, 1)
minimal string.

We are actually going to base our technical analysis on the Euclidean
version of AdS3, the hyperbolic space H+

3 , since the topological theory
seems more naturally defined on an Euclidean manifold. The supersym-
metric sigma model on H+

3 × S3 consists of an SU(2)p−2 WZW model for
the sphere, of an SU(2)−p−2 WZW model for the hyperbolic space, and of six
real free fermions [6]. We define the topological string theory by the usual
procedure of twisting the (2, 2) worldsheet supersymmetry. The A-model
turns out to be trivial, so we focus on the B-model. Because of the special
symmetries of this theory, four of the six coordinates are redundant — the
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two “transverse” coordinates along the boundary of H+
3 and two of the S3

coordinates. Indeed, the structure of the BRST operator of the topologi-
cal theory is such that these coordinates and four of the free fermions fill
two “bcβγ quartets”, which can be argued to decouple. The reduced the-
ory is identical to the (p, 1) bosonic string: The remaining S3 coordinate
provides a Coulomb gas description of the (p, 1) matter; the “holographic”
coordinate of H+

3 becomes the Liouville field; and the two remaining free
fermions transmute into the diffeomorphism ghosts of the bosonic string.
We demonstrate the equivalence at the full quantum level, showing that the
rules for computation of string amplitudes inherited from the B-model are
the expected ones.

A precise dictionary describes the embedding of the minimal string into
IIB string theory on H+

3 × S3 × M4:

• The tachyons of the minimal string map to universal 1/2 BPS opera-
tors in H+

3 × S3, which are (chiral, chiral) both on the worldsheet and
in spacetime. By “universal” we mean independent of the details of
M4. The condition of being chiral in spacetime says that their angular
momentum j around a preferred axis of the S3 equals the spacetime
conformal dimension h. These states can be organized in a sequence
with increasing h = j quantum number, with h = (n − 1)/2, one state
for each integer n ≥ 1, n �= 0 mod p (see figure 2 in Section 4.4).
The first p − 1 of them are constructed in H+

3 × S3 by combining
conventional primaries of the two current algebras, and map to the
“small phase space” of the minimal theory. The higher states are
constructed using the operation of “spectral flow” – they are long
string states that are supported on worldsheets that wrap the bound-
ary of H+

3 multiple times — and map to the “gravitational descen-
dants” of the minimal theory. Every pth state is missing both in
the minimal string and in the IIB theory. This is natural from the
viewpoint of the p-KdV hierarchy, where every pth flow parameter is
redundant.

• Besides the tachyons, which carry ghost number one, the minimal
string has non-trivial cohomology elements at ghost number zero.
These states form the so-called ground ring and are the hallmark of
integrability of the model. The ground ring lifts to an analogous ring
structure in the IIB theory. We find non-trivial cohomology classes
in H+

3 × S3, carrying zero ghost number with respect to the ghosts
of the 10d superstring. The appearance of the ground ring structure
follows from the fact that the ŝu(2)p−2 current algebra representations
are degenerate: imitating the construction of [11–14], each primitive
null over an ŝu(2)p−2 primary gives rise to a ground ring state; the H+

3
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sector provides the “gravitational dressing”. In principle, it should be
possible to organize calculations of 1/2 BPS amplitudes in the IIB
theory in terms of ring multiplication rules, in analogy with the calcu-
lations in the minimal string [15]. We expect ground ring structures to
be ubiquitous in supersymmetric backgrounds of the form AdS × X,
though demonstrating their existence from a worldsheet viewpoint as
we do here may be possible only in special cases.

• Finally, D-branes of the minimal string must correspond to supersym-
metric B-branes in H+

3 × S3. We believe that the FZZT brane of the
minimal string lifts to the supersymmetric H+

2 × S2 brane discussed
in [16, 17], but we leave a detailed comparison for future work.

Our work should have implications for the AdS3/CFT2 correspondence.
The dual boundary CFT is a deformation of the symmetric product sigma
model SymQ1Q5(M4), and is not very well understood. It should be viewed
in some sense as the theory of the long strings that make up the geo-
metry before taking the near horizon limit. Thus the holographic corre-
spondence is not an instance of open/closed duality (that would be the
case for the S-dual D1/D5 background), and is rather more similar in spirit
to matrix string theory [18, 19]. For amplitudes of chiral primaries, we
are entitled to expect simplifications. Many details remain to be worked
out, but we describe the main idea that the computation of such ampli-
tudes can be reduced to a counting problem familiar from Hurwitz
theory.

Our results are connected with several ideas of current interest. In this
paper, we only begin to explore some of these relations:

• An obvious connection is with the “bubbling” AdS3 geometries of
[5, 20–22]. As in these works, we are focusing on 1/2 BPS states.
Moving in the small phase space of the minimal string corresponds to
exploring (a subset of) 1/2 BPS configurations in IIB that preserve
the H+

3 × S3 asymptotic boundary conditions. It would be inter-
esting to understand in detail the six-dimensional geometric inter-
pretation of the small phase space and of its Wp integrable
structure.

• The background H+
3 × S3 provides a “critical” (ĉ = 3) topological real-

ization of the (p, 1) theories. Recently another critical realization
of the (p, 1) models has been proposed, as the B-model on a target
Calabi–Yau related to the ground ring curve [23]. We conjecture
that the H+

3 × S3 sigma model is T-dual to this Calabi–Yau, in anal-
ogy with the T-duality between NS5 brane geometries and ALE
spaces [24].
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Figure 1: Web of relations centering on the (p, 1) model coupled to gravity.
In this paper, we focus on the two central boxes.

• The B-model on H+
3 × S3 is arguably the simplest critical topolo-

gical theory with torsion. It should provide a good testing ground
for the abstract framework of twisted generalized complex geometry
[25, 26].

• Besides the AdS3/CFT2 correspondence, we may also discuss open/clo-
sed duality. To this end, we need to introduce D-branes in the H+

3 × S3

background. The open string field theory on the FZZT branes of
the (p, 1) model reduces to a Kontsevich matrix model [27–31], while
the open string field theory on infinitely many decayed ZZ branes
corresponds to the doubled scaled matrix model [32, 33]. It would
be interesting to lift these statements to the superstring theory on
H+

3 × S3 × M4 (figure 1).

One can envision several generalizations of this work. In this paper, we
focus on the purely Neveu–Schwarz H+

3 × S3 background (apart from the
RR “graviphoton” 5-form flux needed to twist the theory). It is possible
to turn on additional self-dual 3-form RR flux in six dimensions while pre-
serving supersymmetry. An obvious question is whether this more general
background can be reduced to a minimal string. A simple speculation is
that the 3-form RR deformation corresponds to deforming the KdV hier-
archy into the mKdV hierarchy of complex matrix models. This amounts
to embedding the minimal bosonic theory into the 0A theory [34–36]. If
this guess is correct, the self-dual 3-form RR flux in six dimensions would
map to the RR background flux of the 0A theory. The natural framework
to investigate this issue is the hybrid formalism of [37]. Other interesting
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generalizations are to supersymmetric backgrounds of the form H+
3 × N ,

where N is a coset model. We briefly study the simple example H+
3 × S1

and show that it reduces to the c = 1 bosonic string at the self-dual radius.
In the final section, we consider the N = 4 topological string on an Ap−1
ALE singularity, and show that it can also be mapped to the (p, 1) minimal
string by the same reasoning used for AdS3 × S3.

The organization of the paper is as follows. In Section 2, the topological
theory on H+

3 × S3 is defined. In Section 3, we prove that this theory
reduces to the minimal string. In Section 4, we describe its embedding into
the physical theory. Section 5 contains some remarks on the holographic
correspondence. In Section 6, we comment on the relation to Calabi–Yau
spaces and discuss some generalizations. Appendix A contains some mathe-
matical details needed in the reduction of Section 3. In Appendix B, we
review the (p, q) minimal theories and spell out our viewpoint about the
(p, 1) models, which require special consideration.

Topological strings on AdS3 × N have previously been considered in [38].

2 Topological string theory on H +
3 × S3

In this section, we construct a topological string theory with target space
H+

3 × S3. We include a review of the worldsheet CFT and of its supersym-
metry structure.1

2.1 RNS description

We start with a brief summary of the RNS worldsheet description of super-
string theory with target space H+

3 × S3 [6]. We will fix the amount of NS
flux H for the remainder as

∫

S3
H = p . (2.1)

The bosonic sector of the CFT consists of two WZW models, one for
the sphere and one for the hyperbolic space. The S3 factor is described by an
ŝu(2) current algebra at level k = p − 2, with central charge

1The Mathematica package OPEdefs.m [39] was used to check some OPEs in this paper.
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3k/(k + 2) = 3 − 6/p. We denote the left-moving ŝu(2)p−2 generators by
j± = j1 ± ij2 and j3, with OPEs

j+(z) · j−(w) ∼ p − 2
(z − w)2

+
2 j3(w)
z − w

j3(z) · j±(w) ∼ ±j±(w)
z − w

j3(z) · j3(w) ∼ p − 2
2(z − w)2

. (2.2)

Similarly, we have right-moving generators j̃±(z̄), j̃3(z̄). The hyperbolic
space H+

3 is described by an SL(2,C)/SU(2) coset model at level p + 2,
equivalently by an ŝu(2) current algebra at level k′ = −p − 2, with central
charge 3k′/(k′ + 2) = 3 + 6/p. The total bosonic central charge of S3 × H+

3
is then six, as expected. We denote the left-moving ŝu(2)−p−2 generators by
k± = k1 ± ik2 and k3, with OPEs

k+(z) · k−(w) ∼ − p + 2
(z − w)2

+
2 k3(w)
z − w

k3(z) · k±(w) ∼ ±k±(w)
z − w

k3(z) · k3(w) ∼ − p + 2
2(z − w)2

. (2.3)

Similarly, for the right-moving generators k̃±(z̄), k̃3(z̄). It is convenient
to adopt a six-dimensional notation and introduce the symbol Ja with a =
1, . . . , 6 to denote all the (left-moving) currents:

Ja ≡ ja for a = 1, 2, 3

Ja ≡ ka−3 for a = 4, 5, 6. (2.4)

The fermionic sector of the CFT consists of the superpartners of the currents,
six free fermions λa(z), a = 1, . . . , 6. (Similarly, we have J̃a(z̄) and λ̃a(z̄).
In the following we shall usually avoid explicit mention of the right movers.)
Notice that the currents have lower indices and the fermions have upper
indices. This is a natural notation since the (zero modes of the) cur-
rents correspond to tangent vectors, while the (zero modes of the) fermions
correspond to one-forms.

Let us introduce a metric hab in this six-dimensional vector space:

hab =
1
2

(

p13×3 0
0 −p13×3

)

ab

(2.5)

The hab are the residues of the double poles of the currents, up to a shift by
δab (= half the dual Coxeter number of su(2)). The fermions are normalized
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to satisfy the following OPEs,

λa(z) · λb(w) ∼ hab

z − w
. (2.6)

In these notations, the stress tensor and supercurrent are given by the simple
standard expressions

G = Jaλ
a − 1

6
hcdf

d
abλ

aλbλc,

T =
1
2
(habJaJb + hab∂λaλb). (2.7)

Here f c
ab are the structure constants of su(2) ⊗ su(2). It is easy to check

that

G(z) · G(w) ∼ 6
(z − w)3

+
2T

z − w
. (2.8)

In particular, the central charge is ĉ = c/3 = 3.

2.2 (2,2) Structure

In order to define a topological string theory, we need to identify an extended
(2, 2) worldsheet supersymmetry. For the case at hand, there is a standard
construction that we now briefly review ([40], see also [41, 42]).2

The conditions for extended susy for a general σ-model with torsion H
are well known [43]. The target space manifold must admit two integrable
complex structures J±, the metric must be Hermitian with respect to both
complex structures, and J± must be covariantly constant, each with respect
to a different affine connection,

Γ±μ
ρν ≡ Γμ

ρν ± gμσHσρν (2.9)

∇±
ρ J μ

±ν = 0.

In the case of group manifolds, there is a canonical way to construct globally
defined almost complex structures J μ

±ν : start with a constant matrix J a
b

acting on the Lie algebra, and use the left and right group action to obtain,
respectively, J μ

−ν and J μ
+ν . The various conditions on J μ

±ν translate into
conditions for J a

b .

Let us see in more detail how this works. The left- and right-invariant
global vector fields Ja and J̃a on the group manifold are covariantly constant

2Readers willing to take on faith the basic definitions (2.13) can skip directly there.
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with respect to the two connections,3

∇−Ja = 0, ∇+J̃a = 0. (2.10)

Given a constant matrix J a
b acting on the Lie algebra and squaring to minus

one, we parallel-transport it in two different ways to give the two candidate
complex structures J μ

±ν , globally defined on the manifold,

J μ
−ν = Jμ

a J a
bJ

b
ν , J μ

+ν = J̃μ
a J a

b J̃
b
ν . (2.11)

The point of this construction is that the resulting J μ
ν are automatically

covariantly constant with respect to Γ±. The hermiticity condition for gμν

with respect to J μ
±ν translates into the hermiticity condition of the metric hab

on the Lie algebra with respect to J a
b . To express the integrability condition,

it is convenient to use J a
b to split the real indices a, b, . . . into holomorphic

indices i, j, . . . and antiholomorphic indices ī, j̄, . . .. Then the integrabil-
ity of J μ

±ν translates into the condition f k̄
ij = fk

īj̄
= 0; that is, holomorphic

and antiholomorphic generators form closed subalgebras. In summary, the
existence of (2, 2) supersymmetry on an even-dimensional group manifold is
associated to a decomposition of the complexified Lie algebra gc = g− ⊕ g+,
such that g± (the ±

√
−1 eigenspaces of J a

b) are subalgebras and are maxi-
mally isotropic with respect to the metric hab (this means hij = hīj̄ = 0).
The structure (gc, g−, g+) is called a Manin triple.

Finally, we are in the position to quote the general expressions for the
N = 2 supercurrents:

G+ = Jiλ
i − 1

6
fk

ijλ
iλjλk,

G− = J iλi − 1
6
f ij

k λiλjλ
k. (2.12)

Here we have used the Hermitian metric hij̄ to get rid of all antiholomorphic
indices by raising or lowering them. The decomposition of G = G+ + G−

hinges on the condition fijk = fīj̄k̄ = 0, that is, on the integrability of the
complex structures.

Let us now specify the choice of complex structure in our concrete exam-
ple. We just need to indicate how the the real Lie algebra indices a, b =
1, . . . , 6 split into holomorphic indices i, j = 1, 2, 3 antiholomorphic

3By a slight abuse of notation, here we use the symbols Ja, J̃a to denote the zero modes
of the current Ja(z), J̃a(z̄).



302 LEONARDO RASTELLI AND MARTIJN WIJNHOLT

ī, j̄ = 1, 2, 3. We choose

Jz1 = j− Jz2 = +k+ Jz3 = j3 + k3

Jz̄1 = j+ Jz̄2 = −k− Jz̄3 = j3 − k3. (2.13)

It is easy to check that this defines a Manin triple. This choice of complex
structure is essentially unique up to symmetries. For example, we could
apply the automorphisms k+ ↔ k−, k3 ↔ −k3, or j+ ↔ j−, j3 ↔ −j3, etc.,
which correspond to spacetime isometries. We make the choice (2.13) for
future convenience, since the (p, 1) string will arise with a minimum amount
of field redefinitions. The fermions with holomorphic and antiholomorphic
indices are defined as

λz1 =
1
2
(λ1 + iλ2) λz2 = +

1
2
(λ4 − iλ5) λz3 =

1
2
(λ3 + λ6),

λz̄1 =
1
2
(λ1 − iλ2) λz̄2 = −1

2
(λ4 + iλ5) λz̄3 =

1
2
(λ3 − λ6). (2.14)

The metric on the Lie algebra takes the form

hij̄ = p δij̄ , hij = hīj̄ = 0, (2.15)

which is manifestly Hermitian. Specializing (2.12) to our case, we obtain
the following N = 2 structure

T =
1
2p

(2j3j3 + j+j− + j−j+ − 2k3k3 − k−k+ − k+k−)

+
1
2
(

∂cibi − ci∂bi

)

G+ = c1(j−) + c2(k+) + c3(j3 + k3 + c1b1 − c2b2)

G− =
1
p

(

b1j+ − b2k− + b3(j3 − k3 + c2b2 + c1b1)
)

J = cibi − 2
p
J tot

3 (2.16)

with

J tot
3 ≡ j3 + k3 + c1b1 − c2b2 = {G+

0 , b3}. (2.17)

We have renamed the fermions as ci ≡ λi and bi ≡ λi, which will be a useful
notation. From now on, we shall never lower or raise indices: bi (ci) will
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consistently have lower (upper) indices. They satisfy the OPEs

bi(z) c j(w) ∼ δj
i

z − w
. (2.18)

In fact there is a whole family of N = 2 structures generalizing (2.16),

T =
1
2p

(2j3j3 + j+j− + j−j+ − 2k3k3 − k−k+ − k+k−)

+
1
2
(

∂cibi − ci∂bi

)

+
κ

2p
∂J tot

3

G+ = c1(j−) + c2(k+) + c3(j3 + k3 + c1b1 − c2b2)

G− =
1
p

(

b1j+ − b2k− + b3(j3 − k3 + c2b2 + c1b1) + κ∂b3
)

J = cibi +
κ − 2

p
J tot

3 . (2.19)

A preferred value of the parameter κ will emerge when we discuss the reduc-
tion to the minimal string, but it will be useful to maintain the explicit κ
dependence.

2.3 Twisting

The next step is to twist the (2, 2) structure [44]. There are four choices.
We can twist T either to T + 1

2∂J or to T − 1
2∂J, and similarly for the right

movers. We will focus on the B-model with (+, +) twist, which will be shown
to be equivalent to the minimal string. There is no obstruction in defining
the B-model because the worldsheet fermions are free, and the axial cur-
rent is manifestly non-anomalous. The A-model will turn out to be trivial.
We hasten to add that because of the torsion, one’s usual geometric intu-
ition about observables in the A- and B-models does not readily apply. In
particular B-model amplitudes generically receive quantum corrections [45].

Using this topological sigma model, we define a string theory by “coupling
it to topological gravity”. In practice, one can ignore the topological gravity
multiplet and compute amplitudes using an analogy with the bosonic string,
as we now schematically review. The analogy is

T +
1
2
∂J −→ T

G+ −→ JBRST

G− −→ B

J −→ Jghost. (2.20)
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Here T , JBRST, B, and Jghost are the usual stress tensor, BRST current,
antighost, and ghost number current of the bosonic string. It is possible to
add improvement terms to JBRST and Jghost such that T , JBRST, B, and
Jghost generate precisely a twisted N = 2 algebra [46].

The physical states of the topological theory are cohomology classes of
G+

0 , that is, chiral primaries of the worldsheet N = 2 algebra. If the N = 2
algebra is unitary, chiral primaries are automatically annihilated by G−

0 .
In our case, the N = 2 algebra is not unitary. As in the bosonic string,
proper care must be taken in combining left and right movers to form closed
string states: the closed-string Hilbert space is defined as the semi-relative
cohomology of of Q ≡ G+

0 + Ḡ+
0 , which is the Q-cohomology on the complex

of states annihilated by G−
0 − Ḡ−

0 ,

HHilbert = HQ(KerG−
0 −Ḡ−

0
). (2.21)

The measure on the moduli space of Riemann surfaces is given by insertions
of G− contracted with quadratic differentials,

G−(μk) =
∫

d2z G−
zz μz

k z̄. (2.22)

Using the substitution (2.20), one defines string amplitudes for genus g > 1
through the formula

Fg(t) =

〈3g−3
∏

j=1

|G−(μj)|2 e
∑

i ti
∫

d2z G−
−1Ḡ−

−1φi

〉

. (2.23)

Here {φi} are (unintegrated) physical vertex operators, and absolute values
squared denote contributions from left and right movers. For genus zero,
there is a similar formula, except that we must absorb Killing vectors fixing
the position of three vertex operators,

∂i∂j∂kF0(t) =
〈

φiφjφke
∑

l tl
∫

d2z G−
−1Ḡ−

−1φl
〉

. (2.24)

Finally, the genus one amplitude is often presented in the operator
formalism,

F1 =
1
2

∫

d2τ

Im(τ)
Tr

[

(−1)fL+fRfLfR qL0− 1
2J0 q̄L̄0− 1

2 J̄0
]

, (2.25)

where q = e2πiτ and f is the worldsheet fermion number.
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Analogy (2.20) will be an important guiding principle in relating our
topological theory to the minimal string.

3 Reduction to the minimal string

We are now going to argue that the topological string theory on H+
3 × S3

is equivalent to the minimal (p, 1) string theory. To this end, it is useful to
use a free field representation for H+

3 × S3.

3.1 Wakimoto representation

There is a well-known free-field realization of the ŝu(2) current algebra in
terms of a linear dilaton and of a first-order (β, γ) system of dimensions
(1, 0). All in all, we introduce two (β, γ) systems and two linear dilaton
fields ϕ and x with central charges cϕ = 1 + 6/p and cx = 1 − 6/p. The
OPEs read (notice that we take α′ = 1)

βL(z)γL(w) ∼ − 1
z − w

, ϕ(z)ϕ(w) ∼ −1
2

log(z − w),

βM (z)γM (w) ∼ − 1
z − w

, x(z)x(w) ∼ −1
2

log(z − w). (3.1)

For S3, we represent the ŝu(2)p−2 current algebra as

j+ = βM

j3 = +γMβM + i
√

p∂x

j− = −γ2
MβM − i2

√
pγM∂x − (p − 2)∂γM . (3.2)

Similarly for H+
3 , we write the ŝu(2)−p−2 algebra as

k+ = βL

k3 = γLβL − √
p∂ϕ

k− = −γ2
LβL + 2

√
pγL∂ϕ + (p + 2)∂γL. (3.3)

As we will see in more detail in Section 4, the variables {eϕ, γL, γ̄L} are
closely related to the Poincaré coordinates for H+

3 . Substituting in the
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(untwisted) stress tensor (2.16) yields

Tj + Tk =
1
2p

(2j3j3 + j+j− + j−j+ − 2k3k3 − k−k+ − k+k−)

= −(∂x)2 − i
√

p
∂2x − (∂ϕ)2 − 1

√
p
∂2ϕ

− βM∂γM − βL∂γL. (3.4)

The free-field representation must be supplemented with appropriate screen-
ing charges. For S3, the screeners are

QM
− =

∮

dz βM e−2ix/
√

p

QM
+ =

∮

dz β−p
M e+2i

√
px, (3.5)

while for H+
3 ,

QL
− =

∮

dz βL e−2ϕ/
√

p

QL
+ =

∮

dz βp
L e−2

√
pϕ. (3.6)

Let us briefly review the free-field resolution [47] of the irreducible ŝu(2)
modules, focusing on the S3 factor. We introduce the Fock spaces Fm,n,
obtained by acting with oscillators on the vacuum of x-momentum px =
m−1
2
√

p + (1−n)
√

p
2 ,

Fm,n ≡ Span{β−i1 · · ·β−iα γ−j1 · · · γ−jβ
a−k1 · · ·

a−kγ e((2i(m−1)+2i(1−n)p)/2
√

px)|0〉 }. (3.7)

Here the an’s are the usual oscillators for the field x, i∂x(z) =
∑

n anz−n+1,
and |0〉 is the SL(2) invariant vacuum. Irreducible representations of
ŝu(2)p−2 are labeled by a semi-integer spin j, with 0 ≤ j ≤ p/2 − 1. For
a given j in this range, consider the sequence

· · ·
Q2j+1

−−−−−−→ F2p−2j−1,1
Qp−2j−1

−−−−−−→ F2j+1,1
Q2j+1

−−−−−→ F−2j−1,1
Qp−2j−1

−−−−−−→ · · · (3.8)

This defines a complex, i.e., (QM
F )2 = 0, where the symbol QM

F denotes
(QM

− )2j+1 or (QM
− )p−2j−1 according to which space it acts on. Moreover,

the sequence is exact except at the middle Fock space F2j+1,1, where the
cohomology HQM

F
(F2j+1) is isomorphic to the irreducible ŝu(2)p−2 module

of spin j [47]. To obtain each spin j representation with 0 ≤ j ≤ p/2 − 1
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once, we consider the cohomology HQM
F

(F), where F is the direct sum of
Fock spaces

F =
p/2−1
⊕

j=0

F[j] ≡
p/2−1
⊕

j=0

⊕

k∈Z

F±(2j+1)+2kp,1 =
m�=0 mod p

⊕

m∈Z

Fm,1. (3.9)

The absence of the Fock spaces Fm=kp,1 will play a role in the following.

There is a similar contruction for ŝu(2)−p−2, with the analogous Felder
BRST charge QL

F built from powers of QL
−. The representations of ŝu(2)−p−2

that will be relevant for us are the principal discrete representations D±
j′ , also

labeled by semi-integer spins j′. For the purposes of this section, it will be
sufficient to keep track of the representations for S3.

3.2 Preview

Consider now the twisted stress tensor

T +
1
2
∂J = −(∂x)2 + i

κ − 2
√

p
∂2x − (∂ϕ)2 − κ

√
p
∂2ϕ

− b1∂c1 +
κ − 1

p
∂(c1b1) − b2∂c2 − κ − 1

p
∂(c2b2) − b3∂c3 (3.10)

− βM∂γM +
κ − 1

p
∂(γMβM ) − βL∂γL +

κ − 1
p

∂(γLβL).

We summarize in Table 1 the conformal dimensions of the fields and vertex
operators. For the special value κ = p + 1, the additional twist by J tot

3 is
precisely of one unit,

Ttwisted = Tphys +
1
2
∂(cibi) + ∂J tot

3 , (3.11)

and we see from (3.10) that the central charges of x and ϕ are the expected
ones for the (p, 1) model coupled to gravity:

cx = 1 − 6
(p − 1)2

p
, cϕ = 1 + 6

(p + 1)2

p
. (3.12)

Table 1: Conformal dimensions in the twisted theory, for arbitrary κ.

βM γM βL γL c1 c2 c3 b1 b2 b3 e2iαx e2βϕ

Δ p+1−κ
p

κ−1
p

p+1−κ
p

κ−1
p

1−κ
p

κ−1
p 0 κ+p−1

p
p+1−κ

p 1 α
(

α − κ−2√
p

)

−β
(

β + κ√
p

)
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Moreover, the (b1, c
1) system has dimensions (2,−1) and can be identi-

fied with the diffeomorphism ghosts of the minimal string. The remaining
degrees of freedom are two pairs of βγ, bc systems: (βL, γL) (b2, c

2), and
(βM , γM ) (c3, b3), of dimensions (0, 1)(0, 1). We expect them to decouple
by the quartet mechanism (bosonic and fermionic degrees of freedom with
the same quantum numbers canceling pairwise in the path integral). In fact
there are well-known procedures to obtain minimal matter and Liouville
CFT from SL(2) WZW models, known, respectively, as Hamiltonian [48]
and KPZ [7] reduction, which also exploit the idea of quartet confinement.

While this is promising, we should not dictate any additional rules; the
equivalence with the minimal string should arise from the established rules
for perturbative (topological) string theory that we reviewed above. To
prove this, we will decompose the BRST operator of the topological theory
as G+

0 = Q1 + QR, and show that taking the cohomology with respect to
QR implements a version of Hamiltonian + KPZ reduction, reducing the
field content to that of the minimal string. Then we will find a similarity
transformation that maps the N = 2 generators of the topological string to
the corresponding generators of the bosonic string (2.20), up to QR-trivial
terms. In particular, the operator Q1 is mapped to the usual BRST operator
QVir of the bosonic string. Schematically, we are going to show the following
equivalences of cohomologies

HG+
0
(H+

3 × S3) ∼= HQ1(HQR
(H+

3 × S3)) ∼= HQVir((p, 1) + gravity). (3.13)

Finally, through the use of the similarity transformation, the computations
of topological amplitudes are exactly mapped to the corresponding compu-
tations in the (p, 1) bosonic string.

We should mention at the outset that there is at least a superficial resem-
blance of this story to computations done for G/G WZW models with
G = SU(2)p−2, where the spectrum also exactly reproduces that of the (p, 1)
minimal bosonic string [49–51]. Our BRST operator differs from the one
used in the G/G context. There is also the crucial conceptual difference
that to compute correlation functions in the G/G model one would natu-
rally integrate over the moduli space of flat SU(2) connections, whereas in
our case we want to have a string theory and so we integrate over the moduli
space of Riemann surfaces. We do not exclude however that a deeper con-
nection may be found. Although both the interpretation and several details
are different, we found it useful to borrow some technical aspects of the
work by Sadov [52], who performed a cohomological analysis in the context
of G/G models (see also Frenkel, Appendix in [53]).
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3.3 Setup for the reduction

Our task is to study the cohomology of G+
0 acting on the state space of the

H+
3 × S3 sigma model. Using the free-field representation, we are instructed

to first evaluate the cohomology of the Felder charges on the free-field state
space, and then the G+ cohomology,

HG+(H+
3 × S3) ∼= HG+(HQM

F +QL
F
(F)). (3.14)

Here F is the total space state of the free fields

F = Fx ⊗ FβMγM ⊗ Fϕ ⊗ FβLγL ⊗ Fbici . (3.15)

The main idea is to split up the BRST differential as

G+
0 = Q1 + Q2 + Q3, {Qi, Qj} = 0. (3.16)

where we choose

Q1 =
∮

c1j− (3.17)

Q2 =
∮

c2βL

Q3 =
∮

c3(−√
p∂ϕ + i

√
p∂x + γMβM + c1b1) +

∮

c3(γLβL − c2b2).

In relation to the previous section, QR ≡ Q2 + Q3 is the operator that imple-
ments the reduction, while Q1 will turn out to be equivalent to QVir of the
bosonic string. We can assign gradings to the fields by defining

q1 =
∮

c1b1, q2 =
∮

c2b2, q3 =
∮

c3b3. (3.18)

Then Qi has degree 1 with respect to qi and degree zero with respect to
the other gradings. These three pieces of G+

0 mutually commute and are
separately nilpotent, but in general this does not guarantee that the coho-
mology of G+

0 is obtained by computing the cohomologies of the individual
Qi’s successively. In the case at hand, it turns out that we can compute the
cohomology (3.14) as:

HG+(HQM
F +QL

F
(F)) ∼= HG++QM

F +QL
F
(F)

∼= HQ1+QM
F +QL

F
(HQR

(F)) ∼= HQ1+QM
F +QL

F
(HQ3(HQ2(F))). (3.19)

The justification of this claim is based on a simple property of double com-
plexes and can be found in Appendix A. We see that we can evaluate the
cohomology in the order Q2, Q3, Q1 + QF . Here is a schematic outline of
the calculation:

Q2 reduction: The BRST operator Q2 is associated to a positive root of
ŝu(2), and computing its cohomology is similar to Hamiltonian reduction,
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except that here we are setting βL → 0 rather than to a constant. This step
gets rid of the quartet {b2, c

2, βL, γL}.

Q3 reduction: The operator Q3 is associated to a û(1) generator of ŝu(2)p−2
⊕ ŝu(2)−p−2. Taking its cohomology amounts to restricting to the states
which are invariant under this current. This is similar in spirit the reduc-
tion from SL(2) × U(1) to SL(2)/U(1) described in [54, 55]. This steps
essentially kills the second quartet {b3, c

3, βM , γM}.

We now turn to a more detailed analysis.

3.4 Q2 reduction

The operator Q2 =
∮

c2βL is just the supercharge for the quartet {b2c
2βLγL}.

The standard Kugo–Ojima quartet mechanism applies: in Q2 cohomology,
only the vacuum state survives. Actually because of the usual phenomenon
of picture degeneracy for a βγ system, there are infinitely many vacua, one
for each choice of picture. Vacua in different pictures must be considered
physically identical. One can move between different pictures with the help
of the picture raising and lowering operators,

YL = b2δ(βL), ZL = c2δ(γL). (3.20)

The precise statement of Q2 reduction is that once we commit ourselves to a
choice of picture — for example, by restricting to the Fock space built on the
SL(2) vacuum — only the vacuum in that picture survives. In particular
for a given picture, HQ2 is non-trivial for only one value of the grading q2.

3.5 Q3 reduction

The operator Q3 be viewed as the BRST charge for the U(1) symmetry
generated by the current

J = −√
p∂ϕ + i

√
p∂x + γMβM + c1b1, (3.21)

with c3, b3 the corresponding ghost and antighost fields.4 The Q3 cohomo-
logy consists of the space of gauge-invariant states. In particular, since
J0 = {Q3, (b3)0}, all states in HQ3 must be singlets with respect to the U(1)
current.

A familiar way to organize the calculation is to separate out the ghost
zero mode. To find HQ3 , we can first calculate the relative cohomology HR

Q3

4We have left out the term βLγL − c2b2 = {Q2, b2γL} because it acts trivially on HQ2 .
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in the complex annihilated by (b3)0. By standard arguments, the relative
cohomology is non-trivial only for degree q3 = 0. Then the absolute coho-
mology HQ3 is simply given by HQ3

∼= HR
Q3

⊕ (c3)0HR
Q3

. It remains to find
a useful representation for HR

Q3
. We have seen that for κ = p + 1, the fields

ϕ, x, b1, and c1 are very reminiscent of the fields of the minimal string and
we would like to use them as generators of the HQ3 , but they are not U(1)
invariant. There is a simple remedy for this — we are going to dress them
up with appropriate powers of βM or β−1

M :

e−2Φ/
√

p = βMe−2ϕ/
√

p

e−2iX/
√

p = βMe−2ix/
√

p

B = b1βM

C = c1β−1
M . (3.22)

By a simple counting we see that the fields Φ, X, B, C in fact generate all
gauge-invariant combinations. These fields have the remarkable property
that their dimensions are independent of κ. The (B, C) fields are fermionic
ghosts of dimensions and (2,−1), and the background charges of X and Φ
are the correct ones for the matter and Liouville fields of the (p, 1) model.
So we seem to have obtained simple expressions for the generators that can
be identified exactly with the fields of the minimal bosonic string.

This is essentially correct; however, these generators contain some redun-
dancy with respect to the original degrees of freedom, introduced in the step
of taking the formal inverse power of βM . To make sense of β−1

M , we can
bosonize the βMγM -system. To this end we introduce two scalar fields ρ, σ
with stress tensor

Tρσ = −(∂ρ)2 +
1 − 2λ√

2
∂2ρ − (∂σ)2 +

i√
2
∂2σ, (3.23)

and write5

βM = ηe−
√

2ρ ≡ e−i
√

2σ−
√

2ρ, γM = −∂ξe
√

2ρ ≡ −i
√

2∂σei
√

2σ+
√

2ρ.
(3.24)

The ηξ fields are fermionic ghosts of dimensions (1, 0). We have quoted the
general formula for Δ(βM , γM ) = (λ, 1 − λ), but in the following we take
λ = p+1−κ

p . Now we can set

β−1
M = ξe

√
2ρ. (3.25)

As is familiar, bosonization introduces one additional zero mode, the zero
mode of ξ = ei

√
2σ. Moreover we encounter the usual picture degeneracy:

5The unconventional factors of
√

2 arise from our choice α′ = 1, which is awkward here
but quite useful elsewhere.
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there are infinitely many copies of the Hilbert space of the βMγM system
labeled by the picture

∮

(βMγM + ηξ) = pρ − pσ, where pρ ≡
√

2
∮

∂ρ, pσ ≡√
2
∮

i∂σ. Since

{QR, b3 − b2γL} = −√
p∂ϕ + i

√
p∂x + γMβM + c1b1, (3.26)

we can define the picture changing operators

ZM = e
√

pϕ−i
√

px−
√

2ρ−
∫

c1b1 , YM = e−√
pϕ+i

√
px+

√
2ρ+

∫
c1b1 . (3.27)

These operators are QR-closed and their derivatives are QR-exact.

The fields Φ, X, B, C are all automatically at zero picture. We still need
to restrict to the “small Hilbert space” of states that do not contain ξ0,
or equivalently to the kernel of η0. It is convenient to use the zero-picture
version of η0, the nilpotent operator

F ≡
∮

η ZM =
∮

βMe
√

pϕ−i
√

px−
∫

c1b1

=
∮

Be
√

p(Φ−iX). (3.28)

We can now state the final result for HR
Q3

: it consists of the states generated
by Φ, X, B, C and in the kernel of F.6

3.6 Comparison with the cohomology of the minimal string

Let us now examine the Felder charges. The ŝu(2)p−2 screeners are

βMe−2ix/
√

p = e−2iX/
√

p, β−p
M e2i

√
px = e2i

√
pX , (3.29)

which are just the usual matter screening operators for the (p, 1) model
(see (B.9) in Appendix B). The H+

3 screeners on the other hand turn out
to be exact:

βLe−2ϕ/
√

p = {QR, b2e
−2ϕ/

√
p}, (3.30)

6It is worth noticing that F is precisely the fermionic screening operator Q̃ encountered
in [46] in the analysis of the underlying N = 2 structure of the minimal bosonic string.
It is also equivalent to the operator usually denoted by QS in the context of topological
gravity [9, 56]. We suspect that a deeper understanding of this structure may involve an
N = 4 topological algebra [57], with QVir and F as the N = 4 G+ and G̃+ generators.
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and similarly for the + screener. Thus the H+
3 screener does not reduce to

the cosmological constant operator, which instead descends from

βMe−2ϕ/
√

p = e−2Φ/
√

p. (3.31)

The last piece Q1 of the original topological BRST operator G+
0 will be

shown below to be equivalent to QVir of the minimal string up to QR exact
terms. All in all, we can summarize our findings as7

HG+
0
(H+

3 × S3) ∼= HQVir+QX
F

(KerF(FX ⊗ FΦ ⊗ FBC)). (3.32)

Here QX
F denotes the Felder charge for the matter (p, 1) model. We should

also recall that the field X inherits from x the restriction to the lattice of
momenta pX = m−1

2
√

p , m ∈ Z, m �= 0 mod p (see Equation (3.9)).

We claim that (3.32) contains all the expected “small phase space” states
of the minimal (p, 1) string. As we review in detail in Appendix B, the
cohomology of the (p, 1) string8 consists of infinitely many tachyon states
Tr,s and infinitely many ground ring states Gr,s, with 1 ≤ r ≤ p − 1, s ≥ 1.
By definition, the small phase space is spanned by the states with s = 1.
Using the explicit expressions for Tr,1 and Gr,1, it is straightforward to check
that these states are elements of (3.32): they are annihilated by F and
define non-trivial representatives of the cohomology classes. The restriction
of the complex to the kernel of F is crucial. Without this restriction, the
cohomology (3.32) would be empty, since for (p, 1) matter the Felder complex
is exact. This implies that, for example, Tr,1 = (QVir + QX

F )(Λr,s) for some
state Λr,1; but one finds Λr,1 �∈ KerF.

To obtain the “gravitational descendants” of the minimal string, which
are the states with s > 1, we will need to enlarge the spectrum of the theory
on H+

3 × S3 by allowing for “spectral flowed” states (long strings). Including
such states is actually a necessity for consistency of string theory on H+

3 × S3

[58]. The relation between gravitational descendants and long strings will
be discussed in Section 4.4. Ultimately we will find that all the states are
correctly matched.

7For clarity, we omit here the doubling of the cohomology due to (c3)0.
8We focus in the following on the chiral cohomology relative to B0, since if that is found

to agree, the construction of closed string states (in semi-relative cohomology) poses no
problem. We also restrict to states obeying the Seiberg bound.
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3.7 Similarity transformation

We will now establish a correspondence between the twisted N = 2 struc-
ture of the topological string and the underlying twisted N = 2 structure
of the minimal bosonic string. It will follow from this map that the rules
for computing N = 2 amplitudes on H+

3 × S3 coincide with the usual rules
for minimal bosonic string amplitudes, up to some additional insertions of
picture changing operators.

The strategy will be to perform a similarity transformation on the N = 2
algebra given in (2.19), repeated here for reference:

T =
1
2p

(2j3j3 + j+j− + j−j+ − 2k3k3 − k−k+ − k+k−)

+
1
2
(

∂cibi − ci∂bi

)

+
κ

2p
∂J tot

3

G+ = c1(j−) + c2(k+) + c3(j3 + k3 − c2b2 + c1b1)

G− =
1
p

(

b1j+ − b2k− + b3(j3 − k3 + c2b2 + c1b1) + κ∂b3
)

J = cibi +
κ − 2

p
J tot

3 . (3.33)

We take as generator of the similarity transformation the operator

L = −
∮

(c1j−1
+ )

(

−b2k− + b3(j3 − k3 + c2b2 + c1b1) + κ∂b3
)

. (3.34)

Then we find9

exp Ad(L)G+
0 = QR + p QVir + {QR, •}, (3.35)

where QVir is just the usual Virasoro BRST operator of the minimal string
theory,

QVir =
∮

C

(

TΦ + TX +
1
2
TBC

)

. (3.36)

Next we consider G−. This generator plays the analog of the B ghost in
bosonic string theory. A short calculation shows that it is in fact exactly
equivalent to B,

exp Ad(L)G− =
1
p
(b1j+) =

1
p
B. (3.37)

This has the important consequence that the integration over the moduli
space of Riemann surfaces and the definition of semi-relative cohomology

9We have checked this expression up to derivatives in βM (which arise through normal
ordering) and passed it through some consistency checks.
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are the same both in the topological string and in the minimal string. Of
course, applying the similarity transformation to the commutator of G+

0 and
G−, we find the expected stress tensor of the minimal string up to QR-exact
terms.

Finally the U(1)R current is found to be invariant,

exp Ad(L)J = J. (3.38)

The current J differs from the ghost number current CB of the minimal
string. This is actually expected, since the U(1)R anomaly prescribes how
we should saturate the background charges. Even though two {b, c, β, γ}
quartets effectively decouple, we still must insert picture changing operators
to saturate their fermionic zero modes. Taking κ ≡ p + 1, at genus g, we
need (g − 1) insertions of ZLZ̄L operators and (g − 1) insertions of Z3Z̄3 ≡
∫

d2z b3 b̄3.

3.8 General (p,q) models?

At a formal level, the manipulations of this section work equally well with
the replacement p → p/q. Then the QR reduction yields precisely the field
content of the (p, q) minimal model coupled to gravity. All the expected
(r, s) matter representations of the minimal string arise provided start in
the “upstairs” theory with a direct sum of Fm,n Fock spaces with m ∈ Z,
m �= 0 mod p, 1 ≤ n ≤ q (see Equation (3.9)). So the question arises whether
we can also give minimal (p, q) strings an interpretation as a string theory on
a Euclidean space with H-flux. For H+

3 the H-flux need not be quantized, so
fractional level already makes sense. Of course the issue is how to interpret
SU(2) at fractional level.10

4 What does the topological string compute?

In this section, we turn our attention to IIB string theory on H+
3 × S3 × M4.

In close analogy with the Calabi–Yau case, the topological string theory on
H+

3 × S3 computes a set of special amplitudes of spacetime chiral primaries
in the IIB theory, in the presence of background RR 5-form flux. The
additional RR insertions are responsible for twisting the worldsheet theory.
These special amplitudes are at string tree level from the viewpoint of the

10As we are going to see shortly, there is a sense in which the topological theory
discussed so far computes physical amplitudes in the sector of one long string. It is
tempting to speculate that the (p, q) models should correspond to the sector of q long
strings. This suggestion is due to Seiberg.
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physical theory. The perturbative expansion of the topological theory cor-
responds to an expansion in powers of the 5-form RR flux. A difference
with respect to the Calabi–Yau case is the extra twist by ∂J tot

3 . This gives
additional insertions, which turn out to be insertions of “long string” vertex
operators. The topological theory computes amplitudes in the sector of one
long string.

In the remainder of this section, we work out the correspondence between
spacetime chiral primaries on H+

3 × S3 and the physical operators in the
minimal string theory, both for the tachyons and the ground ring elements.
Finally we discuss a family of exact deformations of the H+

3 × S3 sigma
model.

4.1 Amplitudes

We would like to understand exactly which physical amplitudes can be
reduced to the topological string. The analysis is almost identical to [1]
and [2] and so we will be brief. We can focus on the partition function,
since the addition of external operators is straightforward. The physical
partition function is given by the path-integral over the full set of 10-
dimensional fields: the matter fields of the supersymmetric sigma model on
H+

3 × S3 × M4 plus the diffeomorphism ghosts and superghosts {b, c, β, γ}.
The topological partition function is given instead by the path-integral over
the six-dimensional fields only, with the fermions having twisted dimensions.
Finally the measure on the moduli space of Riemann surfaces is different in
the two theories. Nevertheless, in analogy with the Calabi–Yau case, one
can show that the topological partition function equals the physical parti-
tion function at the only cost of introducing some extra insertions. Because
of the relation (3.11) between the physical and the twisted stress tensors, we
need to make insertions of two kinds: “graviphoton” vertex operators imple-
menting the usual twist by 1

2∂(cibi); “spectral flow” operators implementing
the twist by ∂J tot

3 .

The operators analogous to the graviphotons of the Calabi–Yau case are

T± = e−φ/2−φ̃/2e1/2
∫

cibi+1/2
∫

c̃ib̃iΣ±Σ̄±. (4.1)

Here φ is the boson arising from the usual bosonization of the βγ superghosts
[59]. The operators Σ± are the spectral flow operators for the fermions on
M4. In the case of M4 = T 4, denoting the four free fermions by ψi, we
can write

Σ± = e±1/2
∫

ψ1ψ2+ψ3ψ4 . (4.2)
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One can can check that cc̄T± are physical vertex operators for the super-
string. Indeed we have Δ(T+) = 1 and T± has no z−3/2 pole in its OPE
with the N = 1 worldsheet supercurrent G. Just as in the Calabi–Yau case,
T± correspond to the 5-form RR flux, with three indices along the “inter-
nal” six-dimensional manifold H+

3 × S3 and two indices along the M4. They
are also closely related to spacetime supercurrents. For H+

3 × S3, the left-
moving spacetime supercurrents are [6]

S�ε = e−φ/2e1/2
∫ ∑3

i εic
ibi+ε4ψ1ψ2+ε5ψ3ψ4 , (4.3)

where εi = ±1 with the constraints
∏3

i=1 εi =
∏5

i=1 εi = 1. So we see that
T± are products of a left-moving and a right-moving spacetime supercurrent.

The additional “spectral flow” operator is defined as

U ≡ exp
(

−
∫

J tot
3

)

, (4.4)

and its interpretation will be discussed shortly. With this notation in place,
we can formulate the basic claim: the genus g topological partition function
Fg corresponds to the physical amplitude

Fg =
∫

Mg

〈

Θg R2
g−1
∏

∫

d2z T+
g−1
∏

∫

d2z T−

3g−3
∏

| δ(β)G|2
3g−3
∏

|b(μi)|2
〉physical

g

, (4.5)

with

Θg ≡ (UŪ)2−2g (ZLZ̄L)g−1(Z3Z̄3)g−1. (4.6)

As in [1], R2 denotes the extra insertion of a ψ8 expression needed to
account properly for the fermion zero modes. The proof of this claim imi-
tates the arguments of [1] and [2]. Here is a very brief sketch: the T±

insertions are responsible for twisting the fermions and changing the back-
ground charge of the βγ system, in such a way that the path-integral over
the M4 fields and the bcβγ system can be trivially performed. Similarly,
the insertions of U implement the twist by ∂J tot

3 . The insertions of ZL

and Z3 are needed to saturate fermion zero modes of c2b2 and c3b3, as dis-
cussed in Section 3.7. Writing G = G+ + G−

κ=0 + GM4 , we see that only G−
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can contribute due to the anomalous background charge for J. So finally
we have

Fg =
∫

Mg

〈3g−3
∏

|G−
κ=0(μi)|2 (ZLZ̄L)g−1(Z3Z̄3)g−1

〉topological

g

. (4.7)

Apparently there is a discrepancy between the value of κ = p + 1 in the
twisted stress tensor and the value of κ = 0 in G−. This is not a problem:
the saturation of fermionic zero modes is such that we can replace G−

κ=0
with G−

κ=p+1 because the κ-dependent term does not contribute. Equiva-
lently, under the similarity transformation, G−

κ=0 gets mapped to (B − (p +
1)∂b3)/p, and again the term proportional to ∂b3 does not contribute.

Finally we turn to the interpretation of the operator U . This is exactly
the supersymmetric spectral flow operator constructed in [60] following [58].
The intuitive picture is that an insertion of Uw creates a “long string” —
a worldsheet that wraps w times the boundary of H+

3 ; it also adds angular
momentum around the S3, in such a way that spacetime supersymmetry is
preserved.

4.2 Vertex operators for H +
3 × S3

Our task is now to identify the physical states of the topological theory,
defined as cohomology classes of G+

0 , with physical states of the 10-dimen-
sional theory, defined as cohomology classes of the usual superstring BRST
charge Q10d. To this end, we review in this section some general properties of
vertex operators in H+

3 × S3 [6, 61], emphasizing their relation with bulk-
to-boundary propagators. In the following section, we will specialize to
vertex operators for spacetime chiral primaries [60, 62], which are the natural
candidates to match with the topological observables. This section and the
next are almost entirely review of well-known material.

The WZW model on H+
3 with a pure imaginary B-field is described by

the following action

S =
∫

d2z
(

∂ϕ∂̄ϕ + e2ϕ∂̄γ∂γ̄
)

. (4.8)

The coordinates γ, γ̄ and ϕ satisfy γ∗ = γ̄, ϕ∗ = ϕ. This action is real and
positive definite on a Euclidean worldsheet. The zero modes of the currents
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are given by the left- and right-invariant vector fields
∮

k+ = −∂γ ,

∮

k3 = −γ∂γ +
1
2
∂φ,

∮

k− = γ2∂γ − γ∂φ − e−2φ∂γ̄

∮

k̄+ = −∂γ̄ ,

∮

k̄3 = −γ̄∂γ̄ +
1
2
∂φ,

∮

k̄− = γ̄2∂γ − γ̄∂φ − e−2φ∂γ .

(4.9)

Here we have put a bar on the currents to denote right movers on the
worldsheet. Let us also define the total currents

K3 = k3 − c2b2 J3 = j3 + c1b1

K+ = k+ +
(

c3 − 1
p
b3

)

b2 J+ = j+ − c1(pc3 + b3) (4.10)

K− = k− + (pc3 − b3)c2 J− = j− − b1

(

c3 +
1
p
b3

)

They form an ŝu(2) current algebra of level −p, and level p respectively. The
zero modes of the currents (4.10) are conserved charges in the spacetime
theory. It is convenient to use these charges to organize the spectrum of
string theory on H+

3 × S3. In particular, according to Brown and Henneaux
[63], the spacetime theory is itself a conformal theory and comes with its
own set of Virasoro generators Ln which are distinct form the worldsheet
Virasoro generators. As described in [6], the zero modes of K+, K−, K3 map
to the spacetime Virasoro generators, and the zero mode of J3 to the space
time R-charge. The spacetime Virasoro algebra is given by

[Ln,Lm] = (n − m)Ln+m +
cst

12
(n3 − n)δn+m , cst = 6Q1Q5. (4.11)

In order for this to agree with our commutation relations for K+, K−, K3, we
need either {L1,L−1,L0} −→

{∮

K+,−
∮

K−,−
∮

K3
}

or to {−
∮

K−,
∮

K+,
∮

K3}. Since we wish to identify L−1 with the generator ∂γ of translations
on the boundary of H+

3 , we pick the second possibility,

{L1,L−1,L0} −→
{

−
∮

K−,

∮

K+,

∮

K3

}

. (4.12)

In particular, the (left-moving) spacetime weight is measured by L0 = +
∮

K3.
We will denote the eigenvalues of L0 by h. Similarly the spacetime R-charge
is measured by

q ≡ −
∮

J3. (4.13)

The vertex operators for the physical string states are built from the free
fermions and primaries of the two su(2) current algebras (and 10d ghosts
and superghosts b, c, β, γ). The primaries Φjm(z) for H+

3 fall in certain
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representations of su(2) at negative level. The relevant ones for us are the
principal discrete representations:

D−
j : m = −j,−j − 1, . . .

D+
j : m = j, j + 1, . . . (4.14)

These representations are labeled by the worldsheet dimension (which coin-
cides with the Casimir)

Δ = −j(j − 1)
p

, (4.15)

and states are labeled by their eigenvalue m under k3.

To discuss strings on H+
3 , it is convenient to exchange the label m for

the isotopic spin coordinate x. We can interpret x, x̄ as parametrizing the
boundary of H+

3 . The vertex operator Φj(z|x) is then required to satisfy
the OPEs

ka(z)Φj(w, w̄|x, x̄) ∼ Da

z − w
Φj(w, w̄|x, x̄) (4.16)

with
D+ =

∂

∂x
, D3 = x

∂

∂x
+ j, D− = x2 ∂

∂x
+ 2jx. (4.17)

This implies the following expression:

Φj(x) =
1 − 2j

π

(

1
|γ − x|2eϕ + e−ϕ

)2j

. (4.18)

This is exactly the standard bulk-boundary propagator written in Poincaré
coordinates, for a field of spacetime dimension h = j inserted at (x, x̄) on
the boundary. It admits the following expansion:

Φj(x) = e2(j−1)ϕδ2(γ − x) + · · · +
e−2jϕ

|γ − x|4j
+ · · · (4.19)

Now we turn to a free-field description. We introduce two new variables
βL, β̄L and rewrite the sigma model action as

S =
∫

d2z
(

∂ϕ∂̄ϕ + βL∂̄γL + β̄L∂γ̄L − e−2ϕβLβ̄L

)

. (4.20)

By classically integrating out βL and β̄L, we recover the original action.
Taking into account the quantum measure introduces a linear dilaton and
renormalizes some of the terms. The correct confomally invariant action is

S =
∫

d2z

(

∂ϕ∂̄ϕ − 2
√

p
Rϕ + βL∂̄γL + β̄L∂γ̄L − e−2ϕ/

√
pβLβ̄L

)

. (4.21)

Now we can treat βLβ̄Le−2ϕ/
√

p as a screening operator and use ϕ, βL, γL

as free fields. Writing out the currents yields the Wakimoto representation
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used in Section 3. Calculations with this free-field representation are valid
when the correlation functions are supported near the boundary ϕ → ∞,
and merely use the leading term in the bulk-boundary propagator:

Φj(0) −→ V
H+

3
j,j ≡ δ(γL)e2(j−1)ϕ/

√
p. (4.22)

This operator is annihilated by Ln≥1, and it is therefore a spacetime Virasoro
primary inserted at x = 0. Acting on it with k+ maps out a D+

j represen-
tation.

There is another set of vertex operators which use the D−
j representation:

V
H+

3
j,−j ≡ e−2jϕ/

√
p. (4.23)

These operators have regular OPE with k+; therefore, they are annihilated

by L−1, in fact by all Ln≤−1. Acting on V
H+

3
j,−j with k− maps out the D−

j repre-
sentation. These operators correspond to normalizable modes in spacetime –
they carry the “Δ− dressing” in the usual AdS/CFT language. Their inser-
tion in correlation functions should be interpreted as infinitesimal changes
of the state of the theory, specified by the vacuum expectation values of the
spacetime operators.

Finally we need to consider Wakimoto vertex operators for S3. The pri-
mary vertex operators for the spin j representation of ŝu(2)p−2 are given by

V S3

j,m = γj−m
M e2ijx/

√
p, 0 ≤ j ≤ p

2
− 1, −j ≤ m ≤ j, (4.24)

with worldsheet dimensions

Δ(V S3

j,m) =
j(j + 1)

p
. (4.25)

They satisfy the following OPEs:

j+(z) · V S3

j,m(w) =
−j + m

z − w
V S3

j,m+1(w)

j3(z) · V S3

j,m(w) =
2m

z − w
V S3

j,m(w)

j−(z) · V S3

j,m(w) =
−j − m

z − w
V S3

j,m−1(w) (4.26)

In particular, for a highest weight state, we have the simple expression

V S3

j,j = e2ijx/
√

p. (4.27)

For lowest weight states, we could take m = −j in (4.24), but it turns out
that a different (equivalent) representation makes contact more directly with
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the minimal string. By analogy with (4.22), we represent lowest weight
states for S3 as

Ṽ S3

j,−j ≡ δ(γM )e−2i(j+1)x/
√

p. (4.28)

4.3 Chiral primaries

The spacetime theory has (4, 4) supersymmetry. Here we are defining chiral
operators with respect to a given subgroup U(1)R ⊂ SU(2)R of the
R-symmetry. Each short multiplet of N = 4 contains precisely one chiral
and one anti-chiral primary with respect to this U(1)R. In defining the
topological theory, we picked a preferred U(1)R (generated by J3) in the
choice of the complex structure.

Since Jtot
3 = K3 + J3 is G+

0 -exact, a cohomology element of the topological
string necessarily obeys h = q. There are two possibilities. If h = q > 0, the
vertex operator is a (spacetime) chiral primary inserted at x = 0; it is the
lowest weight state of a D+

j representation for H+
3 , and the lowest weight

state for a finite representation of S3. If h = q < 0, it is the highest weight
state of a D−

j representation for H+
3 , and the highest weight state for a finite

representation of S3; it corresponds to turning on a vev.

Vertex operators for spacetime chiral primaries have been classified, so we
can check the known list of such primaries for candidates that can descend
to the minimal string. For the purpose of the topological string, we are
interested in operators in the Neveu–Schwarz sector. Then one finds the
following two series [60, 62]11

NS: Wj , Xj (4.29)

These are the left movers only. The operator Wj has an index along H+
3 , and

Xj has an index along S3. By combining left and right movers, one obtains
various modes of gμν + bμν on H+

3 × S3. The index j comes in half-integer
steps and labels the spacetime dimension, or equivalently the R-charge, as
follows:12

Wj = c2 V
H+

3
j+1,j+1 V S3

j,−j : h = q = j, l = 0, . . . ,
p − 2

2

Xj = b1 V
H+

3
j+1,j+1 V S3

j,−j : h = q = j + 1, l = 0, . . . ,
p − 2

2
. (4.30)

11In the cited papers, they are denoted by W−
j , X+

j . The superscripts have no meaning
for us, so we will leave them out.

12We write only the matter part of the operators. The full operators are obtained by
adding the usual ghost and superghost factor ce−φ.
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We are also interested in the operators with h = q < 0. These are given by

˜Wj = b2 V
H+

3
j+1,−j−1V

S3

j,j : h = q = −j, l = 0, . . . ,
p − 2

2
˜Xj = c1 V

H+
3

j+1,−j−1V
S3

j,j : h = q = −j − 1, l = 0, . . . ,
p − 2

2
. (4.31)

This is however not the full story. It has been demonstrated in [58] that apart
from the usual vertex operators based on D−

j and D+
j , string theory on H+

3
has additional physical vertex operators that can be obtained by spectral
flow. Spectral-flowed vertex operators correspond to “long strings” wrapping
the boundary of H+

3 multiple times. The resulting “winding number” w
need not be conserved in correlation functions because H+

3 is a contractible
space. In the context of superstring theory on H+

3 × S3, it is natural to
consider spectral flow operators which are local with respect to the spacetime
supercharges. The operator relevant for us is

U = exp
(

−
∫

J tot
3

)

. (4.32)

This operator increases h and q by δh = δq = p/2. By repeated application
of U , one finds finds the following towers of chiral primaries:

Ww
l l = 0, . . . ,

p − 2
2

, w ≥ 0

X w
l l = 0, . . . ,

p − 2
2

, w ≥ 0. (4.33)

We have restricted ourselves to w ≥ 0. Applying spectral flow in the opposite
direction yields D−,w

j , because D−
j and D+

j are related by one unit of spectral
flow:

D+,w=−1
j = D−

p/2−j . (4.34)

4.4 Matching with the minimal string

We have discussed a list of vertex operators that can potentially survive
in the topological theory. Since these are ghost number one states (with
respect to the cb ghosts of the 10d string theory), they should correspond
to ghost number one states of the minimal string (with respect to the CB
ghosts of the minimal string). This is necessary if the counting of Riemann
surface moduli in correlation functions is to work out correctly.

The spectrum of the minimal string is discussed in detail in Appendix B.
At ghost number one (in the relative, chiral cohomology), one has the p − 1
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tachyons and their gravitational descendants,

Tn=2j+w+1 = ŷwT2j+1, j = 0, . . . ,
p − 2

2
, w ≥ 0. (4.35)

The T1 tachyon is also known as the puncture operator, and the Tp−1 tachyon
is also known as the cosmological constant operator. As we have mentioned,
one needs to consider both chiral primaries with h > 0 and h < 0. Let us
start with ˜Xj . In the Wakimoto representation, it can be written as

˜Xj = c1 V
H+

3
j+1,−j−1 V S3

j,j

= c1e−2j(ϕ−ix)/
√

p−2ϕ/
√

p

= Ce−2j(Φ−iX)/
√

p−2Φ/
√

p. (4.36)

Remarkably these are precisely the expressions for the tachyons Tp−1−2j of
the minimal string theory. As we discussed, these operators are interpreted
as normalizable modes in H+

3 . They are of course non-normalizable in Liou-
ville theory. This difference arises because of the shift in the background
charge of ϕ due to the ∂J tot

3 twist.

One can also check that ˜Wj and Xj are not in the cohomology of G+
0 .

Next we consider Wj . We can write them as

Wj = c2 V
H+

3
j+1,j+1 V S3

j,−j

= c2δ(γL)δ(γM )e2(j+1)(ϕ−ix)/
√

pe−2ϕ/
√

p (4.37)

Comparing the Liouville momenta of these operators with the spectrum for
the minimal string suggests that the Wj should be identified with the first
group of descendants ŷT2j+1.

To understand how this comes about, let us first look more closely at the
spectral flow operator [60]:

U(z) = exp
(

−
∫ z

J tot
3

)

= c2b1δ(γL)δ(γM ) exp(
√

p(ϕ − ix)). (4.38)

It is precisely the picture changing operator ZMZL that we have encoun-
tered before. Essentially U plays the role of the ground ring generator
ŷ — it has the correct x and ϕ dependence — but being a picture changing
operator, formally it does not create any new states. A similar situation
was encountered in [53]. The resolution is to consider the closely related
operator

Ũ = Ue−i
√

2σ = c2δ(γL)B exp(
√

p(Φ − iX)), (4.39)

where we replaced δ(γM ) → βM by combining with e−i
√

2σ. This operator
is still not quite the one we need since while its total ghost number is zero,
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it has q1 = −1 and q2 = +1. We should then apply a descent procedure to
obtain an operator with q1 = q2 = 0. It is not hard to check that

{QVir, Ũ} = {QR, θ(γL)ŷ} − ∂(c2δ(γL)ŷ). (4.40)

Therefore Ũ is responsible for creating the descendants.

Now it is easy to check that

U ˜Xj = Wj (4.41)

and so by dressing up δ(γM ) → βM and applying the descent procedure,
the operators Wj should indeed be regarded as the first descendants of the
tachyons. Further acting with Ũ yields the remaining descendants. These
correspond to honest long string states in H+

3 which cannot be seen in
supergravity.

Figure 2 summarizes the correspondence between the ghost number one
states of the minimal string and the chiral primaries in H+

3 × S3. A striking
feature is the presence of gaps in the spectrum: every p steps, a state is
missing. This is very natural from the viewpoint of the p-KdV integrable
hierarchy, where every p-th flow parameter is redundant. We see that this
emerges naturally in the reduction from H+

3 × S3. Physically, the absence of
these states has been a bit of a mystery for string theory on H+

3 × S3. The
holographic CFT on the boundary of H+

3 , a deformation of the symmetric
product SymQ1Q5(M4) superficially appears to contain such states. It has
been suggested that their absence may be related to the singular behavior
of this CFT [64]. Heuristically, at the point in moduli space at which we
are working, there is no cost in energy for the system to emit a long string.
This leads to a continuum of states above a certain threshold and it has been
proposed that the missing states may be related to this continuum. Does
the correspondence with the minimal string give any insight into this issue?
In the minimal string, some of the gaps in the closed string spectrum are
believed to be filled by open string states [65]. For example, the first missing
state has precisely the Liouville dressing to be identified with the operator

Figure 2: The spectrum is organized according to increasing Liouville
momentum, or equivalently increasing spacetime dimension. The lighter
dots indicate the missing states.
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that couples to the boundary length — the boundary cosmological constant
that can be turned on on an FZZT brane [65]. An analogous interpretation
becomes viable for string theory in H+

3 × S3: the first missing state has the
correct ϕ dressing to be identified with the boundary screener of an H+

2
brane.

4.5 Ground ring

Besides the tachyons, which carry ghost number one, the minimal string has
physical states at ghost number zero, the ground ring elements Gn=r+ps =
x̂r−1ŷs−1, 1 ≤ r ≤ p − 1, s ≥ 1. These states are clearly in the G+

0 cohomol-
ogy of the topological theory. The question is what is their intepretation in
the physical theory. It is natural to expect that they get lifted to ground
ring elements of the IIB theory, that is, cohomology classes of the BRST
operator Q10d carrying zero ghost number with respect to 10d cb ghosts.
The explicit expressions of x̂ and ŷ fail to be annihilated by Q10d, but it is
possible to add improvement terms involving the 10d bcβγ ghosts such that
they become elements of the Q10d cohomology. One could have anticipated
the existence of a ground ring structure in H+

3 × S3 just from the represen-
tation theory of the ŝu(2)p−2 current algebra: a ground ring element must
exist for each primitive null over a primary, by a generalization to current
algebras of the mechanism [11, 12, 14] reviewed in Appendix B.

It is clear that the ground ring states can be constructed by a descent
procedure entirely analogous to (B.23),

Q10d |Gn〉 = ce−φ QM
F |Tn〉. (4.42)

The operators Gn are the “improved” versions of Gn that we are after. They
generate a Wp symmetry which encodes the exact solutions of the (topologi-
cal) theory. More general ground ring elements can be obtained acting on Gn

with isometries of H+
3 × S3, though they will not be in the G+

0 cohomology.

4.6 Small phase space deformations

As we have seen, deformations of the minimal string obtained by turn-
ing on the first p − 1 tachyons (the so-called “small phase space”) lift to
deformations of the state of string theory on H+

3 × S3. Each point in the
small phase space maps to a certain 1/2 BPS configuration in H+

3 × S3.
These configurations are exact solutions of tree-level string theory, for finite
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α′. We can write down the corresponding sigma models in the Wakimoto
representation,

SH+
3 ×S3 → SH+

3 ×S3 +
p−1
∑

n=1

tn

∫

d2z βM β̄Me2i((p−1−n)/2
√

p)xe
2n−p−1

2
√

p
φ
. (4.43)

We see that they are deformations of the S3, “gravitationally dressed” by
the warp factor of H+

3 . The underlying integrable structure guarantees that
they are exactly marginal. They correspond to states since they preserve
the H+

3 × S3 asymptotics as ϕ → ∞.

In the limit p → ∞, these sigma models must correspond to 1/2 BPS
supergravity solutions. Such supergravity solutions for the NS5/F1 system
have been classified [20–22, 66, 67], and the sigma models (4.43) provide a
generalization to finite α′ for a subclass of them. A natural guess is that
this class corresponds to (a subsector of) the Coulomb branch of the near
horizon geometry of the NS5/F1 system. It would be nice to understand
the geometric interpretation of (4.43) in more detail.

5 Holography and symmetric products

The main interest of string theory on H+
3 × S3 is in the context of the

AdS/CFT correspondence. This background arises as the near horizon
geometry of Q5 NS5 branes wrapping M4 and Q1 parallel fundamental
strings. The dual spacetime CFT on the boundary of H+

3 is believed to
be the low-energy limit of the worldvolume theory on the NS5–F1 system: a
sigma model with target space a certain deformation of SymQ1Q5(M4). The
string coupling constant gs is fixed by the relation [6]

Q1 ∼ VolM4

α′2g2
s

√
Q5

. (5.1)

For a fixed level p ≡ Q5 of the worldsheet sigma model, string perturbation
theory corresponds to Q1 → ∞. All the topological amplitudes that we
have considered in this paper arise at string tree level and map to boundary
correlators at leading order in the large Q1 expansion.

While the details of the boundary theory are not very well understood, the
spectrum of spacetime chiral primaries of the string theory has been matched
with the spectrum of chiral twist operators of the symmetric product CFT. It
has been suggested [60] that it is more natural to phrase the correspondence
in terms of SymQ1(SymQ5(M4)), which has the same chiral spectrum of
SymQ1Q5(M4) and is believed to be in the same moduli space. Here one
thinks of SymQ5(M4) as the theory of a single long string. Twist operators of
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SymQ5(M4) in the untwisted sector of SymQ1 correspond to ordinary vertex
operators for H+

3 × S3, with zero amount of spectral flow. The operation
of taking w units of spectral flow in the bulk maps to considering the Zw

twisted sector of SymQ1 .

Let us first consider the chiral twist operators for SymQ5(M4). We restrict
to universal operators that do not depend on the structure of M4. They were
constructed for instance in [68, 69]:

σ−
n : h =

n − 1
2

n = 1, . . . , Q5

σ+
n : h =

n + 1
2

n = 1, . . . , Q5. (5.2)

We have written the left movers only, and by left movers, we now mean left
moving in the boundary CFT. The operator σ±

n contains a twist operator of
length n. The correspondence between the bulk and boundary theories is

Wl −→ σ−
2l+1, l = 0, . . . ,

p − 2
2

Xl −→ σ+
2l+1, l = 0, . . . ,

p − 2
2

. (5.3)

By including the Zw twisted sector for SymQ
1 , one finds [60] chiral operators

with the correct dimensions to be identified with the spectral flowed bulk
vertex operators.

From the bulk viewpoint, the spectrum of dimensions appears to increase
indefinitely, while from the boundary viewpoint it is cut-off. The reason
for this is that in the bulk we work in perturbation theory, so we have
implicitly taken gs → 0. If we want to recover the same results int the
boundary theory, we should take Q1 ∼ 1/g2

s → ∞, which removes the cut-
off. If we want to consider Q1 finite, then there must be non-perturbative
effects in the bulk to cut-off the spectrum. This is the well-known “stringy
exclusion principle” [70].

The missing states in the bulk spectrum correspond to the twist operator
of length Q5 in SymQ5(M4) and its images in SymQ1 . In particular, they are
naively present in the boundary theory, and one must invoke subtle effects
[64] to argue them away.

Next we would briefly like to discuss some properties of amplitudes in
the symmetric product theory. The maps from the boundary of H+

3 to
the symmetric product can be described in terms of a covering surface Σg

of degree Q1Q5 of the boundary, together with a map from this covering
surface to M4. Since our topological string theory was completely defined in
terms of H+

3 × S3, the amplitudes we are looking for in the boundary theory
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can only depend on the constant modes of M4. So we can effectively ignore
the map Σg → M4 and focus on the structure of the covering Σg → P1.

Consider an amplitude of various tachyons and descendants in the bulk.
This translates to computing an amplitude in the boundary theory with
certain twist operator insertions. We further need to turn on interactions
in the symmetric product theory. This is done by inserting DVV [18] twist
operators on the boundary and integrating over their positions. Finally to
recover the perturbative answer one should take the limit Q1 → ∞.

There are many details that need to be worked out in order to compute
such amplitudes. However since we are dealing with a relatively simple
topological theory in the bulk, our guess is that the amplitudes on the
boundary also end up being those of a well known topological theory, namely
Hurwitz theory. That is, we suspect that up to a numerical factor the
amplitudes simply count the number of covers with the branching we have
just described.

The Hurwitz problem has been completely solved. Some interesting works
that might be relevant here are [71, 72]. The Hurwitz problem is known to
be related to topological strings [73, 74].

6 Relation with Calabi–Yau spaces and generalizations

6.1 Calabi–Yau description

We have seen that H+
3 × S3 gives a ĉ = 3 topological string realisation of

the minimal (p, 1) string theories. Another such realisation was recently
proposed in [23]. These authors considered the non-compact Calabi-Yau
manifold defined by the equation

y + xp + · · · + uv = 0, (6.1)

and argued that an appropriately defined B-model topological string on this
Calabi–Yau is equivalent to the (p, 1) minimal string.13 Since this threefold
is closely related to the ground ring of the minimal (p, 1) string, one can
view this as “quantization of the deformations of the ground ring”. This
Calabi–Yau has no Kähler moduli and therefore the associated A-model is
trivial.

13A certain amount of interpretation is needed, since we expect the minimal string
(which has a linear dilaton) to describe the leading behaviour near a Calabi-Yau singular-
ity, whereas if we regard this equation as an equation in C4 we get no singularities. We
will not discuss this issue here.
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Our topological theory has the same B-model, namely the (p, 1) minimal
string, and in fact it has also a trivial A-model. This can be seen easily
by recalling that G− is equivalent to the B antighost of the minimal string,
which clearly has trivial cohomology. Thus we have two ĉ = 3 (2, 2) SCFTs
for which both the A and B-models agree. In such a situation it is expected
that superconformal invariance also forces the D-terms to agree. So we
conclude that the two theories must be identical. The question then arises if
there is a natural explanation for this equivalence. We conjecture that H+

3 ×
S3 and the Calabi-Yau sigma-model are related by T-duality. An example
of such a duality for SCFTs that is very similar in spirit is the equivalence
between the NS5-brane geometry (which is analogous to H+

3 × S3) and the
ALE sigma model (which is analogous to the Calabi-Yau threefold). These
two CFTs are related by T-duality [24].

6.2 H +
3 × S1

It is also interesting to consider more general backgrounds of the form H+
3 ×

N with NS flux, where N is some coset model. So long as the worldsheet
theory has N = 2 supersymmetry, one can write down a topological string
theory and study its properties. We will now take a look at the simplest
of these examples, namely H+

3 × S1. We will take H+
3 at fractional level

t + 2 = p/q + 2 for now and restrict ourselves later on.

The generators are given as follows:

T = −(∂x)2 − 1
2t

(2k3k3 + k+k− + k−k+)

+
1
2
(∂c2b2 − c2∂b2) +

1
2
(∂c1b1 − c1∂b1) +

κ

2t
∂Jtot

3

G+ = c1k− + c2(i
√

t ∂x + k3 + c1b1)

G− =
1
t

(

−b1k+ + b2(i
√

t ∂x − k3 − c1b1) + κ ∂b2

)

J = c1b1 + c2b2 +
2
t
(k3 + c1b1) +

κ

t
Jtot
3 (6.2)

with

Jtot
3 = k3 + i

√
t ∂x + c1b1 = {G+

0 , b2}. (6.3)

Here we used the same Wakimoto representation and OPEs as in Sections 2
and 3, and we used the current j = i

√
t ∂x to describe the S1 factor. From

the OPEs, one finds that the central charge is given by ĉ = (2t + 2)/t. When
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we expand the twisted stress tensor in the Wakimoto representation with
κ = t − 1 we find

T +
1
2
∂J = −∂x2 + i

t − 1√
t

∂2x − ∂ϕ2 − t + 1√
t

∂2ϕ

+ c1∂b1 + 2∂c1b1 + ∂c2b2 + ∂βγ, (6.4)

which for t = p/q yields exactly the stress tensor for the (p, q) minimal model
coupled to gravity plus an additional {b2, c

2, β, γ} multiplet.

In this realization, t is no longer restricted to be an integer since there is no
flux quantization. On the other hand, in the untwisted theory, the scalar x
does not have a background charge and we do not have any matter screening
operators, but in a minimal theory we do need a screening operator, so we
need to deal with non-minimal theories. Fortunately there is one special
case, namely t = 1 (and ĉ = 4), where we do not have any background charge
for x either before or after twisting. In this case, by arguments very similar
to those for H+

3 × S3, we recover the c = 1 string at self-dual radius. Namely,
we can split up the BRST charge as

G+
0 = Q1 + Q2 (6.5)

with

Q1 =
∮

c1k−

Q2 =
∮

c2(i
√

t ∂x + k3 + c1b1) (6.6)

which satisfy {Qi, Qj} = 0. The cohomology of Q2 is generated by the
familiar expressions

e−2Φ/
√

t = βe−2ϕ/
√

t

e−2iX/
√

t = βe−2ix/
√

t

B = b1β

C = c1β−1. (6.7)

The similarity transformation is now defined using the operator

L = −
∮

(c1k−1
+ )

(

b2(i
√

t ∂x − k3 − c1b1) + κ ∂b2

)

(6.8)

and we find that

exp Ad(L)G− =
1
t
(−b1k+) = −1

t
B. (6.9)
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and14

exp Ad(L)G+
0 = Q2 − t

∮

C

(

TX + TΦ +
1
2
TBC

)

+ {Q2, •}. (6.10)

Moreover, J is invariant under the similarity transformation. Therefore this
topological theory is equivalent to the c = 1 string.

The fact that the spectrum of topological string theory on H+
3 × S1 coin-

cides with the c = 1 string is perhaps not too surprising. Indeed imposing
invariance under Q2 reduces H+

3 × S1 to the Kazama–Suzuki coset SL(2)/
U(1) at level 3 and Q1 coincides with the BRST operator for topological
string theory on the coset, which is of course known to be equivalent to the
c = 1 string [53]. On the other hand, the coupling to gravity naively appears
to be different for H+

3 × S1 and SL(2)/U(1). The similarity transformation
shows that they are in fact equivalent.

Since ĉ = 4, one can ask if there is a Calabi–Yau four-fold realization
of this conformal field theory. By analogy with (6.1) there is a natural
candidate, namely the Calabi–Yau defined by the equation

y + x2
1 + x2

2 + x2
3 + x2

4 = 0. (6.11)

The topological string theories on more general spaces of the form H+
3 ×

N with NS flux should be very similar. The horizon manifold N will get
reduced to some matter theory, and H+

3 should yield the gravitational dress-
ing by the Liouville field. One may also speculate about a Calabi–Yau dual
of such conformal field theories. A natural guess is that if SL(2)/U(1) ×
N/U(1) (modulo GSO projection) is described by a Calabi–Yau n-fold of the
form P (x) = μ, then H+

3 × N is described by the n + 1-fold yq + P (x) = 0,
with q = 1 if the level of H+

3 is an integer.

6.3 Minimal NS5 branes

Another application of the ideas used in this paper is to the N = 4 topo-
logical string theory [57] on ALE spaces, or equivalently [53] near horizon
NS5-brane geometries. This topological string theory computes certain BPS
correlators in six dimensions. The (4,4) superconformal field theory for the
four transverse directions to a stack of p NS5-branes consists of an SU(2)p−2
WZW model, a linear dilaton, and four free fermions. We will now show

14With the same qualifications as in a previous footnote.
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that this topological string theory also reduces to the (p, 1) bosonic string.15

A relation of this kind was anticipated in [24]. However, the disclaimer
mentioned in the introduction applies: by the (p, 1) bosonic string, we do
not mean the purely topological model realized, e.g., as the N = 2 Ap−1
minimal model coupled to topological gravity ([10] and references therein).

The main point is that if we throw out the quartet {c2, b2, βL, γL} of
H+

3 × S3, we end up with the CHS geometry. Since this quartet did not
give any contribution in topological correlators except for zero modes, we
again end up with the minimal string. By T-duality, this also describes the
topological string on the Ap−1 ALE spaces.

The generators of the left-moving N = 4 algebra of the CHS background
can be taken to be16

T = −∂ϕ2 − 1
√

p
∂2ϕ +

1
2p

(2j3j3 + j+j− + j−j+)

+
1
2
(∂c3b3 − c3∂b3) +

1
2
(∂c1b1 − c1∂b1)

G+ = c1j− + c3(−√
p ∂ϕ + j3 + c1b1) − ∂c3

G− =
1
p

(

b1j+ + b3(
√

p ∂ϕ + j3 + c1b1) + ∂b3
)

G̃+ =
1
p

(

c3j+ − c1(
√

p ∂ϕ + j3 − c3b3) − ∂c1)

G̃− = b3j− + b1(
√

p ∂ϕ − j3 + c3b3) + ∂b1

J = c3b3 + c1b1

J++ = c3c1

J−− = b3b1. (6.12)

We are going to use the same Wakimoto representation as before, i.e., j+ =
βM , etc. Following our previous arguments, we split up the BRST operator
G+

0 = Q1 + QR with

Q1 =
∮

c1j−

QR =
∮

c3(−√
p ∂ϕ + j3 + c1b1). (6.13)

15This result was announced at a talk at Stony Brook in August 2005 [75]. The recent
papers [76–78] make a similar claim and check the correspondence for certain tree-level
amplitudes. Our approach proves the correspondence for any scattering amplitude at any
genus.

16For simple comparison with the rest of the paper, we have labeled the fermions by
c1, b1 and c3, b3.
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We can perform a similarity transformation by

L =
∮

(c1β−1
M )

(

b3(
√

p ∂ϕ + j3 + c1b1) + ∂b3)
)

. (6.14)

As usual this yields the expected operators for the (p, 1) string:

exp(Ad L)G+
0 = QR + pQVir + {QR, •}

exp(Ad L)G− =
1
p
B. (6.15)

We also find

exp(Ad L)G̃+ =
1
p
c3j+ =

1
p
c3βM . (6.16)

The cohomology of G+
0 yields the physical states of the (p, 1) minimal string,

as before. It is easy to check that these cohomology elements are also in the
kernel of G̃+

0 , as required for observables of the N = 4 topological string.17

Mimicking our previous arguments, one finds that the correlation functions
also agree with the minimal string. We will elaborate on aspects of this
correspondence in a future paper [80].

The relation to the minimal string leads to a lot of new insight. For
instance, the (2, 1) minimal string, or equivalently c = −2 matter coupled
to gravity is solved by a supermatrix model [81–83]. The authors of [83]
find the following all genus formula for the free energy as a function of the
cosmological constant μ,

F = −1
6
μ3 log μ +

1
12

log μ −
∞
∑

g=2

(3g − 4)!
12gg!

μ3−3g. (6.17)

Notice that this answer is very different from pure topological gravity, which
has Ftop = −

(1
6

)

μ3 +
( 1

12

)

. Expression (6.17) can be checked for g = 0 and
g = 1 in the continuum worldsheet formulation of the (2, 1) minimal string.
The logarithmic terms are seen to arise from integration over the Liouville
zero mode. In particular, this implies that there is a non-vanishing 4-point
function at tree level, scaling like 1/μ.

An interesting observation, pointed out to us by Marcos Mariño, is that
for each genus, the coefficients (6.17) are precisely the leading singular terms

17It is conceivable that by using free-field representations, we miss some discrete states
of the full theory. Such extra states appear in the analysis of [79]. However, our free-field
representation should capture all the asymptotic states, and hence the minimal string
should describe all the scattering amplitudes in the N = 4 topological string.
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in a μ = 0 expansion of a simple polylog expression:

Fg(μ) = − 1
12gg!

Li4−3g(e−μ) = − 1
12gg!

∞
∑

d=0

d3g−4e−dμ. (6.18)

This has the form of a worldsheet instanton expansion, and so we get a
prediction for counting genus g curves of degree d on an A1 ALE space!
Similarly, we expect a matrix model with multiple supermatrices to solve
the (p, 1) minimal string. This issue is currently under investigation [80].

The genus zero term in the free energy (6.17) can be understood as follows
[84]. Suppose we consider type IIB on the CHS geometry or equivalently
type IIA on the A1 ALE. Then there are light 1/2 BPS states (W-bosons)
coming from wrapped branes with a mass of order M2 ∼ μ. Now the coef-
ficient of the F 4 term in the effective six-dimensional theory is given by
∂4F0/∂μ4, where F is the field strength of a U(1) vector multiplet and F0
is the genus zero free energy of the topological string. This coefficient can
also be calculated by a one-loop computation with only charged light 1/2
BPS states running around the loop. Therefore this coefficient should scale
like M−2 ∼ μ−1 and one deduces that F0 ∼ μ3 log μ [84].

For higher genus, the topological string computes the coefficient of certain
R4F 4g−4 terms in the six-dimensional effective theory [57], where R is the
curvature tensor. These terms are chiral and one might hope that the answer
is fixed by a one-loop Schwinger calculation involving the 1/2 BPS states.18

But it turns out that the Schwinger computation yields an answer for F1 that
scales as μ−1 instead of log μ.19 On closer inspection, this is actually not a
problem: the string worldsheet computation which reduces to the minimal
string is valid for large μ, and the Schwinger computation is valid when the
W-bosons are very light, which is for small μ. In our setting, there is no
non-renormalization theorem which protects these terms. It is quite likely
that there are additional instanton corrections to the R4F 4g−4 terms. One
might hope that reasoning similar to [88–91] fixes these terms completely.
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Appendix A: double complexes

In this appendix, we justify Equation (3.19). We need a simple lemma about
double complexes [92].

Consider the double complex generated by the differentials QH and QV ,
with Q2

H = Q2
V = {QH , QV } = 0. The differentials act on the vector space

K =
⊕

h,v∈Z

Kh,v,

double-graded by the ghost numbers h and v:

QH : Kh,v −→ Kh+1,v

QV : Kh,v −→ Kh,v+1.

The total differential Q = QH + QV acts on the complex graded by the
total ghost number, K =

⊕

t Kt ≡
⊕

h+v=t Kh,v. With these definitions,
we have: if the horizontal sequence is exact except at most two consecutive
gradings, say h = 0, 1, i.e., HQH

(Kh,v) = 0 for h �= 0, 1; then HQH+QV
(K) ∼=

HQV
(HQH

(K)). This statement follows immediately by considering the asso-
ciated spectral sequence, which converges after one step [92].

Claim (3.19) is easily proved by repeated application of the lemma. The
first equality follows if we take QV = G+

0 and QH = QM
F + QL

F . The exact-
ness of the horizontal sequence except at zero grading is a famous fact of the
Felder construction, as we reviewed in the text. The second equality follows
if we take QH = Q2, QV = Q1 + QM

F + QL
F . The hypothesis holds since for

a given choice of βLγL picture, the cohomology at Q2 is non-trivial only for
one value of the q2 grading. Finally the last equality follows with QH = Q3,
QV = Q1 + QM

F + QL
F . Here the lemma can be applied because as explained

in Section 3.5 the Q3 cohomology is non-trivial only for q3 = 0 and q3 = 1.
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Appendix B: facts about minimal strings

In this appendix, we review some standard facts about the (p, q) models
coupled to gravity, emphasizing their free-field description. The main goal
is to point out the special features of the (p, 1) models. Useful reviews with
a different perspective include [9, 10, 93].

B.1 The (p,q) minimal models and their Felder description

The Virasoro minimal models are labeled by a pair or relatively prime inte-
gers (p, q), p, q > 1. They have central charge

cp,q = 1 − 6Q2
p,q, Qp,q ≡

√

p

q
−
√

q

p
. (B.1)

There are (p − 1)(q − 1)/2 primary fields labeled by two integers (r, s) sat-
isfying 1 ≤ r ≤ p − 1, 1 ≤ s ≤ q − 1, with the identification (r, s) ∼ (p − r,
q − s). Their conformal dimensions are

Δr,s =
(qr − ps)2 − (p − q)2

4pq
. (B.2)

The Coulomb gas description of these models is in terms of the theory of free
boson X with background charge, supplemented by appropriate screening
operators. The stress tensor reads (α′ = 1)

TX = −∂X∂X + iQp,q∂
2X. (B.3)

Vertex operators are given by

Vα = e2iαX (B.4)

and have conformal dimension

Δα = α(α − Qp,q). (B.5)

It is useful to introduce the lattice of momenta

αm,n =
1
2
(1 − m)α− +

1
2
(1 − n)α+ with α+ =

√

p

q
, α− = −

√

q

p
.

(B.6)
The conformal dimensions of the corresponding operators Vm,n = e2iαm,nX

can be expressed as

Δαm,n =
1
4
(mα− + nα+)2 − 1

4
Q2

p,q. (B.7)

Note the invariance of Δm,n under (m, n) → (−m,−n) and (m, n) → (m +
p, n + q). The spaces Fm,n are defined as the Fock spaces built on the
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(m, n) vacua,
Fm,n ≡ Span{a−n1 · · · a−nk

Vm,n(0)|0〉}, (B.8)

where the an’s denote the usual oscillators, i∂X(z) =
∑

n anz−n+1, and |0〉 is
the SL(2) invariant vacuum. Finally we introduce the conformally invariant
screening charges

Q± =
∮

e2iα±X . (B.9)

With all the ingredients in place we can now present the free-field resolution
of the irreducible Virasoro module Lr,s. The sequence

· · ·
Qr

−−−−→ F2p−r,s

Qp−r
−−−−−→ Fr,s

Qr
−−−−→ F−r,s

Qp−r
−−−−−→ · · · (B.10)

is a complex, i.e., Q2
F = 0, where the Felder BRST charge QF is defined as

Qr
− or Qp−r

− according to which space it acts on. Felder proved that the
sequence is exact except on the middle Fock space Fr,s, where the cohomol-
ogy HQF

(Fr,s) is isomorphic to the irreducible Virasoro module Lr,s [94].
This construction has the following rationale: The reducible representation
Fr,s contains two primitive submodules, one built on the null at level rs and
the other built on the null at level (p − r)(q − s). Restricting to KerQF

(Fr,s)
factors out the null at level rs, while modding out by ImQF

(Fr,s) factors out
the null at level (p − r)(q − s).

An equivalent resolution is obtained by considering the dual Fock space,
(r, s) → (p − r, q − s).

B.2 Liouville

The Liouville field Φ has stress tensor

TΦ = −∂Φ∂Φ − Q̃p,q∂
2Φ (B.11)

and central charge

cΦ = 1 + 6 Q̃2
p,q, Q̃ =

√

p

q
+
√

q

p
. (B.12)

Vertex operators of the form

Wβ = e2βΦ (B.13)

have conformal dimensions

Δ̃β = β(−β − Q̃p,q). (B.14)

We are adopting almost the same conventions as in the recent Liouville
literature (e.g., [15, 95, 96] with the exception that for us the weak coupling
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region is at Φ = ∞. The Seiberg bound is

β ≥ −Q̃p,q

2
. (B.15)

For special values of β, one encounters degenerate representations:

βm,n = −1
2
(1 − m)β− − 1

2
(1 − n)β+ with β+ =

√

p

q
, β− =

√

q

p
(B.16)

with
Δ̃βmn = −1

4
(mβ− + nβ+)2 +

1
4
Q̃2. (B.17)

Next we would like to introduce vertex operators e2γmnΦ with

γm,n = −1
2
(1 − m)β− − 1

2
(1 + n)β+. (B.18)

and dimension
Δ̃γm,n = Δ̃βm,n + mn = −Δαm,n + 1 (B.19)

Note the invariances of Δ̃γm,n under (m, n) → (−m,−n), (m, n) → (m +
p, n + q). Finally define

γ+
mn = max(γm,n, γ−m,−n), γ−

mn = min(γm,n, γ−m,−n). (B.20)

The Liouville momentum γ+
r,s, which satisfies the Seiberg bound, is used to

dress the (r, s) matter primary to obtain a tachyon vertex operator,

Tr,s = e2iαr,sXe2γ+
r,sΦ CC̄. (B.21)

B.3 Cohomology of the (p,q) models

Physical states of minimal string theory correspond to cohomology classes of
the BRST operator QVir. Let us briefly review the situation for the ordinary
(p, q) models with p, q > 1. Denote by gh the BC ghost number, in conven-
tions where the SL(2) vacuum |0〉 has gh = 0, and gh(C) = +1, gh(B) = −1.
Consider first the chiral (left-moving or right-moving) cohomology relative
to B0, that is, evaluated in the complex of states annihilated by B0. The
states that obey the Seiberg bound are:

gh = 1: Tachyon states. These are the (p − 1)(q − 1)/2 states of the form

Tr,s = e2iαr,sX(0)e2γ+
r,sΦ(0) C. (B.22)

gh ≤ 0: Lian-Zuckerman states. In correspondence to each matter null,
there is an LZ state of zero or negative ghost number, with Liouville dressing
equal to that of the corresponding null. In the free-field realization, LZ states
can be found by a descent procedure, starting with a state |Tr+(k+1)p, s〉,
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1 ≤ r ≤ p − 1, 1 ≤ s ≤ q − 1, k ≥ 0, that is, a “tachyon” built with a matter
primary outside the minimal Kac table. The descent is [11–14]

QVir|LZ〉(−k) = QF |I1〉(−k+1) (B.23)
· · · · · ·

QVir|Ik〉(0) = (−1)kQF |Tm,n〉(1),

where the superscripts indicate the ghost number. Notice that here we are
not imposing the restriction to half of the Kac table, in other terms we have
(p − 1)(q − 1) states for each gh ≤ 0. This doubling is due to the fact that
over each matter primary there are two primitive null vectors, each of which
generates a LZ state upon descent. (Applying literally the above descent
procedure, half of the LZ states will land in the dual matter representation—
they can be dualized back to the usual representation if desired.)

The LZ states with gh = 0 form the ground ring, generated by [97]

x̂ =
(

BC +
√

p

q
(∂Φ − i∂X)

)

e

√
q
p
(Φ+iX)

ŷ =
[

BC +
√

q

p
(∂Φ + i∂X)

]

e

√
p
q
(Φ−iX)

, (B.24)

subject to the relations (taking zero cosmological constant for simplicity)

x̂p−1 = 0, ŷq−1 = 0. (B.25)

Cohomology spaces at given ghost number form representations of the
ground ring. The representation is faithful for the states with gh ≤ 0, but
not for the tachyons. When acting on the tachyon module, the ground ring
generators obey the additional relation x̂p−2 = ŷq−2.

The states listed so far represent only half of the relative chiral cohomol-
ogy. Because of the pairing induced by the bpz inner product, 〈Ψ|C0|Ψ′〉, to
each of the above states corresponds a dual state with ghost number 2 − gh
and dual matter and Liouville momenta. The dual states violate the Seiberg
bound.

In building closed string states, we need to combine left and right movers.
We are instructed to work in the semi-relative cohomology HS , the coho-
mology of QVir + Q̄Vir relative to B0 − B̄0. Consider first the closed-string
cohomology HR, relative to both B0 and B̄0. These are the traditional
closed string states obtained by gluing left and right movers belonging to
the relative chiral cohomology discussed above. Then one can show [98] that
H

(n)
S

∼= H
(n)
R ⊕ H

(n−1)
R . Each representative ψ(n) in the relative cohomology

H
(n)
R of ghost number n gives rise to two representatives in semi-relative
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cohomology: one in H
(n)
S immediately given by ψ(n), and one in H

(n+1)
S of

the form (C0 + C̄0)ψ(n) + · · · .

The discussion of semi-relative cohomology is more than a technical nui-
sance; in fact, it is important for the construction of symmetry currents. For
the c = 1 string, one can obtain symmetry currents by descent from physi-
cal states of (left, right) ghost number (1, 0) made by gluing a left-moving
tachyon with a right-moving ground ring state. For the (p, q) models, such
physical states are not allowed since the left and right Liouville momenta
do not match. Fortunately there are states of total ghost number one in
H

(1)
S of the form (C0 + C̄0)ψ(0) + · · · , where ψ(0) is a ground ring state. As

explained in [98], these more general states of ghost number one still lead
to symmetry currents.

B.4 The (p,1) models

We are mainly interested in the (p, 1) models, which are outside the range of
definition of the “minimal” Virasoro series, since the fundamental domain
of the Kac table is empty. Nevertheless it is possible to construct consistent
CFTs with central charge cp,1 [99–101] These models share with the minimal
series the property of containing only degenerate Virasoro representations —
but infinitely many of them, of course. They are rational with respect to an
extended W-algebra [99, 101]. Modular invariant partition functions have
also been constructed [101].

In the (p, 1) model, the structure of the degenerate Virasoro representa-
tions is somewhat different. Without loss of generality, we can label the
degenerate Virasoro representations of a theory with central charge cp,1 by
pairs of integers (r, s) with restrictions 1 ≤ r ≤ p and s ≥ 1. Consider again
the complex (B.10), for a theory of central charge cp,1, and with the under-
standing that now (r, s) obey the new restrictions. One can prove that the
sequence is exact and that the irreducible Virasoro module Lr,s is isomorphic
to KerQF

(Fr,s). This is because the reducible representation Fr,s has only
one primitive submodule, built on the null at level rs; the other putative
null is absent since it would appear at level (p − r)(1 − s) ≤ 0.

We are going to define the (chiral sector of the) (p, 1) model as contain-
ing each irreducible representation Lr,s with 1 ≤ r ≤ p − 1, s ≥ 1 precisely
once. Notice that representations with r = 0 mod p are excluded. This is the
natural definition that makes contact with the N = 2 topological minimal
models and the p-KdV integrable hierarchy. It is also the definition that
emerges in our reduction from H+

3 × S3.
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The existence of infinitely many matter primaries has the effect of chang-
ing the structure of the cohomology. In essence, the putative LZ states with
gh < 0 are replaced by states with gh = 0 and gh = 1. The states in the
(chiral, relative) cohomology obeying the Seiberg bound are:

gh = 1: Tachyon states,

Tr,s = e2iαr,sXe2γ+
r,sΦC, 1 ≤ r ≤ p − 1, s ≥ 1, (B.26)

one for each matter primary. For convenience, we may re-label them using
a single index n ≡ ps − r,

Tn = e2i((p−1−n)/2
√

p)Xe2((n−p−1)/2
√

p)ΦC, n ≥ 1, n �= 0 mod p. (B.27)

gh = 0: Ground ring states,

Gr,s = x̂r−1ŷs−1, 1 ≤ r ≤ p − 1, s ≥ 1, (B.28)

where x̂ and ŷ are given by the same expression (B.24) with q = 1. The x̂
generator obeys the usual relation x̂p−1 = 0 but there is no restrictions on
the power of ŷ. Since each matter primary has a single primitive null, there
is precisely one ground ring state for each tachyon. States with gh < 0 are
absent: the descent procedure of the previous subsection always terminates
after one step, on a ground ring state.

As in the (p, q) case, each of the above states has a dual (of ghost number
2 − gh) violating the Seiberg bound.

In the (p, 1) models, the tachyons and the ground ring states form two
isomorphic modules of the ground ring. In the formulation of the (p, 1)
model as twisted N = 2 minimal matter coupled to topological gravity, these
two modules should be viewed as equivalent copies of the (gravitationally
extended) chiral ring. In that language, the states with s = 1 span the so-
called “small phase space”, while the states with s > 1 are interpreted as
gravitational descendants.

The discussion of the closed string semi-relative cohomology exactly par-
allels that for general (p, q).

Finally, we would like to express the view that the most natural way to
treat the usual (p, q) minimal strings with q > 1 should parallel the above
analysis of the (p, 1) models—one should define the matter theory so that it
contains an infinite number of primaries. Indeed by coupling to gravity, the
fusion rules of the (p, q) matter minimal model get erased—the zeroes of the
matter correlators are offset by infinities in the Liouville sector [102]—and
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it seems necessary to go outside the minimal Kac table. This treatment of
the (p, q) models is also natural from the viewpoint of obtaining them by
gravitational RG flow starting from the c = 1 theory.
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