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Abstract

We establish Sakakibara’s differential equations [M. Sakakibara, On
the differential equations of the characters for the renormalization group,
Mod. Phys. Lett. A 19 (2004), 1453.] in a matrix setting for the counter
term (respectively renormalized character) in Connes–Kreimer’s Birkhoff
decomposition in any connected graded Hopf algebra, thus including
Feynman rules in perturbative renormalization as a key example.

1 Introduction

Quantum field theory (QFT) unifies the fundamental principles of spe-
cial relativity and quantum theory and provides the appropriate physical
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framework to describe phenomena at the smallest length scales respectively
highest energies. Its mathematical structure is far from being as simple as
that of its basic constituents. Moreover, up to now, perturbation theory is
the most successful quantitative and qualitative approach to QFT. Although
general agreement between theoretically predicted results in the perturba-
tive regime of QFT and those experimentally measured has reached a sat-
isfactory status, a truly non-perturbative understanding of the physics of
quantum phenomena is mandatory, both for future advancements in terms
of fundamental as well as calculational problems.

Perturbative QFT consist of two fundamental ingredients, the gauge
principle and the concept of renormalization. The latter consists of an arbi-
trary regularization prescription, which parameterizes ultraviolet divergen-
cies appearing in Feynman amplitudes and thereby renders them formally
finite, together with a specific subtraction rule of those ill-defined expres-
sions dictated by physical principles. Whereas both the gauge principle and
the concept of renormalization experienced a rich development in theoreti-
cal physics, the former especially came to the fore of mathematical research
with rich interactions between mathematicians and physicists. However, the
latter suffered from the lack of an equally strong development of its mathe-
matical aspects.

Kreimer’s recent findings [31, 32] mark a turning point in this context.
He discovered a mathematical structure underlying renormalization in per-
turbative QFT in terms of connected graded commutative Hopf algebras.
Feynman rules are interpreted as Hopf algebra characters which associate
to each Feynman graph its corresponding amplitude.

The concept of regularization in general introduces non-physical parame-
ters. This process changes the nature of Feynman rules drastically, i.e., from
linear multiplicative maps into the underlying base field to algebra mor-
phisms with image in a commutative unital algebra, e.g., Laurent series in
dimensional regularization. Hence, we identify regularized Feynman rules
with a particular subclass of such maps from the Hopf algebra of Feynman
graphs into a commutative unital algebra dictated by the regularization
scheme.

Connes and Kreimer extended the results on the Hopf algebraic approach
to perturbative renormalization by establishing the Hopf algebra of Feyn-
man graphs including the concept of the renormalization group [9, 10, 11, 12].
Moreover, Connes and Kreimer formulated in this picture the intricate pro-
cess of perturbative renormalization in terms of an algebraic Birkhoff decom-
position of regularized Feynman rules, using the minimal subtraction scheme
in dimensional regularization.
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In [19, 20], it was shown how to organize the combinatorics of renormaliza-
tion in terms of (pro-)nil- and unipotent triangular matrix representations
with entries in a commutative Rota–Baxter algebra. A simple factorization
of such matrices was derived using explicit non-recursive equations contain-
ing the renormalization scheme operator. This simple matrix decomposition
offers a transparent picture of the process of renormalization in terms of the
factorization of Feynman rules matrices.

In this work, we would like to further develop the matrix calculus approach
to perturbative renormalization in the abstract context of connected graded
Hopf algebras. Any left coideal gives rise to a representation of the group
of characters of the Hopf algebra by lower triangular unipotent matrices,
the size of which being given by the dimension of the coideal. We investi-
gate the matrix representation of two fundamental concepts which can be
defined in this purely algebraic framework: the renormalization group and
the beta-function. We retrieve then M. Sakakibara’s differential equations
involving the beta-function, giving to his approach the firm ground of tri-
angular matrix calculus.

Before starting, we should point the reader to the following papers
[6, 14, 16, 22, 24, 25, 35, 36, 39, 50], and books [13, 26, 27, 34, 40, 51], which are
useful as introductory references, both with respect to perturbative QFT
and renormalization theory, as well as its recently discovered Hopf-algebraic
structures. Also, some readers may find it stimulating to leaf through the
books by Brown [5] and Schweber [44] as well as the more recent one by
Kaiser [29] for some scientific-historical perspectives on Feynman graphs
in QFT and renormalization theory. Schwinger’s collection of reprints [45]
contains many of the original articles marking the beginning of modern per-
turbative QFT and renormalization theory. Comprehensive treatments of
Hopf algebras can be found in [1, 49], see also the paper by Bergman [3].
Other useful references are [7, 26, 30, 38, 48]. Hopf algebras in the context of
combinatorics appeared in the work of Rota [42], and Joni and Rota [28],
see also [25, 41, 46, 47].

Let us briefly outline the organization of this paper. In Section 2, after
reminding Connes–Kreimer’s Birkhoff decomposition of characters in the
most general context of connected filtered Hopf algebras, we define the
matrix representation associated with a left coideal, along the lines of [20],
and write down the matrix counterpart of the Birkhoff decomposition. In
Section 3, we first define the renormalization group and the beta-function
in the context of connected graded Hopf algebras, along the lines of [10]
and [39], and then we describe the matrix counterparts of these notions.
The key point is that the grading biderivation Y of the Hopf algebra can
be represented by a diagonal matrix. The semidirect product of the group
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of characters with the associated one-parameter group of automorphisms
can then be represented by (non-unipotent) lower triangular matrices. The
two last subsections are devoted to a careful rewriting of some important
results of M. Sakakibara [43] in the matrix representation, yielding matrix
differential equations for the beta-function.

2 The general set up

In the sequel, k denotes the ground field with char(k) = 0 over which all
algebraic structures are defined. Here the term algebra always means unital
associative k-algebra, denoted by the triple (A, mA, ηA), where A is a k-
vector space with a product mA : A ⊗ A → A and a unit map ηA : k → A.
Similarly, for coalgebras over k, denoted by the triple (C, ΔC , εC), where the
coproduct map ΔC : C → C ⊗ C is coassociative and εC : C → k denotes the
counit map. A subspace J ⊂ C is called a left coideal if ΔC(J ) ⊂ C ⊗ J .
A Hopf algebra, denoted by (H, mH, ηH, ΔH, εH, S), is a bialgebra together
with the antipode S : H → H, that is, it consists of an algebra and coalgebra
structure in a compatible way and S is a k-linear map on H satisfying the
Hopf algebra axioms [1, 49]. In the following, we omit subscripts for nota-
tional transparency if there is no danger of confusion and denote algebras,
coalgebras and Hopf algebras simply by A, C and H, respectively.

2.1 Connected filtered Hopf algebra

Let H be a connected filtered bialgebra:

k = H(0) ⊂ H(1) ⊂ · · · ⊂ H(n) ⊂ · · · ,
⋃

n≥0

H(n) = H,

and let A be any commutative algebra. The space L(H,A) of linear maps
from H to A together with the convolution product f � g := mA ◦ (f ⊗ g) ◦
Δ, f, g ∈ L:

H Δ−−→ H ⊗ H f⊗g−−→ A ⊗ A mA−−→ A,

is an algebra with unit e := ηA ◦ ε. For any x ∈ H(n), we have, using a
variant of Sweedler’s notation [49],

Δ(x) = x ⊗ 1 + 1 ⊗ x +
∑

(x)

x′ ⊗ x′′, (2.1)

where the filtration degrees of x′ and x′′ are strictly smaller than n. Recall
that by definition we call an element x ∈ H primitive if

Δ̄(x) := Δ(x) − x ⊗ 1 − 1 ⊗ x = 0.
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The convolution product on L(H,A) writes then with Sweedler’s notation:

(f � g)(x) = f(x)g(1) + f(1)g(x) +
∑

(x)

f(x′)g(x′′) ∈ A. (2.2)

The filtration of H implies a decreasing filtration on L(H,A) in terms of
Ln := {f ∈ L

∣∣ f |H(n−1)
= 0} and L(H,A) is complete with respect to the

induced topology [39]. The subset g0 := L1 ⊂ L(H,A) of linear maps α that
send the bialgebra unit to zero, α(1) = 0, forms a Lie algebra in L(H,A).
The exponential

exp�(α) =
∑

k

1
k!

α�k

makes sense and is a bijection from g0 onto the group G0 = e + g0 of linear
maps γ that send the bialgebra unit to the algebra unit, α(1) = 1A [39].
Here and further below, the particular notation of the exponential map,
exp�, indicates its definition with respect to the convolution product (2.2).
Hence, on the right-hand side α�k denotes the k-fold convolution product of
α with itself.

An infinitesimal character with values in A is a linear map ξ ∈ L(H,A)
such that for x, y ∈ H,

ξ(xy) = ξ(x)e(y) + e(x)ξ(y). (2.3)

We denote by gA ⊂ g0 the linear space of infinitesimal characters. We call
an A-valued map ρ in L(H,A) a character if ρ(1) = 1 and for x, y ∈ H

ρ(xy) = ρ(x)ρ(y). (2.4)

The set of such unital algebra morphisms is denoted by GA ⊂ G0.

Let us now assume that A is a commutative algebra. It is easily verified
then, see for instance [39], that the set GA of characters from H to A forms a
group for the convolution product. In fact it is the pro-unipotent group1 of
A-valued morphisms on the bialgebra H, and gA in g0 is the corresponding
pro-nilpotent Lie algebra. The exponential map, exp�, restricts to a bijection
between gA and GA. The neutral element e := ηA ◦ ε in GA is given by
e(1) = 1A and e(x) = 0 for x ∈ Ker ε. The inverse of ϕ ∈ GA is given by
composition with the antipode S:

ϕ�−1 = ϕ ◦ S. (2.5)

1It is more precisely a group scheme, i.e., a functor A �→ GA from k-algebras to groups.
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Here, for the reader’s convenience, we emphasize that the notation ϕ�−1

means the inverse with respect to the convolution product (2.2).

Recall that the antipode S : H → H is the inverse of the identity for the
convolution product on L(H,H):

S � Id = m ◦ (S ⊗ Id) ◦ Δ = η ◦ ε = Id � S. (2.6)

It always exists in a connected filtered bialgebra, hence any connected filtered
bialgebra is a connected filtered Hopf algebra. The antipode is defined by

S =
∑

n≥0

(η ◦ ε − Id)�n. (2.7)

Recall that Δ(0) := Id and for n > 0 Δ(n) := (Δ(n−1) ⊗ Id) ◦ Δ. Equations
(2.6) imply the following recursive formulas for the antipode starting with
S(1) = 1 and for x ∈ Ker ε:

S(x) = −x −
∑

(x)

S(x′)x′′, (2.8)

S(x) = −x −
∑

(x)

x′S(x′′). (2.9)

Example 2.1 (Toy-model of decorated non-planar rooted trees).
As a guiding example, we will use the Hopf algebra of non-planar rooted
trees established by Kreimer [32]. It provides the role model for the Hopf
algebraic formulation of perturbative renormalization [9]. In fact, linear
combinations of — decorated — non-planar rooted trees naturally encode
the hierarchical structure of divergencies of a Feynman graph. Each vertex of
a rooted tree represents a primitive divergence indicated by a decoration with
a primitive one-particle irreducible (1PI) Feynman graph. Edges connecting
such vertices encode thereby the nesting of subdivergencies, i.e., proper 1PI
subgraphs sitting inside another 1PI graph. The root vertex is the overall
divergence which contains those subdivergencies. Linear combinations of
such decorated rooted trees may represent Feynman graphs with overlapping
divergence structures [33].

By definition, a rooted tree t is made out of vertices and non-intersecting
oriented edges, such that all but one vertex have exactly one incoming line.
We denote the set of vertices and edges of a rooted tree by V (t), E(t),
respectively. The root is the only vertex with no incoming line. We draw
the root on top of the tree. Let T denote the set of isomorphic classes of
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rooted trees. The empty tree is denoted by 1T :

· · · · · ·

Let T be the k-vector space generated by T , which is graded by the number
of vertices, deg(t) := |V (t)|, t ∈ T , with the convention that deg(1T ) = 0.
Later, for the sake of notational transparency, we denote the degree of a tree
t ∈ T by |t| := deg(t). Let HT be the graded commutative polynomial alge-
bra of finite type over k generated by T , HT := k[T ] =

⊕
n≥0 H(n). Mono-

mials of trees are called forests. We extend deg(t1 . . . tn) :=
∑n

i=1 deg(ti).

We will define a coalgebra structure on HT . The coproduct is defined in
terms of cuts c ⊂ E(t) on a tree t ∈ T . A primitive cut is the removal of a
single edge, |c| = 1, from the tree t. The tree t decomposes into two parts,
denoted by the pruned part Pc(t) and the rooted part Rc(t), where the latter
contains the original root vertex. An admissible cut of a rooted tree t is a
set of primitive cuts, |c| ≥ 1, such that along the unique path from the root
to any vertex of t, one encounters at most one cut.

Let Ct be the set of all admissible cuts of the rooted tree t ∈ T . We
exclude the empty cut c(0): Pc(0)(t) = ∅, Rc(0)(t) = t, and the full cut c(1):
Pc(1)(t) = t, Rc(1)(t) = ∅. Also let C

(01)
t be Ct ∪ {c(0)(t), c(1)(t)}. The coprod-

uct is defined by

Δ(t) := t ⊗ 1T + 1T ⊗ t +
∑

c∈Ct

Pc(t) ⊗ Rc(t) =
∑

c∈C
(01)
t

Pc(t) ⊗ Rc(t). (2.10)

We shall call the rooted tree Rc(t) the cotree (or cograph) corresponding to
the admissible cut c on the tree t. One sees easily that deg(t) = deg(Pc(t)) +
deg(Rc(t)), for all admissible cuts c ∈ Ct, and therefore

Δ̄(t) =
∑

c∈Ct

Pc(t) ⊗ Rc(t) ∈
∑

p+q=deg(t), p, q>0

H(p) ⊗ H(q).

Furthermore, this map is extended by definition to an algebra morphism
on HT :

Δ

(
n∏

i=1

ti

)
:=

n∏

i=1

Δ(ti).
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The best way to get use to this particular coproduct is to present some
examples:

Δ(•) = • ⊗ 1T + 1T ⊗ •

Δ = ⊗ 1T + 1T ⊗ + • ⊗ •

Δ(••) = Δ(•)Δ(•) = ••⊗ 1T + 1T ⊗ •• + 2 • ⊗ •

Δ = ⊗ 1T + 1T ⊗ + 2• ⊗ + •• ⊗ •

Δ(• ) = Δ( •) = Δ(•)Δ

= • ⊗ 1T + 1T ⊗ • + •• ⊗ • + • ⊗ •• + ⊗ • + • ⊗

Δ ( ) = ⊗ 1T + 1T ⊗ + 3• ⊗ + 3•• ⊗ + ••• ⊗ •.

One observes immediately that the vector space T defines a left coideal, i.e.,

T Δ−→ HT ⊗ T .

The experienced reader will easily recognize that this coproduct efficiently
stores the so-called wood W(Γ) for the Feynman graph Γ with its hierarchy
of subdivergencies represented by the tree t ∼ Γ. A wood simply contains all
spinneys2 of the graph [6, 21]. The right-hand side of the above coproduct
consists of the cograph following from the contraction of the corresponding
spinney denoted on the left-hand side.

Connes and Kreimer showed that HT with coproduct (2.10), and counit ε
defined by ε(1) := 1k and zero else is a connected Z≥0-graded commutative,
non-cocommutative bialgebra of finite type and hence a Hopf algebra, with
antipode S defined recursively by S(1T ) = 1T and

S(t) := −t −
∑

c∈Ct

S(Pc(t))Rc(t).

Again, a couple of examples might be helpful here:

S(•) = −•

S = − − S(•)• = − + ••

S = − − 2S(•) − S(••)• = − + 2• − ••• (2.11)

S( ) = − − 3S(•) − 3S(••) − S(•••)•

= − + 3• − 3•• + ••••. (2.12)

2A spinney is a — possibly non-connected — subgraph with one-particle irreducible
components.
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We chose a simple decoration of tree vertices by tree factorials [32, 37] defined
as follows. Let t ∈ T , each primitive cut, that is, each edge c ∈ E(t), defines
two rooted trees, i.e., the pruned tree tvc := Pc(t) and Rc(t). The root of
the former is the vertex vc ∈ V (t) which had c as its incoming edge. The
root of the cotree Rc(t) is the original root. Obviously, deg(t) = deg(tvc) +
deg(Rc(t)). The tree-factorial of t is defined by

t! :=
∏

c∈C
(1)
t

|c|=1

deg(tvc) =
∏

v∈V (t)

deg(tv).

The second equality is clear as to each vertex we can associate the unique
incoming edge c ∈ E(t). As examples, we mention

•
! = 1,

!
= 2,

!

= 6,
!
= 3,

!

= 8 and
!
= 4.

In the following, we decorate each vertex v ∈ V (t) of a rooted tree t ∈ T by
its tree factorial, t!v. For notational transparency, we omit the decorations
on the trees.

Recall the function
∫ ∞

0
y−az(y + c)−1−bz dy = B

(
(a + b)z, 1 − az

)
c−(a+b)z,

where

B(u, v) :=
Γ(u)Γ(v)
Γ(u + v)

,

and c > 0. Here Γ(a) is the usual Euler Gamma-function [34]. We define
now the family of functions:

Bn := Bn(z) := B(nz, 1 − nz), n > 0.

Following [32, 37], we define the following regularized toy-model character
ϕ = ϕ(a, μ, z) from the Hopf algebra of integer decorated rooted trees HT
to A := C[z−1, z]][[log(a/μ)]], a/μ > 0 : ϕ(1T )(a, μ, z) := 1A,

ϕ(t)(a, μ, z) :=
(

a

μ

)−z deg(t) ∏

v∈V (t)

Bw(tv), for t ∈ Ker ε. (2.13)

Here, a is assumed to be a dimensional external parameter, and μ is the
so-called ’t Hooft mass or renormalization scale. The latter is an arbitrarily
chosen parameter of the same dimension as a, such that the ratio a/μ is
a positive number. The parameter μ introduces an external scale specific
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to dimensional regularization [13]. Let us give a few examples by applying
ϕ(a, μ, z) to some trees. Defining α := a/μ, we find

ϕ(•)(a, μ, z) = α−zB1 = α−zB(z, 1 − z)

= α−z π

sin πz
= α−z

(
1
z

+
π2

6
z + O(z2)

)

ϕ
( )

(a, μ, z) = α−2zB2B1

= α−2zB(2z, 1 − 2z)B(z, 1 − z),

ϕ
( )

(a, μ, z) = α−3zB3B
2
1

= α−3zB(3z, 1 − 3z)B(z, 1 − z)B(z, 1 − z),

ϕ
( )

(a, μ, z) = α−4zB4B
3
1

= α−4zB(4z, 1 − 4z)B(z, 1 − z)B(z, 1 − z)B(z, 1 − z),

ϕ

( )
(a, μ, z) = α−4zB4B2B1B1

= α−4zB(4z, 1 − 4z)B(2z, 1 − 2z)B2(z, 1 − z).

These types of models exemplify a rich structure capturing some aspects
of real QFT calculations, and we refer the reader to [4, 32, 37, 34] for more
details on such toy models.

For latter use, we parameterize ’t Hooft’s mass

μ −→ μ(s) := esμ, s ∈ R, (2.14)

such that α := a/μ → α(s), and for a fixed, a, we define

ϕ(a, μ, z) → ϕ (α(s), z) =: ϕ(s, z).

2.2 Connes–Kreimer’s Birkhoff decomposition of Hopf algebra
characters

Connes and Kreimer extended the work by Kreimer [31, 32] and estab-
lished the connected graded commutative non-cocommutative Hopf algebra
of Feynman graphs corresponding to a perturbative quantum field theory
(pQFT).

Moreover, in the context of minimal subtraction as renormalization
scheme in dimensional regularization, Connes and Kreimer [9, 10] discov-
ered a unique Birkhoff type decomposition of Hopf algebra characters with
values in the C-algebra A of meromorphic functions capturing the process
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of renormalization in pQFT. Namely, for any ϕ ∈ GA, we have

ϕ = ϕ�−1
− � ϕ+, (2.15)

where both ϕ− and ϕ+ belong to GA, and ϕ+(x) ∈ A+ for any x ∈ H,
whereas ϕ−(x) ∈ A− for any x ∈ Ker ε. Here, A− is the algebra of polyno-
mials in z−1 without constant term (the “pole parts”), and A+ is the algebra
of meromorphic functions which are holomorphic at z = 0, corresponding to
the splitting of the C-algebra A = A+ ⊕ A− of meromorphic functions. We
denote by π : A → A− the projection onto A−.

The components ϕ− and ϕ+ are given by recursive formulas. Suppose
that ϕ−(x) and ϕ+(x) are known for x ∈ H(n−1). Define for x ∈ H(n) Bogoli-
ubov’s preparation map:

R̄ : x 
−→ ϕ− � (ϕ − e)(x) = ϕ(x) +
∑

(x)

ϕ−(x′)ϕ(x′′). (2.16)

The components in the Birkhoff decomposition are then given by

ϕ−(x) = −π
(
R̄(x)

)
, (2.17)

ϕ+(x) = (IdA − π)
(
R̄(x)

)
. (2.18)

The factor ϕ+(x) is the renormalized character, whereas ϕ−(x) is the sum
of counter terms one must add to R̄(x) to get ϕ+(x). In the example of min-
imal subtraction scheme, the renormalized value of the character ϕ at 0 ∈ C

is the well-defined complex number ϕ+(0), whereas ϕ(0) may not exist. The
fact that ϕ− and ϕ+ are still characters relies on the Rota–Baxter prop-
erty for the projection π, see e.g., [17, 18, 21]. Moreover, Connes–Kreimer’s
results do not depend on the type of regularization or subtraction scheme.

In terms of the toy-model character ϕ(s, z) = ϕ(a, esμ, z), see
equation (2.13), with parameterized ’t Hooft mass (2.14), mapping the Hopf
algebra HT of non-planar integer decorated rooted trees to A := C[z−1, z]]
[[log(α(s))]], α(s) := a/(esμ) > 0, which decomposes into

A = z−1
C[z−1][[log(α(s))]] ⊕ C[[z]][[log(α(s))]],

we find for the primitive tree • ∈ H(1) the counter term

ϕ−(•)(s, z) = −π
(
R̄(•)
)

= −π
(
ϕ(•)
)

= −π(α(s)−zB1) ∈ z−1
C[z−1],

and for ∈ H(3), we find

R̄ = ϕ + 2ϕ−(•)ϕ + ϕ−(••)ϕ−(•)

= α−3zB3B
2
1 − 2π(α−zB1)α−2zB2B1 + π(α−2zB2

1)α−zB1,
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such that the counter term is given by

ϕ− (s, z) = −π
(
ϕ + 2ϕ−(•)ϕ + ϕ−(••)ϕ−(•)

)
.

A detailed calculation shows that ϕ− (s, z) ∈ z−1
C[z−1]. Hence any

dependence on μ has disappeared. Feynman rule characters in dimensional
regularization depend on the unit of mass μ. However, for the correspond-
ing counter terms in their Birkhoff decomposition, it is true in general that
ϕ−(t)(s, z) ∈ z−1

C[z−1], t ∈ HT . In terms of our toy-model character (2.13)
with parameterized unit mass μ = μ(s) (2.14), this may be summarized
by saying that ∂sϕ−(t)(s, z) = 0, t ∈ HT . We will come back to this in
Section 3.

The reader should compare the above counter term with the expression
for S in equation (2.11). Eventually, the corresponding renormalized
expression ϕ+ := (IdA − π)

(
R̄

)
is then given by

ϕ− � ϕ = ϕ− + ϕ + 2ϕ−(•)ϕ + ϕ−(••)ϕ−(•).

The reader should verify that ϕ−(••) = ϕ−(•)ϕ−(•), that is, ϕ− ∈ GA, hence
ϕ+ = ϕ− � ϕ ∈ GA.

2.3 The matrix representation

In this section, we recall the matrix representation of L(H,A) associated
with a left coideal. The next step consists in understanding the beta-function
of Connes–Kreimer [11] in this matrix setting. We follow Sakakibara’s
approach [43], giving his clever computations the concrete support of tri-
angular matrices.

Let us start by retrieving some material from [20, 21, 23]. Recall that the
subalgebra M�

n(A) ⊂ Mn(A) of lower triangular matrices in the algebra of
n × n matrices with entries in the algebra A and with n finite or infinite
has a decreasing filtration and is complete in the induced topology. Indeed,
M�

n(A)m is the ideal of strictly lower triangular matrices with zero on the
main diagonal and on the first m − 1 subdiagonals, m > 1. We then have
the decreasing filtration

M�
n(A) ⊃ M�

n(A)1 ⊃ · · · ⊃ M�
n(A)m−1 ⊃ M�

n(A)m ⊃ · · · , m < n,

with

M�
n(A)u M�

n(A)v ⊂ M�
n(A)u+v.
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For A being commutative, we denote by Mn(A) the group of lower triangular
matrices with unit diagonal which is Mn(A) = 1 + M�

n(A)1. Here the n × n,
n ≤ ∞, unit matrix is given by

1 := (δij1A)1≤i,j≤n. (2.19)

Let H be a connected filtered Hopf algebra over k, let A be any com-
mutative unital k-algebra and let

(
L(H,A), �

)
be the algebra of k-linear

maps from H to A endowed with the convolution product. Let J be any left
coideal of H (i.e., a vector subspace of H such that Δ(J) ⊂ H ⊗ J).

We fix a basis X = (xi)i∈I of the left coideal J (a left subcoset in the
terminology of [20]). We suppose further that this basis is denumerable
(hence indexed by I = N or I = {1, · · · , m}) and filtration ordered, i.e., such
that if i ≤ j and xj ∈ H(n), then xi ∈ H(n).

Definition 2.2. The coproduct matrix in the basis X is the |I| × |I| matrix
M with entries in H defined by

Δ(xi) =
∑

j∈I

Mij ⊗ xj .

Lemma 2.3. The coproduct matrix is lower triangular with diagonal terms
equal to 1.

Proof. Suppose xi ∈ H(n) and xi /∈ H(n−1). Then it is well known that (see
e.g., [25], [39]):

Δ(xi) = xi ⊗ 1 + 1 ⊗ xi + terms of filtration degree ≤ n − 1.

Then clearly Mii = 1, and moreover if Mij �= 0 and i �= j, then xj ∈ H(n−1).
If i < j, this implies xi ∈ H(n−1), which contradicts the hypothesis. Hence
Mij = 0 if i < j. �

Recalling the example of rooted trees and choosing the following subset
T ′ ⊂ T of rooted trees with the displayed linear order

T ′ :=
{

t1 := 1T , t2 := •, t3 := , t4 := , t5 :=
}

. (2.20)

The 5 × 5 coproduct matrix of Definition 2.2 is then given by

M =

⎛

⎜⎜⎜⎜⎜⎝

1T 0 0 0 0
• 1T 0 0 0

• 1T 0 0
•• 2• 1T 0
••• 3•• 3• 1T

⎞

⎟⎟⎟⎟⎟⎠
. (2.21)
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Observe that for each tree ti ∈ T ′, all cotrees in Δ̄(ti) are of degree strictly
lower than deg(ti) and are contained in T ′, hence T ′ forms a left coideal
in HT .

Now define ΨJ : L(H,A) → EndA(A ⊗ J) by

ΨJ [f ](xj) =
∑

i

f(Mij) ⊗ xi. (2.22)

In other words, the matrix of ΨJ [f ] is given by (f(Mij))i,j∈I .

Proposition 2.4. The map ΨJ defined above is an algebra homomorphism.
Its transpose does not depend on the choice of the basis.

Proof. The second statement is straightforward: let us denote by �ΨJ the
transpose of ΨJ , i.e., the map defined by

�ΨJ [f ](xi) =
∑

j

f(Mij) ⊗ xj .

For any x ∈ J we have then, using Sweedler’s notation,
�ΨJ [f ](x) =

∑

(x)

f(x(1)) ⊗ x(2).

Hence, �ΨJ [f ] has an intrinsic expression as the composition of the three
maps below:

A ⊗ J
IdA⊗Δ−−−−−→ A ⊗ H ⊗ J

IdA⊗f⊗IdJ−−−−−−−−−→ A ⊗ A ⊗ J
mA⊗IdJ−−−−−−→ A ⊗ J.

We have to show for any f, g ∈ L(H,A),

ΨJ [f � g] = ΨJ [f ]ΨJ [g]. (2.23)

It is shown in [20] that �ΨJ is an anti-homomorphism, which proves the
claim. We give here an alternative proof. Using coassociativity (Id ⊗ Δ) ◦
Δ(xi) = (Δ ⊗ Id) ◦ Δ(xi), we immediately get

Δ(Mij) =
|I|∑

k=1

Mik ⊗ Mkj .

Hence,

ΨJ [f � g](xj) =
∑

i

(f � g)(Mij) ⊗ xi

=
∑

i

∑

k

f(Mik)g(Mkj) ⊗ xi

= ΨJ [f ]ΨJ [g](xj),

which proves (2.23). �
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The Lie algebra of infinitesimal characters is mapped into a Lie subalgebra
ĝA in M�

|I|(A)1. This is immediately seen by applying definition (2.22),
since elements in gA map the unit to zero due to relation (2.3). Whereas
characters in the group GA are mapped to the subgroup ĜA ⊂ M|I|(A).

The toy-model character ϕ = ϕ(s, z) in equation (2.13) with parame-
terized ’t Hooft mass, applied to the coproduct matrix (2.21) gives

ϕ̂(s, z) =

⎛

⎜⎜⎜⎜⎝

1A 0 0 0 0
α(s)−zB1 1A 0 0 0

α(s)−2zB2B1 α(s)−zB1 1A 0 0
α(s)−3zB3B

1
1 α(s)−2zB2

1 2α(s)−zB1 1A 0
α(s)−4zB4B

3
1 α(s)−3zB3

1 3α(s)−2zB2
1 3α(s)−zB1 1A

⎞

⎟⎟⎟⎟⎠
.

Recall that α = α(s) = a/μ(s), where μ(s) = esμ.

The following remarks should be useful latter. The coproduct matrix
M with entries in H can be seen as the image of the identity map under
ΨJ : L(H,H) → EndH(H ⊗ J), i.e.,

ΨJ [Id](xj) =
∑

i

Id(Mij) ⊗ xi. (2.24)

Equations (2.6) imply for the matrix representation of the antipode S ∈
L(H,H)

ΨJ [S � Id](xj) = ΨJ [S] ◦ ΨJ [Id](xj)

=
∑

i

∑

k

S(Mik)Id(Mkj) ⊗ xi

= ΨJ [η ◦ ε](xj)

=
∑

i

η ◦ ε(Mij) ⊗ xi

=
∑

i

1δij ⊗ xi.

Here 1 denotes the |I| × |I| unit matrix, (δij1T )1≤i,j≤|I|. Hence, ΨJ [S] =
M−1, and the inverse can be calculated readily in terms of the geometric
series

ΨJ [S] = M−1 = 1 +
∑

k>0

(−1)k(M − 1)k.

Using the bijection exp� between gA and GA, we may write any ϕ ∈ GA as
an exponential of the element α = log�(ϕ) in gA. In terms of matrices, we
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find log(Ψ[ϕ]) = ϕ(log(Ψ[Id])), using the fact that ϕ is a character, and

log(Ψ[Id]) = log(M) =
∑

k>0

(−1)k (M − 1)k

k

defines the matrix of the so-called normal coordinates.

2.4 The matrix form of Connes–Kreimer’s Birkhoff decomposition

Suppose that the commutative target space algebra A in L(H,A) splits into
two subalgebras

A = A− ⊕ A+, (2.25)
where the unit 1A belongs to A+. Let us denote by π : A → A− the projec-
tion onto A− parallel to A+. One readily verifies that π is an idempotent
Rota–Baxter operator [21], that is, it satisfies the relation

π
(
π(a)b + aπ(b) − ab

)
= π(a)π(b). (2.26)

Indeed, let a, b ∈ A
π(a)b + aπ(b) − ab = π(a)π(b) − (IdA − π)(a)(IdA − π)(b),

such that applying π on both sides gives relation (2.26), since it eliminates
the term (IdA − π)(a)(IdA − π)(b) without changing the term π(a)π(b), as
π(IdA − π)(a) = 0 and A− = π(A), A+ = (IdA − π)(A) are subalgebras.

In fact, this is a special case of an additive decomposition theorem char-
acterizing Rota–Baxter algebras, which was proven by Atkinson for general,
not necessarily associative algebras in [2].

Theorem 2.5 [2]. Let A be a k-algebra. A k-linear operator R : A → A sat-
isfies the Rota–Baxter relation (2.26) if and only if the following two state-
ments are true. Firstly, A− := R(A) and A+ := R̃(A) are subalgebras in
A. Secondly, for x, y, z ∈ A, R(x)R(y) = R(z) implies R̃(x)R̃(y) = −R̃(z).
Here we denoted the map R̃ := (IdA − R).

The case of an idempotent Rota–Baxter map implies A− ∩ A+ = {0}.
In the context of perturbative renormalization in QFT where the regular-
ization prescription implies the target space algebra A, the corresponding
splitting of A into a direct sum of two subalgebras is called a renormalization
scheme. For example, the minimal renormalization scheme in dimensional
regularization corresponds to the splitting of the C-algebra A of meromor-
phic functions in which A− is the algebra of polynomials in z−1 without
constant term (the “pole parts”), and A+ is the algebra of meromorphic
functions which are holomorphic at z = 0.
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The following theorem describes a multiplicative decomposition for asso-
ciative unital Rota–Baxter algebras and was observed by Atkinson in [2],
see also [23].

Theorem 2.6 [2]. Let A be an associative unital Rota–Baxter algebra
with Rota–Baxter map R. Suppose A to have a decreasing filtration and to
be complete in the induced topology. Assume X and Y in A to be solutions
of the equations

X = 1A − R(X a) and Y = 1A − R̃(a Y ), (2.27)

for a ∈ A(1). Then we have the following factorization

X(1A + a)Y = 1A, such that 1A + a = X−1Y −1. (2.28)

For an idempotent Rota–Baxter map, this factorization is unique.

Proof. The Rota–Baxter relation (2.26) yields for any α, β ∈ A

R
(
αR̃(β)

)
+ R̃
(
R(α)β

)
= R(α)R̃(β). (2.29)

We then simply calculate the product XY and use equation (2.29), with
α = Xa and β = aY :

XY =
(
1A − R(X a)

) (
1A − R̃(a Y )

)

= 1A − R(X a) − R̃(a Y ) + R(X a)R̃(a Y )

= 1A − R
(
Xa
(
1A − R̃(a Y )

))
− R̃
((

1A − R(X a)
)

a Y
)

= 1A − R(XaY ) − R̃(XaY )
= 1A − XaY.

Hence, we obtain the factorization in (2.28). The uniqueness for an idem-
potent Rota–Baxter map is easy to show [18, 23]. �

Let us come back to the matrix representation of L(H,A) with a split-
ting A (2.25) via ΨJ (2.22). We define a Rota–Baxter map R on ΨJ [L] ⊂
M�

|I|(A) by extending the Rota–Baxter map π on A entrywise, i.e., for the
matrix τ = (τij) ∈ M�

|I|(A), define

R(τ) = (π(τij)) . (2.30)

Theorem 2.7 [20]. Then the triple
(
M�

|I|(A), R, {M�
|I|(A)l}l<|I|

)
forms

a non-commutative complete filtered Rota–Baxter algebra with idempotent
Rota–Baxter map R.
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Atkinson’s multiplicative decomposition immediately implies a factoriza-
tion of ĜA ⊂ M�

|I|(A) into the subgroups:

Ĝ−
A ⊂ 1 + R

(
M�

|I|(A)1
)

⊂ M
�
|I|(A)

and
Ĝ+

A ⊂ 1 + R̃
(
M�

|I|(A)1
)

⊂ M
�
|I|(A),

that is, for each ϕ̂ := Ψ[ϕ] ∈ ĜA, ϕ ∈ GA, there exist unique ϕ̂− ∈ Ĝ−
A and

ϕ̂+ ∈ Ĝ+
A such that

ϕ̂ = ϕ̂−1
− ϕ̂+. (2.31)

We immediately see that ϕ̂− and ϕ̂−1
+ are unique solutions of the equations

(2.27) in Theorem 2.6:

ϕ̂− = 1 − R
(
ϕ̂− (ϕ̂ − 1)

)
, (2.32)

ϕ̂−1
+ = 1 − R̃

(
(ϕ̂ − 1) ϕ̂−1

+

)
. (2.33)

Moreover, after some simple algebra using the factorization ϕ̂ = ϕ̂−1
− ϕ̂+

ϕ̂+(ϕ̂−1 − 1) = ϕ̂− − ϕ̂+ = −ϕ̂−(ϕ̂ − 1),

we immediately get the recursion for ϕ̂+ [20]:

ϕ̂+ = 1 − R̃
(
ϕ̂+ (ϕ̂−1 − 1)

)
. (2.34)

and hence we see that

ϕ̂+ = 1 + R̃
(
ϕ̂− (ϕ̂ − 1)

)
. (2.35)

The matrix entries of ϕ̂− and ϕ̂−1
+ can be calculated without recursions using

σ := ϕ̂ from the equations:

(ϕ̂−)ij = −π(σij)

−
j−i∑

k=2

∑

i>l1>l2>···>lk−1>j

(−1)k+1π
(
π(· · ·π(σil1)σl1l2) · · ·σlk−1j

)

(ϕ̂−1
+ )ij = −π̃((σ−1)ij)

−
j−i∑

k=2

∑

i>l1>l2>···>lk−1>j

(−1)k+1π̃
(
π̃(· · · π̃((σ−1)il1)(σ

−1)l1l2) · · · (σ−1)lk−1j

)
,

where π̃ := IdA − π. The matrix entries of ϕ̂+ follow from the first formula,
i.e., the one for the entries in ϕ̂−, by replacing π by −π̃. We may therefore
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define the matrix:
̂̄R[ϕ] := ϕ̂− (ϕ̂ − 1), (2.36)

such that

ϕ̂− = 1 − R
(
̂̄R[ϕ]
)

and ϕ̂+ = 1 + R̃
(
̂̄R[ϕ]
)
. (2.37)

In fact, equations (2.35) and (2.36) may be called Bogoliubov’s matrix for-
mulae for the counter term and renormalized Feynman rules matrix, ϕ̂−,
ϕ̂+, respectively. Equation (2.36) is the matrix form of Bogoliubov’s R̄- or
preparation map (2.16), e.g., see [13]:

̂̄R[ϕ] := ΨJ [R̄] = ΨJ [ϕ− � (ϕ − e)]. (2.38)

Here, ϕ− is the counter term character (2.17) of the algebraic Birkhoff
decomposition of Connes and Kreimer [9, 10], which we mentioned in the
foregoing section. To phrase it differently, the above matrix factorization
follows via the representation ΨJ from Connes–Kreimer’s Birkhoff factor-
ization (2.15) on the group GA of A-valued Hopf algebra characters.

Remark 2.8. We may apply the result from [17, 18, 20, 23], see also [39], to
the above matrix representation of gA respectively GA. In these references,
a unique non-linear map χ was established on gA, which allows to write the
characters ϕ− and ϕ+ as exponentials. In the matrix picture, we hence find
for Ẑ ∈ ĝA and ϕ̂ = exp(Ẑ) ∈ ĜA,

ϕ̂ = exp
(
R(χ(Ẑ))

)
exp
(
R̃(χ(Ẑ))

)
. (2.39)

The matrices ϕ̂− := exp
(
−R(χ(Ẑ))

)
and ϕ̂−1

+ := exp
(
−R̃(χ(Ẑ))

)
are in Ĝ−

A
and Ĝ+

A, respectively, and solve Bogoliubov’s matrix formulae in (2.37).

3 The matrix representation of the beta-function

It is the goal of this section to establish a matrix representation of the beta-
function as it appears in the work of Connes and Kreimer [11]. Once we
have achieved this, we reformulate in a transparent manner Sakakibara’s
findings [43] hereby providing a firm ground for his calculations. In the next
paragraph, we review the main points of the beta-function calculus in the
Hopf algebra context following mainly the paper [39].

3.1 The beta-function in the Hopf algebra of renormalization

From now on, k = C stands for the complex numbers, and A will denote the
algebra of meromorphic functions in one complex variable z endowed with
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the minimal subtraction scheme. Hence, A = A− ⊕ A+, where A+ is the
subalgebra of meromorphic functions which are holomorphic at z = 0, and
A− stands for the polynomials in z−1 without constant term. We moreover
suppose that the Hopf algebra H is graded, with filtration coming from the
graduation, i.e.,

H(n) =
⊕

0≤k≤n

Hk.

The grading induces a biderivation Y defined on homogeneous elements by

Y : Hn −→ Hn

x 
−→ nx.

Exponentiating Y , we get a one-parameter group θt of automorphisms of
the Hopf algebra H, defined on Hn by

θt(x) = entx. (3.1)

The map ϕ 
→ ϕ ◦ Y is a derivation of
(
L(H,A), �

)
, and ϕ 
→ ϕ ◦ θt is an

automorphism of
(
L(H,A), �

)
for any complex t. We will rather con-

sider the one-parameter group ϕ 
→ ϕ ◦ θtz of automorphisms of the algebra(
L(H,A), �

)
, i.e.,

ϕt(x)(z) := etz|x|ϕ(x)(z). (3.2)

Recall that |x| := deg(x), for x ∈ H. Differentiating at t = 0, we get

d

dt |t=0
ϕt = z(ϕ ◦ Y ). (3.3)

We denote by GΦ
A the set of those characters ϕ ∈ G such that the negative

part of the Birkhoff decomposition of ϕt does not depend on t, namely

GΦ
A =
{

ϕ ∈ GA
∣∣∣

d

dt
(ϕt)− = 0

}
.

In particular, the dimensional-regularized Feynman rules verify this prop-
erty: in physical terms, the counter terms do not depend on the choice of the
arbitrary mass-parameter μ (’t Hooft’s mass) one must introduce in dimen-
sional regularization in order to get dimensionless expressions (see [10]). We
also denote by GΦ

A−
the elements ϕ of GΦ

A such that ϕ = ϕ�−1
− . Recall from

[39] that there is a bijection R̃ : GA → gA defined by

ϕ ◦ Y = ϕ � R̃(ϕ). (3.4)

Since composition on the right with Y is a derivation for the convolution
product, the map R̃ verifies a cocycle property

R̃(ϕ � ψ) = R̃(ψ) + ψ�−1 � R̃(ϕ) � ψ. (3.5)
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We summarize some key results of [11] in the following proposition:

Proposition 3.1.

(1) For any ϕ ∈ GA, there is a one-parameter family ht in GA such that
ϕt = ϕ � ht, and we have

ḣt :=
d

dt
ht = ht � zR̃(ht) + zR̃(ϕ) � ht. (3.6)

(2) zR̃ restricts to a bijection from GΦ
A onto gA ∩ L(H,A+). Moreover, it

is a bijection from GΦ
A−

onto those elements of gA with values in the
constants, i.e.,

g
c
A = gA ∩ L(H, C).

(3) For ϕ ∈ GΦ
A, the constant term of ht, defined by

Ft(x) = lim
z→0

ht(x)(z), (3.7)

is a one-parameter subgroup of GA ∩ L(H, C), the scalar-valued char-
acters of H.

Proof. For any ϕ ∈ GA, one can write:

ϕt = ϕ � ht (3.8)

with ht ∈ GA. From (3.8), (3.3), and (3.4), we immediately get

ϕ � ḣt = ϕ � ht � zR̃(ϕ � ht).

Equation (3.6) then follows from the cocycle property (3.5). This proves the
first assertion.

Now take any character ϕ ∈ GΦ
A with Birkhoff decomposition ϕ = ϕ�−1

− �
ϕ+ and write the Birkhoff decomposition of ϕt:

ϕt = (ϕt)�−1
− � (ϕt)+

= (ϕ−)�−1 � (ϕt)+

= (ϕ � ϕ�−1
+ ) � (ϕt)+

= ϕ � ht,

with ht taking values in A+. Then zR̃(ϕ) also takes values in A+, as a
consequence of equation (3.6) at t = 0. Conversely, suppose that zR̃(ϕ)
takes values in A+. We show that ht also takes values in A+ for any t,
which immediately implies that ϕ belongs to GΦ

A.
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For any γ ∈ gA, let us introduce the linear transformation Uγ of gA
defined by

Uγ(δ) := γ � δ + zδ ◦ Y.

If γ belongs to gA ∩ L(H,A+), then Uγ restricts to a linear transformation
of gA ∩ L(H,A+).

Lemma 3.2. For any ϕ ∈ GA, n ∈ N, we have,

znϕ ◦ Y n = ϕ � Un
z ˜R(ϕ)

(e).

Proof. Case n = 0 is obvious, n = 1 is just the definition of R̃. We check
thus by induction, using again the fact that composition on the right with
Y is a derivation for the convolution product:

zn+1ϕ ◦ Y n+1 = z(znϕ ◦ Y n) ◦ Y

= z
(
ϕ � Un

z ˜R(ϕ)
(e)
)

◦ Y

= z(ϕ ◦ Y ) � Un
z ˜R(ϕ)

(e) + zϕ �
(
Un

z ˜R(ϕ)
(e) ◦ Y

)

= ϕ �
(
zR̃(ϕ) � Un

z ˜R(ϕ)
(e) + zUn

z ˜R(ϕ)
(e) ◦ Y

)

= ϕ � Un+1
z ˜R(ϕ)

(e).

�

Let us go back to the proof of Proposition 3.1. According to Lemma 3.2,
we have for any t, at least formally,

ϕt = ϕ � exp(tU
z ˜R(ϕ))(e). (3.9)

We still have to fix the convergence of the exponential just above in the case
when zR̃(ϕ) belongs to L(H,A+). Let us consider the following decreasing
bifiltration of L(H,A+):

Lp,q
+ = (zqL(H,A+)) ∩ Lp,

where Lp is the set of those α ∈ L(H,A) such that α(x) = 0 for any x ∈ H of
degree ≤ p − 1. In particular L1 = g0. Considering the associated filtration

Ln
+ =

∑

p+q=n

Lp,q
+ ,

we see that for any γ ∈ g0 ∩ L(H,A+), the transformation Uγ increases the
filtration by 1, i.e.,

Uγ(Ln
+) ⊂ Ln+1

+ .

The algebra L(H,A+) is not complete with respect to the topology induced
by this filtration, but the completion is L(H, Â+), where Â+ = C[[z]] stands
for the formal series. Hence, the right-hand side of (3.9) is convergent in
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L(H, Â+) with respect to this topology. Hence for any γ ∈ L(H,A+) and
for ϕ such that zR̃(ϕ) = γ, we have ϕt = ϕ � ht with ht ∈ L(H, Â+) for any
t. On the other hand, we already know that ht takes values in meromorphic
functions for each t. So ht belongs to L(H,A+), which proves the first part
of the second assertion. Equation (3.6) at t = 0 reads

zR̃(ϕ) = ḣ(0) =
d

dt |t=0
(ϕt)+. (3.10)

For ϕ ∈ GΦ
A−

, we have, thanks to the property ϕ(Ker ε) ⊂ A−:

ht(x) = (ϕt)+(x) = (I − π)
(
ϕt(x) +

∑

(x)

ϕ�−1(x′)ϕt(x′′)
)

= t(I − π)
(
z|x|ϕ(x) + z

∑

(x)

ϕ�−1(x′)ϕ(x′′)|x′′|
)

+ O(t2)

= t Res(ϕ ◦ Y ) + O(t2),

hence,

ḣ(0) = Res (ϕ ◦ Y ). (3.11)

From equations (3.3), (3.4) and (3.11), we get

zR̃(ϕ) = Res (ϕ ◦ Y ) (3.12)

for any ϕ ∈ GΦ
A−

, hence zR̃(ϕ) ∈ gc. Conversely, let β in gc. Consider ψ =

R̃−1(z−1β). This element of GA verifies by definition, thanks to equation
(3.4):

zψ ◦ Y = ψ � β.

Hence for any x ∈ Ker ε, we have

zψ(x) =
1
|x|

⎛

⎝β(x) +
∑

(x)

ψ(x′)β(x′′)

⎞

⎠ .

As β(x) is a constant (as a function of the complex variable z), it is easily
seen by induction on |x| that the right-hand side evaluated at z has a limit
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when z tends to infinity. Thus ψ(x) ∈ A−, and then

ψ = R̃−1
(

1
z
β

)
∈ GΦ

A− ,

which proves assertion (2).

Let us prove assertion (3): Equation ϕt = ϕ � ht together with (ϕt)s =
ϕt+s yields

hs+t = hs � (ht)s. (3.13)

Taking values at z = 0 immediately yields the one-parameter group
property:

Fs+t = Fs � Ft (3.14)

thanks to the fact that the evaluation at z = 0 is an algebra morphism. �

We can now give a definition of the beta-function.

Definition 3.3. For any ϕ ∈ GΦ
A, the beta-function of ϕ is the generator of

the one-parameter group Ft defined by equation (3.7) in Proposition 3.1. It
is the element of the dual H� defined by

β(ϕ) =
d

dt |t=0
Ft(x)

for any x ∈ H.

Proposition 3.4. For any ϕ ∈ GΦ
A, the beta-function of ϕ coincides with

the one of the negative part ϕ�−1
− in the Birkhoff decomposition. It is given

by any of the three expressions:

β(ϕ) = Res R̃(ϕ)

= Res (ϕ�−1
− ◦ Y )

= − Res (ϕ− ◦ Y ).

Proof. The third equality will be derived from the second by taking residues
on both sides of the equation:

0 = R̃(e) = R̃(ϕ−) + ϕ�−1
− � R̃(ϕ�−1

− ) � ϕ−,

which is a special instance of the cocycle formula (3.5). Suppose first ϕ ∈
GΦ

A−
, hence ϕ�−1

− = ϕ. Then zR̃(ϕ) is a constant according to assertion 2 of
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Proposition 3.1. The proposition then follows from equation (3.11) evaluated
at z = 0 and equation (3.12). Suppose now ϕ ∈ GΦ

A, and consider its Birkhoff
decomposition. As both components belong to GΦ

A, we apply Proposition 3.1
to them. In particular, we have

ϕt = ϕ � ht,

(ϕ�−1
− )t = ϕ�−1

− � vt,

(ϕ+)t = ϕ+ � wt,

and equality ϕt = (ϕ�−1
− )t � (ϕ+)t yields

ht = (ϕ+)�−1 � vt � ϕ+ � wt. (3.15)

We denote by Ft, Vt, Wt the one-parameter groups obtained from ht, vt, wt,
respectively, by letting the complex variable z go to zero. It is clear that
ϕ+|z=0

= e, and similarly that Wt is the constant one-parameter group

reduced to the co-unit ε. Hence, equation (3.15) at z = 0 reduces to

Ft = Vt, (3.16)

hence the first assertion. The cocycle equation (3.5) applied to the Birkhoff
decomposition reads

R̃(ϕ) = R̃(ϕ+) + (ϕ+)�−1 � R̃(ϕ�−1
− ) � ϕ+.

Taking residues of both sides yields

Res R̃(ϕ) = Res R̃(ϕ�−1
− ),

which ends the proof. �

Definition 3.5. The one-parameter group Ft = Vt above is the renormal-
ization group of ϕ [11].

Remark 3.6. It is possible to reconstruct ϕ− from β(ϕ) using a scattering-
type formula [11, 8, 15, 39]. Hence ϕ− (i.e., the divergence structure of ϕ) is
uniquely determined by its residue.

3.2 The matrix representation of the grading derivation

As in reference [11], denote by Z0 the derivation of the algebra L(H,A)
(which is also a derivation of the Lie algebra gA) given by α 
→ α ◦ Y . Let L̃
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be the semi-direct product of L(H,A) with Z0, and let g̃A be the semi-direct
product gA ×| C.Z0. Similarly, let G̃A = GA ×| C be the semi-direct product
of the group GA by the one-parameter group θt = exp tZ0 of automorphisms.
Let J be any graded left coideal of H. We suppose further that the filtration-
ordered basis (xi)i∈I of J is graded, i.e., made of homogeneous elements.
The degree of xi will be denoted by |xi|. We want to extend the matrix
representation ΨJ from L(H,A) to L̃. This can be done by representing Z0
by a diagonal matrix.

Proposition 3.7. The correspondence ΨJ : L̃ → EndA(A ⊗ J) defined as
in Paragraph 2.3 on L(H,A), and such that

ΨJ [Z0](xi) = |xi|.xi (3.17)

is an algebra morphism.

Proof. We only have to show the equality:3

[
ΨJ [f ], ΨJ [−Z0]

]
= ΨJ([f,−Z0]) = ΨJ(f ◦ Y ). (3.18)

This follows by a direct computation
[
ΨJ [f ], ΨJ [−Z0]

]
(xj) = −ΨJ [f ]ΨJ [Z0](xj) + ΨJ [Z0]ΨJ [f ](xj)

=
∑

i

(|xi| − |xj |)f(Mij) ⊗ xi,

whereas

ΨJ [f ◦ Y ](xj) =
∑

i

(f ◦ Y )(Mij) ⊗ xi

=
∑

i

|Mij |f(Mij) ⊗ xi.

By definition of the coproduct matrix, and thanks to the fact that H is
graded, the coefficients Mij are homogeneous of degree |xi| − |xj |, which
finishes the proof. �

3There is a minus sign in front of Z0 due to the fact that we have put it on the right
inside of the bracket, reflecting the fact that the action of the one-parameter group has
been written on the right.
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By taking exponentials of the above diagonal matrices, we of course get
a matrix representation of the one-parameter group θt (3.1), namely

ΨJ [exp tZ0](xi) = et|xi|xi. (3.19)

3.3 Matrix differential equations

We fix a graded coideal J of H, and we therefore introduce the following
notation:

f̂ := ΨJ [f ]. (3.20)

Keeping the notations of Paragraph 3.1, we have then, as a consequence of
Propositions 2.4 and 3.7:

ϕ̂t(z) = etẑZ0ϕ̂(z)e−tẑZ0 , (3.21)

as an equality of size |I| square matrices with coefficients in meromorphic
functions of the complex variable z. With respect to the example left coideal
generated by T ′ ⊂ T in (2.20), we find

Ẑ0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and etẑZ0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1A 0 0 0 0

0 ezt 0 0 0

0 0 e2zt 0 0

0 0 0 e3zt 0

0 0 0 0 e4zt

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.22)

We now change the general notations slightly and consider ϕ̂ as a function
of the variable t ∈ C with values in A ⊗ J (i.e., as a matrix-valued function
of both variables (t, z)). More precisely, we put

ϕ̂(t, z) = etẑZ0ϕ̂(0, z)e−tẑZ0 ,

where ϕ̂(0, z) stands for the old ϕ̂(z). Now ϕ̂−(t) (resp. ϕ̂+(t)) will stand
for the negative (resp. positive) component of the Birkhoff decomposition
of ϕ̂(t) (2.31), for any t ∈ C. Using the toy-model character ϕ = ϕ(s, z) in
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equation (2.13) with parameterized ’t Hooft mass, we find explicitly

ϕ̂t(z) = ϕ̂(t, z)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1A 0 0 0 0

B1

(e−tα(0))z
1A 0 0 0

B2B1

(e−tα(0))2z

B1

(e−tα(0))z
1A 0 0

B3B
2
1

(e−tα(0))3z

B2
1

(e−tα(0))2z
2

B1

(e−tα(0))z
1A 0

B4B
3
1

(e−tα(0))4z

B3
1

(e−tα(0))3z
3

B2
1

(e−tα(0))2z
3

B1

(e−tα(0))z
1A

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= etẑZ0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1A 0 0 0 0

B1

α(0)z
1A 0 0 0

B2B1

α(0)2z

B1

α(0)z
1A 0 0

B3B
2
1

α(0)3z

B2
1

α(0)2z
2

B1

α(0)z
1A 0

B4B
3
1

α(0)4z

B3
1

α(0)3z
3

B2
1

α(0)2z
3

B1

α(0)z
1A

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−tẑZ0 . (3.23)

Hence, we observe the simple transformation on ϕ̂(z) = ϕ̂(t, z), where t
parameterizes ’t Hooft’s unit mass (2.14), i.e., α(t) := a/etμ = e−tα(0) > 0:

ϕ̂0(z) := ϕ̂(0, z)
Ad[etẑZ0 ]−−−−−−→ ϕ̂t(z) = ϕ̂(t, z).

We introduce the auxiliary matrix

A := ϕ̂etẑZ0 , (3.24)

as well as its Birkhoff decomposition

A = A−1
− A+, with A− = ϕ̂− and A+ = ϕ̂+etẑZ0 . (3.25)

From the obvious equality

A(t) = etẑZ0Ae−tẑZ0 = etẑZ0A(0),

we get by differentiating with respect to t:

d

dt
A = Ȧ = zẐ0A. (3.26)
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Using the Birkhoff decomposition of A then yields

zẐ0ϕ̂
−1

− A+ = ˙̂ϕ
−1

− A+ + ϕ̂ −1
− Ȧ+. (3.27)

Multiplying both sides with ϕ̂− on the left and with A−1
+ on the right, we

get
ϕ̂−(zẐ0)ϕ̂ −1

− = ϕ̂− ˙̂ϕ
−1

− + Ȧ+A−1
+ . (3.28)

Suppose now that ϕ(0) belongs to GΦ
A, which implies for the corresponding

matrix ϕ̂(0) = ϕ̂−1
− ϕ̂+:

d

dt
ϕ̂− = ˙̂ϕ− = 0. (3.29)

Then equation (3.28) reduces to:

ϕ̂−(zẐ0)ϕ̂ −1
− = Ȧ+A−1

+ . (3.30)

3.4 The renormalization group and the beta-function in the
matrix setting

Keeping the notations of the previous paragraph, it is clear that if ϕ(0)
belongs to GΦ

A, then ϕ(t) ∈ GΦ
A for any t, and moreover the renormalization

group and the beta-function of ϕ(t) do not depend on t. We can then talk
about the renormalization group and the beta-function of ϕ without men-
tioning a particular value of t.

Theorem 3.8. The matrix representation of the beta-function reads

β̂(ϕ) = ϕ̂−(zẐ0)ϕ̂−1
− − zẐ0. (3.31)

Proof. This is a direct computation of (scalar-valued) matrices, see equa-
tion (3.16) and Definition 3.5

F̂t = lim
z→0

(
ϕ̂−(z)ezt̂Z0ϕ̂−1

− (z)e−zt̂Z0
)
. (3.32)

The limit exists by Proposition 3.1. The term inside the bracket on the right-
hand side is holomorphic at zero as a function of z, and so is its derivative
with respect to t. The operation ∂

∂t commutes then with evaluating at z = 0,
and we get by definition of the beta-function:

β̂(ϕ) = lim
z→0

∂

∂t

(
ϕ̂−(z)ezt̂Z0ϕ̂−1

− (z)e−zt̂Z0
)
|t=0

= lim
z→0

(
ϕ̂−(z)zẐ0ϕ̂

−1
− (z) − zẐ0

)
.

Now, subtracting zẐ0 on both sides of equation (3.30) gives an expression
on the left-hand side which admits a limit when z → ∞ and a term on the
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right-hand side which admits a limit when z → 0. Hence, the term

ϕ̂−(z)zẐ0ϕ̂
−1
− (z) − zẐ0 = ϕ̂−(z)

[
ϕ̂−1

− (z),−zẐ0
]

is a matrix with constant coefficients, which proves the theorem. �

Coming back to Remark 2.8, we find immediately for the matrix beta-
function the simple equation in the Lie algebra ĝA, in accordance with results
in [39]:

β̂(ϕ) = exp
(
R(χ(Ẑ))

)
(zẐ0) exp

(
− R(χ(Ẑ))

)
− zẐ0

= z
[
R(χ(Ẑ)), Ẑ0

]
+

z

2!
[
R(χ(Ẑ)), [R(χ(Ẑ)), Ẑ0]

]

+
z

3!
[
R(χ(Ẑ)), [R(χ(Ẑ)), [R(χ(Ẑ)), Ẑ0]]

]
+ · · ·

= z
∑

n>0

1
n!

ad
[
R(χ(Ẑ))

](n)(Ẑ0). (3.33)

The following corollary is a direct consequence of equation (3.30).

Corollary 3.9.
Ȧ+A−1

+ = β̂(ϕ) + zẐ0. (3.34)

and for the renormalization matrix, we get

Corollary 3.10.

ϕ̂+(t, z) = et(̂β(ϕ)+ẑZ0)ϕ̂+(z, 0)e−tẑZ0 . (3.35)

Proof. From Corollary 3.9, we get

A+(t) = et(̂β(ϕ)+ẑZ0)A+(0),

which immediately proves the claim. Alternatively, one readily observes that

ϕ̂+(t, z) = ϕ̂−ϕ̂t = ϕ̂−etẑZ0ϕ̂(0, z)e−tẑZ0

= ϕ̂−etẑZ0ϕ̂−1
− ϕ̂+(0, z)e−tẑZ0

= etϕ̂−(ẑZ0)ϕ̂−1
− ϕ̂+(z, 0)e−tẑZ0

= et(̂β(ϕ)+ẑZ0)ϕ̂+(z, 0)e−tẑZ0 ,

where we used the well-known fact

exp(A) exp(B) exp(−A) = exp(exp(A)B exp(−A)).

�
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Corollary 3.11. (Connes–Kreimer’s scattering-type formula [9]).

ϕ̂− = lim
t→+∞

e−t(̂β(ϕ)/z+̂Z0)et̂Z0 . (3.36)

Proof. We again adapt Sakakibara’s computation [[43], § 2] to our matrix
setting:

e−t(̂β(ϕ)/z+̂Z0)et̂Z0 = e−t(ϕ̂− ̂Z0ϕ̂−1
− )et̂Z0

= ϕ̂−e−t̂Z0ϕ̂−1
− et̂Z0

= ΨJ

[
ϕ− � θ−t

(
ϕ�−1

−
)]

.

Now we have for any homogeneous x ∈ H of degree ≥ 1,

lim
t→+∞

(
ϕ− � θ−t(ϕ�−1

− )
)
(x) = lim

t→+∞

(
ϕ−(x) + e−t|x|ϕ−1

− (x)

+
∑

(x)

ϕ−(x′)e−t|x′′|ϕ−1
− (x′′)

)

= ϕ−(x).

Replacing x with the matrix coefficients Mij proves then the corollary. �

This result becomes evident on the level of matrices when going back to
equation (3.23). Assume for a moment z ∈ R positive. One observes by
replacing t by −t that in the first equality on the right-hand side each
entry has the form (ϕ̂−t

ij)i≥j = (exp(−tz|Mij |)ϕ̂ij)i≥j with Mij being the
coproduct matrix in (2.21). Hence, with |Mii| = 0 we see immediately that
(ϕ̂−t

ij)
t→∞−−−→ 1.

Remark 3.12. Considering Proposition 3.4 in the matrix setting, we have
an alternative matrix representation of the beta-function:

β̂(ϕ) = [Res ϕ̂−, Ẑ0]. (3.37)
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