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Abstract

Fu and Yau constructed the first smooth family of gauge bundles over
a class of non-Kähler, complex 3-folds that are solutions to Strominger’s
system, the heterotic supersymmetry constraints with non-zero H-flux.
In this paper, we begin the study of the massless spectrum arising from
compactification using this construction by counting zero modes of the
linearized equations of motion for the gaugino in the supergravity approx-
imation. We rephrase the question in terms of a cohomology problem and
show that for a trivial gauge bundle, this cohomology reduces to the Dol-
beault cohomology of the 3-fold, which we then compute.

1 Introduction

Heterotic string theory has long been known to have great promise for repro-
ducing the standard model; unfortunately, amidst the excitement of branes,
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string dualities, and flux compactifications of type II and M-theory, it has
been partially forgotten. Compactifications of heterotic string theory that
preserve N = 1 supersymmetry in four dimensions and with vanishing back-
ground flux were first studied in [1]; this was expanded to an analysis includ-
ing non-zero H-flux by Strominger in [2].

In recent years, studies of compactifications of type II theories with various
non-zero flux backgrounds have become common. One of the most com-
pelling reasons to study flux compactifications is that flux-free compactifica-
tions on Calabi–Yau manifolds lead to large moduli spaces corresponding to
unconstrained scalar fields in the low-energy, four-dimensional description.
This is phenomenologically unsatisfying since it leaves us with a continuously
infinite number of vacua. On the other hand, it is well known that flux com-
pactifications typically lift this degeneracy. In fact, fluxes could conceivably
be used to break supersymmetry or lift the cosmological constant to some
positive value à la KKLT [3].

How flux compactifications of heterotic string theory achieve such noble
goals is not yet well understood from the spacetime/geometric perspec-
tive. The difference between heterotic and type II theories is 2-fold: for
one, we have the freedom to choose a gauge bundle which need not be
the tangent bundle; second, there are no R–R fluxes to turn on, just the
NS–NS 3-form flux H. The main difficulty in including H-flux is that it
is encoded in the geometry of the internal manifold as torsion,1 mean-
ing we have to deal with non-Kähler, though still complex, compactifica-
tions [2, 5].

Giving up the Kähler condition destroys many nice results on Kähler
geometry that we are accustomed to using. For example, it is no longer
generically true that de Rham cohomology is related to Dolbeault
cohomology

Hm
dR(K; R)C

�

⊕

p+q=m

Hp,q

∂̄
(K; C). (1.1)

We also have that

Hp,q

∂̄
(K; C) � Hq,p

∂̄
(K; C). (1.2)

Another loss is that the Levi–Civita connection no longer annihilates the
complex structure; instead, any connection annihilating the complex struc-
ture must contain torsion. The Levi–Civita connection is the one commonly
found in supergravity actions, and so one must be more careful when working

1See [4] for a nice discussion on torsion.
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with a non-Kähler compactification (see Appendix B.2, for example). Other
important properties of Kähler manifolds include the Lefschetz decomposi-
tion and the Hodge–Riemann bilinear relations [6].

There are many other nice properties and theorems special to Kähler
manifolds, and these play no small role in the dearth of studies of super-
symmetric heterotic compactifications with H-flux. Nevertheless, in recent
years, various groups have taken up this challenge for many reasons [7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17], one of the most compelling reasons being the
potential to lift moduli of the flux-free compactifications.

One might think that studying heterotic theory is moot, since we expect
any such study would be dual to some flux compactification of the better-
understood type II or M-theory, but we should not forget that the use of
duality is often that a difficult problem in one theory can be a simple one in
the dual theory. Even more compelling is that heterotic theory actually has
a microscopic description in terms of (0, 2) conformal field theories, while
in type II compactifications such a description does not yet exist. If we fail
to study flux compactifications of the heterotic theory, we could be missing
a wonderful opportunity, especially considering how natural heterotic theo-
ries seem when we are interested in reproducing properties of the standard
model.

This paper considers properties of the massless spectrum of compactifi-
cations of heterotic supergravity using the construction recently developed
by Fu and Yau [18]. In their paper, Fu and Yau constructed gauge bundles
over a subclass of non-Kähler 3-folds studied by Goldstein and Prokushkin
[19] and proved the existence of solutions to Strominger’s system. We will
refer to this construction as the FSY geometry and to the underlying 3-fold
as a GP manifold. For a physical discussion and explicit examples of FSY
geometries, see [20].

In Section 2, we review the constraints that Strominger derived on com-
pactifications of heterotic supergravity preserving N = 1 supersymmetry in
four dimensions [2]. In Section 3, we review the constructions of Goldstein
and Prokushkin and of Fu and Yau. We then analyze the volume of the
GP manifold in the FSY geometry as well as the volume of the fibers. In
Section 4, we discuss the applicability of the supergravity approximation,
compute the massless fields arising from the gaugino upon compactification,
and find an explicit result for the choice of a trivial gauge bundle in terms of
Hodge numbers of the GP manifold. We compute the Hodge diamond of the
GP manifold in Section 5 and then discuss our results and future directions
in Section 6.
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2 Superstrings with torsion

In [2], Strominger examined heterotic compactifications on warped prod-
uct manifolds. His compactification assumed a maximally symmetric four-
dimensional spacetime M4 and internal six-dimensional manifold K with
metric

g0
MN (x, y) = e−D(y)/2

(
gμν(x) 0

0 gmn(y)

)
, (2.1)

where xμ are coordinates on a patch of M4, ym are coordinates on a patch
of K (as we will soon see, K must be complex and we will refer to the coor-
dinates on a patch of K as {za, z̄ā}), and capital Roman indices M, N, . . .,
are used for the full 10-dimensional spacetime. To ensure a supersymmetric
configuration, the supersymmetry variations of the fields must vanish. This
is trivially true for variations of the bosonic fields if we assume no fermionic
condensates (see [17] for an example with condensates), so to preserve super-
symmetry, the variations of the fermionic fields must vanish.

After converting to string frame and applying some other simplifications,
these variations yield the constraints2

∇M ε − 3
8
HM ε = 0,

( /∇φ)ε − 1
4
Hε = 0,

FMNΓMN ε = 0, (2.2)

where H ≡ HMNP ΓMNP and HM ≡ HMNP ΓNP . Additionally, as required
by anomaly cancellation, there is a modified Bianchi identity for the 3-form
field strength H

3
2
dH =

α′

2

(
tr R ∧ R − 1

30
Tr F ∧ F

)
, (2.3)

where tr is a trace over the vector representation of O(1, 9) and Tr is a trace
over the adjoint represention of either SO(32) or E8 × E8 (if we choose
SO(32), we can write this as simply a trace over the vector representation
without the factor of 1

30 [1]). Also, R refers to the Ricci 2-form of the
Hermitian connection.3 Finally, the warp factor is forced to be equal to the
dilaton D(y) = φ(y).

2Throughout this note, we use the conventions: HAS = 3
2Hus, φAS = − 1

4φus, where
AS refers to the conventions in [2].

3This connection has non-zero connection coefficients Γa
bc = gaāgāb,c and Γā

b̄c̄ =
gāagab̄,c̄.
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The spinor ε is a 10-dimensional, Majorana–Weyl spinor, so we can
decompose it as the sum of tensor products of four- and six-dimensional
Weyl spinors, say ε = ε4 ⊗ η + c.c.. Furthermore, the assumption of maxi-
mal symmetry in M4 requires that F and H have no components tangent
to M4 and that they, as well as the dilaton φ, only depend on the internal
manifold K. These facts simplify the constraints to

∇με4 = 0, ∇mη − 3
8
Hmη = 0,

(∇mφ)γmη − 1
4
Hη = 0, Fmnγmnη = 0.

(2.4)

Thus, η is covariantly constant with respect to a metric-compatible connec-
tion with torsion 3

2H, the Strominger connection.4 There is an ambiguity
in the Bianchi identity (2.3) in the choice of connection appearing in R. In
[18] and [20], the Hermitian connection is used and hence it is the one we
mention below (2.3). However, the connection with torsion −3

2H, referred to
as the “minus” connection, is sometimes used [5, 13]. The ambiguity arises
from a field redefinition in the effective action picture or from a choice of
regularization scheme in the sigma model picture [21].

Strominger showed in [2] that η could be used to construct an almost
complex structure for K (J n

m ≡ iη†γ n
m η) that is H-covariantly constant

∇mJ p
n +

3
2
Hp

msJ
s

n − 3
2
Hs

mnJ p
s = 0 (2.5)

and has vanishing Nijenhuis tensor. Thus, J is integrable and is a complex
structure for K; in fact, the metric gmn (2.1) is Hermitian with respect to J .
The supersymmetry constraints (2.2) also imply the existence of a nowhere-
vanishing, holomorphic (3, 0)-form Ωabc = e−2φη†γabcη

∗, thus implying the
vanishing of the first Chern class. These conditions are equivalent to the
existence of an SU(3) structure.

In sum, Strominger recast (2.2) into the geometrical form:

(1) (K, g) must be a complex Hermitian manifold with vanishing first
Chern class.

(2) Using J to denote the fundamental form in addition to the complex
structure, we have

3
2
H =

i

2
(∂̄ − ∂)J ; (2.6)

(3) d†J = i(∂̄ − ∂) ln ||Ω||;5

4This is sometimes called the “H-connection” or the “plus” connection.
5Note that there was a sign error in [2] that was corrected in [22].
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(4) F is a (1, 1)-form and must satisfy Jab̄Fab̄ = 0;
(5) finally, the modified Bianchi identity (2.3) must be satisfied.6

These we refer to as “Strominger’s system”, which is the system of con-
straints that the FSY geometry was designed to solve.

3 The GP manifold and FSY geometry

3.1 A review

In their paper [19], Goldstein and Prokushkin gave an explicit construction
of all complex (n + 1)-folds that can be realized as principal holomorphic T 2

bundles over a complex n-fold. In particular, they showed that if the base
2-fold was Calabi–Yau, one could use this to construct a complex Hermitian
3-fold satisfying constraints 1–3 of Strominger’s system. The remaining task
for a heterotic solution was to construct a gauge bundle satisfying constraints
4 and 5.

Unlike the Calabi–Yau case, in non-Kähler compactifications, one cannot
embed the Strominger connection in the gauge connection because the cur-
vature form will have (0, 2) and (2, 0) components, so the choice of gauge
bundle satisfying Strominger’s system becomes much more complicated. Fu
and Yau undertook the difficult task of constructing just such a gauge bun-
dle and were able to prove the existence of solutions to Strominger’s sys-
tem [18].7 We briefly review these constructions here.

Let M be a complex Hermitian 2-fold and choose
ωP

2π
,
ωQ

2π
∈ H2(M ; Z) ∩ Λ1,1T ∗M (3.1)

(actually, Goldstein and Prokushkin only required that ωP + iωQ have no
(0, 2)-component, but Fu and Yau used the restriction that we have stated).
Being elements of integer cohomology, there are two unit-circle bundles over
M , say S1

P and S1
Q, whose curvature 2-forms are ωP and ωQ, respectively.

Together, these form a T 2 bundle over M , which we will refer to as K,
K

π→ M .

6For the rest of the paper, we will work in units where α′ = 1.
7In their original paper [23], Fu and Yau proved the existence of a solution to the

system of equations considered in Section 2 but with opposite sign for (2.3). In [18], they
have solved the system of equations from Section 2, which are the solutions relevant to
heterotic compactifications. The sign difference dates to a sign error in [2]. Fu and Yau
have also considered a wider class of gauge bundles in the more recent paper.



SPECTRUM OF NON-KÄHLER COMPACTIFICATIONS 859

Given this setup, Goldstein and Prokushkin showed that if M admits
a non-vanishing, holomorphic (2, 0)-form, then K admits a non-vanishing,
holomorphic (3, 0)-form. Furthermore, they showed that if ωP or ωQ are non-
trivial in cohomology on M , then K admits no Kähler metric. They were
able to construct the non-vanishing holomorphic (3, 0)-form and a Hermitian
metric on K simply from data on M . In particular, for the choice M = K3,
they were able to compute the Betti numbers of K, as well as h0,1 and h1,0.

The curvature 2-form ωP determines a non-unique connection ∇ on S1
P

(and similarly for ωQ and S1
Q). A connection determines a split of TK into a

vertical and horizontal subbundle — the horizontal subbundle is composed
of the elements of TK that are annihilated by the connection 1-form, the
vertical subbundle is then, roughly speaking, the elements of TK tangent
to the fibers. Over an open subset U ⊂ M , we have a local trivialization of
K and we can use unit-norm sections, ξ of S1

P and ζ of S1
Q, to define local

coordinates for z ∈ U × T 2 by

z = (p, eixξ(p), eiyζ(p)), (3.2)

where p = π(z) ∈ U . The sections ξ and ζ also define connection 1-forms
via

∇ξ = iα ⊗ ξ and ∇ζ = iβ ⊗ ζ, (3.3)

where ωP = dα and ωQ = dβ on U , and α and β are necessarily real to
preserve the unit-norms of ξ and ζ.

The complex structure is given on the fibers by ∂x → ∂y and ∂y → −∂x,
while on the horizontal distribution, it is induced by projection onto M
(actually, this just gives an almost complex structure, but Goldstein and
Prokushkin proved that it is integrable [19]). Given a Hermitian 2-form ωM

on M , the 2-form

ωu = π∗ (euωM ) + (dx + π∗α) ∧ (dy + π∗β), (3.4)

where u is some smooth function on M and is a Hermitian 2-form on K
with respect to this complex structure. The connection 1-form

ρ = (dx + π∗α) + i(dy + π∗β) (3.5)

annihilates elements of the horizontal distribution of TK while reducing to
dx + i dy along the fibers. These data define the complex Hermitian 3-fold
(K, ωu), which we call the GP manifold [19].

Fu and Yau undertook the more difficult problem of proving the existence
of gauge bundles over the GP manifold with Hermitian-Yang–Mills connec-
tions satisfying the Bianchi identity (2.3). They took the Hermitian form
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(3.4) and converted the Bianchi identity into a differential equation for the
function u. Under the assumption

(∫

K3
e−4u ω2

K3
2

)1/4

� 1 =
∫

K3

ω2
K3
2

, (3.6)

they then specialized to a K3 base and showed that there exists a solution
u to the Bianchi identity for any compatible choice of gauge bundle V and
curvatures ωP and ωQ

8 such that the gauge bundle V over K is the pullback
of a stable, degree 0 bundle E over K3, V = π∗E [18]; this is what we call the
FSY geometry. In [18] and [20], it was shown that no such solution exists for
a T 4 base. This is in agreement with arguments from string duality ruling
out the Iwasawa manifold as a solution to the heterotic supersymmetry
constraints [24].

3.2 The volume

3.2.1 Of the total space

From here on, we will take the base M to be K3. In this paper, we will
be concerning ourselves with questions relating to supergravity compactifi-
cations on the FSY geometry. We must therefore understand the curvature
scales involved in the construction. One issue that we can address is the
overall volume of K

Vol(K) ∝
∫

K
ω3

u. (3.7)

Let {Uα} be a good open cover of M with subordinate partition of unity
{ρα}. Then {Vα := π−1(Uα)} is a good open cover of K with induced subor-
dinate partition of unity ρ̃α that is constant along the fibers, so ρ̃απ∗ = π∗ρα.

Furthermore, we have the local trivialization Vα

φ−1
α∼= Uα × T 2, so we have

∫

K
ω3

u =
∑

α

∫

Uα×T 2
φ∗

α(ρ̃αω3
u). (3.8)

In fact, we may choose φα so that the vertical subbundle of TVα
∼= TUα ×

TT 2 is mapped isomorphically to Uα × TT 2 and similarly for the horizontal
subbundle of TVα to TUα × T 2. We also have the inclusion ια : T 2 ↪→
Uα × T 2, which induces the trivial projection ι∗α : Ω∗(Uα × T 2) → Ω∗(T 2).

8See equation (3.13) for an explanation.



SPECTRUM OF NON-KÄHLER COMPACTIFICATIONS 861

Now, ω3
u is a sum of terms of the form π∗γ ∧ λ, where γ ∈ Ω∗(Uα) and λ

annihilates elements of the horizontal subbundle of TVα. Then we find

∫

Uα×T 2
φ∗

α(π∗γ ∧ λ) =
(∫

Uα

γ

) (∫

T 2
ι∗(φ∗

α(λ))
)

. (3.9)

We find for the volume of K

∫

K
ω3

u =
∑

α

(∫

Uα

ραe2uω2
M

) (∫

T 2
dx ∧ dy

)
∝

∫

M
e2uω2

M � 1, (3.10)

which follows from (3.6), so K is large enough for the supergravity approx-
imation to be valid. However, we should also check the volume of the T 2

fibers.

3.2.2 Of the fibers

In the GP manifold, the T 2 fibers are taken to have size 4π2. This is simply
because the coordinates x and y were defined such that they have periodicity
2π (3.2). If we rescale both by an integer N , the form defining the horizontal
distribution becomes

ρN =
(

dx +
π∗α

N

)
+ i

(
dy +

π∗β

N

)
. (3.11)

This normalization of ρN preserves the property that i
2ρN ∧ ρ̄N restricted to

the fibers is just dx ∧ dy, so the Hermitian form (3.4) keeps the same form
with ρ replaced by ρN .

In the Bianchi identity (2.3), the only place in which ωP and ωQ enter
is through the Hermitian form, and so rescaling the T 2 is, as far as the
Bianchi identity is concerned, equivalent to keeping the volume of T 2 fixed
and instead rescaling ωP and ωQ each by N . More generally, we find that
these two setups produce the same solution for the function u:

Vol(T 2) = 4π2

Curvatures: NωP , MωQ
←→ Vol(T 2) = 4π2NM

Curvatures: ωP , ωQ
, (3.12)

where N, M ∈ Z
+.
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It would seem, then, that we are free to rescale T 2 to be arbitrarily large.
However, there is a constraint pointed out in [18] and [20], which restricts
ωP and ωQ quite heavily. The constraint comes from integrating the Bianchi
identity and is

24 − Ch2(E) =
∫

K3

(∣∣∣
∣∣∣
ωP

2π

∣∣∣
∣∣∣
2
+

∣∣∣
∣∣∣
ωQ

2π

∣∣∣
∣∣∣
2
)

ω2
M

2
, (3.13)

where Ch2(E) is the integral of the second Chern character (trF 2) over
K3, and similarly 24 comes from integrating trR2

K3, which yields the Euler
characteristic of K3.

Furthermore,
∫
K3

∣∣∣∣ωP
2π

∣∣∣∣2 ω2
M
2 can be computed using the intersection form

on K3 and is known to be a positive, even integer. It therefore seems we
cannot make the volume of the T 2 significantly larger than the string scale.
However, this statement is not quite right; as Goldstein and Prokushkin [19]
note, even if ωP or ωQ (but not both) is trivial in cohomology, the 3-fold
is still non-Kähler. There is nothing to prevent us from considering models
in which one of the circle bundles, say S1

P , is trivial. In these cases, since
∫
K3

∣∣∣∣ωP
2π

∣∣∣∣2 ω2
M
2 = 0, we are free to rescale that circle to our heart’s content.

We are then left with just one circle that cannot be made much larger than
the string scale. The correct statement, then, is that we cannot make both
circles arbitrarily large.

4 Heterotic supergravity

We see that the volume of the K3 is large but the volume of the T 2 fibers
is generically of order the string scale. This is a problem for a simple KK
reduction of the 10-dimensional supergravity, but not because of curvature
scales; rather, it is because we know that non-zero winding and momentum
modes of the string become light when T 2 is of order α′. This can be
simply remedied by including these new light degrees of freedom in the
dimensionally reduced action. We will leave this for future work and just
work with the compactification of the 10-dimensional effective action below.
Note also that large curvatures associated with the gauge bundle can become
problematic for a supergravity approximation, but we see from (3.13) that
the curvature is bounded above since the right-hand side of the equation is
non-negative.



SPECTRUM OF NON-KÄHLER COMPACTIFICATIONS 863

4.1 Linearized EOMs

The string-frame action is (see Appendix A):

L
(S)
Het = −1

2
e−2φ

√
−G

[ 1
κ2 R − 4

κ2 DMφDMφ +
1

2κ2 Tr(F 2) +
3

4κ2 H2

+ ψ̄MΓMNP DNψP + ψ̄MΓMP ΓNψP DNφ + λ̄ΓMDMλ

− λ̄ΓMλDMφ + Tr
(
χ̄ΓMDMχ − χ̄ΓMχDMφ

)

+
1
2
Tr

(
χ̄ΓMΓNP

(
ψM +

√
2

12
ΓMλ

)
FNP

)
+

1√
2
ψ̄MΓNΓMλDNφ

− 1
8
Tr

(
χ̄ΓMNP χ

)
HMNP − 1

8

(
ψ̄MΓMNPQRψR + 6ψ̄NΓP ψQ

−
√

2ψ̄MΓNPQΓMλ
)

HNPQ + (Fermions)4. (4.1)

Decomposing χ = χIT I and FMN = F I
MNT I , where T I are generators of the

gauge group satisfying Tr(T IT J) = δIJ , we find the linearized equations of
motion for the fermions:

Gaugino:

0 = 2ΓMDMχI − 2ΓMχIDMφ +
1
2
ΓMΓNP ψMF I

NP +
√

2
3

ΓNP λF I
NP

− 1
4
ΓMNP χIHMNP ; (4.2)

Dilatino:

0 = 2ΓMDMλ − 2ΓMλDMφ −
√

2
3

ΓNP χIF I
NP +

1√
2
ΓMΓNψMDNφ

−
√

2
8

ΓMΓNPQψMHNPQ; (4.3)

Gravitino:

0 = 2ΓMNP DNψP + 2ΓMP ΓNψP DNφ +
1
2
ΓNP ΓMχIF I

NP

+
1√
2
ΓNΓMλDNφ − 1

4
ΓMNPQRψRHNPQ − 3

2
ΓNψP HMNP

+
√

2
8

ΓNPQΓMλHNPQ. (4.4)

Strominger’s solution [2], and also the solution in the preceding paper
[1], trivially satisfied these equations of motion by assuming no fermionic
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condensates. We are interested in the four-dimensional effective theory,
in particular, the massless spectrum arising from compactifications on the
FSY geometry. Since we know we will have supersymmetry in the four-
dimensional theory, we can just look for variations of the fermionic fields
satisfying the equations of motion while holding the bosonic fields fixed; the
massless bosonic fields will then simply be superpartners of the massless
fermionic fields.

There is, of course, a limitation in our methodology. We have ignored
higher order α′ corrections and a superpotential that is expected to be gen-
erated (see [9], for example) — these should lift some of the massless fields.
We expect that this method will ultimately provide an upper bound to the
number of massless fields, so let us proceed with it.

In 10-dimensions, N = 1 supersymmetry implies that we have one
Majorana–Weyl spinor supercharge. We can decompose a 10-dimensional
Majorana–Weyl spinor as

ε
(10)
− = ε

(4)
− ⊗ ε

(6)
+ + ε

(4)
+ ⊗ ε

(6)
− , (4.5)

where ε
(4)
± are four-dimensional, charge conjugate Weyl spinors, while ε

(6)
± are

six-dimensional, charge conjugate Weyl spinors. We take as our convection
for the 10-dimensional gamma matrices:

Γμ = γμ ⊗ 1 and Γm = γ5 ⊗ γm, (4.6)

where γμ are the four-dimensional gamma matrices, γm the six-dimensional
ones, and γ5 the four-dimensional chirality operator. The six-dimensional,
H-covariantly constant spinor η (2.4) and its charge conjugate η∗ then satisfy
γāη = 0 = γaη∗, which in fact implies that η has positive chirality and η∗

has negative chirality.

Note that the set {η, γaη, γabη, γabcη} spans the space of six-dimensional
spinors. The last one, γabcη, is the only one annihilated by all the γa’s, so
it should be proportional to η∗. In particular,

η∗ =
1√
48

e2φΩabcγ
abcη (4.7)

up to an overall phase. It is also true that η∗ is H-covariantly constant,
which follows by noting that e2φΩabc is H-covariantly constant.
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4.2 Counting the massless Gauginos

We can use (4.7) and the basis {η, γaη, γabη, γabcη} to write the most general
Ansatz for the variation of the gaugino as

δχ = ε− ⊗
(
Cη + Cabγ

abη
)

− ε+ ⊗
(
C̄η∗ + C̄āb̄γ

āb̄η∗
)

, (4.8)

where C, Cab ∈ Ω∗(K; V ) are forms valued in some representation V of the
gauge group. This is the most general form since χ must be a Majorana–
Weyl 10-dimensional spinor. See Appendix A of [17] for details on this.

When we choose a gauge bundle with structure group G and embed it in
E8 × E8 or SO(32), the adjoint will decompose into a sum of products of
representations of the smaller groups. One of these terms will transform as
an adjoint of G and we will ignore variations of this term since it is the one
that couples to the other fermions. This simplifies our lives by allowing us
to consider the variation of the other portions of the gaugino independent
from the other fermions. This implies the gaugino equation of motion takes
the form

0 = 2
(
DaC + 4DbCba − 4∂bφCba

)
γaη + 2(DaCbc)γabcη, (4.9)

where we recall that D is the Levi-Civita connection plus the gauge
connection — see Appendix C for the derivation of (4.9).

By rescaling the C’s by eφ/2, the equations take the form

0 = DaC +
1
2
∂aφC + 4DbCba − 2∂bφCba,

0 = D[aCbc] +
1
2
∂[aφCbc], (4.10)

or by writing C(0) = C and C(2) = 1
2Cab dza ∧ dzb, we can recast these equa-

tions as

0 = DC(0) + 4D†C(2) and 0 = DC(2). (4.11)

This defines the differential operator D : Ωp,q(K; V ) → Ωp+1,q(K; V ), while
the adjoint is defined via the inner product

(α, β) :=
∫

K
α† ∧ β, (4.12)

where α† = ᾱT takes values in the dual vector bundle to V .

D2 is just the (2, 0) part the curvature 2-form of the gauge bundle, which
is required to be a (1, 1)-form by supersymmetry, so D2 = 0 and similarly
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D†2 = 0. We then find that

0 = ΔDC(0) and 0 = ΔDC(2), (4.13)

so that the C’s are D-harmonic forms. The space of solutions to (4.10) is then
spanned by these forms, reducing the question of counting massless gaugino
modes to the question of computing the dimensions of the D-cohomology
groups H0,0

D (K; V ) and H2,0
D (K; V ). Furthermore, since the dilaton φ is

continuous over the compact manifold K, the cohomology of e−aφDeaφ (for
constant a) is the same as that of D, meaning we can rescale the C’s to
consider equations of the form DC + a(dφ) ∧ C = 0 for any a. In particular,
we can choose a to eliminate the above φ dependence so that D will become
a standard twisted Dolbeault operator.

These cohomologies are rather abstract, and we cannot simplify things
as in the Calabi–Yau case by embedding the Strominger connection in the
gauge connection. The reason for this is that the field strength must be a
(1, 1)-form by the supersymmetry constraints, but the Ricci 2-form will not
be purely (1, 1) for the Strominger connection. However, we do have the
simpler option of choosing the bundle to be trivial, as explained in [20].9 A
trivial line bundle is semi-stable, not stable; however, this is not a problem
since the main usage of stability appears in the Donaldson–Uhlenbeck–Yau
theorem, which proves the existence of a connection that yields a (1, 1)
curvature form satisfying Fab̄g

ab̄ = 0. In the case of a trivial bundle, these
conditions are obviously met and so semi-stable will suffice.

For the choice of trivial line bundle, the twisted cohomology problem
reduces to that of the ∂ operator, or if we consider the complex conju-
gate equations, the solutions are given by the usual Dolbeault cohomol-
ogy groups H0,0

∂̄
(K; C) and H0,2

∂̄
(K; C). As we will see in the next sec-

tion, h0,0 = 1 = h0,2, so for this choice of gauge group, we get two massless
fermions transforming in the adjoint of E8 × E8 or SO(32).

4.3 A quick check

As a check on this method, let us consider what happens in the Calabi–Yau
case using standard embedding. Under E8 × E8 → SU(3) × E6 × E8, the

9There is also an example of a non-trivial gauge bundle presented in [20], along with
a proof that all stable bundles over the GP manifold, K, satisfying Strominger’s system
must be a bundle pulled back from the K3 tensored with a line bundle over K.
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adjoint (248,1) + (1,248) decomposes as

(1,78,1) + (1,1,248) + (8,1,1) + (3,27,1) + (3̄,27,1). (4.14)

As mentioned earlier, we will focus on the variations of the gaugino other
than the adjoint of SU(3), (8,1,1). First, the adjoint of E6 × E8, (1,78,1) +
(1,1,248), are scalars as far as the SU(3) connection is concerned, so we get
h0,0(CY3) + h0,2(CY3) = 1 fermion transforming in the adjoint of E6 × E8.

For the (3,27,1), the equations take the form

0 = DaC
d + 4DbC d

ba , 0 = D[aC
d

bc] , (4.15)

where we have suppressed indices for E6 × E8. We can use the metric to
lower the holomorphic index d to an antiholomorphic index, thus leaving us
with h1,0(CY3) + h1,2(CY3) = h1,2(CY3) fermions transforming in the 27 of
E6. Finally for the (3̄,27,1), we have an equation similar to (4.15) except
with an antiholomorphic index ā in place of d. Lowering ā to a holomorphic
index using the metric is not useful since it will not be antisymmeterized
with the other indices. However, we can contract ā with one index from the
covariantly constant, antiholomorphic (0, 3)-form Ω̄, yielding h2,0(CY3) +
h2,2(CY3) = h1,1(CY3) fermions transforming in 27 of E6. These results
are in agreement with the well-known counting of massless modes arising
from the connection 1-form, AM ; see, for example, [25].

5 Computing the Hodge diamond

Goldstein and Prokushkin [19] explained a method for computing the Hodge
numbers and used it to compute h0,1 and h1,0. They showed that the Dol-
beault cohomology groups Hp,q

∂̄
(K) are left invariant by the actions of ∂x

and ∂y, which literally means that if we move an element of Hp,q

∂̄
(K) around

a fiber π−1(p), p ∈ K3, the form should remain constant. This means we
can express all forms as a sum of wedge products of ρ, ρ̄ and forms pulled
back from K3.

We should note, before proceeding, that we will restrict attention to the
case where ωP and ωQ are anti-self-dual (1, 1)-forms. The construction in
[19] only requires that ωP + iωQ have no (0, 2)-component and that they
each have anti-self-dual (1, 1)-components. Fu and Yau [18], restrict to GP
manifolds where ωP and ωQ are (1, 1)-forms so the computations that fol-
low hold for the case considered by Fu and Yau but do not encompass all
manifolds constructed by Goldstein and Prokushkin.
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Let us review the computation of h1,0 from [19] for illustration first. If
ξ ∈ H1,0

∂̄
(K), then

ξ = (π∗s)ρ + π∗s1,0, (5.1)

where s is a function on K3 and s1,0 is a (1, 0)-form on K3. Recall that
∂̄ρ = π∗(ωP + iωQ) and ∂̄ρ̄ = 0. Thus, 0 = ∂̄ξ = π∗ (∂̄s) ∧ ρ+ π∗(s(ωP +
iωQ) + ∂̄s1,0). The first term tells us ∂̄s = 0, which means that s must be
a constant. The term pulled back from K3 tells us that s(ωP + iωQ) =
−∂̄s1,0, but since ωP + iωQ is assumed to be non-trivial in the Dolbeault
cohomology of K3, then the only solution to this is s = 0 and ∂̄s1,0 = 0.
Thus, we have the result h1,0(K) = h1,0(K3) = 0. Similarly, Goldstein and
Prokushkin found h0,1(K) = h0,1(K3) + 1 = 1.

Note that the Hodge theorem implies that even for non-Kähler manifolds,
Hp,q

∂̄
(K) = Hn−p,n−q

∂̄
(K) [6]; however, Hp,q

∂̄
(K) �= Hq,p

∂̄
(K). In any event, we

only have to compute some of the Hodge numbers. If ξ ∈ H1,1
∂̄

(K), then

ξ = (π∗s)ρ ∧ ρ̄ + ρ ∧ π∗s0,1 + ρ̄ ∧ π∗s1,0 + π∗s1,1. (5.2)

Requiring ∂̄ξ = 0 implies

∂̄s = 0, s(ωP + iωQ) − ∂̄s1,0 = 0, ∂̄s0,1 = 0,

and (ωP + iωQ) ∧ s0,1 + ∂̄s1,1 = 0. (5.3)

As above, we find: s = 0; ∂̄s1,0 = 0, which then implies s1,0 = 0 (h1,0(K3) =
0); and s0,1 = ∂̄t (h0,1(K3) = 0), where t is a function on K3, which then
implies s1,1 = t1,1 − t(ωP + iωQ), where ∂̄t1,1 = 0. So we have

ξ = ρ ∧ ∂̄π∗t + π∗ (
t1,1 − t(ωP + iωQ)

)
= π∗t1,1 − ∂̄ ((π∗t)ρ) . (5.4)

This last term is exact, and π∗(t1,1 + ∂̄u1,0) = π∗t1,1 + ∂̄π∗u1,0, so we find
h1,1(K) = h1,1(K3) = 20.

Now take ξ ∈ H2,0
∂̄

(K), so we have

ξ = ρ ∧ π∗s1,0 + π∗s2,0. (5.5)

∂̄ξ = 0 implies ∂̄s1,0 = 0, so s1,0 = 0, which in turn implies that ∂̄s2,0 = 0,
so s2,0 = cΩ2,0

K3, where c is a constant and Ω2,0
K3 is the nowhere-vanishing,

holomorphic (2, 0)-form on K3. Thus, h2,0(K) = 1.

If ξ ∈ H0,2
∂̄

(K), then

ξ = ρ̄ ∧ π∗s0,1 + π∗s0,2. (5.6)

Then ∂̄ξ = 0 implies that ∂̄s0,1 = ∂̄s0,2 = 0. Shifting s0,1 or s0,2 by a ∂̄-exact
form just shifts ξ by a ∂̄-exact form, so h0,2(K) = h0,1(K3) + h0,2(K3) = 1.
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Finally, suppose ξ ∈ H1,2
∂̄

(K), then

ξ = ρ ∧ ρ̄ ∧ π∗s0,1 + ρ̄ ∧ π∗s1,1 + ρ ∧ π∗s0,2 + π∗s1,2. (5.7)

Requiring ∂̄ξ = 0 implies

∂̄s0,1 = 0, (ωP + iωQ) ∧ s0,1 − ∂̄s1,1 = 0, ∂̄s0,2 = 0,

and (ωP + iωQ) ∧ s0,2 + ∂̄s1,2 = 0; (5.8)

however, these last two equations are trivially true since K3 is a complex
2-fold. These translate into s0,1 = ∂̄t; s1,1 = t1,1 + t(ωP + iωQ), where
∂̄t1,1 = 0; s1,2 = ∂̄u1,1 (h1,2(K3) = 0); and s0,2 = cΩ̄0,2

K3 + ∂̄t0,1, where Ω̄0,2
K3

is the complex conjugate of the holomorphic (2, 0)-form on K3 and c is a
constant. So we have now

ξ = ρ ∧ ρ̄ ∧ ∂̄π∗t + ρ̄ ∧ π∗t1,1 + π∗(ωP + iωQ) ∧ ρ̄(π∗t)

+ cρ ∧ π∗Ω̄0,2
K3 + ρ ∧ ∂̄π∗t0,1 + ∂̄π∗u1,1

= ∂̄ ((π∗t)ρ ∧ ρ̄) + ρ̄ ∧ π∗t1,1 + cρ ∧ π∗Ω̄0,2
K3 − ∂̄

(
ρ ∧ π∗t0,1)

+ π∗ (
(ωP + iωQ) ∧ t0,1) + ∂̄π∗u1,1

∼= ρ̄ ∧ π∗t1,1 + cρ ∧ π∗Ω̄0,2
K3 + π∗ (

(ωP + iωQ) ∧ t0,1) , (5.9)

where c is constant, ∂̄t1,1 = 0, and ‘∼=’ means equal up to ∂̄-exact terms
(which also identifies ξ under t1,1 → t1,1 + ∂̄u1,0). Notice that this last term
is necessarily ∂̄-closed, but since h1,2(K3) = 0, it is also ∂̄-exact, and thus
we have

ξ ∼= ρ̄ ∧ π∗t1,1 + cρ ∧ π∗Ω̄0,2
K3, (5.10)

which implies h1,2(K) = h1,1(K3) + h0,2(K3) = 21.

Finally, we know from [2] that h3,0(K) = 1, and we can use this to fill out
the Hodge diamond:

1
0 1

1 20 1
1 21 21 1

1 20 1
1 0

1

(5.11)

We do not expect that for a non-Kähler manifold the Hodge numbers will
add up to the Betti numbers, and indeed they do not. The Betti numbers
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were computed in [19] using the Gysin sequence. For the sake of comparison,
they are

ωQ �= nωP ωQ = nωP

b0(K) 1 1
b1(K) 0 1
b2(K) 20 21
b3(K) 42 42

(5.12)

for any n ∈ Z. We hope that this cohomology calculation will be useful when
an index is found to count the number of moduli fields, but we leave this for
future work.

6 Discussion

In [1] and [2], the supersymmetry constraints were satisfied in part by assum-
ing no fermionic condensates. In order to get the first image of the massless
spectrum from compactification on the FSY geometry, we have counted the
solutions of the variations of the gaugino that satisfy the linearized equa-
tions of motion from heterotic supergravity. We found they are given by
the cohomology of forms valued in a vector bundle using the gauge connec-
tion. The ability to choose a trivial bundle relies on c2(TK) = 0, which is
true for the GP manifold. Taking the gauge bundle to be trivial allowed
us to relate the twisted Dolbeault cohomology to the ordinary Dolbeault
cohomology of the GP manifold, which we then computed.

This counting is far from a full treatment of the effective action or even
the massless spectrum resulting from compactification on the FSY geometry.
First of all, one must include the new light modes arising from toroidal
compactifications. After including these new fields, one way to get an upper
bound on the number of massless fields would be to count the solutions
of the variations of all the fermions that satisfy the linearized equations of
motion. Unfortunately, these are complicated, coupled differential equations
and perhaps no simpler to solve than other potential methods for addressing
aspects of the effective action, such as trying to understand the moduli space
of FSY geometries.10 The reason we expect this to give only an upper bound
is because we have ignored quartic fermionic terms in the action, higher order
α′ corrections, and a conjectured superpotential (see [9], for example), all of
which we expect to impose additional constraints and decrease the number
of true massless fields.

10For example, in [13], the authors explored variations of the supersymmetry con-
straints under a set of simplifying assumptions.
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There are many exciting topics yet to be explored in the realm of tor-
sional compactifications of the heterotic string, the four-dimensional effec-
tive action being one of the ultimate goals. The moduli space would also
be interesting since we expect that the inclusion of flux in the heterotic
theory will lift most of the moduli that we have in Calabi–Yau compactifi-
cations. Understanding the moduli space could then help in understanding
the four-dimensional effective action. It would also be interesting to be able
to compare the effective action for these heterotic compactifications to the
type IIB dual that was studied in [26]. Since the FSY geometry is the
first smooth construction satisfying the N = 1 supersymmetry constraints
derived from the supergravity approximation,11 the time is ripe for studying
flux compactifications of the heterotic string; we hope the reader has gained
some interest in studying these partially forgotten topics.
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Appendix A: Einstein/string-frame actions and EOMs

We start with the 10-dimensional action in the Einstein frame, as is found
in Chapter 13 (p. 325) of [27], with the substitution φGSW = exp[φ/2 +
2 ln(κ/g)]:

L
(E)
Het = −1

2

√
−G

[
1
κ2 R +

1
2κ2 DMφDMφ +

1
2κ2 e−φ/2 Tr (F 2) +

3
4κ2 e−φH2

+ ψ̄MΓMNP DNψP + λ̄ΓMDMλ + Tr (χ̄ΓMDMχ)

+
1√
2
ψ̄MΓNΓMλDNφ − 1

8
e−φ/2 Tr (χ̄ΓMNP χ)HMNP

+
1
2
e−φ/4Tr

(
χ̄ΓMΓNP

(
ψM +

√
2

12
ΓMλ

)
FNP

)

11An orbifold limit of a torsional T 2 bundle over K3 was considered in [7] by duality
chasing.
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− 1
8
e−φ/2(ψ̄MΓMNPQRψR + 6ψ̄NΓP ψQ −

√
2ψ̄MΓNPQΓMλ

)
HNPQ

+ (Fermions)4
]
, (A.1)

where DM is the Levi–Civita connection plus the gauge connection. We
know that if we rescale the metric GMN → epφGMN , then

√
−G → epdφ/2

√
−G and

R −→ e−pφ

(
R − p(d − 1)D2φ − p2 (d − 1)(d − 2)

4
DMφDMφ

)
(A.2)

for GSW conventions.

Since we want an overall factor of e−2φ in front in string frame, we must
choose p = −1

2 . Under this rescaling, we have

G
(E)
MN = e−φ/2GMN , R(E) = eφ/2(R − 9

2
DMφDMφ),

λ(E) = eφ/8λ, χ(E) = eφ/8χ,

ψ
(E)
M = e−φ/8ψM , Γ(E)

M = e−φ/4ΓM ,

ε(E) = e−φ/8ε,

(A.3)

where ε is the spinor appearing in the supersymmetry variations. The Levi–
Civita connection has additional terms depending on derivatives of φ:

D
(E)
M λ = DMλ +

1
8
ΓN

MλDNφ,

D
(E)
M VN = DMVN +

1
4
(
VMDNφ + VNDMφ − GMNV P DP φ

)
,

Γ(E)M
NP = ΓM

NP − 1
4
(
δM
N DP φ + δM

P DNφ − GNP DMφ
)
,

(A.4)

where VM is a spacetime 1-form.

After some simplification, the string-frame action is

L
(S)
Het = −1

2
e−2φ

√
−G

[ 1
κ2 R − 4

κ2 DMφDMφ +
1

2κ2 Tr(F 2) +
3

4κ2 H2

+ ψ̄MΓMNP DNψP + ψ̄MΓMP ΓNψP DNφ + λ̄ΓMDMλ

− λ̄ΓMλDMφ + Tr
(
χ̄ΓMDMχ − χ̄ΓMχDMφ

)

+
1
2
Tr

(
χ̄ΓMΓNP

(
ψM +

√
2

12
ΓMλ

)
FNP

)
+

1√
2
ψ̄MΓNΓMλDNφ
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− 1
8
Tr

(
χ̄ΓMNP χ

)
HMNP − 1

8

(
ψ̄MΓMNPQRψR + 6ψ̄NΓP ψQ

−
√

2ψ̄MΓNPQΓMλ
)
HNPQ + (Fermions)4. (A.5)

Appendix B: Useful relations

B.1 SUSY implications

A few things to note. First, working in string frame implies that

Dμη = 0. (B.1)

Second, for DMΩ, we have

DμΩabc = 0,

DdΩabc = −3(Ddφ)Ωabc,

DāΩabc = −(Dāφ)Ωabc, (B.2)

all of which follow from the fermionic supersymmetry variations, as do

3
2
H d

ād = Dāφ,

3
2
H d

ad = −Daφ, (B.3)

4γmDmφη = Hmnpγ
mnpη.

See [2] for details.

B.2 A Note about non-Kähler manifolds

One of the drawbacks to working with non-Kähler geometries is that, con-
trary to one’s naive expectation,

∇m(Ωabcγ
abc) �= γabc∇mΩabc. (B.4)

This arises from the fact that we are only summing over holomorphic indices
and not all real indices; thus, the complex structure is implicitly used and we
recall that, unlike in the Kähler case, the complex structure is not covariantly
constant with respect to the Levi–Civita connection. To use the product
rule, we must write everything in real indices.
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Define

P n
±m ≡ 1

2
(δ n

m ∓ iJ n
m ) (B.5)

so that P b
+a = δ b

a , P b̄
−ā = δ b̄

ā , and all other components are zero. Since
∇(H)

m J = 0, we find

∇mP p
±n = ∓3i

4
(
Hp

msJ
s

n − Hs
mnJ p

s

)
. (B.6)

Thus,

∇m(Cabcγ
abc) = ∇m

(
Cpstγ

nqrP p
+n P s

+q P t
+r

)

= γabc∇mCabc + 3Cpbcγ
nbc∇mP p

+n

= γabc∇mCabc +
9
2
Cabcγ

ābcHa
mā. (B.7)

Similarly,

∇m(Cabγ
ab) = γab∇mCab + 3Cabγ

ābHa
mā (B.8)

and

∇m(Caγ
a) = γa∇mCa +

3
2
Caγ

āHa
mā. (B.9)

Appendix C: Derivation of (4.9)

When we consider a gauge bundle with structure group G and embed this
into a larger group H (E8 × E8 or SO(32)), the adjoint of H decomposes
into a sum containing the adjoint of G. Since we focus on variations of the
gaugino orthogonal to the adjoint of G, the linearized gaugino equation of
motion becomes

0 = 2ΓMDMχ − 2ΓMχDMφ − 1
4
ΓMNP χHMNP , (C.1)

where we have suppressed gauge indices.

The most general Ansatz for the variation of the gaugino is

δχ = ε− ⊗
(
Cη + Cabγ

abη
)

− ε+ ⊗
(
C̄η∗ + C̄āb̄γ

āb̄η∗
)

, (C.2)

where C, Cab ∈ Ω∗(K; V ) and ε± are covariantly constant spinors on M4
with chiralities ±1, respectively. To simplify the gaugino equation of motion,
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we note that

∇aη =
3
4
Habāγ

bāη +
3
8
Haāb̄γ

āb̄η = −3
4
H b

ab η =
1
2
(∂aφ)η, (C.3)

∇āη =
3
4
Hāb̄aγ

b̄aη +
3
8
Hāabγ

abη = −1
2
(∂āφ)η +

3
8
Hāabγ

abη, (C.4)

which follow from ∇(H)
m η = 0, γāη = 0, and (B.3).

We will focus on the terms involving ε− as the others are obtained by
complex conjugation and multiplication by the 10-dimensional charge con-
jugation operator. Using the relations above, (B.8), and the fact that the
product of more than three gamma matrices with all holomorphic or anti-
holomorphic indices is zero (since we work on a complex 3-fold), we have

ΓMDMδχ
∣∣∣
ε−

= (γμDμε−) ⊗ (Cη + Cabγ
abη) − ε− ⊗ γmDm(Cη + Cabγ

abη)

= −ε− ⊗
{

γa
[(

Da(C + Cbcγ
bc)

)
η + (C + Cbcγ

bc)Daη
]

+ γā
[(

Dā(C + Cbcγ
bc)

)
η + (C + Cbcγ

bc)Dāη
]}

= −ε− ⊗
{[ (

(DaC)γa + (DaCbc)γabc + 3CbcH
b c
a γa

)
η

+
(

1
2
(∂aφ)Cγa +

1
2
(∂aφ)Cbcγ

abc

)
η
]

+
[ (

(DāCbc)γāγbc
)

η

+
(

3
8
CHāabγ

āγab − 1
2
(∂āφ)Cbcγ

āγbc

)
η
]}

= −ε− ⊗
{[

DaC +
3
2
(∂aφ)C − 3CbcH

bc
a

+ 4DbCba − 2(∂bφ)Cba

]
γaη

+
[
DaCbc +

1
2
(∂aφ)Cbc

]
γabcη

}
. (C.5)

Similarly,

−ΓMδχ∂Mφ
∣∣∣
ε−

= ε− ⊗
{

(γa∂aφ + γā∂āφ)(Cη + Cbcγ
bcη)

}

= ε− ⊗
{

(∂aφ)Cγaη + (∂aφ)Cbcγ
abcη + 4(∂bφ)Cbaγ

aη
}

(C.6)
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and

−1
8
ΓMNP HMNP δχ

∣∣∣
ε−

=
1
8
ε− ⊗ γmnpHmnp(Cη + Cabγ

abη)

=
3
8
ε− ⊗

{
CHabāγ

abāη + CabHācdγ
ācdγabη

+ CabHcāb̄γ
cāb̄γabη

}

=
3
8
ε− ⊗

{4
3
(∂aφ)Cγaη − 4

3
(∂aφ)Cbcγ

abcη

− 4
3
(∂āφ)Cbcγ

āγbcη + CabHcāb̄γ
cγāb̄γabη

}

=
1
2
ε− ⊗

{
(∂aφ)Cγaη − (∂aφ)Cbcγ

abcη

− 4(∂bφ)Cbaγ
aη − 6CbcH

bc
a γaη

}
. (C.7)

Combining these, the gaugino equation of motion reduces to

0 = −2
(
DaC + 4DbCba − 4(∂bφ)Cba

)
γaη − 2 (DaCbc) γabcη (C.8)

as claimed.
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SPECTRUM OF NON-KÄHLER COMPACTIFICATIONS 877

[11] K. Becker, M. Becker, K. Dasgupta and S. Prokushkin, Nucl. Phys. B
666 (2003), 144, hep-th/0304001.

[12] K. Becker, M. Becker, K. Dasgupta, P.S. Green and E. Sharpe, Nucl.
Phys. B 678 (2004), 19, hep-th/0310058.

[13] K. Becker and L.S. Tseng, Nucl. Phys. B 741 (2006), 162,
hepth/0509131.

[14] S. Gurrieri, A. Lukas and A. Micu, Phys. Rev. D 70 (2004), 126009,
hep-th/0408121.

[15] B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, JHEP 3 (2006), 5,
hep-th/0507173.

[16] A.R. Frey and M. Lippert, Phys. Rev. D 72 (2005), 126001,
hepth/0507202.

[17] P. Manousselis, N. Prezas and G. Zoupanos, Nucl. Phys. B 739 (2006),
85, hep-th/0511122.

[18] J.X. Fu and S.T. Yau, (2006), The theory of superstring with flux on
non-Kaehler, hep-th/0604063.

[19] E. Goldstein and S. Prokushkin, Commun. Math. Phys. 251 (2004),
65, hep-th/0212307.

[20] K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, (2006),
hep-th/0604137.

[21] A. Sen, Nucl. Phys. B 278 (1986), 289.
[22] A. Strominger, Nucl. Phys. B 343 (1990), 167.
[23] J.X. Fu and S.T. Yau, (2005), Existence of supersymmetric Hermitian

metrics with torsion on non-Kaehler manifolds, hep-th/0509028.
[24] J.P. Gauntlett, D. Martelli and D. Waldram, Phys. Rev. D 69 (2004),

86002, hep-th/0302158.
[25] J. Polchinski, String theory: superstring theory and beyond, Cambridge

Monographs on Mathematical Physics, Vol. 2, Cambridge University
Press, Cambridge, UK, 1998.

[26] A.R. Frey and M. Grana, Phys. Rev. D 68 (2003), 106002, hep-
th/0307142.

[27] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory: loop
amplitudes, anomalies and phenomenology, Cambridge Monographs On
Mathematical Physics, Vol. 2, Cambridge University Press, Cambridge,
UK, 1987.


