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Abstract

We consider the problem of collapse of a self-gravitating Higgs field,
with potential bounded below by a (possibly negative) constant. The
behaviour at infinity may be either asymptotically flat or asymptotically
AdS. This problem has recently received much attention as a source for
possible violations of weak cosmic censorship in string theory. In this
paper, we prove under spherical symmetry that “first singularities” aris-
ing in the non-trapped region must necessarily emanate from the centre.
In particular, this excludes the formation of a certain type of naked sin-
gularity which was recently conjectured to occur.

A fundamental open problem in classical general relativity is the problem
of weak cosmic censorship, the conjecture that generic asymptotically flat
initial data lead to a Cauchy development with a complete null infinity.
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In the case of a spherically symmetric scalar field with vanishing potential,
the conjecture was resolved in the affirmative by Christodoulou [2]. Previ-
ously, Christodoulou had proven [6] that the caveat “generic” was necessary,
by constructing explicit examples of naked singularities forming from the
collapse of regular data. These naked singularities emanate from the centre.

It has been suggested recently [15, 17] that the situation changes drasti-
cally for self-gravitating Higgs fields with potentials which can take negative
values. Such “non-classical”1 matter can be motivated by considerations
arising from string theory. In [15, 17], the authors advance certain heuristic
arguments to show that naked singularities not emanating from the centre
can arise and in fact will arise for an open set of initial data.

In this paper, we will prove a simple estimate for self-gravitating Higgs
fields with potential bounded below by a (possibly negative) constant. In the
evolutionary context, this estimate shows that “first singularities” arising
from the non-trapped region2 must necessarily emanate from the center.
Since the past of infinity (in either the asymptotically flat or asymptotically
AdS setting) must lie in the non-trapped region,3 this implies, in particular,
that the naked singularities of [17] can, in fact, never arise.

Finally, in the case where the potential is in fact non-negative, then the
results of this paper show that Higgs fields satisfy the assumptions of [11].
In particular, the existence of a single-trapped surface is sufficient to deduce
the completeness of null infinity. The reader is referred to [11].

1 Basic assumptions

A self-gravitating scalar field with potential is described by a four-dimensional
spacetime (M, g) and a function φ on M satisfying:

Rµν − 1
2
gµνR = 2Tµν , (1.1)

φ;µ
;µ = V ′(φ), (1.2)

Tµν = φ;µφ;ν − 1
2
gµνφ;αφ;α − gµνV (φ), (1.3)

where V is a continuously differentiable function of its argument:

V ∈ C1(R). (1.4)

1Higgs fields with negative potential violate the dominant energy condition.
2This is the region of spacetime such that the outgoing expansion of the group orbit

spheres is non-negative, whereas the ingoing expansion is negative.
3This fact only depends on the null convergence condition, which is still satisfied here.
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This paper will concern such spacetimes which are spherically symmetric,
and evolutionary.

By spherically symmetric, we here mean that the group SO(3) acts by
isometry on M and preserves φ. Actually, we will require something a little
stronger, namely that

Q+ = M/SO(3)

inherits from g the structure of a 1 + 1-dimensional time-oriented Lorentzian
manifold with boundary, with metric ḡ, such that

g = ḡ + r2dσS2 ,

where dσS2 here denotes the standard metric on S
2 and r is a non-negative

function on Q+, the so-called area-radius. Since φ is constant on group
orbits, it descends to a function defined on Q+.4

By evolutionary, we mean that the spacetime is to have those properties
one would require from the “unique future maximal development” of an
appropriate initial or initial-boundary value problem for equations (1.1) to
(1.3). We have two such problems in mind:

1. Initial data are defined on a complete asymptotically flat hypersurface,
leading to an asymptotically flat maximal Cauchy development or
alternatively

2. Initial data are prescribed on an asymptotically AdS hypersurface, sup-
plemented with boundary conditions at infinity, leading to an asymptot-
ically AdS spacetime.

Only in the former case, has the construction of such a maximal development
been rigorously carried out.5 Nevertheless, the properties to be listed here
must be satisfied for any reasonable notion of such an object.

We proceed here to list these properties. For the purposes of mathematical
clarity, the reader can chose to consider the “properties” listed in this section
as a priori assumptions.

4The study of spherical symmetric solutions of (1.1)–(1.3) with V = 0 was initiated by
Christodoulou [7]. See also [18] for general V .

5In particular, in this case, the assumption of spherical symmetry described above can
be retrieved from an analogous assumption on initial data.
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1.1 Geometry of Q+

The boundary6 of Q+ will consist of Γ ∪ S, where Γ is a connected timelike
curve and S is a connected spacelike curve, and Γ ∩ S is a single point, and
such that r(q) = 0 iff q ∈ Γ. We will call Γ the centre. Let L denote a null
parallel vector field along Γ ∪ S pointing towards Q+. Q+ will be foliated
by the family of null geodesics defined by L. We will call these geodesics
“outgoing”.

To discuss the behaviour of the boundary “at infinity”, it is convenient
to introduce what are essentially Penrose diagrams. Our quotient space-
time Q+ will admit a C3 map into a bounded subset of two-dimensional
Minkowski space which preserves the causal structure. We henceforth iden-
tify Q+ with its image under such a map. Standard null coordinates u and
v provide a global coordinate chart on Q+, and the metric ḡ can be written
−Ω2du dv. Let u be such that constant u curves are “outgoing”, as defined
above.

We assume that there exists a non-empty causal curve I ⊂ Q+ \ Q+,7

and that Q+ is foliated by connected constant v curves with past endpoint
on S or past end-limit point on I. We call such null geodesics “ingoing”.

1.2 Reduced equations

From equations (1.1) to (1.3), we derive

∂u∂vr = −1
r
∂ur∂vr − 1

4r
Ω2 +

1
2
rΩ2V (φ), (1.5)

∂u∂v log Ω =
1
4
Ω2r−2 + r−2∂ur∂vr − ∂uφ∂vφ, (1.6)

∂u∂vφ = −r−1∂uφ∂vr − r−1∂vφ∂ur − 1
4
Ω2V ′(φ), (1.7)

∂u(Ω−2∂ur) = −rΩ−2(∂uφ)2, (1.8)
∂v(Ω−2∂vr) = −rΩ−2(∂vφ)2. (1.9)

6Recall that Q+ is a manifold with boundary. The boundary is not quite a one-
dimensional manifold, but a piecewise regular curve.

7That is the set Q+ \ Q denotes the portion of the boundary of Q+ as as subset of
R

1+1, which is not part of its boundary, in the sense of manifolds-with-boundary.
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We assume here that r, Ω, and φ are C2 and that these equations hold
pointwise.

1.3 Local existence and extendibility criterion

Evolutionary spacetimes are constructed by a local existence and uniqueness
theorem in an appropriately defined function space. One first shows that
there exists a non-empty “development” of initial data. Then, using the
domain of dependence property, it is straightforward to show that there
exists a unique maximal development.

Our embedding of Q+ into R
1+1 allows us to talk about its future bound-

ary as a subset of R
1+1. In what follows let Q+ denote the closure of Q+

in the topology of R
1+1, and similarly R, etc., and let J−, J+, D+, etc.,

refer to the causal structure of the R
1+1. In this section, we shall formulate

a criterion for a point p ∈ Q+ \ (I ∪ Γ) to be, in a suitable sense, a “first
singularity”. Since we are interested in considerations away from the cen-
tre, the following double null local existence result will be sufficient for our
purposes.

Proposition 1.1. Let Ω, r and φ be functions defined on X = [0, d] × {0} ∪
{0} × [0, d]. Let k ≥ 0, and assume r > 0 is Ck+2(u) on [0, d] × {0} and
Ck+2(v) on {0} × [0, d], assume that Ω and φ are Ck+1(u) on [0, d] × {0}
and Ck+1(v) on {0} × [0, d], and assume that V is a Ck+1 function of its
argument. Suppose that equations (1.8), (1.9) hold initially on [0, d] × {0}
and {0} × [0, d], respectively. Let |Ω|n,u denote the Cn(u) norm of Ω on
[0, d] × {0}, |Ω|n,v the Cn(v) norm of Ω on {0} × [0, d], etc. Define

N = sup{|Ω|1,u, |Ω|1,v, |Ω−1|0, |r|2,u, |r|2,v, |r|−1
0 , |φ|1,u, |φ|1,v}.

Then there exists a δ, depending only on N , and a Ck+2 function (unique
among C2 functions) r and Ck+1 functions (unique among C1 functions)
Ω and φ, satisfying equations (1.5) to (1.9) in [0, δ∗] × [0, δ∗], where δ∗ =
min{d, δ}, such that the restriction of these functions to [0, d] × {0} ∪ {0} ×
[0, d] is as prescribed.

The proof can be obtained by standard methods and is omitted. To
describe the characterization of (part of) the boundary of Q+ that this
leads to, first let us introduce some terminology.

Definition 1.2. Let p ∈ Q+. The indecomposable past subset J−(p) ∩
Q+ ⊂ Q+ is said to be eventually compactly generated if there exists a
compact subset X ⊂ Q+ such that

J−(p) ⊂ D+(X) ∪ J−(X). (1.10)
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Definition 1.3. A point p ∈ Q+ \ Q+ is said to be a first singularity if
J−(p) ∩ Q+ is eventually compactly generated and if any eventually com-
pactly generated indecomposable proper subset of J−(p) ∩ Q+ is of the form
J−(q) for a q ∈ Q+.

In particular, in view of the geometry of Q+, as described in Section 1.1,
setting p = (us, vs), then if p is a first singularity and if p �∈ Γ, then this
implies that there exists an ε > 0 such that for any us > uε > us − ε, vs >
vε > vs − ε, the compact set

X = {uε} × [vε, vs] ∪ [uε, us] × {v∗}
satisfies X ⊂ Q+ \ Γ, and we have

[uε, us] × [vε, vs] = D+(X) = J−(p) ∩ D+(X),

and
D+(X) ∩ Q+ = D+(X) \ {p}.

Given a subset Y ⊂ Q+ \ Γ, define

N(Y ) = sup{|Ω|1, |Ω−1|0, |r|2, |r|−1
0 , |φ|1},

where, for f defined on Q+, |f |k denotes the restriction of the Ck norm to Y .

In the evolutionary context, Proposition 1.1 easily gives the following
extension criterion.

Property 1.4. Let p ∈ Q+ \ Γ be a first singularity. Then for any compact
X ⊂ Q+ \ Γ satisfying equation (1.10), we have

N(D+(X) \ {p}) = ∞.

2 R, T and A

Let us introduce the notation:

ν = ∂ur, (2.1)

λ = ∂vr. (2.2)
We define the regular region

R = {q ∈ Q+: λ(q) > 0, ν(q) < 0},

the trapped region

T = {q ∈ Q+: λ(q) < 0, ν(q) < 0},

and the marginally trapped region

A = {q ∈ Q+: λ(q) = 0, ν(q) < 0}.



COLLAPSE OF SELF-GRAVITATING HIGGS FIELDS 581

This notation derives from [4]. We call R ∪ A the non-trapped region.

In what follows, we will now always assume that the following hold:

Assumption 2.1. We have

∂ur < 0

along S.

Property 2.1. For all q ∈ I, for all p ∈ J+(q) ∩ Q+ \ I+(q) and for all
R > 0, there exists a p∗ ∈ J+(q) ∩ J−(p) ∩ Q+ ∩ \I+(q) such that r(p∗) ≥ R.
Similarly, for all q ∈ I, all p ∈ J−(q) ∩ Q+ \ I−(q) and all R > 0, there
exists a p∗ ∈ J−(q) ∩ J+(p) ∩ Q+ ∩ \I−(q) such that r(p∗) ≥ R.

Assumption 2.1 is motivated in [4]. Property 2.1 is perhaps the weakest
possible notion that I is actually “at” infinity. Note that the set defined by
I+ in [11] for the asymptotically flat case clearly satisfies Property 2.1.

We have

Proposition 2.2. ν < 0 everywhere, i.e. Q+ = A ∪ R ∪ T .

Proof. The previous assumption, together with the global structure of Q+,
as described in Section 1.1, implies that if (u, v) ∈ Q+, then there exists
a u∗ < u such that ν(u∗, v) < 0. The proposition now follows immediately
after integration of equation (1.8) along [u∗, u] × {v}. �

Similarly from equation (1.9), we immediately obtain,

Proposition 2.3. We have

J−(I) ∩ Q+ ⊂ R

and

J−(I) ∩ Q+ ⊂ R ∪ A.

In particular,

Corollary 2.4. If T �= ∅, then Q+ \ J−(I) �= ∅.
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3 The main theorem

Let us introduce one final assumption:

Assumption 3.1. There exists a C such that:

V (x) ≥ −C. (3.1)

The main theorem of this paper is

Theorem 3.1. Let p ∈ Q+ \ Q+ be a first singularity. Then either

p ∈ Γ \ Γ (3.2)

or
J−(p) ∩ Q+ ∩ D+(X) ∩ T �= ∅, (3.3)

for all compact X satisfying equation (1.10).

4 Proof of the main theorem

It is equivalent to prove the following: Let p ∈ Q+ \ Γ be such that J−(p) ∩
Q+ is eventually compactly generated, and such that any compactly gen-
erated indecomposable subset J−(q) ∩ Q+ ⊂ J−(p) ∩ Q+ satisfies q ∈ Q+.
Then p ∈ R ∪ A.

Choose ε, X, uε, vε, as in the statement following the definition of a first
singularity, so that in addition D+(X) \ {p} ⊂ R ∪ A.

 

Let us introduce the notation:

ζ = r∂uφ, (4.1)

θ = r∂vφ, (4.2)
and the quantity (in view of Proposition 2.2)

κ = −1
4
Ω2ν−1.

We clearly have
κ > 0.
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Key to our proof is the Hawking mass function, defined by

m =
r

2
(1 + 4Ω−2∂ur∂vr).

It is convenient to define also the so-called mass ratio

µ =
2m

r
.

By compactness of X, and the regularity assumptions of Section 1.2, it
follows that r, κ, θ, ζ, φ, λ, ν, m, ∂uΩ, ∂vΩ, ∂vλ, ∂uν are uniformly bounded
above and below on X:

0 < r0 ≤ r ≤ R, (4.3)

0 ≤ λ ≤ Λ,

0 > ν0 ≥ ν ≥ −N,

|φ| ≤ P,

|θ| ≤ Θ,

|ζ| ≤ Z,

|m| ≤ M, (4.4)

0 < κ ≤ K, (4.5)

|∂uΩ| ≤ H, (4.6)

|∂vΩ| ≤ H, (4.7)

|∂uν| ≤ H, (4.8)

|∂vλ| ≤ H. (4.9)

In view of Property 1.4, it will be enough to show that uniform bounds
similar to the above hold throughout D+(X) \ {p}.
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The importance of the Hawking mass derives from the following identities
(see [4]):

∂um =
1
2
(1 − µ)

(
ζ

ν

)2

ν + r2V (φ)ν, (4.10)

∂vm =
1
2
κ−1θ2 + r2V (φ)λ. (4.11)

To understand the nature of the terms in equations (4.10) and (4.11), note
first that

(1 − µ)κ = λ,

and thus

1 − µ ≥ 0 (4.12)

on R ∪ A. Equation (1.8) yields

∂uκ =
1
r

(
ζ

ν

)2

νκ. (4.13)

From equation (4.13), and Proposition 2.2, it follows that the bound (4.5)
holds throught D+(X) \ {p}.

The idea now of the proof is as follows: As we shall see momentarily, the
fact that D+(X) \ {p} ⊂ A ∪ R immediately yields that the bounds (4.3)
are preserved. If V were non-negative, then the signs in equations (4.10)
and (4.11) would immediately yield that (4.4) is preserved. In view of the
bounds (4.3) on r and (4.5) on κ, integration of equation (4.11) in v would
yield an L2(v) bound for ∂vφ. From this, bounds on all other quantities
would follow in a straightforward manner.

In our case, V is of course not non-negative. It turns out, however, that
in view of Assumption 3.1, we can still derive estimates on m, since we can
control the integral of the term with the “wrong” sign from equation (3.1)
and the bounds (4.3) on r.8 In view of the triangle inequality, we can still
obtain an L2 bound on ∂vφ from our bounds (4.12) on r and the bounds
just obtained for m, upon integration of equation (4.11). We then continue
as before.

8It is clear then that equation (3.1) is essential in this argument; indeed, if equation (3.1)
is violated, there is no reason to believe that Theorem 3.1 holds.
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Now for the details: Given any point (u∗, v∗) ∈ D+(X) \ {p}, the null
curves u = u∗ and v = v∗ both intersect X:

We proceed to obtain bounds for all quantities at (u∗, v∗), independent of
the choice of (u∗, v∗).

Integrating equation (2.2) along u = u∗, in view of the inequality ∂vr =
λ ≥ 0 on R ∪ A, we obtain

r(u∗, v∗) = r(u∗, vε) +
∫ v∗

vε

λ(u∗, v) dv ≥ r0,

whereas integrating equation (2.1) along v = v∗, we obtain

r(u∗, v∗) ≤ R.

Thus, the bounds (4.3) hold throughout D+(X) \ {p}.

We now proceed to show a priori bounds for the mass:

−R3C

3
− M ≤ m ≤ R3C

3
+ M (4.14)

throughout D+(X) \ {p}. Given (u∗, v∗), we first show the right inequal-
ity of equation (4.14). Since D+(X) \ {p} ⊂ R ∪ A, we have — applying
inequalities (3.1), (4.12) and ν < 0, to equation (4.10) — that

∂um ≤ r2V (φ)ν ≤ −r2Cν,

in this region. Integrating the above inequality along v = v∗, yields

m(u∗, v∗) ≤ m(uε, v
∗) +

∫ u∗

uε

∂um ≤ M +
R3C

3

as desired. To show the left inequality of equation (4.14), we proceed simi-
larly, i.e., from the inequality

∂vm ≥ r2V (φ)λ ≥ −r2Cλ

we obtain, integrating in v,

m(u∗, v∗) ≥ −R3C

3
− M.

We have obtained, thus, that equation (4.14) indeed holds throughout
D+(X) \ {p}.
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From this bound on m, it now follows by integrating equation (4.11), and
(4.10) that we have uniform a priori integral estimates:∣∣∣∣∣

∫ u∗

uε

1
2
(1 − µ)

(
ζ

ν

)2

ν(u, v∗) du +
∫ u∗

uε

V (φ)r2ν(u, v∗) du

∣∣∣∣∣
=

∣∣∣∣∣
∫ u∗

uε

1
2
(1 − µ)

(
ζ

ν

)2

ν du +
∫

V (φ)≥0
V (φ)r2ν du

+
∫

V (φ)<0
V (φ)r2ν du

∣∣∣∣∣ ≤ 2R3C

3
+ 2M

and thus ∫ u∗

uε

1
2
(1 − µ)

(
ζ

ν

)2

(−ν) du +
∫

V (φ)≥0
V (φ)r2(−ν) du

≤ 2R3C

3
+ 2M +

CR3

3
.

In view of the sign of ν, and inequality (4.12), we have that both terms on
the left are non-negative. We obtain in particular∫ u∗

uε

1
2
(1 − µ)

(
ζ

ν

)2

(−ν)(u, v∗) du ≤ R3C + 2M. (4.15)

In an entirely similar fashion, we can obtain∫ v∗

vε

1
2
κ−1θ2(u∗, v)dv ≤ R3C + 2M.

Integrating now equation (4.2), we obtain

|φ(u∗, v∗)| ≤ |φ(u∗, vε)| +

∣∣∣∣∣
∫ v∗

vε

θ

r
(u∗, v) dv

∣∣∣∣∣
≤ P +

√∫ v∗

vε

θ2κ−1dv

√∫ v∗

vε

1
r2 κ dv

≤ P + 2
√

R3C + M

√
r−2
0 Kε = Pb.

To estimate the first derivatives of r and φ, let us rewrite equations (1.5)
and (1.7) as:

∂vν = ν
(
2κ

(m

r2 − rV (φ)
))

, (4.16)

∂uθ = −ζλ

r
+ νκrV ′(φ), (4.17)

∂vζ = −θν

r
+ νκrV ′(φ), (4.18)
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and let us denote by C ′
b = sup|x|≤Pb

V ′(x) and Cb = sup|x|≤Pb
V (x). These

constants are finite in view of assumption (1.4).

Integrating equation (4.17), we obtain

|θ(u∗, v∗)| ≤ |θ(uε, v
∗)| +

∣∣∣∣∣
∫ u∗

uε

ζλ

r
(u, v∗) du

∣∣∣∣∣ +

∣∣∣∣∣
∫ u∗

uε

rνκV ′(φ) du

∣∣∣∣∣
≤ Θ +

∣∣∣∣∣
∫ u∗

uε

ζ

ν
κ

(1 − µ)ν
r

du

∣∣∣∣∣ + R2C ′
bK

≤ Θ +

√∫ u∗

uε

(
ζ

ν

)2

(−ν)(1 − µ) du

∫ u∗

uε

κ2 (−ν)(1 − µ)
r2 du

+ R2C ′
bK

≤ Θ + 2K
√

2R3C + 2M

√
r−1
0 +

(
R3C

3
+ M

)
r−2
0

+ R2C ′
bK = Θb.

Integrating equation (4.16) we obtain

| log −ν(u∗, v∗)| ≤ | log(−ν(u∗, vε))| +

∣∣∣∣∣
∫ v∗

vε

2κ
(m

r2 − rV (φ)
)

dv

∣∣∣∣∣
≤ sup{| log N |, | log ν0|}

+
(

2K

(
r−2
0

(
R3C

3
+ M

)
+ RCb

)
ε

)
= log Nb,

while integrating equation (4.16) in u, since ∂uλ = ∂vν, we obtain

λ(u∗, v∗) ≤ λ(uε, v
∗) + 2K

(
r−1
0

(
R3C

3
+ M

)
+ R2Cb

)

≤ Λ + 2K

(
r−1
0

(
R3C

3
+ M

)
+ R2Cb

)
.

Finally, integrating equation (4.18), we obtain that

|ζ(u∗, v∗)| ≤ Z +
∫ v∗

vε

|θν|
r

(u∗, v) dv +
∫ v∗

vε

∣∣rνκV ′(φ)(u∗, v) dv
∣∣

≤ Z + ΘbNbr
−1
0 ε + RC ′

bεKNb.

We have estimated uniformly |r−1|, |Ω−1|, |∂ur|, |∂vr|, |φ|, |∂uφ| and |∂vφ|
in D+(X) \ {p}. By equation (4.16), we have clearly also estimated |∂u∂vr|.
Thus, it remains only to estimate ∂u∂ur = ∂uν, ∂v∂vr = ∂vλ, ∂uΩ, ∂vΩ.
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These estimates, it turns out, are now quite straightforward. Differenti-
ating equation (4.16) in u we obtain,

∂v(∂uν) = ∂uν
(
2κ

(m

r2 − rV (φ)
))

+ ν
(
2∂uκ

(m

r2 − rV (φ)
))

+ ν

(
2κ

(
∂um

r2 − 2
m

r3 ν − νV (φ) − V ′(φ)ζ
))

.

In view now of the bounds derived previously and (4.8), integrating this
equation in v immediately yields a uniform bound

|∂uν| ≤ C̃.

We leave to the reader explicit calculation of the constant. One argues
similarly to obtain

|∂vλ| ≤ C̃.

On the other hand, integration of equation (1.6) in u and v, respectively,
in view of the bounds derived previously and the initial estimates (4.6) and
(4.7), gives uniform bounds

|∂vΩ| ≤ C̃,

and
|∂uΩ| ≤ C̃.

Again, the details are left to the reader.

Thus, we have shown that

N(D+(X) \ {p}) < ∞.

By Property 1.4, we have
p ∈ Q+.

By continuity of r and m, it follows that

p ∈ R ∪ A.

5 Remarks on the global structure of spacetime

From the above, one easily proves

Theorem 5.1. If Q+ \ J−(I) �= ∅, then there exists a null curve H+ ⊂
R ∪ A, such that

H+ = J−(I) ∩ Q+ \ (I−(I) ∪ I). (5.1)
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Proof. Consider the set H+ defined by equation (5.1). Let p ∈ Q+ denote
the future limit endpoint of H+ ∩ Q+. In view of Proposition 2.3, we clearly
have

H+ ∩ Q+ ⊂ R ∪ A.

If p ∈ I, then there is nothing to show. If p �∈ I:

then it follows easily that p is a first singularity. Clearly, p �∈ Γ, i.e. equa-
tion (3.2) does not hold. Since J−(p) ∩ Q+ ⊂ J−(I), it follows from Propo-
sition 2.3 that J−(p) ∩ Q+ ⊂ R ∪ A. Thus, equation (3.3) does not hold
either. We contradict the statement of Theorem 3.1. �

Note that in view of Corollary 2.4, a sufficient condition for the assump-
tion of Theorem 5.1 is A ∪ T �= ∅. Moreover, in view of Theorem 3.1, a
sufficient condition for T �= ∅ is that there exists a first singularity p such
that p �∈ Γ, in particular, this is the case if “a component of the singularity is
spacelike”. Thus, it is clear that the naked singularities, as described in [15],
can in fact never arise.

In general, we note that this argument says nothing about the behaviour
of r on the event horizon. In fact, a priori we could have r → ∞, i.e., H could
have a limit point on I itself. On the other hand, in the case of a Higgs
field with non-negative potential9 collapsing from spherically symmetric
asymptotically flat initial data, we can say more: Indeed, the results of this
paper clearly imply that such fields satisfy the assumptions of [11]. It then
follows from the results of [11] that if Q+ \ J−(I) �= ∅, then null infinity is
complete (see below), and moreover a Penrose inequality holds bounding
the area radius of the event horizon by twice the final Bondi mass, which is
in turn finite.

6 Weak cosmic censorship?

Weak cosmic censorship is the conjecture that for generic initial data,
I is complete.10 We have noted above that in the case V ≥ 0 and Q+ \
J−(I+) �= ∅, the completeness of I+ in the asymptotically flat setting

9In this case, the positive energy condition holds.
10See [3, 12] and compare with [14]. Completeness can be defined with respect to an

appropriate induced connection on I related to the conformal compactifications given by
the Penrose diagrams we are employing. For a definition of the notion of completeness
applicable in the general (not necessarily spherically symmetric) asymptotically flat case,
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follows from [11]. See also [10] for decay results in the case V = 0. We
remark, here, that in the case where it is only assumed that V ≥ −C, then
a priori, infinity may be either complete or incomplete, despite the fact that
H is regular. Understanding the global properties of these spacetimes, thus,
requires further examination.
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