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Abstract

This papers is concerned with multisymplectic formalisms which are
the frameworks for Hamiltonian theories for fields theory. Our main
purpose is to study the observable (n − 1)-forms which allows one to
construct observable functionals on the set of solutions of the Hamilton
equations by integration. We develop here two different points of view:
generalizing the law {p, q} = 1 or the law dF/dt = {H,F}. This
leads to two possible definitions; we explore the relationships and the
differences between these two concepts. We show that — in contrast
with the de Donder–Weyl theory — the two definitions coincides in the
Lepage–Dedecker theory.
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1 Introduction

Multisymplectic formalisms are the frameworks for finite dimensional for-
mulations of variational problems with several variables (or field theories for
physicists)analogous to the well-known Hamiltonian theory of point mechan-
ics. They are based on the following analogues of symplectic forms: given
a differential manifold M and n ∈ N a smooth (n + 1)-form Ω on M is
a multisymplectic form if and only if Ω is non degenerate (i.e., ∀m ∈ M,
∀ξ ∈ TmM, if ξ Ωm = 0, then ξ = 0) and closed. We call (M, Ω) a mul-

tisymplectic manifold. Then one can associates to a Lagrangian variational
problem a multisymplectic manifold (M, Ω) and a Hamiltonian function H
on M s.t. any solution of the variational problem is represented by a solution
of a system of generalized Hamilton equations. Geometrically this solution is
pictured by an n-dimensional submanifold Γ ⊂ M s.t.∀m ∈ M there exists
a n-multivector X tangent to M at m s.t. X Ω = (−1)ndH. We then call
Γ a Hamiltonian n-curve.

For example a variational problem on maps u : Rn −→ R can written as
the system1

∂u

∂xµ
=

∂H

∂pµ
(x, u, p) and

∑

µ

∂pµ

∂xµ
= −

∂H

∂u
(x, u, p). (1)

The corresponding multisymplectic form is Ω := dθ, where θ := eω + pµdu∧
ωµ (and ω := dx1 ∧ · · · ∧ dxn and ωµ := ∂µ ω). The simplest example of
such a theory was proposed by T. de Donder [5] and H. Weyl [30]. But it
is a particular case of a huge variety of multisymplectic theories which were
discovered by T. Lepage and can be described using a universal framework
built by P. Dedecker [6], [14], [16].

The present paper, which is a continuation of [14] and [16], is devoted
to the study of observable functionals defined on the set of all Hamiltonian
n-curves Γ. An important class of such functionals can be constructed by
choosing appropriate (n − 1)-forms F on the multisymplectic manifold M
and a hypersurface Σ of M which crosses transversally all Hamiltonian n-
curves (we shall call slices such hypersurfaces). Then

∫
Σ F : Γ 7−→

∫
Σ∩Γ F is

such a functional. One should however check that such functionals measure
physically relevant quantities. The philosophy adopted here is inspired from
quantum Physics: the formalism should provide us with rules for predicting

1An obvious difference with mechanics is that there is a dissymmetry between the
“position” variable u and the “momentum” variables pµ. Since (1) involves a divergence
of pµ one can anticipate that, when formulated in more geometrical terms, pµ will be
interpreted as the components of a (n − 1)-form, whereas u as a scalar function.
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the dynamical evolution of an observable. There are two ways to translate
this requirement mathematically: first the “infinitesimal evolution” dF (X)
of F along a n-multivector X tangent to a Hamiltonian n-curve should be
completely determined by the value of dH at the point — this leads to
the definition of what we call an observable (n − 1)-form (OF), the subject
of Section 3; alternatively, inspired by an analogy with classical particle
mechanics, one can assume that there exists a tangent vector field ξF such
that ξF Ω + dF = 0 everywhere — we call such forms algebraic observable

(n − 1)-forms (AOF). This point of view will be investigated in Section 4.
We believe that the notion of AOF was introduced by W. Tulczyjew in 1968
[28] (see also [9], [11], [23]). To our knowledge the notion of OF was never
considered before; it seems to us however that it is a more natural definition.
It is easy to check that all AOF are actually OF but the converse is in general
not true (see Section 4), as in particular in the de Donder–Weyl theory.

It is worth here insisting on the difference of points of view between
choosing OF’s or AOF’s. The definition of OF is in fact the right notion
if we are motivated by the interplay between the dynamics and observable
functionals. It allows us to define a pseudobracket {H, F} between the Hamil-
tonian function and an OF F which leads to a generalization of the famous
equation dA

dt
= {H, A} of the Hamiltonian mechanics. This is the relation

dF|Γ = {H, F}ω|Γ, (2)

where Γ is a Hamiltonian n-curve and ω is a given volume n-form on space-
time (see Proposition 3.1). In contrast the definition of AOF’s is the right
notion if we are motivated in defining an analogue of the Poisson bracket
between observable (n−1)-forms. This Poisson bracket, for two AOL F and
G is given by {F, G} := ξF ∧ ξG Ω, a definition reminiscent from classical
mechanics. This allows us to construct a Poisson bracket on functionals by
the rule {

∫
Σ F,

∫
Σ G} : Γ 7−→

∫
Σ∩Γ{F, G} (see Section 4).

Note that it is possible to generalize the notion of observable (p − 1)-
forms to the case where 0 ≤ p < n, as pointed out recently in [21], [22]. For
example the dissymmetry between variables u and pµ in system (1) suggests
that, if the pµ’s are actually the components of the observable (n − 1)-form
pµωµ, u should be an observable function. Another interesting example
is the Maxwell action, where the gauge potential 1-form Aµdxµ and the
Faraday (n−2)-form ⋆dA = ηµληνσ(∂µAν −∂νAµ)ωλσ are also “observable”,
as proposed in [21]. Note that again two kinds of approaches for defining
such observable forms are possible, as in the preceding paragraph: either
our starting point is to ensure consistency with the dynamics (this leads us
in Section 3 to the definition of OF’s) or we privilege the definition which
seems to be the more appropriate for having a notion of Poisson bracket
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(this leads us in Section 4 to the definition of AOF’s). If we were to follow
the second point of view we would be led to the following definition, in [21]:
a (p − 1)-form F would be observable (“Hamiltonian” in [21]) if and only if
there exists a (n−p+1)-multivector XF such that dF = (−1)n−p+1XF Ω.
This definition has the advantage that — thanks to a consistent definition of
Lie derivatives of forms with respect to multivectors due to W.M. Tulczyjew
[29] — a beautiful notion of graded Poisson bracket between such forms can
be defined, in an intrinsic way (see also [26], [7]). These notions were used
successfully by [4] in treating the gauge theory and specifically the Yang-Mills
case, and more generally by S. Hrabak for constructing a multisymplectic
version of the Marsden–Weinstein symplectic reduction [19] and of the BRST
operator [20]. Unfortunately such a definition of observable (p − 1)-form
would not have nice dynamical properties. For instance if M := ΛnT ⋆(Rn ×
R) with Ω = de∧ω +dpµ ∧dφ∧ωµ, then the 0-form p1 would be observable,
since dp1 = (−1)n ∂

∂φ
∧ ∂

∂x2 ∧ · · · ∧ ∂
∂xn Ω, but there would be no chance

for finding a law for the infinitesimal change of p1 along a curve inside a
Hamiltonian n-curve. By that we mean that there would be no hope for
having an analogue of the relation (2) (Corollary 3.2).

That is why we have tried to base ourself on the first point of view and
to choose a definition of observable (p− 1)-forms in order to guarantee good
dynamical properties, i.e., in the purpose of generalizing relation (2). A first
attempt was in [14] for variational problems concerning maps between mani-
folds. We propose here another definition working for all Lepagean theories,
i.e., more general. Our new definition works “collectively”, requiring to the
set of observable (p − 1)-forms for 0 ≤ p < n that their differentials form
a sub bundle stable by exterior multiplication and containing differentials
of observable (n − 1)-forms (copolarization, Section 3). This definition
actually merged out as the right notion from our efforts to generalize the
dynamical relation (2). This is the content of Theorem 3.1.

Once this is done we are left with the question of defining the bracket
between an observable (p−1)-form F and an observable (q−1)-form G. We
propose here a (partial) answer. In Section 4 we find necessary conditions
on such a bracket in order to be consistent with the standard bracket used
by physicists in quantum field theory. Recall that this standard bracket
is built through an infinite dimensional Hamiltonian description of fields
theory. This allows us to characterize what should be our correct bracket
in two cases: either p or q is equal to n, or p, q 6= n and p + q = n. The
second situation arises for example for the Faraday (n−2)-form and the gauge
potential 1-form in electromagnetism (see Example 4” in Section 4). However
we were unable to find a general definition: this is left as a partially open
problem. Regardless, note that this analysis shows that the right bracket
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(i.e., from the point of view adopted here) should have a definition which
differs from those proposed in [21] and also from our previous definition in
[14].

In Section 5 we analyze the special case where the multisymplectic man-
ifold is ΛnT ∗N : this example is important because it is the framework for
Lepage–Dedecker theory. Note that this theory has been the subject of our
companion paper [16]. We show that OF’s and AOF’s coincide on ΛnT ∗N .
This contrasts with the de Donder–Weyl theory in which — like all Lepage
theories obtained by a restriction on a submanifold of ΛnT ∗N — the set of
AOF’s is a strict subset of the set of OF’s. This singles out the Lepage–
Dedecker theory as being “complete”: we say that ΛnT ∗N is pataplectic for
quoting this property.

Another result in this paper is also motivated by the important exam-
ple of ΛnT ∗N , although it may have a larger range of application. In the
Lepage–Dedecker theory indeed the Hamiltonian function and the Hamilton
equations are invariant by deformations parallel to affine submanifolds called
pseudofibers by Dedecker [6]. This sounds like something similar to a gauge
invariance but the pseudofibers may intersect along singular sets, as already
remarked by Dedecker [6]. In [16] we revisit this picture and proposed an in-
trinsic definition of this distribution which gives rise to a generalization that
we call the generalized pseudofiber direction. We look here at the interplay
of this notion with observable (n − 1)-forms, namely showing in Paragraph
4.1.3 that — under some hypotheses — the resulting functional is invariant
by deformation along the generalized pseudofibers directions.

A last question concerns the bracket between observable functionals ob-
tained by integration of say (n − 1)-forms on two different slices. This is a
crucial question if one is concerned by the relativistic invariance of a sym-
plectic theory. Indeed the only way to build a relativistic invariant theory of
classical (or quantum) fields is to make sense of functionals (or observable
operators) as defined on the set of solution (each one being a complete his-
tory in space-time), independently of the choice of a time coordinate. This
requires at least that one should be able to define the bracket between say
the observable functionals

∫
Σ F and

∫
eΣ

G even when Σ and Σ̃ are different
(imagine they correspond to two space-like hypersurfaces). One possibility
for that is to assume that one of the two forms, say F is such that

∫
Σ F

depends uniquely on the homology class of Σ. Using Stoke’s theorem one
checks easily that such a condition is possible if {H, F} = 0. We call a dy-

namical observable (n− 1)-form any observable (n− 1)-form which satisfies
such a relation. All that leads us to the question of finding all such forms.
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This problem was investigated in [23] and discussed in [11] (in collabora-
tion with S. Coleman). It led to an interesting but deceptive answer: for a
linear variational problem (i.e., with a linear PDE, or for free fields) one can
find a rich collection of dynamical OF’s, roughly speaking in correspondence
with the set of solutions of the linear PDE. However as soon as the problem
becomes nonlinear (so for interacting fields) the set of dynamical OF’s is
much more reduced and corresponds to the symmetries of the problem (so
it is in general finite dimensional). We come back here to this question in
Section 6. We are looking at the example of a complex scalar field with one
symmetry, so that the only dynamical OF’s basically correspond to the total
charge of the field. We show there that by a kind of Noether’s procedure we
can enlarge the set of dynamical OF’s by including all smeared integrals of
the current density. This example illustrates the fact that gauge symmetry
helps strongly in constructing dynamical observable functionals. Another
possibility in order to enlarge the number of dynamical functionals is when
the nonlinear variational problem can be approximated by a linear one: this
gives rise to observable functionals defined by expansions [12], [13].

As a conclusion we wish to insist about one of the main motivation for
multisymplectic formalisms: it is to build a Hamiltonian theory which is
consistent with the principles of Relativity, i.e., being covariant. Recall for
instance that for all the multisymplectic formalisms which have been pro-
posed one does not need to use a privilege time coordinate. But among them
the Lepage–Dedecker is actually a quite natural framework in order to ex-
tend this democracy between space and time coordinates to the coordinates
on fiber manifolds (i.e., along the fields themselves). This is quite in the
spirit of the Kaluza–Klein theory and its modern avatars: 11-dimensional
supergravity, string theory and M-theory. Indeed in the Dedecker theory, in
contrast with the Donder–Weyl one, we do not need to split2 the variables
into the horizontal (i.e., corresponding to space-time coordinates) and ver-
tical (i.e., non horizontal) categories. Of course, as the reader can imagine,
if we do not fix a priori the space-time/fields splitting, many new difficulties
appear as for example: how to define forms which — in a non covariant way
of thinking — should be of the type dxµ, where the xµ’s are space-time co-
ordinates, without a space-time background3 ? One possible way is by using

2Such a splitting has several drawbacks, for example it causes difficulties in order to
define the stress-energy tensor.

3Another question which is probably related is: how to define a “slice”, which plays the
role of a constant time hypersurface without referring to a given space-time background ?
We propose in [16] a definition of such a slice which, roughly speaking, requires a slice to be
transversal to all Hamiltonian n-curves, so that the dynamics only (i.e., the Hamiltonian
function) should determine what are the slices. We give in [16] a characterization of these
slices in the case where the multisymplectic manifold is ΛnT ∗N .
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the (at first glance unpleasant) definition of copolarization given in Section
3: the idea is that forms of the “type dxµ” are defined collectively and each
relatively to the other ones. We believe that this notion of copolarization
corresponds somehow to the philosophy of general relativity: the observable
quantities again are not measured directly, they are compared each to the
other ones.

In exactly the same spirit we remark that the dynamical law (2) can be
expressed in a slightly more general form which is: if Γ is a Hamiltonian
n-curve then

{H, F}dG|Γ = {H, G}dF|Γ, (3)

for all OF’s F and G (see Proposition 3.1 and Theorem 3.1). Mathematically
this is not much more difficult than (2). However (3) is more satisfactory
from the point of view of relativity: no volume form ω is singled out, the
dynamics just prescribe how to compare two observations.

1.1 Notations

The Kronecker symbol δµ
ν is equal to 1 if µ = ν and equal to 0 otherwise.

We shall also set

δ
µ1···µp
ν1···νp :=

∣∣∣∣∣∣∣

δµ1
ν1

. . . δµ1
νp

...
...

δ
µp
ν1

. . . δ
µp
νp

∣∣∣∣∣∣∣
.

In most examples, ηµν is a constant metric tensor on Rn (which may be
Euclidean or Minkowskian). The metric on his dual space his ηµν . Also, ω
will often denote a volume form on some space-time: in local coordinates
ω = dx1∧· · ·∧dxn and we will use several times the notation ωµ := ∂

∂xµ ω,

ωµν := ∂
∂xµ ∧ ∂

∂xν ω, etc. Partial derivatives ∂
∂xµ and ∂

∂pα1···αn
will be

sometime abbreviated by ∂µ and ∂α1···αn respectively.

When an index or a symbol is omitted in the middle of a sequence of
indices or symbols, we denote this omission by .̂ For example a

i1···bip···in
:=

ai1···ip−1ip+1···in , dxα1 ∧· · ·∧ d̂xαµ ∧· · ·∧dxαn := dxα1 ∧· · ·∧dxαµ−1 ∧dxαµ+1 ∧
· · · ∧ dxαn .

If N is a manifold and FN a fiber bundle over N , we denote by Γ(N ,FN)
the set of smooth sections of FN . Lastly we use the notations concerning
the exterior algebra of multivectors and differential forms, following W.M.
Tulczyjew [29]. If N is a differential N -dimensional manifold and 0 ≤ k ≤
N , ΛkTN is the bundle over N of k-multivectors (k-vectors in short) and
ΛkT ⋆N is the bundle of differential forms of degree k (k-forms in short).
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Setting ΛTN := ⊕N
k=0Λ

kTN and ΛT ⋆N := ⊕N
k=0Λ

kT ⋆N , there exists a
unique duality evaluation map between ΛTN and ΛT ⋆N such that for every
decomposable k-vector field X, i.e., of the form X = X1 ∧ · · · ∧ Xk, and
for every l-form µ, then 〈X, µ〉 = µ(X1, . . . , Xk) if k = l and = 0 otherwise.
Then interior products and are operations defined as follows. If k ≤ l,
the product : Γ(N , ΛkTN )× Γ(N , ΛlT ⋆N ) −→ Γ(N , Λl−kT ⋆N ) is given
by

〈Y, X µ〉 = 〈X ∧ Y, µ〉, ∀(l − k)-vector Y.

And if k ≥ l, the product : Γ(N , Λk T N ) × Γ (N , Λl T ⋆ N ) −→
Γ(N , Λk−lTN ) is given by

〈X µ, ν〉 = 〈X, µ ∧ ν〉, ∀(k − l)-form ν.

2 Basic facts about multisymplectic manifolds

We recall here the general framework introduced in [16].

2.1 Multisymplectic manifolds

Definition 2.1. Let M be a differential manifold. Let n ∈ N be some
positive integer. A smooth (n + 1)-form Ω on M is a multisymplectic
form if and only if

(i) Ω is non degenerate, i.e., ∀m ∈ M, ∀ξ ∈ TmM, if ξ Ωm = 0, then
ξ = 0

(ii) Ω is closed, i.e., dΩ = 0.

Any manifold M equipped with a multisymplectic form Ω will be called a
multisymplectic manifold.

In the following, N denotes the dimension of M. For any m ∈ M we
define the set

Dn
mM := {X1 ∧ · · · ∧ Xn ∈ ΛnTmM/X1, . . . , Xn ∈ TmM},

of decomposable n-vectors and denote by DnM the associated bundle.
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Definition 2.2. Let H be a smooth real valued function defined over a mul-
tisymplectic manifold (M, Ω). A Hamiltonian n-curve Γ is a n-dimensional
submanifold of M such that for any m ∈ Γ, there exists a n-vector X in
ΛnTmΓ which satisfies

X Ω = (−1)ndH.

We denote by EH the set of all such Hamiltonian n-curves. We also write
for all m ∈ M, [X]Hm := {X ∈ Dn

mM/X Ω = (−1)ndHm}.

Example 1 (The Lepage–Dedecker multisymplectic manifold
(ΛnT ∗N , Ω)). It was studied in [16]. Here Ω := dθ where θ is the generalized
Poincaré–Cartan 1-form defined by θ(X1, . . . Xn) = 〈Π∗X1, . . . ,Π

∗Xn, p〉,
∀X1, . . . , Xn ∈ T(q,p)(Λ

nT ∗N ) and Π : ΛnT ∗N −→ N is the canonical pro-
jection. If we use local coordinates (qα)1≤α≤n+k on N , then a basis of
ΛnT ∗

q N is the family (dqα1 ∧ · · · ∧ dqαn)1≤α1<···<αn≤n+k and we denote by
pα1···αn the coordinates on ΛnT ∗

q N in this basis. Then Ω writes

Ω :=
∑

1≤α1<···<αn≤n+k

dpα1···αn ∧ dqα1 ∧ · · · ∧ dqαn . (4)

If the Hamiltonian function H is associated to a Lagrangian variational prob-
lem on n-dimensional submanifolds of N by means of a Legendre correspon-
dence (see [16], [6]) we then say that H is a Legendre image Hamiltonian
function.

A particular case is when N = X × Y where X and Y are manifolds
of dimension n and k respectively. This situation occurs when we look
at variational problems on maps u : X −→ Y. We denote by qµ = xµ,
if 1 ≤ µ ≤ n, coordinates on X and by qn+i = yi, if 1 ≤ i ≤ k, co-
ordinates on Y. We also denote by e := p1···n, pµ

i := p1···(µ−1)i(µ+1)···n,
pµ1µ2

i1i2
:= p1···(µ1−1)i1(µ1+1)···(µ2−1)i2(µ2+1)···n, etc., so that

Ω = de ∧ ω +
n∑

j=1

∑

µ1<···<µj

∑

i1<···<ij

dp
µ1···µj

i1···ij
∧ ω

i1···ij
µ1···µj

,

where, for 1 ≤ p ≤ n,

ω := dx1 ∧ · · · ∧ dxn

ω
i1···ip
µ1···µp := dyi1 ∧ · · · ∧ dyip ∧

(
∂

∂xµ1
∧ · · · ∧ ∂

∂xµp ω
)
.

Note that if H is the Legendre image of a Lagrangian action of the form∫
X ℓ(x, u(x), du(x))ω and if we denote by p∗ all coordinates p

µ1···µj

i1···ij
for j ≥ 1,

we can always write H(q, e, p∗) = e+H(q, p∗) (see for instance [6], [14], [16]).

Other examples are provided by considering the restriction of Ω on any
smooth submanifold of ΛnT ∗N , like for instance the following.
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Example 2 (The de Donder–Weyl manifold MdDW
q ). It is the sub-

manifold of ΛnT ∗
q N defined by the constraints p

µ1···µj

i1···ij
= 0, for all j ≥ 2. We

thus have
ΩdDW = de ∧ ω +

∑

µ

∑

i

dpµ
i ∧ ωi

µ.

Example 3 (The Palatini formulation of pure gravity in 4-dimen-
sional space-time, see also [27]). We describe here the Riemannian
(non Minkowskian) version of it. We consider R4 equipped with its stan-
dard metric ηIJ and with the standard volume 4-form ǫIJKL. Let p ≃{

(a, v) ≃

(
a v
0 1

)
/a ∈ so(4), v ∈ R4

}
≃ so(4) ⋉ R4 be the Lie algebra of

the Poincaré group acting on R4. Now let X be a 4-dimensional manifold,
the “space-time”, and consider M := p ⊗ T ∗X , the fiber bundle over X of
1-forms with coefficients in p. We denote by (x, e, A) a point in M, where
x ∈ X , e ∈ R4 ⊗ T ∗

x and A ∈ so(4) ⊗ T ∗
x . We shall work is the open subset

of M where e is rank 4 (so that the 4 components of e define a coframe on
TxX ). First using the canonical projection Π : M −→ X one can define a
p-valued 1-form θp on M (similar to the Poincaré–Cartan 1-form) by

∀(x, e, A) ∈ M,∀X ∈ T(x,e,A)X , θp

(x,e,A)(X) := (e(Π∗X), A(Π∗X)).

Denoting (for 1 ≤ I, J ≤ 4) by T I : p −→ R, (a, v) 7−→ vI and by RI
J : p −→

R, (a, v) 7−→ aI
J , the coordinate mappings we can define a 4-form on M by

θPalatini :=
1

4!
ǫIJKLηLN (T I ◦ θp) ∧ (T J ◦ θp)∧

(
RK

N ◦ dθp + (RK
M ◦ θp) ∧ (RM

N ◦ θp)
)
.

Now consider any section of M over X . Write it as Γ := {(x, ex, Ax)/x ∈ X}
where now e and A are 1-forms on x (and not coordinates anymore). Then

∫

Γ
θPalatini =

∫

X

1

4!
ǫIJKLηLNeI ∧ eJ ∧ FK

L ,

where F I
J := dAI

J + AI
K ∧ AK

J is the curvature of the connection 1-form A.
We recognize the Palatini action for pure gravity in 4 dimensions: this func-
tional has the property that a critical point of it provides us with a solution of
Einstein gravity equation Rµν −

1
2gµν = 0 by setting gµν := ηIJeI

µeJ
ν . By fol-

lowing the same steps as in the proof of Theorem 2.2 in [16] one proves that a
4-dimensional submanifold Γ which is a critical point of this action, satisfies
the Hamilton equation X ΩPalatini = 0, where ΩPalatini := dθPalatini. Thus
(M, ΩPalatini) is a multisymplectic manifold naturally associated to gravi-
tation. In the above construction, by replacing A and F by their self-dual
parts A+ and F+ (and so reducing the gauge group to SO(3)) one obtains
the Ashtekar action.
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Remark also that a similar construction can be done for the Chern–Simon
action in dimension 3.

Definition 2.3. A symplectomorphism φ of a multisymplectic manifold
(M, Ω) is a smooth diffeomorphism φ : M −→ M such that φ∗Ω = Ω. An
infinitesimal symplectomorphism is a vector field ξ ∈ Γ(M, TM) such
that LξΩ = 0. We denote by sp0M the set of infinitesimal symplectomor-
phisms of (M, Ω).

Note that, since Ω is closed, LξΩ = d(ξ Ω), so that a vector field
ξ belongs to sp0M if and only if d(ξ Ω) = 0. Hence if the homology
group Hn(M) is trivial there exists an (n − 1)-form F on M such that
dF + ξ Ω = 0: such an F will be called an algebraic observable (n − 1)-
form (see Section 3.3).

2.2 Pseudofibers

It may happen that the dynamical structure encoded by the data of a mul-
tisymplectic manifold (M, Ω) and a Hamiltonian function H is invariant
by deformations along some particular submanifolds called pseudofibers.
This situation is similar to gauge theory where two fields which are equiva-
lent through a gauge transformation are supposed to correspond to the same
physical state. A slight difference however lies in the fact that pseudofibers
are not fibers in general and can intersect singularly. This arises for instance
when M = ΛnT ∗N and H is a Legendre image Hamiltonian function (see
[6], [16]). In the latter situation the singular intersections of pseudofibers
picture geometrically the constraints caused by gauge invariance. All that
is the origin of the following definitions.

Definition 2.4. For all Hamiltonian function H : M −→ R and for all
m ∈ M we define the generalized pseudofiber direction to be

LH
m := {ξ ∈ TmM/∀X ∈ [X]Hm,∀δX ∈ TXDn

mM, (ξ Ω) (δX) = 0}

=
(
T[X]Hm

Dn
mM Ω

)⊥
. (5)

And we write LH := ∪m∈MLH
m ⊂ TM for the associated bundle.

Recall that [X]Hm := {X ∈ Dn
mM/X Ω = (−1)ndHm}, where Dn

mM :=
{X1∧· · ·∧Xn ∈ ΛnTmM/X1, . . . , Xn ∈ TmM}. Note that in the case where
M = ΛnT ∗N and H is the Legendre image Hamiltonian (see Section 2.1)
then all generalized pseudofibers directions LH

m are “vertical” i.e., LH
m ⊂

KerdΠm ≃ Λn
Π(m)T

∗N , where Π : ΛnT ∗N −→ N .
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Definition 2.5. We say that H is pataplectic invariant if

• ∀ξ ∈ LH
m, dHm(ξ) = 0

• for all Hamiltonian n-curve Γ ∈ EH, for all vector field ξ which is a
smooth section of LH, then, for s ∈ R sufficiently small, Γs := esξ(Γ)
is also a Hamiltonian n-curve.

We proved in [16] that, if M is an open subset of ΛnT ∗N , any function
on M which is a Legendre image Hamiltonian is pataplectic invariant.

2.3 Functionals defined by means of integrations of forms

An example of functional on EH is obtained by choosing a codimension r
submanifold Σ of M (for 1 ≤ r ≤ n) and a (p − 1)-form F on M with
r = n − p + 1: it leads to the definition of

∫

Σ
F : EH −→ R

Γ 7−→

∫

Σ∩Γ
F

But in order for this definition to be meaningful one should first make sure
that the intersection Σ∩Γ is a (p−1)-dimensional submanifold. This is true
if Σ fulfills the following definition. (See also [16].)

Definition 2.6. Let H be a smooth real valued function defined over a
multisymplectic manifold (M, Ω). A slice of codimension r is a cooriented
submanifold Σ of M of codimension r such that for any Γ ∈ EH, Σ is
transverse to Γ. By cooriented we mean that for each m ∈ Σ, the quotient
space TmM/TmΣ is oriented continuously in function of m.

If we represent such a submanifold as a level set of a given function into
Rr then it suffices that the restriction of such a function on any Hamiltonian
n-curve have no critical point. We then say that the function is r-regular.
In [16] we give a characterization of r-regular functions in ΛnT ∗N .

A second question concerns then the choice of F : what are the condi-
tions on F for

∫
Σ F to be a physically observable functional? Clearly the

answer should agree with the experience of physicists, i.e., be based in the
knowledge of all functionals which are physically meaningful. Our aim is
here to understand which mathematical properties would characterize all
such functionals. In the following we explore this question, by following two
possible points of view.
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3 The “dynamical” point of view

3.1 Observable (n − 1)-forms

We define here the concept of observable (n − 1)-forms F . The idea is that
given a point m ∈ M and a Hamiltonian function H, if X(m) ∈ [X]Hm, then
〈X(m), dFm〉 should not depend on the choice of X(m) but only on dHm.

3.1.1 Definitions

Definition 3.1. Let m ∈ M and a ∈ ΛnT ⋆
mM; a is called a copolar n-form

if and only if there exists an open dense subset Oa
mM ⊂ Dn

mM such that

∀X, X̃ ∈ Oa
mM, X Ω = X̃ Ω =⇒ a(X) = a(X̃). (6)

We denote by Pn
mT ⋆M the set of copolar n-forms at m. A (n−1)-form F on

M is called observable if and only if for every m ∈ M, dFm is copolar i.e.,
dFm ∈ Pn

mT ⋆M. We denote by Pn−1M the set of observable (n − 1)-forms
on M.

Remark. For any m ∈ M, PnT ⋆
mM is a vector space (in particular if

a, b ∈ PnT ⋆
mM and λ, µ ∈ R then λa + νb ∈ PnT ⋆

mM and we can choose
Oλa+νb

m M = Oa
mM ∩ Ob

mM) and so it is possible to construct a basis
(a1, . . . , ar) for this space. Hence for any a ∈ PnT ⋆

mM we can write a =
t1a1 + · · · + trar which implies that we can choose Oa

mM = ∩r
s=1O

as
mM.

So having chosen such a basis (a1, . . . , ar) we will denote by OmM :=
∩r

s=1O
as
mM (it is still open and dense in Dn

mM) and in the following we
will replace Oa

mM by OmM in the above definition. We will also denote by
OM the associated bundle.

Lemma 3.1. Let φ : M −→ M be a symplectomorphism and F ∈ Pn−1M.

Then φ∗F ∈ Pn−1M. As a corollary, if ξ ∈ sp0M (i.e., is an infinitesimal

symplectomorphism) and F ∈ Pn−1M, then LξF ∈ Pn−1M.

Proof. For any n-vector fields X and X̃, which are sections of OM , and for
any F ∈ Pn−1M,

X Ω = X̃ Ω ⇐⇒ X φ∗Ω = X̃ φ∗Ω ⇐⇒ (φ∗X) Ω = (φ∗X̃) Ω

implies

dF (φ∗X) = dF (φ∗X̃) ⇐⇒ φ∗dF (X) = φ∗dF (X̃)

⇐⇒ d(φ∗F )(X) = d(φ∗F )(X̃).
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Hence φ∗F ∈ Pn−1M.

Assume that a given Hamiltonian function H on M is such that [X]Hm ⊂
OmM. Then we shall say that H is admissible. If H is so, we define the
pseudobracket for all observable (n − 1)-form F ∈ Pn−1M

{H, F} := X dF = dF (X),

where X is any n-vector in [X]Hm. Remark that, using the same notations
as in Example 1, if M = ΛnT ∗(X × Y) and H(x, u, e, p∗) = e + H(x, u, p∗),
then {H, x1dx2 ∧ · · · ∧ dxn} = 1.

3.1.2 Dynamics equation using pseudobrackets

Our purpose here is to generalize the classical well-known relation dF/dt =
{H, F} of the classical mechanics.

Proposition 3.1. Let H be a smooth admissible Hamiltonian on M and F ,

G two observable (n − 1)-forms with H. Then ∀Γ ∈ EH,

{H, F}dG|Γ = {H, G}dF|Γ.

Proof. This result is equivalent to proving that, if X ∈ Dn
mM is different of

0 and is tangent to Γ at m, then

{H, F}dG(X) = {H, G}dF (X). (7)

Note that by rescaling, we can assume w.l.g. that X Ω = (−1)ndH, i.e.,
X ∈ [X]Hm. But then (7) is equivalent to the obvious relation {H, F}{H, G}
= {H, G}{H, F}.

This result immediately implies the following result.

Corollary 3.1. Let H be a smooth admissible Hamiltonian function on M.

Assume that F and G are observable (n−1)-forms with H and that {H, G} =
1 (see the remark at the end of Paragraph 3.1.1). Then denoting ω := dG
we have:

∀Γ ∈ EH, {H, F}ω|Γ = dF|Γ.
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3.2 Observable (p − 1)-forms

We now introduce observable (p − 1)-forms, for 1 ≤ p < n. The simplest
situation where such forms play some role occurs when studying variational
problems on maps u : X −→ Y: any coordinate function yi on Y is an
observable functional, which at least in a classical context can be measured.
This observable 0-form can be considered as canonically conjugate with the
momentum observable form ∂/∂yi θ. A more complex situation is given by
Maxwell equations: as proposed for the first time by I. Kanatchikov in [21]
(see also [14]), the electromagnetic gauge potential and the Faraday fields
can be modelled in an elegant way by observable 1-forms and (n − 2)-forms
respectively.

Example 4 (Maxwell equations on Minkowski space-time). Assume
here for simplicity that X is the four-dimensional Minkowski space. Then
the gauge field is a 1-form A(x) = Aµ(x)dxµ defined over X , i.e., a section of
the bundle T ⋆X . The action functional in the presence of a (quadrivector)
current field j(x) = jµ(x)∂/∂xµ is

∫
X l(x, A, dA)ω, where ω = dx0 ∧ dx1 ∧

dx2 ∧ dx3 and

l(x, A, dA) = −
1

4
FµνF

µν − jµ(x)Aµ,

where Fµν := ∂µAν −∂νAµ and Fµν := ηµληνσFλσ (see [14]). The associated
multisymplectic manifold is then M := Λ4T ⋆(T ⋆X ) with the multisymplectic
form

Ω = de ∧ ω +
∑

µ,ν

dpAµν ∧ daµ ∧ ων + · · ·

For simplicity we restrict ourself to the de Donder–Weyl submanifold (where
all momentum coordinates excepted e and pAµν are set to 0). This implies
automatically the further constraints pAµν + pAνµ = 0, because the Leg-
endre correspondence degenerates when restricted to the de Donder–Weyl
submanifold. We shall hence denote

pµν := pAµν = −pAνµ.

Let us call MMax the resulting multisymplectic manifold. Then the multi-
symplectic form can be written as

Ω = de ∧ ω + dπ ∧ da where a := aµdxµ and π := −
1

2

∑

µ,ν

pµνωµν .

(We also have dπ ∧ da =
∑

µ,ν dpµν ∧ daµ ∧ ων .) Note that here aµ is not
anymore a function of x but a fiber coordinate. The Hamiltonian is then

H(x, a, p) = e −
1

4
ηµληνσpµνpλσ + jµ(x)aµ.
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3.2.1 Copolarization and polarization

The dynamical properties of (p − 1)-forms are more subtle for 1 ≤ p < n
than for p = n, since if F is such a (p − 1)-form then there is no way
a priori to “evaluate” dF along a Hamiltonian n-vector X and a fortiori
no way to make sense that “dF|X should not depend on X but on dHm”.
This situation is in some sense connected with the problem of measuring a
distance in relativity: we actually never measure the distance between two
points (finitely or infinitely close) but we do compare observable quantities
(distance, time) between themselves. This analogy suggests us the conclusion
that we should define observable (p−1)-forms collectively. The idea is naively
that if for instance F1, . . . , Fn are 0-forms, then they are observable forms
if dF1 ∧ · · · ∧ dFn can be “evaluated” in the sense that dF1 ∧ · · · ∧ dFn(X)
does not depend on the choice of the Hamiltonian n-vector X but on dH.
So it just means that dF1 ∧ · · · ∧ dFn is copolar. Henceforth, this idea will
be assumed in the following definitions.

Definition 3.2. Let M be a multisymplectic manifold. A copolarization on
M is a smooth vector subbundle denoted by P ∗T ⋆M of Λ∗T ⋆M satisfying
the following properties

• P ∗T ⋆M := ⊕N
j=1P

jT ⋆M, where P jT ⋆M is a subbundle of ΛjT ⋆M

• for each m ∈ M, (P ∗T ⋆
mM, +,∧) is a subalgebra of (Λ∗T ⋆

mM, +,∧)

• ∀m ∈ M and ∀a ∈ ΛnT ⋆
mM, a ∈ PnT ⋆

mM if and only if ∀X, X̃ ∈ Om,
X Ω = X̃ Ω =⇒ a(X) = a(X̃).

Definition 3.3. Let M be a multisymplectic manifold with a copolarization
P ∗T ⋆M. Then for 1 ≤ p ≤ n, the set of observable (p− 1)-forms associated
to P ∗T ⋆M is the set of smooth (p−1)-forms F (sections of Λp−1T ⋆M) such
that for any m ∈ M, dFm ∈ P pT ⋆

mM. This set is denoted by Pp−1M. We
shall write P∗M := ⊕n

p=1P
p−1M.

Definition 3.4. Let M be a multisymplectic manifold with a copolarization
P ∗T ⋆M. For each m ∈ M and 1 ≤ p ≤ n, consider the equivalence relation
in ΛpTmM defined by X ∼ X̃ if and only if 〈X, a〉 = 〈X̃, a〉, ∀a ∈ P pT ⋆

mM.
Then the quotient set P pTmM := ΛpTmM/ ∼ is called a polarization of
M. If X ∈ ΛpTmM, we denote by [X] ∈ P pTmM its equivalence class.

Equivalently a polarization can be defined as being the dual bundle of
the copolarization P ∗T ⋆M.
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3.2.2 Examples of copolarization

On an open subset M of ΛnT ∗N we can construct the following copo-
larization, that we will call standard: for each (q, p) ∈ ΛnT ∗N and for
1 ≤ p ≤ n − 1 we take P p

(q,p)T
∗M to be the vector space spanned by

(dqα1 ∧ · · · ∧ dqαp)1≤α1<···<αp≤n+k; and Pn
(q,p)T

∗M = {ξ Ω/ξ ∈ TmM}.
It means that Pn

(q,p)T
∗M contains all dqα1 ∧ · · · ∧ dqαn ’s plus forms of the

type ξ Ω, for ξ ∈ TqN (which corresponds to differentials of momentum
and energy-momentum observable (n − 1)-forms).

Another situation is the following.

Example 4′ (Maxwell equations). We continue Example 4 given at
the beginning of this Section. In MMax with the multisymplectic form Ω =
de ∧ ω + dπ ∧ da the more natural choice of copolarization is:

• P 1
(q,p)T

∗MMax =
⊕

0≤µ≤3

Rdxµ.

• P 2
(q,p) T ∗MMax =

⊕

0≤µ1<µ2≤3

R dxµ1 ∧ dxµ2 ⊕ R da, where da :=

∑3
µ=0 daµ ∧ dxµ.

• P 3
(q,p)T

∗MMax =
⊕

0≤µ1<µ2<µ3≤3

Rdxµ1 ∧dxµ2 ∧dxµ3 ⊕
⊕

0≤µ≤3

Rdxµ∧da⊕

Rdπ.

• P 4
(q,p)T

∗MMax = Rω⊕
⊕

0≤µ1<µ2≤3

Rdxµ1 ∧dxµ2 ∧da⊕
⊕

0≤µ≤3

Rdxµ∧dπ⊕

⊕

0≤µ≤3

R
∂

∂xµ
θ.

It is worth stressing out the fact that we did not include the differential of
the coordinates aµ of a in P 1

(q,p)T
∗MMax. There are strong physical reasons

for that since the gauge potential is not observable. But another reason is
that if we had included the daµ’s in P 1

(q,p)T
∗MMax, we would not have a

copolarization since daµ ∧ dπ does not satisfy the condition ∀X, X̃ ∈ Om,

[X] = [X̃] ⇒ b(X) = b(X̃) required. This confirms the agreement of the
definition of copolarization with physical purposes.
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3.2.3 Results on the dynamics

We wish here to generalize Proposition 3.1 to observable (p − 1)-forms for
1 ≤ p < n. This result actually justifies the relevance of Definitions 3.2,
3.3 and 3.4. Throughout this section we assume that (M, Ω) is equipped
with a copolarization. We start with some technical results. If H is a
Hamiltonian function, we recall that we denote by [X]H the class modulo ∼
of decomposable n-vector fields X such that X Ω = (−1)ndH.

Lemma 3.2. Let X and X̃ be two decomposable n-vectors in Dn
mM. If

X ∼ X̃ then ∀1 ≤ p ≤ n, ∀a ∈ P pT ⋆
mM,

X a ∼ X̃ a. (8)

Hence we can define [X] a := [X a] ∈ Pn−pTM.

Proof. This result amounts to the property that for all 0 ≤ p ≤ n, ∀a ∈
P pT ⋆

mM, ∀b ∈ Pn−pT ⋆
mM,

〈X a, b〉 = 〈X̃ a, b〉 ⇐⇒ a ∧ b(X) = a ∧ b(X̃),

which is true because of [X] = [X̃] and a ∧ b ∈ PnT ⋆
mM.

As a consequence of Lemma 3.2, we have the following definition.

Definition 3.5. Let F ∈ Pp−1M and H a Hamiltonian function. The
pseudobracket {H, F} is the section of Pn−pTM defined by

{H, F} := (−1)(n−p)p[X]H dF.

In case p = n, {H, F} is just the scalar function [X]H dF = 〈[X]H, dF 〉.

We now prove the basic result relating this notion to the dynamics.

Theorem 3.1. Let (M, Ω) be a multisymplectic manifold. Assume that

1 ≤ p ≤ n, 1 ≤ q ≤ n and n ≤ p+q. Let F ∈ Pp−1M and G ∈ Pq−1M. Let

Σ be a slice of codimension 2n − p − q and Γ a Hamiltonian n-curve. Then

for any (p + q − n)-vector Y tangent to Σ ∩ Γ, we have

{H, F} dG(Y ) = (−1)(n−p)(n−q){H, G} dF (Y ), (9)

which is equivalent to

{H, F} dG|Γ = (−1)(n−p)(n−q){H, G} dF|Γ.
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Proof. Proving (9) is equivalent to proving

〈{H, F} ∧ Y, dG〉 = (−1)(n−p)(n−q)〈{H, G} ∧ Y, dF 〉. (10)

We thus need to compute first {H, F}∧Y . For that purpose, we use Defini-
tion 3.5: {H, F} = (−1)(n−p)(n−q)[X]H dF . Of course it will be more
suitable to use the representant of [X]H which is tangent to Γ: we let
(X1, . . . , Xn) to be a basis of TmΓ such that

X1 ∧ · · · ∧ Xn =: X ∈ [X]H.

Then we can write

Y =
∑

ν1<···<νp+q−n

T ν1···νp+q−nXν1
∧ · · · ∧ Xνp+q−n .

Now

{H, F} = (−1)(n−p)p[X]H dF

= (−1)(n−p)p
∑

µ1<···<µp
µp+1<···<µn

δµ1···µn

1···n dF (Xµ1
, . . . , Xµp)Xµp+1

∧ · · · ∧ Xµn ,

so that

{H, F} ∧ Y = (−1)(n−p)(p+q−n)Y ∧ {H, F}

= (−1)(n−p)(n−q)
∑

ν1<···<νp+q−n

∑

µ1<···<µp
µp+1<···<µn

T ν1···νp+q−nδµ1···µn

1···n

dF (Xµ1
, . . . , Xµp)Xν1

∧ · · · ∧ Xνp+q−n ∧ Xµp+1
∧ · · · ∧ Xµn .

Now Xν1
∧ · · · ∧ Xνp+q−n ∧ Xµp+1

∧ · · · ∧ Xµn 6= 0 if and only if it is
possible to complete the family {Xν1

, . . . , Xνp+q−n} by {Xλ1
, . . . , Xλn−q

} in
such a way that {Xν1

, . . . , Xνp+q−n , Xλ1
, . . . , Xλn−q

} = {Xµ1
, . . . , Xµp} and

δ
ν1···νp+q−nλ1···λn−q
µ1···µp 6= 0. Hence

{H, F} ∧ Y

= (−1)(n−p)(n−q)
∑

µ1<···<µp
µp+1<···<µn

∑

ν1<···<νp+q−n

λ1<···<λn−q

δ
ν1···νp+q−nλ1···λn−q
µ1···µp T ν1···νp+q−nδµ1..µn

1···n

dF (Xν1
, . . . , Xνp+q−n , Xλ1

, . . . , Xλn−q
)Xν1

∧ · · ·∧Xνp+q−n ∧Xµp+1
∧ · · ·∧Xµn
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= (−1)(n−p)(n−q)
∑

µ1<···<µp
µp+1<···<µn

∑

ν1<···<νp+q−n

λ1<···<λn−q

δ
ν1···νp+q−nλ1···λn−qµp+1···µn

1···n T ν1···νp+q−n

· (Xν1
∧ · · · ∧ Xνp+q−n dF )(Xλ1

, . . . , Xλn−q
)

· Xν1
∧ · · · ∧ Xνp+q−n ∧ Xµp+1

∧ · · · ∧ Xµn

= (−1)(n−p)(n−q)(−1)(n−q)(p+q−n)X (Y dF )

= (−1)(n−q)qX (Y dF ).

We conclude that

〈{H, F} ∧ Y, dG〉 = (−1)(n−q)q〈X, (Y dF ) ∧ dG〉
= 〈X, dG ∧ (Y dF )〉
= 〈X dG, Y dF 〉

= (−1)(n−q)q〈{H, G}, Y dF 〉

= (−1)(n−q)(n−p)〈{H, G} ∧ Y, dF 〉.

So the result follows.

Corollary 3.2. Assume the same hypothesis as in Theorem 3.1, then we

have the following relations (by decreasing the generality)

(i) If F ∈ Pp−1M and G ∈ Pn−1M, then

{H, F} dG|Γ = {H, G}dF|Γ.

(ii) If F ∈ Pp−1M and if G ∈ Pn−1M is such that {H, G} = 1, then

denoting by ω := dG (a “volume form”)

{H, F} ω|Γ = dF|Γ.

(iii) If F, G ∈ Pn−1M, we recover proposition 1.

Proof. It is a straightforward application of Theorem 3.1.

Example 5 (Consider a variational problem on maps u : X −→ Y as
in Example 2, Section 2.2.1). Take F = yi (a 0-form) and G = x1dx2 ∧
· · · ∧ dxn, in such a way that dG = ω, the volume form. Then we are in case
(ii) of the corollary: we can compute that {H, yi} ω =

∑
µ ∂H/∂pµ

i dxµ and

{H, G}dyi = dyi. Hence this implies the relation dyi
|Γ =

∑
µ ∂H/∂pµ

i dxµ

|Γ.



F. HÉLEIN AND J. KOUNEIHER 755

4 The “symmetry” point of view

An alternative way to define “observable forms” is to suppose that they are
related to infinitesimal symplectomorphisms in a way analogous to the sit-
uation in classical mechanics. This point of view is more directly related to
symmetries and Noether’s theorem, since one can anticipate (correctly) that
if the Hamiltonian function H is invariant by an infinitesimal symplectomor-
phism then the corresponding observable form is closed, thus recovering a
divergence free vector field. The advantages of this definition are that we
are able to define a notion of Poisson bracket between such observable forms
easily and that this Poisson bracket is directly related to the one used by
physicists for quantizing fields.

4.1 Algebraic observable (n − 1)-forms

4.1.1 Definitions

Definition 4.1. Let m ∈ M and a ∈ ΛnT ⋆
mM; a is called algebraic copo-

lar if and only if there exists a unique ξ ∈ TmM such that a + ξ Ω = 0.
We denote by Pn

0 T ⋆
mM the set of algebraic copolar n-forms.

A (n−1)-form F on (M, Ω) is called algebraic observable (n−1)-form
if and only if for all m ∈ M, dFm ∈ Pn

0 T ⋆
mM. We denote by Pn−1

0 M the
set of all algebraic observable (n − 1)-forms.

In other words a (n − 1)-form F is algebraic observable if and only if
there exists a vector field ξ satisfying dF + ξ Ω = 0. Then we denote
by ξF this unique vector field. A straightforward observation is that any
algebraic observable (n− 1)-form satisfies automatically property (6) and so
is an observable (n − 1)-form. Actually the following Lemma implies that
algebraic observable (n− 1)-form are characterized by a property similar to
(6) but stronger. (Indeed OnM ⊂ DnM is a submanifold of ΛnT ⋆

mM.)

Lemma 4.1. Let m ∈ M and φ ∈ Λn
mT ⋆

mM. Then φ ∈ Pn
0 T ⋆

mM if and

only if

∀X, X̃ ∈ ΛnTmM, X Ω = X̃ Ω =⇒ φ(X) = φ(X̃). (11)

Proof. Let us fix some point m ∈ M and let φ ∈ Λn
mT ⋆

mM. We consider the
two following linear maps

L : ΛnTmM −→ T ∗
mM and K : TmM −→ (ΛnTmM)∗

X 7−→ (−1)nX Ω ξ 7−→ ξ Ω,
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where we used the identification (ΛnTmM)∗≃ ΛnT ∗
mM for defining K. We

first observe that K is the adjoint of L. Indeed

∀X ∈ ΛnTmM,∀ξ ∈ TmM,

〈X, K(ξ)〉 = ξ Ω(X) = (−1)nX Ω(ξ) = 〈ξ, L(X)〉.

Hence since K is one to one (because Ω is non degenerate) L is onto.
Moreover we can consider the following maps induced by L and K: [L] :
ΛnTmM/KerL −→ T ∗

mM and [K] : TmM −→ (ΛnTmM/KerL)∗. Again
[K] = [L]∗ and the fact that L is onto implies that [L] is a vector space
isomorphism and that [K] is so.

Now observe that the set of φ ∈ ΛnT ∗
mM which satisfies (11) coincides

with (ΛnTmM/KerL)∗. Hence the conclusion of the Lemma follows from
the fact that [K] : TmM −→ (ΛnTmM/KerL)∗ is an isomorphism.

Hence Pn−1
0 M ⊂ Pn−1M. We wish to single out multisymplectic man-

ifolds where this inclusion is an identity:

Definition 4.2. A multisymplectic manifold (M, Ω) is pataplectic if and
only if the set of observable (n− 1)-forms coincides with the set of algebraic
observable (n − 1)-forms, i.e., Pn−1

0 M = Pn−1M.

We will see in the next paragraph that the multisymplectic manifold
corresponding to the de Donder–Weyl theory is not pataplectic (if k ≥ 2).
But any open subset of ΛnT ∗N is pataplectic, as proved in Section 5 (there
we also characterize completely the set of algebraic observable (n−1)-forms).

4.1.2 Example of observable (n−1)-forms which are not algebraic
observable (n − 1)-forms

In order to picture the difference between algebraic and non algebraic ob-
servable (n − 1)-forms, let us consider the example of the de Donder–Weyl
theory here corresponding to a submanifold of M = ΛnT ⋆(Rn × Rk) (for
n, k ≥ 2) defined in Example 2. We use the same notations as in Example
2. It is easy to see that the set Pn−1

0 MdDW of algebraic observable (n− 1)-
forms coincides with the set of (n−1)-forms F on MdDW such that, at each
point m ∈ MdDW , dFm has the form

dFm =

(
aµ ∂

∂xµ
+ bi ∂

∂yi

)
Ω + fω + fµ

i ωi
µ
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(where we assume summation over all repeated indices). Now we observe
that, by the Plücker relations,

∀1 ≤ p ≤ n, ∀X ∈ DnMdDW ,

(ω(X))p−1 ω
i1···ip
µ1···µp(X) = det

(
ω

iβ
µα(X)

)

1≤α,β≤p
,

so it turns out that, if X ∈ DnMdDW is such that ω(X) 6= 0, then all the

values ω
i1···ip
µ1···µp(X) can be computed from ω(X) and

(
ωi

µ(X)
)
1≤µ≤n;1≤i≤k

.

Hence we deduce that the set of (non algebraic) observable (n−1)-forms
on MdDW contains the set of (n− 1)-forms F on MdDW such that, at each
point m ∈ MdDW , dFm has the form

dFm =

(
aµ ∂

∂xµ
+ bi ∂

∂yi

)
Ω +

n∑

j=1

∑

i1<···<ij

∑

µ1<···<µj

f
µ1···µp

i1···ip
ω

i1···ip
µ1···µp .

Let us denote by Pn−1
0 ΛnT ∗(X ×Y)|MdDW this set. An equivalent definition

could be that Pn−1
0 ΛnT ∗(X ×Y)|MdDW is the set of the restrictions of alge-

braic observable forms F̃ ∈ Pn−1
0 ΛnT ∗(X × Y) on MdDW (and this is the

reason for this notation). Hence Pn−1MdDW ⊃ Pn−1
0 ΛnT ∗(X × Y)|MdDW .

We will see in Section 5 that the reverse inclusion holds, so that actu-
ally Pn−1MdDW = Pn−1

0 ΛnT ∗(X × Y)|MdDW , with OmMdDW = {X ∈

Dn
mMdDW /ω(X) 6= 0}.

4.1.3 Invariance properties along pseudo-fibers

In the following if ζ is a smooth vector field, we denote by esζ (for s ∈ I,
where I is an interval of R) its flow mapping. And if E is any subset of M,
we denote by Es := esζ(E) its image by esζ .

Lemma 4.2. Let Γ ∈ EH be a Hamiltonian n-curve and ζ be a vector field

which is a smooth section of LH (see Definition 2.4). Suppose that, for all

s ∈ I, Γs is a Hamiltonian n-curve4. Let Σ be a smooth (n− 1)-dimensional

submanifold of Γ and F ∈ Pn−1
0 M. If one of the two following hypotheses

is satisfied: either

(a) ∂Σ = ∅, or

(b) ζ F = 0 everywhere, then

∀s ∈ I,

∫

Σ
F =

∫

Σs

F. (12)

4Observe that this hypothesis is true if H is pataplectic invariant, see Definition 2.5
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i.e., the integral of F on the image of Σ by esζ does not depend on s.

L H

Γ

Σ

Σ

Γ

s s

Figure 1: Invariance of an observable functional along the generalized pseud-
ofiber directions as in Lemma 4.2.

Proof. Let us introduce some extra notations: σ : I × Γ −→ M is the
map (s, m) 7−→ σ(s, m) := esζ(m). Moreover for all m ∈ Σs ∪ ∂Σs we
consider a basis (X1, . . . , Xn) of TmΓs such that X := X1 ∧ · · · ∧Xn ∈ [X]Hm,
(X2, . . . , Xn) is a basis of TmΣs and, if m ∈ ∂Σs, (X3, . . . , Xn) is a basis of
Tm∂Σs. Lastly we let (θ1, . . . , θn) be a basis of T ∗

mΓs, dual of (X1, . . . , Xn).
We first note that ∫

(0,s)×∂Σ
σ∗F = 0,

either because ∂Σ = ∅ (a) or because, if ∂Σ 6= ∅, this integral is equal to
∫

(0,s)×∂Σ
Fσ(s,m)(ζ, X3, . . . , Xn)ds ∧ θ3 ∧ · · · ∧ θn

which vanishes by (b). Thus
∫

Σs

F −

∫

Σ
F =

∫

Σ

(
esζ

)∗
F − F

=

∫

Σ

(
esζ

)∗
F − F −

∫

(0,s)×∂Σ
σ∗F

=

∫

∂((0,s)×Σ)
σ∗F

=

∫

(0,s)×Σ
d (σ∗F )

=

∫

(0,s)×Σ
σ∗dF

=

∫

σ((0,s)×Σ)
dFσ(s,m)(ζ, X2, . . . , Xn)ds ∧ θ2 ∧ · · · ∧ θn.
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But since F ∈ Pn−1
0 M, we have that

dFσ(s,m)(ζ, X2, . . . , Xn) = −Ω(ξF , ζ, X2, . . . , Xn)

= Ω(ζ, ξF , X2, . . . , Xn)

= 〈ξF ∧ X2 ∧ · · · ∧ Xn, ζ Ω〉.

Now the key observation is that ξF ∧ X2 ∧ · · · ∧ Xn ∈ TXDn
mM and so the

hypothesis of the Lemma implies that 〈ξF ∧X2∧· · ·∧Xn, ζ Ω〉 = 0. Hence
(12) is satisfied.

Example 6 (Algebraic observable (n − 1)-forms satisfying the as-
sumption (b) in Lemma 4.2). If M = ΛnT ∗N and if H is a Legendre
image Hamiltonian then any (n− 1)-form F of the type F = ξ θ, where ξ
is a vector field on N , is algebraic observable (see [14], [8]). But as pointed
out in Section 2.2 (definition 2.4) since LH

m ⊂ KerdΠm any vector field ζ
which is a section of LH is necessarily “vertical” and satisfies ζ θ = 0.
Hence ζ F = 0. Such (n−1)-forms ξ θ correspond to components of the
momentum and the energy-momentum of the field (see [14]).

4.1.4 Poisson brackets between observable (n − 1)-forms

There is a natural way to construct a Poisson bracket {·, ·} : Pn−1
0 M ×

Pn−1
0 M 7−→ Pn−1

0 M. To each algebraic observable forms F, G ∈ Pn−1
0 M

we associate first the vector fields ξF and ξG such that ξF Ω + dF =
ξG Ω + dG = 0 and then the (n − 1)-form

{F, G} := ξF ∧ ξG Ω.

It can be shown (see [14]) that {F, G} ∈ Pn−1
0 M and that

d{F, G} + [ξF , ξG] Ω = 0,

where [·, ·] is the Lie bracket on vector fields. Moreover this bracket satisfies
the Jacobi condition modulo an exact term5 (see [14])

{{F, G}, H} + {{G, H}, F} + {{H, F}, G} = d(ξF ∧ ξG ∧ ξH Ω).

5Note that in case where the multisymplectic manifold (M, Ω) is exact in the sense of
M. Forger, C. Paufler and H. Römer [8], i.e., if there exists an n-form θ such that Ω = dθ

(beware that our sign conventions differ from [8]), an alternative Poisson bracket can be
defined:

{F, G}θ := {F, G} + d(ξG F − ξF G + ξF ∧ ξG θ).

Then this bracket satisfies the Jacobi identity (in particular with a right hand side equal
to 0), see [7], [8].
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As an application of this definition, for any slice Σ of codimension 1 we can
define a Poisson bracket between the observable functionals

∫
Σ F and

∫
Σ G

by ∀Γ ∈ EH, {∫

Σ
F,

∫

Σ
G

}
(Γ) :=

∫

Σ∩Γ
{F, G}.

If ∂Γ = ∅, it is clear that this Poisson bracket satisfies the Jacobi identity.
Computations in [23], [21], [14] show that this Poisson bracket coincides with
the Poisson bracket of the standard canonical formalism used for quantum
field theory.

One can try to extend the bracket between forms in Pn−1
0 M to forms in

Pn−1M through different strategies:

• By exploiting the relation

{F, G} = ξF dG = −ξG dF,

which holds for all F, G ∈ Pn−1
0 M. A natural definition is to set:

∀F ∈ Pn−1
0 M, ∀G ∈ Pn−1M, {F, G} = −{G, F} := ξF dG.

In [14] we call this operation an external Poisson bracket.

• If we know that there is an embedding ι : M −→ M̂, into a higher di-
mensional pataplectic manifold (M̂, Ω̂), and that (i) Pn−1

0 M̂ =

Pn−1M̂, (ii) the pull-back mapping Pn−1
0 M̂ −→ Pn−1M : F̂ 7−→ ι∗F̂

is — modulo the set of closed (n − 1)-forms on M̂ which vanish on
M — an isomorphism. Then there exists a unique Poisson bracket on
Pn−1M which is the image of the Poisson bracket on Pn−1

0 M̂.

This situation is achieved for instance if M is a submanifold of ΛnT ∗N ,
a situation which arises after a Legendre transform. This will lead
basically to the same structure as the external Poisson bracket. In
more general cases the question of extending M into M̂ is relatively
subtle and is discussed in the paper [18].

4.2 Algebraic observable (p − 1)-forms

It is worth asking about the relevant definition of algebraic observable (p−1)-
forms. Indeed a first possibility is to generalize directly Definition 4.1: we
would say that the (p − 1)-form F is algebraic observable if there exists a
(1 + n − p)-multivector field ξF such that dF + ξF Ω = 0. Note that in
this case ξF is not unique in general. This approach has been proposed
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by I. Kanatchikov in [21] and [22]. It allows us to define a nice notion of
Poisson bracket between such forms and leads to a structure of graded Lie
algebra. However this definition has not good dynamical properties and in
particular there is no analogue of Theorem 3.1 for such forms. In other
words our definition 3.3 of (non algebraic) observable (p − 1)-forms results
from the search for the more general hypothesis for Theorem 3.1 to be true,
but (p − 1)-forms which are observable according to Kanatchikov are not
observable in the sense of our Definition 3.3. Here we prefer to privilege
the dynamical properties instead trying to generalize Noether’s theorem to
(p − 1)-forms.

4.2.1 Definitions and basic properties

We simply adapt Definitions 3.2, 3.3 and 3.4 by replacing PnT ∗
mM of Def-

inition 3.1 by its subset Pn
0 T ∗

mM of Definition 4.1: it leads to the notions
of algebraic copolarization P ∗

0 T ∗M, of the set P
p−1
0 M of algebraic ob-

servable (p− 1)-forms and of algebraic polarization P ∗
0 TM. Of course

in the case of a pataplectic manifold algebraic and non algebraic notions
coincide.

A consequence of these definitions is that for any 1 ≤ p ≤ n, for any
algebraic observable (p− 1)-forms F ∈ P

p−1
0 M and for any φ ∈ Pn−p

0 T ⋆
mM,

there exists a unique vector ξF (φ) ∈ TmM such that φ∧dF +ξF (φ) Ω = 0.
We thus obtain a linear mapping

ξF : Pn−p
0 T ⋆

mM −→ TmM
φ 7−→ ξF (φ).

(13)

Hence we can associate to F the tensor field ξF . By duality between
Pn−p

0 T ⋆
mM and Pn−p

0 TmM, ξF can also be identified with a section of the
bundle Pn−p

0 TM⊗M TM.

Moreover an alternative definition of the pseudobracket (see Definition
3.5) can be given using the tensor field ξF defined by (13).

Lemma 4.3. For any Hamiltonian function H and any F ∈ P
p−1
0 M, we

have

{H, F} = −ξF dH, (14)

where the right hand side is the section of Pn−p
0 TM defined by

〈ξF dH, φ〉 := ξF (φ) dH, ∀φ ∈ Pn−p
0 T ⋆M. (15)
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Proof. Starting from Definition 3.5, we have ∀φ ∈ Pn−p
0 T ⋆M,

〈{H, F}, φ〉 = (−1)(n−p)p〈[X]H dF, φ〉

= (−1)(n−p)p〈[X]H, dF ∧ φ〉

= 〈[X]H, φ ∧ dF 〉

= −〈[X]H, ξF (φ) Ω〉

= −(−1)nξF (φ) [X]H Ω

= −ξF (φ) dH.

The price we have to pay is that the notion of Poisson bracket between
(p − 1)-forms is now a much more delicate task than in the framework of
Kanatchikov. This question is the subject of the next paragraph.

4.2.2 Brackets between algebraic observable (p − 1)-forms

We now consider algebraic observable (p − 1)-forms for 1 ≤ p ≤ n and dis-
cuss the possibility of defining a Poisson bracket between these observable
forms, which could be relevant for quantization. This is slightly more del-
icate than for forms of degree n − 1 and the definitions proposed here are
based on empirical observations. We first assume a further hypothesis on
the copolarization (which is satisfied on ΛnT ∗N ).

We first recall a definition which was given in [16]: given any X = X1 ∧
· · · ∧ Xn ∈ Dn

mM and any form a ∈ T ∗
mM we will write that a|X 6= 0 if and

only if (a(X1), . . . , a(Xn)) 6= 0. We will say that a function f ∈ C1(M, R) is
1-regular if and only if we have

∀m ∈ M,∀X ∈ [X]Hm, dfm|X 6= 0. (16)

Hypothesis on P1
0M. We suppose that any 1-regular function f ∈

C1(M, R) satisfies6

(i) f ∈ P1
0M

(ii) For all infinitesimal symplectomorphism ξ ∈ sp0M, ξ df = 0.

6These assumptions are actually satisfied in Pn−1M.
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Now let 1 ≤ p, q ≤ n and F ∈ P
p−1
0 M and G ∈ P

q−1
0 M and let us

analyze what condition should satisfy the bracket {F, G}. We will consider
smooth functions f1, . . . , fn−p, g1, . . . , gn−q and t on M. We assume that all
these functions are 1-regular and that df1

m∧· · ·∧dfn−p
m ∧dg1

m∧· · ·∧dgn−q
m 6= 0.

Then, because of hypothesis (i),

F̃ := df1 ∧ · · · ∧ dfn−p ∧ F, G̃ := dg1 ∧ · · · ∧ dgn−q ∧ G ∈ Pn−1
0 M.

Lastly let Γ be a Hamiltonian n-curve and Σ be a level set of t. Then
{∫

Σ
F̃ ,

∫

Σ
G̃

}
(Γ) =

(∫

Σ

{
F̃ , G̃

})
(Γ) =

∫

Σ∩Γ

{
F̃ , G̃

}
. (17)

We now suppose that the functions f := (f1, . . . , fn−p) and g := (g1, . . . ,
gn−q) concentrate around submanifolds denoted respectively by γ̂f and γ̂g

of codimension n− p and n− q respectively. More precisely we suppose that
df1∧· · ·∧dfn−p (resp. dg1∧· · ·∧dgn−q) is zero outside a tubular neighborhood
of γ̂f (resp. of γ̂g) of width ε and that the integral of df1 ∧ · · · ∧ dfn−p (resp.
dg1 ∧ · · · ∧ dgn−q) on a disc submanifold of dimension n − p (resp. n − q)
which cuts transversally γ̂f (resp. γ̂g) is equal to 1. Moreover we suppose
that γ̂f and γ̂g cut transversally Σ ∩ Γ along submanifolds denoted by γf

and γg respectively. Then, as ε → 0, we have
∫

Σ∩Γ
df1 ∧ · · · ∧ dfn−p ∧ F →

∫

Σ∩bγf∩Γ
F,

∫

Σ∩Γ
dg1 ∧ · · · ∧ dgn−q ∧ G →

∫

Σ∩bγg∩Γ
G.

This tells us that the left hand side of (17) is an approximation for
{∫

Σ∩bγf

F,

∫

Σ∩bγg

G

}
(Γ).

We now want to compute what is the limit of the right hand side of (17).
Using the hypothesis (ii) we have

{F̃ , G̃} = ξ eF
d

(
dg1 ∧ · · · ∧ dgn−q ∧ G

)

= (−1)n−qξ eF
dg1 ∧ · · · ∧ dgn−q ∧ dG

= dg1 ∧ · · · ∧ dgn−q ∧
(
ξ eF

dG
)
.

And we have similarly:

{F̃ , G̃} = −df1 ∧ · · · ∧ dfn−p ∧
(
ξ eG

dF
)
.

We now use the following result.
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Γ

γ

Σ

Figure 2: Intersection of Γ, γ̂ and Σ.

Lemma 4.4. Let φ ∈ Λn−1T ∗
mM with φ 6= 0 and 1 ≤ p, q ≤ n such that

p + q ≥ n + 1. Suppose that there exists 2n − p − q linearly independent 1-

forms a1, . . . , an−p, b1, . . . , bn−q ∈ T ∗
mM, α ∈ Λp−1T ∗

mM and β ∈ Λq−1T ∗
mM

such that φ = a1 ∧ · · · ∧ an−p ∧ α and φ = b1 ∧ · · · ∧ bn−q ∧ β. Then there

exists χ ∈ Λp+q−n−1T ∗
mM such that φ = a1 ∧ · · · ∧ an−p ∧ b1 ∧ · · · ∧ bn−q ∧χ.

This χ is not unique in general and is defined modulo forms in the ideal in

Λ∗T ∗
mM spanned by the aj’s and the bj’s. However it is a unique real scalar

if p + q = n + 1.

Proof. This is a consequence of Proposition 1.4 in [2]. The idea is based
on the observation that a1, . . . , an−p, b1, . . . , bn−q are in {a ∈ T ∗

mM/a ∧ φ =
0}.

We deduce from Lemma 4.4 that there exist a form χ ∈ Λp+q−n−1T ∗
mM

(not unique a priori) such that {F̃ , G̃} = df1∧· · ·∧dfn−p∧dg1∧· · ·∧dgn−q∧χ.
We thus require that

{F̃ , G̃} = df1 ∧ · · · ∧ dfn−p ∧ dg1 ∧ · · · ∧ dgn−q ∧ {F, G}. (18)

This does not characterize completely {F, G}, unless p + q = n + 1, the case
{F, G} where is a scalar. We can now write the right hand side of (17) as

∫

Σ∩Γ
df1 ∧ · · · ∧ dfn−p ∧ dg1 ∧ · · · ∧ dgn−q ∧ {F, G}.

Letting ε → 0, and assuming that γ̂f and γ̂g cross transversally this integral
converges to ∫

Σ∩bγf∩bγg∩Γ
{F, G},
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so that we have
{∫

Σ∩bγf

F,

∫

Σ∩bγg

G

}
(Γ) =

∫

Σ∩bγf∩bγg∩Γ
{F, G}.

Here the intersection Σ ∩ γ̂f ∩ γ̂g ∩ Γ is oriented by assuming that X dt ∧
df ∧ dg is oriented positively, if X ∈ [X]H orients positively TmΓ. Hence if
we had started with

∫
Σ∩Γ{F̃ , G̃} = −

∫
Σ∩Γ{G̃, F̃} we would have obtained

−
∫
Σ∩bγg∩bγf∩Γ{G, F} = −(−1)(n−p)(n−q)

∫
Σ∩bγf∩bγg∩Γ{G, F}. Since the result-

ing brackets should coincide we deduce that

{F, G} + (−1)(n−p)(n−q){G, F} = 0.

Conclusion. In two cases we can guess a more direct definition of {F, G}.
First when one of the two forms F or G is in Pn−1

0 M, let us say F ∈ P
p−1
0 M

and G ∈ Pn−1
0 M: then we let

{F, G} := −ξG dF. (19)

This is the idea of external bracket as in Paragraph 4.1.4. We remark that if
f1, . . . , fn−p are in P1

0M and are such that ξG df1 ∧ · · · ∧ dfn−p = 0, then
df1 ∧ · · · ∧ dfn−p ∧ F ∈ Pn−1

0 M and

{df1 ∧ · · · ∧ dfn−p ∧ F, G} = df1 ∧ · · · ∧ dfn−p ∧ {F, G}

so that the requirement (18) is satisfied.

Second if F ∈ P
p−1
0 M, G ∈ P

q−1
0 M, where 1 < p, q < n and p+q = n+1:

then {F, G} is just a scalar and so is characterized by (18).

Example 7 (Sigma models). Let M := ΛnT ⋆(X × Y) as in Section 2.
For simplicity we restrict ourself to the de Donder–Weyl submanifold MdDW

(see Section 2.3), so that the Poincaré-Cartan form is θ = eω+pµ
i dyi∧ωµ and

the multisymplectic form is Ω = dθ. Let φ be a function on X and consider
the observable 0-form yi (for 1 ≤ i ≤ k) and the observable (n − 1)-form
Pj,φ := φ(x)∂/∂yj θ. Then ξPj,φ

= φ∂/∂yj − pµ
j (∂φ/∂xµ) ∂/∂e and thus

{Pj,φ, yi} = ξPj,φ
dyi = δi

jφ. It gives the following bracket for observable
functionals

{∫

Σ
Pj,φ,

∫

Σ∩bγ

yi

}
(Γ) =

∫

Σ∩bγ∩Γ
δi
jφ(x) = δi

j

∑

m∈Σ∩bγ∩Γ

sign(m)φ(m),

where Σ, γ̂ and Γ are supposed to cross transversally and sign(m) accounts
for the orientation of their intersection points.
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Example 4′′ (Maxwell equations). In this case we find that, for all
functions f, g1, g2 : MMax −→ R whose differentials are proper on Om,
{df ∧ π, dg1 ∧ dg2 ∧ a} = df ∧ dg1 ∧ dg2. We hence deduce that {π, a} = 1:
these forms are canonically conjugate. We deduce the following bracket for
observable functionals

{∫

Σ∩bγf

π,

∫

Σ∩bγg

a

}
(Γ) =

∑

m∈Σ∩bγf∩bγg∩Γ

sign(m),

where Σ∩ γ̂f ∩Γ is a surface and Σ∩ γ̂g∩Γ is a curve in the three-dimensional
space Σ∩Γ. Note that this conclusion was achieved by I. Kanatchikov with its
definition of bracket {π, a}Kana := ξπ da, where ξπ ∈ Λ2T ∗

mMMax is such
that ξπ Ω = dπ. But there by choosing ξπ = (1/2)

∑
µ(∂/∂aµ) ∧ (∂/∂xµ)

one finds (in our convention) that {π, a}Kana = n/2 (= 2, if n = 4). So the
two brackets differ (the new bracket in this paper differs also from the one
that we proposed in [14]).

5 The case of ΛnT ⋆N

We will here study algebraic and non algebraic observable (n − 1)-forms in
ΛnT ⋆N and prove in particular that ΛnT ⋆N is pataplectic. This part can be
seen as a complement of an analysis of other properties of ΛnT ⋆N given in
[16]. In particular we use the same notations: since we are interested here in
local properties of M, we will use local coordinates m = (q, p) = (qα, pα1···αn)
on M, and the multisymplectic form reads Ω =

∑
α1<···<αn

dpα1···αn ∧dqα1 ∧
· · · ∧ dqαn . For m = (q, p), we write

dqH :=
∑

1≤α≤n+k

∂H

∂qα
dqα, dpH :=

∑

1≤α1<···<αn≤n+k

∂H

∂pα1···αn

dpα1···αn ,

so that dH = dqH + dpH.

5.1 Algebraic and non algebraic observable (n− 1)-forms co-

incide

We show here that (ΛnT ⋆N , Ω) is a pataplectic manifold.

Theorem 5.1. If M is an open subset of ΛnT ⋆N , then Pn−1
0 M = Pn−1M.

Proof. We already know that Pn−1
0 M ⊂ Pn−1M. Hence we need to prove

the reverse inclusion. So in the following we consider some m ∈ M and a
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form a ∈ Pn
mM and we will prove that there exists a vector field ξ on M

such that a = ξ Ω. We write OmM := Oa
mM.

Step 1. We show that given m = (q, p) ∈ M it is possible to find n + k
vectors (Q̃1, . . . , Q̃n+k) of TmM such that, if Π∗(Q̃α) =: Qα (the image of
Q̃α by the map Π : M −→ N ), then (Q1, . . . , Qn+k) is a basis of TqN and

∀(α1, . . . , αn) s.t. 1 ≤ α1 < · · · < αn ≤ n + k, Q̃α1
∧ · · · ∧ Q̃αn ∈ OmM.

This can be done by induction by using the fact that OmM is dense in
Dn

mM. We start from any family of vectors (Q̃0
1, . . . , Q̃

0
n+k) of TmM such

that (Q0
1, . . . , Q

0
n+k) is a basis of TqN (where Q0

α := Π∗(Q̃
0
α)). We then order

the (n+k)!
n!k! multi-indices (α1, . . . , αn) such that 1 ≤ α1 < · · · < αn ≤ n + k

(using for instance the dictionary rule). Using the density of OmM we
can perturb slightly (Q̃0

1, . . . , Q̃
0
n+k) into (Q̃1

1, . . . , Q̃
1
n+k) in such a way that

for instance Q̃1
1 ∧ · · · ∧ Q̃1

n ∈ OmM (assuming that (1, . . . , n) is the smallest

index). Then we perturb further (Q̃1
1, . . . , Q̃

1
n+k) into (Q̃2

1, . . . , Q̃
2
n+k) in such

a way that Q̃2
1∧· · ·∧Q̃2

n−1∧Q̃2
n+1 ∈ OmM (assuming that (1, . . . , n−1, n+1)

is the next one). Using the fact that OmM is open we can do it in such a
way that we still have Q̃2

1 ∧ · · · ∧ Q̃2
n ∈ OmM. We proceed further until the

conclusion is reached.

In the following we choose local coordinates around m in such a way that
Q̃α = ∂α +

∑
1≤α1<···<αn≤n+k Pα,α1···αn∂α1···αn .

Step 2. We choose a multi-index (α1, . . . , αn) with 1 ≤ α1 < · · · < αn ≤ n+k
and define the set Oα1···αn

m M := OmM∩ Dα1···αn
m M, where

Dα1···αn
m M :=

{
X1 ∧ · · · ∧ Xn ∈ Dn

mM/∀µ, Xµ

=
∂

∂qαµ
+

∑

1≤β1<···<βn≤n+k

Xµ,β1···βn

∂

∂pβ1···βn

}
.

We want to understand the consequences of the relation

∀X, X̃ ∈ Oα1···αn
m M, X Ω = X̃ Ω =⇒ a(X) = a(X̃). (20)

Note that Oα1···αn
m M is open and non empty (since by the previous step,

Q̃α1
∧ · · · ∧ Q̃αn ∈ Oα1···αn

m M). We also observe that, on Dα1···αn
m M, X 7−→

X Ω and X 7−→ a(X) are respectively an affine function and a polynomial
function of the coordinates variables Xµ,β1···βn

. Thus the following result
implies that actually Oα1···αn

m M = Dα1···αn
m M.
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Lemma 5.1. Let N ∈ N and let P be a polynomial on RN and f1, . . . , fp

be affine functions on RN . Assume that there exists some x0 ∈ RN and a

neighborhood V0 of x0 in RN such that

∀x, x̃ ∈ V0, if ∀j = 1, . . . , p, fj(x) = fj(x̃), then P (x) = P (x̃).

Then this property is true on RN .

Proof. We can assume without loss of generality that the functions fj are
linear and also choose coordinates on RN such that fj(x) = xj , ∀j = 1, . . . , p.
Then the assumption means that, on V0, P does not depend on xp+1, . . . , xN .
Since P is a polynomial we deduce that P is a polynomial on the variables
x1, . . . , xp and so the property is true everywhere.

Step 3. Without loss of generality we will also assume in the following
that (α1, . . . , αn) = (1, . . . , n) for simplicity. We shall denote by mI all
coordinates qα and pα1···αn , so that we can write

a =
∑

I1<···<In

AI1···IndmI1 ∧ · · · ∧ dmIn .

We will prove that if (I1, . . . , In) is a multi-index such that

• {mI1 , . . . , mIn} contains at least two distinct coordinates of the type
pα1···αn and

• {mI1 , . . . , mIn} does not contain any qα, for n + 1 ≤ α ≤ n + k

then AI1···In = 0. Without loss of generality we can suppose that ∃p ∈ N

such that 1 ≤ p ≤ n − 2 and

mI1 = q1, . . . , mIp = qp and

mIp+1 , . . . , mIn ∈ {pα1···αn/1 ≤ α1 < · · · < αn ≤ n + k}.

We test property (20) specialized to the case where X = X1 ∧ · · · ∧Xn with

Xµ =
∂

∂qµ
+

n∑

j=p+1

X
Ij
µ

∂

∂mIj
, ∀µ = 1, . . . , n.



F. HÉLEIN AND J. KOUNEIHER 769

Then

a(X) = AI1···In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0

X
Ip+1

1 · · · X
Ip+1

p X
Ip+1

p+1 · · · X
Ip+1

n

...
...

...
...

XIn

1 · · · XIn
p XIn

p+1 · · · XIn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(21)

= AI1···In

∣∣∣∣∣∣∣

X
Ip+1

p+1 · · · X
Ip+1

n

...
...

XIn

p+1 · · · XIn
n

∣∣∣∣∣∣∣
.

Note that we can write any X ∈ D1···n
m M as X = X1 ∧ · · · ∧ Xn with

Xµ =
∂

∂qµ
+ Eµ

∂

∂p1···n
+

n+k∑

β=n+1

Mµ,β + Rµ,

where

Mµ,β :=
n∑

ν=1

(−1)n+νMν
µ,β∂1···bν···nβ and

Rµ :=
∑

(α1,...,αn)∈I∗∗

Xµ,α1···αn∂α1···αn .

And then

(−1)nX Ω = dp1···n −
n∑

µ=1

Eµdqµ −
n+k∑

β=n+1




n∑

µ=1

Mµ
µ,β


 dqβ .

Within our specialization this leads to the following key observation7: at

most one line (X
Ij

1 , . . . , X
Ij
n ) ( for p + 1 ≤ j ≤ n) in the n× n determinant

in (21) is a function of X Ω (for mIj = p1···n). In all other lines number
ν, where p + 1 ≤ ν ≤ n and ν 6= j, there is at most one component XIν

µ

which is a function of X Ω. All the other components are independent of
X Ω. Thus we have the following alternative.

(i) {mIp+1 , . . . , mIn} does not contain p1···n (i.e., the line (E1, . . . , En) does
not appear in the n × n determinant in (21)), or

7Remark that each of the n − p last lines in the n × n determinant in (21) is ei-
ther (E1, . . . , En) or of the type (Mν

1,β , · · · , Mν
m,β) or (X1,α1···αn

, . . . , Xn,α1···αn
), for

(α1, . . . , αn) ∈ I∗∗.
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(ii) {mIp+1 , . . . , mIn} contains p1···n (i.e., one of the lines is (E1, . . . , En))

Case (i). Then the right hand side determinant in (20) is a polynomial of
degree n − p ≥ 2. Thus we can find a monomial in this determinant of the

form X
Ip+1

σ(p+2) · · ·X
In

σ(n) (where σ is a substitution of {p + 1, . . . , n}) where

each variable is independent of X Ω. Hence in order to achieve (20) we
must have AI1···In = 0.

Case (ii). We assume w.l.g. that mIp+1 = p1···n. We freeze the variables

X
Ip+1

µ (i.e., Eµ) suitably and specialize again property (20) by letting free

only the variables X
Ij
µ for p + 2 ≤ j ≤ n and 1 ≤ µ ≤ n. Two subcases

occur: if p < n − 2 then we choose X
Ip+1

µ = δp+1
µ . Then we are reduced

to a situation quite similar to the first case and we can conclude using the
same argument (this time with a determinant which is a monomial of degree
n − 1 − p ≥ 2).

If p = n − 2 then a(X) = AI1···In

(
XIn

n X
In−1

n−1 − XIn

n−1X
In−1
n

)
. If the

knowledge of X Ω prescribes XIn
n then by the key observation XIn

n−1 is

free and by choosing X
In−1
µ = δn

µ we obtain a(X) = −AI1···InXIn

n−1. If X Ω

prescribes XIn

n−1 then XIn
n is free and by choosing X

In−1
µ = δn−1

µ we obtain

a(X) = AI1···InXIn
n . In both cases we must have AI1···In = 0 in order to have

(20).

Conclusion. Steps 2 and 3 show that, on O1···n
m M, X 7−→ a(X) is an

affine function on the variables Xµ,β1···βn
. Then by standard results in linear

algebra (20) implies that, ∀X ∈ O1···n
m M, a(X) is an affine combination of

the components of X Ω. By repeating this step on each Oα1···αn
m M we

deduce the conclusion.

Theorem 5.2. Assume that N = X×Y, M = ΛnT ∗N and consider MdDW

to be the submanifold of ΛnT ∗N as defined in Paragraph 2.3.1 equipped with

the multisymplectic form ΩdDW which is the restriction of Ω to MdDW .

Then Pn−1MdDW coincides with Pn−1
0 ΛnT ∗(X × Y)|MdDW , the set of the

restrictions of algebraic observable (n − 1)-forms of (M, Ω) to MdDW .

Proof. The fact that PnMdDW contains all the restrictions of algebraic ob-
servable (n−1)-forms of (M, Ω) to MdDW was observed in Paragraph 4.2.1.
The proof of the reverse inclusion follows the same strategy as the proof of
Theorem 5.1 and is left to the reader.
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5.2 All algebraic observable (n − 1)-forms

We conclude this section by giving the expression of all algebraic observable
(n − 1)-forms on an open subset of ΛnT ⋆N . For details see [16]. First the
general expression of an infinitesimal symplectomorphism is Ξ = χ+ξ, where

χ :=
∑

β1<···<βn

χβ1···βn
(q)

∂

∂pβ1···βn

and (22)

ξ :=
∑

α

ξα(q)
∂

∂qα
−

∑

α,β

∂ξα

∂qβ
(q)Πβ

α,

and where the coefficients χβ1···βn
are so that d(χ Ω) = 0, ξ :=

∑
α ξα(q) ∂

∂qα

is an arbitrary vector field on N , and

Πβ
α :=

∑

β1<···<βn

∑

µ

δβ
βµ

pβ1···βµ−1αβµ+1···βn

∂

∂pβ1···βn

.

As a consequence any algebraic observable (n−1)-form F can be written
as F = Qζ + Pξ, where

Qζ =
∑

β1<···<βn−1

ζβ1···βn−1
(q)dqβ1 ∧ · · · ∧ dqβn−1 and Pξ = ξ θ.

Then χ Ω = −dQζ and ξ Ω = −dPξ.

Lastly we let8 spQM to be the set of infinitesimal symplectomorphisms

of the form χ (with χ Ω closed) and spPM those of the form ξ (for all
vector fields ξ ∈ Γ(M, TM)) as defined in (22). Then one can observe that
sp0M = spPM ⋉ spQM (see [15]).

6 Dynamical observable forms and functionals

One question is left: to make sense of the Poisson bracket of two observable
functionals supported on different slices. This is essential in an Einstein pic-
ture (classical analogue of the Heisenberg picture) which seems unavoidable
in a completely covariant theory. One possible answer rests on the notion of
dynamical observable forms (in contrast with kinematic observable function-
als). To be more precise let Σ and Σ′ be two different slices of codimension

8Recall that sp0M is the set of all symplectomorphisms of (M, Ω) (see Definition 2.3).
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1 and F and G be two algebraic observable (n − 1)-forms and let us try to
define the Poisson bracket between

∫
Σ F and

∫
Σ′ G.

One way is to express one of the two observable functionals, say
∫
Σ′ G,

as an integral over Σ. This can be achieved for all slices Σ and Σ′ which are
cobordism equivalent, i.e., such that there exists a smooth domain D in M
with ∂D = Σ′ − Σ, and if dG|Γ = 0, ∀Γ ∈ EH. Then indeed

∫

Σ∩Γ
G −

∫

Σ′∩Γ
G =

∫

∂D∩Γ
G =

∫

D∩Γ
dG = 0, (23)

so that ∫

Σ′

G =

∫

Σ
G on EH.

Thus we are led to the following.

Definition 6.1. A dynamical observable (n− 1)-form is an observable form
G ∈ Pn−1M such that

{H, G} = 0.

Indeed Corollary 3.1 implies immediately that if G is a dynamical observ-
able (n−1)-form then dG|Γ = 0 and hence (23) holds. As a consequence if F
is any observable (n− 1)-form and G is a dynamical observable (n− 1)-form
(and if one of both is an algebraic one), then we can state

{∫

Σ
F,

∫

Σ′

G

}
:=

{∫

Σ
F,

∫

Σ
G

}
.

The concept of dynamical observable form is actually more or less the one
used by J. Kijowski in [23], since his theory corresponds to working on the
restriction of (M, Ω) on the hypersurface H = 0.

Hence we are led to the question of characterizing dynamical observable
(n − 1)-forms. (We shall consider mostly algebraic observable forms.) This
question was already investigated for some particular case in [23] (and dis-
cussed in [11]) and the answer was a (surprising) deception: as long as the
variational problem is linear (i.e., the Lagrangian is a quadratic function of
all variables) there are many observable functionals (basically all smeared
integrals of fields using test functions which satisfy the Euler-Lagrange equa-
tion), but as soon as the problem is non linear the choice of dynamical
observable forms is dramatically reduced and only global dynamical ob-
servable exists. For instance for a non nonlinear scalar field theory with
L(u, du) = 1

2(∂tu)2 − |∇u|2 + m2

2 u2 + λ
3u3, the only dynamical observable

forms G are those for which ξG is a generator of the Poincaré group. One
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can also note that in general dynamical observable forms correspond to mo-
mentum or energy-momentum observable functionals.

Several possibilities may be considered to go around this difficulty. If the
variational problem can be seen as a deformation of a linear one (i.e., of a
free field theory) then it could be possible to construct a perturbation theory,
leading to Feynman type expansions for classical fields. For an example of
such a theory, see [13] and [12]. Another interesting direction would be to
explore completely integrable systems. We present here a third alternative,
which relies on symmetries and we will see on a simple example how the
purpose of constructing dynamical observable forms leads naturally to gauge
theories.

Example 8 (Complex scalar fields). We consider on the set of maps
ϕ : Rn −→ C the variational problem with Lagrangian

L0(ϕ, dϕ) =
1

2
ηµν ∂ϕ

∂xµ

∂ϕ

∂xν
+ V

(
|ϕ|2

2

)

=
1

2
ηµν

(
∂ϕ1

∂xµ

∂ϕ1

∂xν
+

∂ϕ2

∂xµ

∂ϕ2

∂xν

)
+ V

(
|ϕ|2

2

)
.

Here ϕ = ϕ1 + iϕ2. We consider the multisymplectic manifold M0, with
coordinates xµ, φ1, φ2, e, pµ

1 and pµ
2 and the multisymplectic form Ω0 =

de∧ω+dpµ
a ∧dφa∧ωµ (which is the differential of the Poincaré-Cartan form

θ0 := eω + pµ
adφa ∧ ωµ). Then the Hamiltonian is

H0(x, φ, e, p) = e +
1

2
ηµν(p

µ
1pν

1 + pµ
2pν

2) − V

(
|φ|2

2

)
.

We look for (n − 1)-forms F0 on M0 such that

dF0 + ξF0
Ω0 = 0, for some vector field ξF0

, (24)

dH0(ξF0
) = 0. (25)

The analysis of this problem can be dealt by looking for all vector fields

ξ0 = Xµ(x, φ, e, p)
∂

∂xµ
+ Φa(x, φ, e, p)

∂

∂φa

+ E(x, φ, e, p)
∂

∂e
+ Pµ

a (x, φ, e, p)
∂

∂pµ
a
.

satisfying (24) and (25). For simplicity we will assume that Xµ = 0 (this will
exclude stress-energy tensor observable forms Xµ ∂

∂xµ θ0, for Xµ constant).
Then we find two cases:
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If V (|φ|2/2) is quadratic in φ, i.e., if V (|φ|2/2) = m2|φ|2/2, then Equations
(24) and (24) have the solutions

ξ0 = λ~j0+Ua(x)
∂

∂φa
−

(
pµ

a

∂Ua

∂xµ
(x) + δabLUa(x)φb

)
∂

∂e
+ηµνδab

∂Ua

∂xµ
(x)

∂

∂pµ
b

,

where λ is a real constant,

~j0 :=

(
φ2 ∂

∂φ1
− φ1 ∂

∂φ2

)
+

(
pµ
2

∂

∂pµ
1

− pµ
1

∂

∂pµ
2

)
,

L := −ηµν ∂2

∂xµ∂xν and U1 and U2 are arbitrary solutions of the linear equa-

tion LU + m2U = 0. Then F0 = Uapµ
aωµ − ηµν

(
∂U1

∂xν φ1 + ∂U2

∂xν φ2
)

ωµ +

λ
(
pµ
1φ2 − pµ

2φ1
)
ωµ.

However if V ′ is not a constant, then system (24) and (24) has only the
solutions ξ0 = λ~j0 and the resulting dynamical observable (n − 1)-form is
F0 = λ(pµ

1φ2 − pµ
2φ1)ωµ, which corresponds to the global charge due to the

U(1) invariance of the Lagrangian.

For instance we would like to replace λ by a smooth function ψ of x, i.e.,
to look at F = ψ(x)(pµ

1φ2 − pµ
2φ1)ωµ. These are non dynamical algebraic

observable (n − 1)-forms since we have dF1 + ξ̃ Ω0 = 0, where ξ̃ := ψ~j0 −
(pµ

1φ2 − pµ
2φ1) ∂ψ

∂xµ
∂
∂e

, but dH0(ξ̃) = −(pµ
1φ2 − pµ

2φ2) ∂ψ
∂xµ 6= 0.

Now in order to enlarge the set of dynamical observable forms, an idea
is to further incorporate the gauge potential field A := Aµdxµ and consider
the Lagrangian

L1(ϕ, A, dϕ) :=
1

2
ηµν

(
∂ϕ

∂xµ
+ iAµϕ

) (
∂ϕ

∂xν
+ iAνϕ

)

−
1

4
ηµληνσFµνFλσ + V

(
|ϕ|2

2

)
,

where Fµν := ∂Aν

∂xµ − ∂Aµ

∂xν . It is invariant under gauge transformations
ϕ 7−→ eiθϕ, A 7−→ A − dθ. Note that we did incorporate an energy for
the gauge potential A. We now consider the multisymplectic manifold M1

with coordinates xµ, φ1, φ2, e, pµ
1 , pµ

2 , aµ and pµν . The multisymplectic
form is: Ω1 = de ∧ ω + dpµ

a ∧ dφa ∧ ωµ − (daλ ∧ dxλ) ∧ (1
2dpµν ∧ ωµν). The

Hamiltonian is then

H1(x, φ, a, e, p) = e +
1

2
ηµν(p

µ
1pν

1 + pµ
2pν

2) + (pµ
1φ2 − pµ

2φ1)aµ

−
1

4
ηµληνσpµνpλσ − V

(
|φ|2

2

)
.
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The gain is that we may now consider the algebraic observable (n− 1)-form

F1 := ψ(x)(pµ
1φ2 − pµ

2φ1)ωµ −
1

2
pµνdψ ∧ ωµν .

where ψ is any smooth function of x. We indeed still have on the one hand
dF1 = −ξ1 Ω1, where

ξ1 := ψ~j0 − (pµ
1φ2 − pµ

2φ1)
∂ψ

∂xµ

∂

∂e
+

∂ψ

∂xµ

∂

∂aµ
.

Then dH1(ξF1
) = 0. Thus F1 is a dynamical observable (n − 1)-form.
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