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Abstract

We construct an approximation to field theories on the noncommu-
tative torus based on soliton projections and partial isometries which
together form a matrix algebra of functions on the sum of two circles.
The matrix quantum mechanics is applied to the perturbative dynam-
ics of scalar field theory, to tachyon dynamics in string field theory, and
to the Hamiltonian dynamics of noncommutative gauge theory in two
dimensions. We also describe the adiabatic dynamics of solitons on the
noncommutative torus and compare various classes of noncommutative
solitons on the torus and the plane.

1 Introduction and Summary

Among the principal characteristics of noncommutative spaces [17, 44, 53,
31], whichever way we may choose to define them, is the fact that the concept
of locality becomes evanescent and disappears altogether. Noncommutativ-
ity typically introduces a length scale below which it is no longer possible
to resolve “points” in the space. If a noncommutative space cannot be de-
scribed by the local fields defined on it, it is still possible to use those fields,
which technically live in a noncommutative C∗-algebra, to describe some
geometric properties of the space. In some instances, for example when the
noncommutative spaces are deformations of ordinary ones, it may still be
possible to “see” the points underlying the algebra, and the noncommuta-
tivity is typically described by the nonvanishing commutator of coordinates.
This description may be appealing for the connections which can be made
with ordinary geometry, but it does hide some novel characteristics of non-
commutative geometry which can have important physical implications and
provide useful calculational tools. For instance, there exist solitonic solutions
in noncommutative geometry which have no counterparts in commutative ge-
ometry [29]. By solitons we mean nonvanishing finite energy extrema of the
action functional of a given field theory, and in the examples to be consid-
ered in this paper they are described by projections or partial isometries of
the underlying noncommutative algebra. In the following we will in fact use
the words solitons and projections/partial isometries synonymously.

One of the main physical interests in noncommutative geometry is the
fact that it arises naturally in string theory, and in particular the noncommu-
tative torus [68, 16] describes naturally the stringy modifications to classical
spacetime [19, 45, 72] (see [42, 24, 75] for reviews). In the context of open
string field theory, the algebraic structure of noncommutative geometry al-
lows a particularly simple construction of both stable and unstable D-branes
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in terms of projections and partial isometries [23, 38, 78]. Also related to
this operatorial nature is the fact that noncommutative field theories can be
regulated and studied by means of matrix models [19, 6, 4, 5, 54, 11, 52, 33,
49, 74]. In the case of field theories on the noncommutative torus, the ma-
trix regularization yields field theories on the fuzzy torus and is intimately
related to the lattice regularization of noncommutative field theories [4, 5].

Although the matrix model formalisms have many computational ad-
vantages, they have several pitfalls as well. Foremost among these are the
complicated double scaling limits required to reproduce the original contin-
uum dynamics. The complicated nature is related to the mathematical fact
that the algebra of functions on a manifold can never be the exact inductive
limit of finite dimensional algebras, and examples abound for which the finite
approximations fail to capture relevant physical aspects or produce phenom-
ena which are unphysical artifacts of the matrix regularization. Technically,
we may say that no algebra of functions can be an approximately finite (AF)
algebra [46]. In this paper we will show how to overcome this problem by ex-
ploiting one of the aforementioned novel characteristics of noncommutative
field theories, namely the presence of projection operators (or projections
for brevity). As we have mentioned, they play an important role in the ef-
fective field theories of D-branes in that they are finite energy extrema of
the potential energy, or solitons.

In what follows, after a review of the Elliott-Evans construction of the
sequence of algebras approximating the noncommutative torus [26], we will
construct viable field theories based on it. The interest in this construction
is many-fold. The approximate algebras are generated by projections and
partial isometries which together generate the direct sum of two copies of
the algebra of matrix-valued functions on a circle, and therefore the approx-
imation to a noncommutative field theory is effectively a matrix quantum
mechanics which can be solved exactly in some cases. Unlike the usual lat-
tice approximations, the noncommutative torus is the inductive limit of the
sequence of algebras in the strong rigorous sense. From a computational
point of view, this means that the continuum limit is much simpler. It is im-
portant to realize though that it is not simply the ’t Hooft planar limit of the
matrix model, and the notion of planarity in the matrix quantum mechanics
coincides with that of the original noncommutative field theory [60].

We will show that the field theory corresponding to the soliton approx-
imation can be used, as a quantum mechanics, in a quantitatively useful
manner for field theoretic calculations. For example, we will analyse in de-
tail the dynamics of a noncommutative scalar field theory and show that
ultraviolet-infrared (UV/IR) mixing [60] is cured by the approximation (but
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of course reappears in the limit). We also show that the approximation al-
ready captures quantitative aspects of tachyon condensation in string field
theory, and further demonstrate how the exact solution of gauge theory on
the noncommutative torus [62] is captured by the Hamiltonian dynamics of
the matrix quantum mechanics. The approximation presented in this paper
thereby has the opportunity to capture important nonperturbative aspects
of noncommutative field theories.

We will also study the adiabatic dynamics of projections according to a σ-
model action defined on soliton moduli space. We will find that the extrema
of the action are solitons which satisfy a certain self-duality or anti-self-
duality condition. The typical soliton of this kind, the Boca projection [14],
is the torus equivalent of the GMS solitons on the noncommutative plane [29].
The field configurations correspond to smooth “bump” functions which are
localized within the scale of noncommutativity, and they are very different
from the projections which generate the matrix algebras. The latter pro-
jections generalize the Power-Rieffel projections [68], and the corresponding
fields wind around the torus thereby exhibiting a more non-local structure.
In the context of tachyon condensation on the two-dimensional noncommu-
tative torus, the Boca projection has been employed in [56, 28, 43, 40, 39]
and the Powers-Rieffel projection in [9, 71, 56]. From the dynamically ob-
tained Boca projection we will then use the matrix regularization on the
noncommutative torus to induce approximations also of field theories on the
noncommutative plane.

Outline

The structure of the remainder of this paper is as follows. In section 2
we introduce the main characteristics describing field theories on the non-
commutative torus, their connection with tachyon condensation, and the
sequence of projections which will form the diagonal part of the matrix ap-
proximation. In section 3 we describe in detail the construction of the matrix
subalgebras and the way the approximation is realized. In section 4, which
is the crux of the paper, we describe how to construct the matrix quan-
tum mechanics equivalent (in the limit) of a generic noncommutative field
theory. In section 5 we present three examples of the formalism, involving
the perturbative dynamics of φ4 scalar field theory on the noncommutative
torus, the construction of D-branes as decay products in tachyon condensa-
tion, and a Hamiltonian analysis of noncommutative Yang-Mills theory in
two dimensions. In the final section 6, we describe the relationships between
the solitons used for the matrix approximation and the Boca projection, the
toroidal generalization of the GMS lump configurations, which leads to the
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planar version of the matrix model regularization. There we also describe
the dynamics of solitons on the noncommutative torus through a σ-model
defined on their configuration space. Some technical details are presented in
five appendices at the end of the paper. Some aspects of the present paper
have been announced in [47].

2 Solitons on the Noncommutative Torus

In this section we will review the construction of solitonic field configura-
tions on the two-dimensional noncommutative torus, primarily to introduce
the physical notions, the notation and the definitions which will be used
throughout this paper. We will begin with a review of the geometry of the
noncommutative torus, emphasizing those ingredients which are important
for the construction of noncommutative field theories. We shall then briefly
review the construction of D-branes as solitons in the effective field theory
of open strings, as this will set the main physical motivation for most of our
subsequent analysis. Then we will describe an important set of projections
for the noncommutative torus.

2.1 Field Theories on the Noncommutative Torus

Consider an ordinary square two-torus T
2 with coordinate functions U =

e 2π i x and V = e 2π i y, where x, y ∈ [0, 1]. By Fourier expansion the algebra
C∞(T2) of complex-valued smooth functions on the torus is made up of all
power series of the form

a =
∑

(m,r)∈Z2

am,r U
m V r , (2.1)

with {am,r} ∈ S(Z2) a complex-valued Schwartz function on Z
2. This means

that the sequence of complex numbers {am,r ∈ C | (m, r) ∈ Z
2} decreases

rapidly at “infinity”, i.e. for any k ∈ N0 one has bounded semi-norms

‖a‖k = sup
(m,r)∈Z2

|am,r|
(
1 + |m| + |r|)k

<∞ . (2.2)

Let us now fix a real number θ. The algebra Aθ = C∞(T2
θ) of smooth

functions on the noncommutative torus is the associative algebra made up
of all elements of the form (2.1), but now the two generators U and V satisfy

V U = e 2π i θ U V . (2.3)
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The algebra Aθ can be made into a ∗-algebra by defining a ∗-involution † by

U † := U−1 , V † := V −1 . (2.4)

From (2.2) with k = 0 one gets a C∗-norm and the corresponding closure of
Aθ in this norm is the universal C∗-algebra Aθ generated by two unitaries
with the relation (2.3); Aθ is dense in Aθ and is thus a pre-C∗-algebra.

In the following we shall use the one-to-one correspondence between ele-
ments of the noncommutative torus algebra Aθ and the commutative torus
algebra C∞(T2) given by the Weyl map Ω and its inverse, the Wigner map.
As is usual for a Weyl map, there are operator ordering ambiguities, and so
we will take the prescription

Ω

⎛⎝ ∑
(m,r)∈Z2

fm,r e 2π i (m x+r y)

⎞⎠ :=
∑

(m,r)∈Z2

fm,r e π i m r θ Um V r . (2.5)

This choice (called Weyl or symmetric ordering) maps real-valued functions
on T

2 into Hermitian elements of Aθ. The inverse map is given by

Ω−1

⎛⎝ ∑
(m,r)∈Z2

am,r U
m V r

⎞⎠ =
∑

(m,r)∈Z2

am,r e−π i m r θ e 2π i (m x+r y) . (2.6)

Clearly, the map Ω : C∞(T2) → Aθ is not an algebra homomorphism;
it can be used to deform the commutative product on the algebra C∞(T2)
into a noncommutative star-product by defining

f � g := Ω−1
(
Ω(f)Ω(g)

)
, f, g ∈ C∞ (

T
2
)
. (2.7)

A straightforward computation gives

f � g =
∑

(r1,r2)∈Z2

(f � g)r1,r2 e 2π i (r1x+r2y) , (2.8)

with the coefficients of the expansion of the star-product given by a twisted
convolution

(f � g)r1,r2 =
∑

(s1,s2)∈Z2

fs1,s2 gr1−s1,r2−s2 e π i (r1s2−r2s1) θ (2.9)

which reduces to the usual Fourier convolution product in the limit θ = 0.
Up to isomorphism, the deformed product depends only on the cohomology
class in the group cohomology H2(Z2, U(1)) of the U(1)-valued two-cocycle
on Z

2 given by
λ(r, s) := e π i (r1s2−r2s1) θ (2.10)
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with r = (r1, r2), s = (s1, s2) ∈ Z
2.

Heuristically, the noncommutative structure (2.3) of the torus is the ex-
ponential of the Heisenberg commutation relation [y, x] = i θ/2π. Acting
on functions of x alone, the operator U is represented as multiplication by
e 2π i x while conjugation by V yields the shift x �→ x+ θ,

Ω−1
(
U Ω

(
f(x)

))
= e 2π i x f(x) ,

Ω−1
(
V Ω

(
f(x)

)
V −1

)
= f(x+ θ) . (2.11)

Analogously, on functions of y alone we have

Ω−1
(
U Ω

(
g(y)

)
U−1

)
= g(y − θ) ,

Ω−1
(
V Ω

(
g(y)

))
= e 2π i y g(y) . (2.12)

From (2.3) it follows that Aθ is commutative if and only if θ is an integer,
and one identifies A0 with the algebra C∞(T2). Also, for any n ∈ Z there is
an isomorphism Aθ

∼= Aθ+n since (2.3) does not change under integer shifts
θ �→ θ+n. Thus we may restrict the noncommutativity parameter to the in-
terval 0 ≤ θ < 1. Furthermore, since UV = e−2π i θ V U = e 2π i (1−θ) V U , the
correspondence V �→ U,U �→ V yields an isomorphism Aθ

∼= A1−θ. These
are the only possible isomorphisms and the interval θ ∈ [0, 1

2 ] parametrizes
a family of non-isomorphic algebras.

When the deformation parameter θ is a rational number, the correspond-
ing algebra is related to the commutative torus algebra C∞(T2), i.e. Aθ is
Morita equivalent to it in this case [68]. Let θ = p/q, with p and q integers
which we take to be relatively prime with q > 0. Then Ap/q is isomorphic
to the algebra of all smooth sections of an algebra bundle Bp/q → T

2 whose
typical fiber is the algebra Mq(C) of q×q complex matrices. Moreover, there
is a smooth vector bundle Ep/q → T

2 with typical fiber C
q such that Bp/q

is the endomorphism bundle End(Ep/q). With ω = e 2π i p/q, one introduces
the q × q clock and shift matrices

Cq =

⎛⎜⎜⎜⎜⎜⎝
1

ω
ω2

. . .
ωq−1

⎞⎟⎟⎟⎟⎟⎠ , Sq =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0

0 1
. . . . . .

. . . 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(2.13)
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which are unitary and traceless (since
∑q−1

k=0 ω
k = 0), satisfy

(Cq)q = (Sq)q = 11q , (2.14)

and obey the commutation relation

Sq Cq = ω Cq Sq . (2.15)

Since p and q are relatively prime, the matrices (2.13) generate the finite
dimensional algebra Mq(C): they generate a C∗-subalgebra which commutes
only with multiples of the identity matrix 11q, and thus it has to be the full
matrix algebra. Were p and q not coprime the generated algebra would be
a proper subalgebra of Mq(C). The matrix algebra generated by Cq and Sq

is also referred to as the fuzzy torus.

The algebra Ap/q has a “huge” center C(Ap/q) which is generated by the
elements U q and V q, and one identifies C(Ap/q) with the commutative alge-
bra C∞(T2) of smooth functions on an ordinary torus T

2 which is ‘wrapped’
q times onto itself. There is a surjective algebra homomorphism

πq : Ap/q −→ Mq(C) (2.16)

given by

πq

⎛⎝ ∑
(m,r)∈Z2

am,r U
m V r

⎞⎠ =
∑

(m,r)∈Z2

am,r (Cq)m (Sq)r . (2.17)

Under this homomorphism the whole center C(Ap/q) is mapped to C.

Henceforth we will assume that θ is an irrational number unless otherwise
explicitly stated. On Aθ there is a unique normalized, positive definite trace
which we shall denote by the symbol

∫
: Aθ → C and which is given by∫

−
∑

(m,r)∈Z2

am,r U
m V r := a0,0

=
∫
T2

dx dy Ω−1

⎛⎝ ∑
(m,r)∈Z2

am,r U
m V r

⎞⎠ (x, y) .

(2.18)

Then, for any a, b ∈ Aθ, one readily checks the properties∫
− a b =

∫
− b a ,

∫
− 11 = 1 ,

∫
− a† a > 0 , a 
= 0 , (2.19)
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with
∫
a†a = 0 if and only if a = 0 (i.e. the trace is faithful). This trace is

invariant under the natural action of the commutative torus T
2 on Aθ whose

infinitesimal form is determined by two commuting linear derivations ∂1, ∂2

acting by

∂1U = 2π iU , ∂1V = 0 ,
∂2U = 0 , ∂2V = 2π iV . (2.20)

Invariance is just the statement that
∫
∂µa = 0, µ = 1, 2 for any a ∈ Aθ.

The algebra Aθ can be represented faithfully as operators acting on a
separable Hilbert space H, which is the GNS representation space H =
L2(Aθ ,

∫
) defined as the completion of Aθ itself in the Hilbert norm

‖a‖GNS :=
(∫
− a† a

)1/2

(2.21)

with a ∈ Aθ. Since the trace is faithful, the map Aθ � a �→ â ∈ H is injective
and the faithful GNS representation π : Aθ → B(H) is simply given by

π(a)̂b = â b (2.22)

for any a, b ∈ Aθ. The vector 1 = 1̂1 of H is cyclic (i.e. π(Aθ)1 is dense
in H) and separating (i.e. π(a)1 = 0 implies a = 0) so that the Tomita
involution is just J(â) = â† for any â ∈ H. It is worth mentioning that the
C∗-algebra norm on Aθ given in (2.2) with k = 0 coincides with the operator
norm in (2.21) when Aθ is represented on the Hilbert space H, and also with
the L∞-norm in the Wigner representation. For ease of notation, in what
follows we will not distinguish between elements of the algebra Aθ and their
corresponding operators in the GNS representation.

2.2 D-Branes as Noncommutative Solitons

Let us now briefly recall how D-branes arise as soliton configurations which
are described as projection operators or partial isometries in the algebra Aθ

of the noncommutative torus1. We are interested in systems of unstable
D-branes in a closed Type II superstring background of the form M × T

2.
The particular configurations comprise D9-branes in Type IIA string theory
and D9–D9 pairs in Type IIB string theory. As it is by now well-known, the
effect of turning on a non-degenerate B-field along T

2 leads to an effective
1The reader not familiar with, or not interested in, string theory applications may easily

skip this subsection without any loss of continuity.
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description of the dynamics of these systems in terms of noncommutative ge-
ometry [72]. Integrating out all massive string modes in the weakly-coupled
open string field theory yields a low-energy effective action that describes a
noncommutative field theory of the open string tachyon field T and the open
string gauge connection ∇. The classical equations of motion admit inter-
esting soliton solutions [23, 38, 78] which lead to an open string field theory
description of D-branes in terms of tachyon condensation as follows [73].

In the Type IIA case (or alternatively the bosonic string), the tachyon
field T on the D9-branes is Hermitian and adjoint-valued, and the tachyon
potential is of the form V (T 2 − 11), whose global minimum at T = ± 11 is
identified as the closed string vacuum containing no perturbative open string
excitations. Solving the classical field equations is in general tantamount
to seeking slowly-varying tachyonic configurations, i.e. [∇, T ] = 0, which
extremize the tachyon potential, i.e. T V ′(T 2 − 11) = 0. One thereby finds
solutions in terms of projection operators P ∈ Aθ as

T = 11 − P , P2 = P = P† . (2.23)

A projection operator P(k) of rank k induces a U(k) gauge symmetry on
the lower dimensional unstable D-brane (with worldvolume M), whose dy-
namical degrees of freedom are operators on ker(T ) → ker(T ). Since the
projections are intimately related to the K-theory of the algebra Aθ, this
construction also illustrates the relation between D-branes and K-theory.

In the Type IIB case, the tachyon field on the D9–D9 pairs is complex,
and the tachyon potential is of the form

V
(
T , T †

)
= U

(
T † T − 11

)
+ U

(
T T † − 11

)
, (2.24)

in order to respect the symmetry given by the action of the operator (−1)FL

which corresponds to interchanging the branes and anti-branes (FL is the
left-moving worldsheet fermion number operator). Now the field equations
imply that T must satisfy the defining equation of a partial isometry

T T † T = T . (2.25)

The net brane charge is index(T ) and, assuming for simplicity that coker(T ) =
0, the dynamical degrees of freedom on the lower-dimensional BPS D-brane
again arise from operators on ker(T ) → ker(T ).

In both the IIA and IIB situations, the tensions and effective actions
of these soliton solutions match exactly with those of the lower dimensional
D-branes [1, 37, 43]. In this way the projections and partial isometries of
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Aθ generate exact D-brane solutions of the equations of motion, with the
correct value of the tension. In constructing these D-brane projections, it is
convenient to use not just a single projection operator in (2.23), but rather
a complete set of mutually orthogonal projections Pi with [43]

Pi Pj = δij Pj ,
∑

i

Pi = 11 . (2.26)

Appropriate combinations of the projection operators Pi determine solutions
of the Yang-Mills equations on Aθ [62]. In the following we will construct a
natural system of projections and partial isometries which determine matrix
regularizations of these sorts of noncommutative field theories.

2.3 A Sequence of Projections

The archetype of all projections on the noncommutative two-torus is the
Powers-Rieffel projection [68]. To construct it, we first observe that there is
an injective algebra homomorphism

ρ : C∞ (
S

1
) −→ Aθ ,

f(x) =
∑
m∈Z

fm e 2π i m x �−→ ρ(f) =
∑
m∈Z

fm Um , (2.27)

and by using the commutation relations (2.3) it follows, in particular, that if
f(x) is mapped to ρ(f), then V ρ(f)V −1 is the image of the shifted function
f(x+ θ). The map (2.27) is just the Weyl map (2.5) restricted to functions
of the variable x alone with the corresponding properties (2.11).

One now looks for projections of the form

Pθ = V −1 ρ(g) + ρ(f) + ρ(g)V . (2.28)

In order that (2.28) define a projection operator, the functions f, g ∈ C∞(S1)
must satisfy some conditions. First of all, they are real-valued and in addi-
tion obey

g(x) g(x + θ) = 0 ,(
f(x) + f(x+ θ)

)
g(x) = g(x) ,

g(x) + g(x− θ) =
√
f(x) − f(x)2 , (2.29)
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with 0 ≤ f ≤ 1. These conditions are satisfied by putting

f(x) =

⎧⎨⎩
smoothly increasing from 0 to 1 0 ≤ x ≤ 1 − θ

1 1 − θ ≤ x ≤ θ
1 − f(x− θ) θ ≤ x ≤ 1

,

g(x) =
{

0 0 ≤ x ≤ θ√
f(x) − f(x)2 θ ≤ x ≤ 1

. (2.30)

There are myriads of other choices possible for these bump functions, and
later on we will use a particular one which is useful for our generalizations.

It is straighforward to check that the rank (i.e. trace) of Pθ is just θ.
From (2.28) and the expressions in (2.30) one finds

∫
− Pθ = f0 =

1∫
0

dx f(x) = θ . (2.31)

Furthermore, the monopole charge (i.e. first Chern number) of Pθ is 1. Given
any projection P, its Chern number is given by [16]

c1(P) = − 1
2π i

∫
− P (∂1P ∂2P − ∂2P ∂1P) . (2.32)

This quantity always computes the index of a Fredholm operator, and hence
is always an integer. For the projection Pθ one finds

c1(Pθ) = −6

1∫
0

dx g(x)2 f ′(x) = 1 , (2.33)

where the last equality follows from the explicit choice (2.30) for the function
f .

When θ is an irrational number, together with the trivial projection 11,
the projection Pθ generates the K0 group. The trace on Aθ gives a map∫

− : K0(Aθ) −→ Z + Z θ ,

r [11] +m [Pθ] �−→ r

∫
− 11 +m

∫
− Pθ = r +mθ (2.34)

which is an isomorphism of ordered groups [66]. The positive cone is the
collection of (equivalence classes of) projections with positive trace,

K+
0 (Aθ) =

{
(r,m) ∈ Z

2
∣∣ r +mθ ≥ 0

}
. (2.35)
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The projection Pθ thereby leads to a complete set of projections for the
entire lattice of Dp–D(p − 2) brane charges.

For completeness and later use, let us also add at this point a few remarks
about the group K1(Aθ). This group is made up of equivalence classes of
homotopic unitary elements in Aθ. It is easy to see that all powers Um V r are
mutually non-homotopic. If Um V r and Um′

V r′ are homotopic, then so are
e−2π i (m−m′)r′θ Um−m′

V r−r′ and 11. But there cannot be a continuous path
of unitaries from Um V r to 11 since

∫
Um V r = 0 for (m, r) 
= (0, 0), whereas∫

11 = 1. Passing to the matrix algebra MN (Aθ) := Aθ ⊗ MN (C) does not
improve the situation since the same argument works with

∫
replaced by∫ ⊗ Tr , where Tr is the usual N ×N matrix trace. Thus

K1(Aθ) = Z[U ] ⊕ Z[V ] . (2.36)

For our purposes we will find it more useful to define two generalized
families of projections {Pn}n≥1 and {P′

n}n≥1 which are related to the even
and odd order approximants of the noncommutativity parameter

θ = lim
n→∞ θn , θn :=

pn

qn
. (2.37)

Any irrational number θ can be treated as a limit (2.37) of rational num-
bers θn in a definite way by using continued fraction expansions. The ap-
proximants of θ, as well as the limiting process in (2.37), are described in
appendix A, where we also fix some number theoretic notation. For each
n ∈ N, following the Elliott-Evans construction [26], we define two Powers-
Rieffel type projections by

Pn = V −q2n−1 ρ(gn) + ρ(fn) + ρ(gn)V q2n−1 , (2.38)
P′

n = U q2n ρ′(g′n) + ρ′(f ′n) + ρ′(g′n)U−q2n , (2.39)

where ρ′ is the “dual” of the representation (2.27),

ρ′ : C∞ (
S

1
) −→ Aθ ,

g(y) =
∑
r∈Z

gr e 2π i r y �−→ ρ′(g) =
∑
r∈Z

gr V
r , (2.40)

and now Uρ′(g)U−1 is the image of the shifted function g(y− θ). Again, the
map (2.40) is just the Weyl map (2.5) restricted to functions of the variable
y alone with the corresponding properties (2.12).

The importance of the projections (2.38) and (2.39) is that they provide
the building blocks for the construction [26] of a sequence of subalgebras
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An ⊂ Aθ which converge to the full algebra Aθ of the noncommutative
torus. We shall describe this construction at length in section 3. Each of
these subalgebras is a sum of two algebras of matrix-valued functions on a
circle. Heuristically, the picture which will emerge is that of two “solitonic
fuzzy tori” which wrap around two circles. Any field on the noncommutative
torus will thereby admit a regularization by two sets of matrix-valued soliton
configurations, each of which is a function on a circle.

In the remainder of this section we will describe the properties of the
projections Pn and P′

n. Since for the time being we will work at a fixed
approximation level n, to simplify notation we will suppress the subscript
n on the functions f , g, f ′ and g′ and the subscripts 2n and 2n − 1 on the
integers p and q. To distinguish q2n from q2n−1 we will denote the former
integer by q and the latter one by q′, and similarly for p. Subscripts will be
reintroduced whenever we discuss the limiting process explicitly.

Let us then look for a projection of the form Pn = V −q′ ρ(g) + ρ(f) +
ρ(g)V q′ . As for the Powers-Rieffel projection (2.28), the real-valued func-
tions f and g must now satisfy the conditions

g(x) g(x + q′ θ) = 0 ,(
f(x) + f(x+ q′ θ)

)
g(x) = g(x) ,

g(x) + g(x− q′ θ) =
√
f(x) − f(x)2 , (2.41)

with 0 ≤ f ≤ 1. We shall also require f to have trace

β = p′ − q′ θ (2.42)

so that Pn is of rank β, and fix g in such a manner that its K0-class is
(p′,−q′). These numbers β also come in a sequence {β2n} which is defined
in appendix A, eq. (A.8).

As before, the functions f and g are “bump” functions which now differ
from zero only in small intervals. Viewed as continuous functions, they are
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given by2

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ x ≤ 1
2q − δ

1
δ−σ

(
x− 1

2q + δ
)

1
2q − δ ≤ x ≤ 1

2q − σ

1 1
2q − σ ≤ x ≤ 1

2q + σ
1

δ−σ

(
−x+ 1

2q + δ
)

1
2q + σ ≤ x ≤ 1

2q + δ

0 1
2q + δ ≤ x ≤ 1

,

g(x) =

{ √
f(x) − f(x)2 1

2q − δ ≤ x ≤ 1
2q − σ

0 otherwise
, (2.43)

where σ < δ < 1
2q are positive quantities which are fixed by two conditions.

The first one is simply that the trace of f be β = p′−q′ θ, i.e.
∫ 1
0 dx f(x) = β.

From the explicit form in (2.43) it is easy to see that the integral is just δ+σ.
Thus the first condition is

δ + σ = β . (2.44)

The second condition comes from the usage of the projections Pn in the
approximation scheme that we mentioned earlier and it ensures the best
possible transformation properties for Pn with respect to the generators U
and V [26]. The condition consists in choosing f to have the least possible
slope in the two intervals where it is not constant. The minimal slope is the
larger of the two numbers β−1 and (1/q − β)−1 according to whether β is
smaller or larger than 1/2q. Again, from the explicit expression in (2.43)
the slope is just (δ − σ)−1. Thus the second condition is

δ − σ =

{
β β ≤ 1

2q
1
q − β β ≥ 1

2q

. (2.45)

By putting together the conditions (2.44) and (2.45) we get

σ =
{

0
β − 1

2q
, δ =

{
β β ≤ 1

2q
1
2q β ≥ 1

2q

. (2.46)

Examples of the functions f and g are plotted in Fig. 1.

One also defines a number β′ by the relations (1/q−β)−1 := q/q′β′. This
is equivalent to3

β′ = q θ − p , (2.47)
2We should really give a “smoothened” version of these bump functions. This can

always be accomplished without any difficulty [15] and we will implicitly assume that it

has been done whenever necessary.
3The sequence {β2n−1} for the β′’s is defined in appendix A, eq. (A.9).
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1

Figure 1: Profiles of the bump functions f (solid line) and g (dashed line)
used to construct the projection Pn. The noncommutativity parameter is
taken to be the inverse of the golden mean, θ = 2√

5+1
, while the approximants

are chosen as θ2n = 3
5 and θ2n−1 = 5

8 .

from which we have the relation4

q β + q′ β′ = 1 . (2.48)

The number β′ plays the same role for the projection P′
n as β does for Pn.

By construction, the rank of Pn is β,

∫
− Pn = f0 =

1∫
0

dx f(x) = β = p′ − q′ θ , (2.49)

while its monopole charge is −q′,

c1(Pn) = −6 q′
1∫

0

dx g(x)2 f ′(x) = −q′ , (2.50)

where the last equality follows from the explicit choice (2.43) for the bump
functions. In a completely analogous manner one finds∫

− P′
n = β′ = −p+ q θ , c1(P′

n) = q . (2.51)

Thus the projection Pn in (2.38) represents a soliton configuration carrying
brane charges (p2n−1,−q2n−1), and the integers p2n−1 and q2n−1 thereby
parametrize the vacua of the open string field theory. The rank β of Pn is

4See appendix A, eq. (A.10).
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the D-brane charge after tachyon condensation. Analogously, the projection
P′

n has brane charges (−p2n, q2n).

Because these solitons will converge to generic fields on the noncom-
mutative torus, it is instructive to examine their spacetime dependence as
elements of C∞(T2). From (2.3), (2.6) and (2.39) we can easily compute the
Wigner function on T

2 corresponding to the projection Pn in terms of the
bump functions (2.43) as

Ω−1(Pn)(x, y) = f(x) + 2 cos
(
2π q′ y

)
g
(
x− 1

2 q
′ θ
)
. (2.52)

The soliton field (2.52) represents a typical unstable D7-brane projection
configuration and its shape is plotted in Fig. 2. Note that each physical field
configuration (2.52) is concentrated in two regions, each of which is localized
along the x-cycle of the torus but extended along the y-direction. It there-
fore defines tachyonic lumps that have strip-like configurations, unlike the
standard point-like configurations of GMS solitons on the noncommutative
plane. The first lump has a smooth locus of points and strip area 2σ depend-
ing on both the D-brane charge and the monopole charge. The second lump
contains a periodically spiked locus of support points, with period q′ and
area δ−σ. The spiking exemplifies the UV/IR mixing property that generic
noncommutative fields possess, in that the size of the configuration decreases
as its oscillation period (the monopole charge) grows. Similar considerations
can be made for the Wigner function Ω−1(P′

n)(x, y).
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Figure 2: The soliton field configuration corresponding to the projection op-
erator Pn on the noncommutative torus. The noncommutativity parameter
is as in Fig. 1. The vertical axis is the Wigner function Ω−1(Pn)(x, y) and
the horizontal plane is the (x, y)-plane.
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3 Soliton Regularization of Noncommutative Fields

We will now give the construction of the subalgebras An and describe in
precisely what sense these subalgebras approximate the full algebra Aθ of
the noncommutative torus [26]. We will also describe how to appropriately
truncate fields to An in such a manner that they are recovered in the limit
n → ∞. Throughout we shall keep in mind the physical interpretations of
these objects within the noncommutative D-brane soliton picture. In this
section we shall describe in some detail how the pertinent matrix algebras
emerge.

3.1 From Solitons to Matrix Subalgebras

For a fixed integer n, the subalgebra An is constructed starting from the
projections Pn and P′

n given in (2.38) and (2.39). These two projections will
give rise to two towers in Aθ in which the two unitary generators U and V are
treated symmetrically: one of them is modelled in one tower and the second
in the other tower. A tower in Aθ of height n is a family of n orthogonal
projections in Aθ all obtained from a single one by the canonical action of
a cyclic subgroup of S

1 = T
1 of order n. In the present case the first tower

will be of height q, with q projections of trace β = p′− q′ θ, while the second
tower will be of height q′, with q′ projections of trace β′ = q θ − p. The two
towers will be orthogonal, i.e. the sum of the projections making up the first
tower is the orthogonal complement of the sum of the projections making
up the second tower. In order to achieve this it is necessary to adjust the
second tower using the fact that any two projections in Aθ with the same
K0-class are unitarily equivalent [69]. From the orthogonality property we
must then have that

q (p′ − q′ θ) + q′ (q θ − p) = q p′ − q′ p = 1 (3.1)

which is just the relation (2.48) (see also (A.10)).

For the rest of this subsection we shall simply write P = Pn and P′ = P′
n.

Given the projection P, we first “translate” it by the (outer) automorphism
α : Aθ → Aθ defined by

α(U) = e 2π i p/q U , α(V ) = V . (3.2)

The corresponding Wigner function (2.52) is translated accordingly along
the x-cycle of the torus T

2,

Ω−1
(
α(P)

)
(x, y) = Ω−1(P)(x+ p/q, y) . (3.3)
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By repeatedly applying α we can define new projections

Pii := αi−1(P)

= V −q′ ρ
(
g
(
x+ (i− 1) p/q

))
+ ρ

(
f
(
x+ (i− 1) p/q

))
+ ρ

(
g
(
x+ (i− 1) p/q

))
V q′ (3.4)

for i = 1, . . . , q. Since αq = id, it follows that P = P11 = Pq+1,q+1. More-
over, using the explicit form of (2.43) it is straightforward to check that the
elements (3.4) form a system of mutually orthogonal projection operators,
i.e. Pii Pjj = δij Pjj. As the notation suggests, these projections are the
diagonal elements of a basis for a certain matrix subalgebra of Aθ which we
are now going to describe.

Let Hi ⊂ H = L2(Aθ ,
∫

) be the range of the projection Pii. Physically, if
Pii describes a collection of noncommutative D-brane solitons, then Hi is the
corresponding Chan-Paton space of the brane configuration, and Pii Aθ Pii is
the algebra of endomorphims of this Chan-Paton space. Of course, this space
(and its endomorphism algebra) need not be finite-dimensional, in which case
the induced D-brane worldvolume carries a U(∞) gauge symmetry after
tachyon condensation owing to the infinite collection of image branes on
the torus. This infinite-dimensional symmetry corresponds to invariance of
the noncommutative field theory under symplectomorphisms of the D-brane
worldvolume [51]. On each of the Hi the corresponding projection Pii acts
as the identity 11, while for j 
= i one has Hi ⊂ ker(Pjj). In the D-brane
picture, this means that the dynamical degrees of freedom on any pair of
distinct non-BPS solitons acts on each other’s massless open string states.

We will also need another set of operators which map one Chan-Paton
subspace into another, as they will be the off-diagonal elements of the matrix
algebra basis. For this, we consider the operator

Π21 := P22 V P11 . (3.5)

This operator is a mapping from H1 to H2, but is not an isometry, i.e.
(Π21)† Π21 
= 11. This fact may be remedied somewhat by introducing a re-
lated partial isometry P21, i.e. an operator for which (P21)† P21 and P21 (P21)†

are projection operators, or equivalently P21 (P21)† P21 = P21. Such an op-
erator is given by the partial isometry appearing in the polar decomposition

Π21 := P21
∣∣Π21

∣∣ , ∣∣Π21
∣∣ =

√
(Π21)† Π21 , (3.6)

which is well-defined since the operator (3.5) is bounded. The decomposition
(3.6) is understood as an equation in the representation of the algebra Aθ on
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the Hilbert space H, so that P21 ∈ Aθ. The physical significance of such an
operator is that it is unitary in the orthogonal complement to a kernel and
a cokernel, and hence will produce localized solitons (in the Wigner repre-
sentation). The operator Π21

n and the partial isometry P21
n come arbitrarily

close to each other in the large n limit [26], in the sense that

lim
n→∞

∥∥Π21
n − P21

n

∥∥
0

= 0 . (3.7)

By using (2.3), (2.6) and (3.4), a straightforward calculation gives the
Wigner function on T

2 corresponding to the operator (3.5) in terms of the
periodic bump functions (2.43) as

e−2π i y Ω−1
(
Π21

)
(x, y)

= f
(
x+ p

q − θ
2

)
f
(
x+ θ

2

)
+ g

(
x+ p

q − θ
2

)
g
(
x+ θ

2

)
+ g

(
x+ p

q − (2q′+1) θ
2

)
g
(
x+ (2q′−1) θ

2

)
+ e 4π i q′ y g

(
x+ p

q − (2q′+1) θ
2

)
g
(
x+ θ

2

)
+ e−4π i q′ y g

(
x+ p

q − θ
2

)
g
(
x− (q′−1) θ

2

)
+ e 2π i q′ y

[
f
(
x+ p

q − (q′+1) θ
2

)
g
(
x− (q′−1) θ

2

)
+ f

(
x+ (q′+1) θ

2

)
g
(
x+ p

q − (q′+1) θ
2

)]
+ e−2π i q′ y

[
f
(
x+ p

q + (q′−1) θ
2

)
g
(
x− (q′−1) θ

2

)
+ f

(
x− (q′−1) θ

2

)
g
(
x+ p

q − (q′+1) θ
2

)]
. (3.8)

According to (3.7), the function (3.8) represents the typical stable D7-brane
soliton partial isometry (at least for sufficiently large approximation level
n). Its shape is plotted in Fig. 3. Again, the multi-soliton image is ap-
parent, with smooth and periodically spiked support loci. Note that while
the modulus of the function expectedly displays the characteristic strips of
projection solitons, the lumps of its real and imaginary parts are point-like
configurations.

Using (3.5) and (3.6), we may now define translated partial isometries
analogously to what we did in (3.4) as

Pi+2,i+1 := αi
(
P21

)
, i = 1, . . . , q − 2 , (3.9)

where α is the automorphism defined in (3.2). Finally, we also define

Pji :=
(
Pij

)†
. (3.10)
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Figure 3: The soliton field configuration corresponding to the operator Π21
n

on the noncommutative torus. Displayed are its real part (top), imaginary
part (middle), and modulus (bottom). Parameter values and axes are as in
Fig. 2.
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The important fact, proven in appendix B, is that for the operators (3.4)
and (3.9) which we have defined, there is a set of relations

Pij Pkl = δjk Pil . (3.11)

These relations suggest the definition of q2 operators Pij , 1 ≤ i, j ≤ q. The
remaining cases (j 
= i and j 
= i ± 1) are defined by (3.11). For example,
P13 := P12 P23, and so on. Recall that Hi ⊂ H = L2(Aθ ,

∫
) is the range of

the projection Pii. Then, the newly defined operators Pij obtained in this
way are partial isometries which are mappings from Hj to Hi, i.e. elements
of Pii Aθ Pjj. For the collection of all of them {Pij}1≤i,j≤q, the relation (3.11)
holds. In this way we can complete the sets of operators (3.4) and (3.9) into
a system of matrix units which generate a q × q matrix algebra. Because
of (3.11), a generic element of this algebra is a complex linear combination∑

i,j aij Pij and the product is the usual matrix multiplication.

There is, however, a caveat. The operators Pi+2,i+1 in (3.9) are only
defined for i ≤ q−2, and this is in fact sufficient to define all of the Pij using
(3.11), including

P1q := P12 P23 · · ·Pq−1,q . (3.12)

On the other hand, we can also define

P̃1q := αq−1
(
P21

)
. (3.13)

For the q × q matrix algebra to close, it would be necessary that the two
operators defined by (3.12) and (3.13) coincide. This is not the case. How-
ever, although they are not identical, both of these operators are isometries
from Hq to H1. As a consequence, they are related by an operator z which
is unitary on H1, i.e. a unitary element of P11 Aθ P11, and which is therefore
a partial isometry on the full Hilbert space H. We therefore have

P̃1q := z P1q . (3.14)

This means that the matrix units Pij , along with the partial isometry
z, close a subalgebra of Aθ, in which, using (3.11), a generic element is a
complex linear combination of the form

A(z) =
∑
k∈Z

q∑
i,j=1

aij;k z
k Pij . (3.15)

By regarding z as the unitary generator of a circle S
1, this subalgebra is

(naturally isomorphic to) the algebra Mq(C∞(S1)) of q × q matrix-valued
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functions on the circle. Since we are interested in continuous and differ-
entiable functions, we will always assume that the complex expansion co-
efficients aij;k in (3.15) are of sufficiently rapid descent as k → ∞, i.e.
{aij;k} ∈ Mq(C) ⊗ S(Z). The identity element of this subalgebra is

11q =
q∑

i=1

Pii . (3.16)

From the above definitions it follows that the trace of the matrix units is
given by ∫

− Pij = β δij . (3.17)

In particular, the identity element (3.16) has trace
∫

11q = q β.

In the same way, by starting from the projection P′ = P′
n in (2.39),

a second set of dual projections {P̂′ i′i′}1≤i′≤q′ can be built. This is tan-
tamount to using the Z4 Fourier transformation U �→ V, V �→ U−1 and
(p, q) ↔ (−p′,−q′) in the above construction. The dual set of projections is
not orthogonal in Aθ to the first set above. However, because of (3.17) and
the Diophantine property of appendix A, eq. (A.10), the second set is com-
plementary to the first in the sense that the K0-class of

∑
i P

ii +
∑

i′ P̂
′ i′i′ is

equal to the class (1, 0) of the unit element of Aθ. It follows that
∑

i′ P̂
′ i′i′ is

unitarily equivalent to 11−∑
i P

ii (as we have mentioned, any two projections
in Aθ with the same K0-class are unitarily equivalent [69]).

We can therefore “rotate” the dual set of projections by conjugating
it with the corresponding unitary operator w, and thereby obtain a gauge
equivalent set of projections which is orthogonal to the first set. This uni-
tary operator can be chosen in such a manner that limn→∞ ‖[U,wn]‖0 =
limn→∞ ‖[V,wn]‖0 = 0. This is essential to ensure that the orthogonal direct
sum of the two algebras built from each set of projections contains elements
approximating the unitary generators U and V of the noncommutative torus
Aθ, as will be analysed in more detail in the next subsection. With the gauge
transformed dual projections P′ i′i′ := w P̂′ i′i′ w†, we can now build another
set of matrix units P′ i′j′ , 1 ≤ i′, j′ ≤ q′ which again close a q′ × q′ matrix
algebra up to a partial isometry z′.

By proceeding as before, for each integer n, one generates an algebra
which is isomorphic to a matrix algebra

An
∼= Mq2n

(
C∞(S1)

) ⊕ Mq2n−1

(
C∞(S1)

)
. (3.18)

The direct sum arises from the orthogonality of the two towers based on
the projections Pn and P′

n, respectively. As we will discuss further later on,
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it is essential to have two copies of such matrix algebras as in (3.18), for
K-theoretic reasons. In what follows we will often use a matrix notation
for the elements of An. The matrix elements are always understood to be
multiplied by the operators Pij and P′ i′j′ when regarding them as elements
of Aθ.

3.2 The Approximation

We are now ready to describe in which precise sense the algebra An in (3.18)
approximates the full noncommutative torus Aθ [26]. A derivation of this ap-
proximation by means of Morita-Rieffel equivalence bimodules is presented
in [27] (see also [15]). We stress that An, being constructed out of elements
of the noncommutative torus, is a subalgebra of Aθ. The fact that this sub-
algebra approximates the noncommutative torus resides in the fact that for
each element a ∈ Aθ, it is possible to construct a corresponding element
an ∈ An which approximates it in norm. The key ingredients in the con-
struction are two unitary elements Un,Vn ∈ An which closely approximate
the generators U and V of Aθ. The approximation improves as n → ∞,
whereby the distance, in norm, between Un and U and between Vn and V
becomes arbitrarily small. We will give the matrix expressions for Un and Vn

and the estimate of their difference from U and V without proof, referring
to [26] for details. In this subsection we shall reintroduce the subscripts n
on all quantities in order to be able to take limits.

As we recall in appendix A, one can approximate the noncommutativity
parameter θ by sequences of even and odd order approximants θ2n < θ <
θ2n−1 with θk = pk/qk. For each level n we introduce roots of unity

ωn = e 2π i θ2n , ω′
n = e 2π i θ2n−1 , (3.19)

with (ωn)q2n = 1 = (ω′
n)q2n−1 . Define

Un =

(
q2n∑
i=1

(ωn)i−1 Pii
n

)
⊕

(
q2n−1−1∑

i′=1

P′ i′,i′+1
n + z′ P′ q2n−1,1

n

)

=
( Cq2n (0)q2n×q2n−1

(0)q2n−1×q2n Sq2n−1(z
′ )

)
,

Vn =

(
q2n−1∑
i=1

Pi,i+1
n + z Pq2n,1

n

)
⊕

( q2n−1∑
i′=1

(ω′
n)i

′−1 P′ i′i′
n

)

=
( Sq2n(z) (0)q2n×q2n−1

(0)q2n−1×q2n Cq2n−1

)
, (3.20)
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where generally (a)q×r denotes the q × r matrix whose entries are all equal
to a ∈ C. In these expressions, for any pair of relatively prime integers p, q
with q > 0, Cq is the q × q unitary clock matrix as in (2.13), while for any
z ∈ S

1, Sq(z) is the generalized q × q unitary shift matrix

Sq(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0

0 1
. . . . . .

. . . 1
z 0

⎞⎟⎟⎟⎟⎟⎟⎠ (3.21)

with (Sq(z)
)q = z 11q . (3.22)

The generalization in the shift matrix (3.21) resides in the presence of the
generic circular coordinate z. It becomes the usual shift matrix in (2.13)
when z is taken to be equal to 1, Sq = Sq(1).

As mentioned in section 2.1, the clock and shift matrices Cq and Sq(1)
form a basis for the finite-dimensional algebra Mq(C) of q × q complex-
valued matrices. By considering both z and z′ to be the unitary generators
of two distinct copies of the algebra C∞(S1), the matrices (3.20) generate
the infinite-dimensional algebra An

∼= Mq2n

(
C∞(S1)

)⊕Mq2n−1

(
C∞(S1)

)
of

matrix-valued functions on two circles. From their definition in (3.20), one
finds that

(Un)q2n q2n−1 =
(

11q2n (0)q2n×q2n−1

(0)q2n−1×q2n z′ q2n 11q2n−1

)
,

(Vn)q2n q2n−1 =
(
zq2n−1 11q2n (0)q2n×q2n−1

(0)q2n−1×q2n 11q2n−1

)
, (3.23)

and these matrices generate the center C∞(S1)⊕C∞(S1) of the algebra An.
Moreover, Un and Vn have a commutation relation which approximates the
one (2.3) of U and V ,

Vn Un = ωn Un Vn (3.24)

with

ωn = ωn

q2n∑
i=1

Pii
n ⊕ ω′

n

q2n−1∑
i′=1

P′ i′i′
n =

(
ωn 11q2n (0)q2n×q2n−1

(0)q2n−1×q2n ω′
n 11q2n−1

)
. (3.25)

In all of these expressions we have stressed the important double interpre-
tations of these generators. The first equality emphasizes that they are still
elements of the algebra Aθ (i.e. they are expandable in a basis of solitons on
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the noncommutative torus), while the second equality reminds us that they
are elements of a matrix algebra (i.e. they are matrix-valued fields on two
circles).

Following [26], we will now argue that the matrix algebra An “approx-
imates” the noncommutative torus Aθ. Some of the technical details are
given in appendix C. As recalled in appendix A, in the limit n → ∞ both
sequences θ2n and θ2n−1 converge to θ and both sequences q2n and q2n−1

diverge. Then, the generators Un and Vn of An converge in norm to the
generators U and V of Aθ as

‖U − Un‖0 ≤ εn , ‖V − Vn‖0 ≤ εn , (3.26)

where

εn = max
(

1
q2n

,
1

q2n−1

)
C

(
q2n−1 β2n−1

q2n β2n

)
(3.27)

and C is a suitable bounded function. For each n one now constructs a
projection

Γn : Aθ −→ An ,

a =
∑

(m,r)∈Z2

am,r U
m V r �−→ Γn(a) =

∑
(m,r)∈Z2

am,r (Un)m (Vn)r ,

(3.28)

which using (3.23) can also be written as

Γn(a) =
q2nq2n−1∑

i,j=1

A
(n)
ij (Un)i (Vn)j (3.29)

where

A
(n)
ij =

∑
(m,r)∈Z2

ai+m q2nq2n−1 , j+r q2nq2n−1

(
zr q2n−1 11q2n (0)q2n×q2n−1

(0)q2n−1×q2n z′m q2n 11q2n−1

)
.

(3.30)
In particular, Γn(U) = Un and Γn(V ) = Vn, which along with (3.24) shows
that Γn is not an algebra homomorphism. It becomes one, however, in the
limit n→ ∞. The crucial fact is that for any element a ∈ Aθ, its projection
Γn(a) is very close to it in norm, in the sense that from (3.26) it follows that
their difference goes to zero in the limit,

lim
n→∞

∥∥a− Γn(a)
∥∥

0
= 0 . (3.31)

Therefore, to each element of Aθ there always corresponds an element of
the subalgebra An to within an arbitrarily small radius. A generic element
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a ∈ Aθ can be approximated to arbitrarily good precision by a matrix-valued
function on two circles of the form

Γn(a) = an(z, z′ ) =
(

an(z) (0)q2n×q2n−1

(0)q2n−1×q2n a′n(z′ )

)
, (3.32)

with an(z) ∈ Mq2n(C∞(S1)) and a′n(z′ ) ∈ Mq2n−1(C
∞(S1)). Only the in-

formation about the higher momentum modes am,r of the expansion of a is
lost (i.e. for m, r > q2n q2n−1), and these coefficients are small for Schwartz
sequences. Hence the approximation for large n is good.

It is possible to prove an even stronger result [26] which gives a concrete
realization of the noncommutative torus as the inductive limit Aθ =

⋃∞
n=0 Bn

of an appropriate inductive system of algebras {Bn, ιn}n≥0, together with
injective unital ∗-morphisms ιn : Bn ↪→ Bn+1. It turns out that, for K-
theoretical reasons, the finite level algebras Bn must be taken as Bn = A2n+1,
with the latter algebra of the form (3.18). The crucial issue here is that the
embeddings from one algebra to the next one must be taken in such a way
that, in the limit, the K-theory groups (2.34) and (2.36) of the noncommu-
tative torus are obtained. That a judicious choice here is indeed possible
follows from the K-theoretic properties K0(S1) = K1(S1) = Z of the circle,
so that by Morita equivalence the K-theory groups of the matrix algebras
An are given by

K0(An) = K1(An) = Z ⊕ Z , (3.33)

with the canonical ordering K+
0 (An) = N0 ⊕ N0 for the dimension group.

The details are described in appendix D. A very heuristic explanation for
the necessity of using two towers in the matrix regularization will be given
in the next section.

The physical interpretation of the projection (3.29) should be clear. On
the original noncommutative torus, there is an infinite number of image
D-branes parametrized by the momentum lattice Z

2 of the quotient space
T

2 = R
2/Z2 used to construct the brane configurations from the universal

cover of the torus. The mapping (3.29) thereby corresponds to a truncation
of fields on the noncommutative torus in such a way that there are only a
finite number q2n q2n−1 of image D-branes on T

2 at each level n, correspond-
ing to the collection of physical open string modes which are invariant under
the action of the cyclic group Zq2n q2n−1 × Zq2n q2n−1 . The Wigner map can
also be used to determine the finite two-cocycle that appears in the twisted
convolution of the image of the product in the finite algebra, giving the ana-
log of (2.9) for the noncommutative torus, although we shall not investigate
this matter here.

Instead, in what follows it will be more useful to encode the noncom-
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mutativity of the algebra An by using the usual matrix multiplication of
functions on a circle S

1. We then obtain an expansion of noncommutative
fields in terms of both stable and unstable D-brane solitons on the torus T

2.
The remarkable fact about this soliton expansion is that it leads to a de-
scription of the dynamics of a noncommutative field in a very precise way in
terms of a one-dimensional matrix model, whose (inductive) limit reproduces
exactly the original continuum dynamics. This is quite unlike the situation
with the zero-dimensional matrix model regularizations of noncommutative
field theory [4, 46, 5], whereby the finite-dimensional matrix algebras can
never realize the noncommutative torus as an inductive limit [65]. In the
present case the regularization in fact mimicks most properties of the con-
tinuum field theory already at the finite level, owing to this much stronger
limiting behaviour. In the following we shall explore the implications of the
soliton regularization within this context.

4 Noncommutative Field Theory as Matrix Quan-
tum Mechanics

In this section we shall go back to the setting of section 2.2 and consider
open superstring field theory on the background M×T

2. As discussed there,
in the presence of a constant B-field the tachyon fields T are functions on
M → Aθ. The generic situation we will therefore consider is that there is a
set of fields, which we denote collectively by Φ, with Lagrangian density L, all
of which are functions on M → Aθ. By remembering that on the algebra Aθ

the integration is given by the trace (2.18), the action for noncommutative
string field theory compactified on a two-torus can be written schematically
as

S =
gs µ9

Gs

∫
M

√
detG

∫
− L[Φ, ∂µΦ] , (4.1)

where Gs and Gµν are the effective coupling and metric felt by the open
strings in the presence of the constant B-field along T

2, gs is the closed
string coupling constant, and µ9 is the spacetime-filling D-brane tension in
the absence of the B-field. The derivatives ∂µ, µ = 1, 2 are the canonical
linear derivations on Aθ defined in (2.20).

We will now use the mapping (3.28) onto the approximating subalgebra
An in (3.18) to build a matrix field theory which regulates the field the-
ory (4.1) on Aθ. Using (3.32) we replace the fields Φ on Aθ by the fields
Φn(z, z′ ) on An which are direct sums of q2n × q2n matrix fields Φn(z) and
q2n−1× q2n−1 matrix fields Φ′

n(z′ ) on S
1. We need to examine the actions of
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the trace (2.18) and derivative (2.20) on the algebra An. We will reinterpret
them as operations on the matrix algebras An, without reference to their
embeddings as subalgebras of the noncommutative torus Aθ, which in the
n → ∞ limit converge to the trace and derivative on Aθ. The resulting
matrix quantum mechanics can be regarded as a non-perturbative regular-
ization of the original continuum field theory on the noncommutative torus,
which is obtained as the limit n→ ∞.

4.1 Spacetime Averages

Let us start with the canonical trace. On elements of Aθ the trace (2.18)
is determined through the definition

∫
Um V r := δm0 δr0. To determine the

trace of corresponding elements of An, we note that because of (3.17), traces
of powers (Un)m (Vn)r of the generators (3.20) vanish unless the correspond-
ing powers of both the clock and shift operators are proportional to the
identity elements 11q2n or 11q2n−1 , which happens whenever m and r are arbi-
trary integer multiples of q2n or q2n−1. From the definitions of the unitaries
z and z′, we further have∫

− zm 11q2n = q2n β2n δm0 ,

∫
− z′m 11q2n−1 = q2n−1 β2n−1 δm0 , (4.2)

from which it follows that∫
−(Un)m (Vn)r =

∑
k∈Z

(
q2n β2n δm , q2n k δr0 + q2n−1 β2n−1 δm0 δr , q2n−1 k

)
.

(4.3)

In the large n limit, by using (A.10) we see that the trace
∫

Γn(a) is
therefore well approximated by a0,0, since the correction terms aq2n k , 0 and
a0 , q2n−1 k for k 
= 0 are then small for Schwartz sequences. It is now clear
how to rewrite

∫
Γn(a) in terms of operations which are intrinsic to the

matrix algebras (3.18). The trace (4.2) can be reproduced on functions on
S

1 by integration over the circle, while the trace of the matrix degrees of
freedom are ordinary q2n × q2n and q2n−1 × q2n−1 matrix traces Tr and
Tr ′, respectively, accompanied by the appropriate normalizations q2n β2n

and q2n−1 β2n−1. In An, we regard z and z′ as ordinary circular coordinates
and set z := e 2π i τ , with τ ∈ [0, 1), and z′ := e 2π i τ ′

, with τ ′ ∈ [0, 1). It
then follows that the trace of a generic element (3.32) can be written solely
in terms of matrix quantities as∫

− an = β2n

1∫
0

dτ Tr an(τ) + β2n−1

1∫
0

dτ ′ Tr ′ a′n(τ ′ ) . (4.4)
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4.2 Kinetic Energies

The definition of the equivalent of the derivations (2.20) is somewhat more
involved. We will define two approximate derivations ∇µ, µ = 1, 2 on An,
which in the limit n→ ∞ approach the ∂µ’s. They are approximate deriva-
tions in the sense that the Leibniz rule holds only in the limit. They are,
however, sufficient for the definition of the regulated action. For this, let us
look more closely at the map a �→ an = Γn(a) defined in (3.29,3.30), and
express it as a power series expansion

an(z, z′ ) = an(z) ⊕ a′n(z′ )

=
q2n∑

i,j=1

∑
k∈Z

α
(n)

i+
[

q2n
2

]
0
,j;k

zk (Cq2n)i (Sq2n(z)
)j

⊕
q2n−1∑
i′,j′=1

∑
k′∈Z

α
′ (n)

i′,j′+
[

q2n−1
2

]
0
;k′ z

′ k′ (Sq2n−1(z
′ )
)i′ (Cq2n−1

)j′
,

(4.5)

where [ · ]0 denotes the integer part. Notice that the roles of the clock and
generalized shift matrices are interchanged between the two towers. The shift
in the first index of the expansion coefficients α(n) in the first tower effectively
sets the range of the powers of the clock operators to lie symmetrically
about 0 in the range −[q2n

2

]
0
, . . . ,

[ q2n

2

]
0
. It is made for technical reasons

that will become clearer below. An analogous argument holds for the second
index of α′ (n) in the second tower. The remaining momentum modes lie in
the range j = 1, . . . , q2n and i′ = 1, . . . , q2n−1. While differences between the
various index range conventions vanish in the limit n → ∞, they do affect
the convergence properties of the finite level approximations.

The expansion coefficients of (4.5) may be computed from (3.29,3.30) to
get

α
(n)
i,j;k =

∑
l∈Z

a
i+q2nl−

[
q2n
2

]
0

, j+q2nk
,

α
′ (n)
i′,j′;k′ =

∑
l′∈Z

a
i′+q2n−1k′ , j′+q2n−1l′−

[
q2n−1

2

]
0

. (4.6)

In the first tower the coefficients of the high momentum modes of U are
summed to low momentum ones. However, for Schwartz sequences this
“correction” is small and vanishes as q2n → ∞. The choice of the range
of powers of the clock matrices made in (4.5) was in fact motivated by the
necessity to be able to ignore these small coefficients. In the second tower
it is the high momentum modes of V which are lost. The interplay between
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the two towers is such that they neglect different high momentum modes, so
that in a certain sense the two errors “compensate” each other. The repre-
sentation (4.5,4.6) thereby provides a nice heuristic insight into the role of
the two towers in the matrix regularization.

Let us now look at the projection of ∂1a = 2π i
∑

m,r mam,r U
m V r in

the two towers. By using (4.6) the corresponding expansion coefficients may
be written as(

Γn(∂1a)
)
i,j;k

= 2π i
∑
l∈Z

(
i+ q2nl −

[ q2n

2

]
0

)
a

i+q2nl−
[

q2n
2

]
0

, j+q2nk

= 2π i
(
i− [ q2n

2

]
0

)
α

(n)
i,j;k +O

(
q2n ai−

[
q2n
2

]
0

, q2nk

)
,

(
Γn(∂1a)

)′
i′,j′;k′ = 2π i

∑
l′∈Z

(
i′ + q2n−1k

′ ) a
i′+q2n−1k′ , j′+q2n−1l′−

[
q2n−1

2

]
0

= 2π i
(
i′ + q2n−1k

′ ) α(n)
i′,j′;k′ . (4.7)

In the first set of equalities in (4.7) the neglected terms in the second equality
vanish for Schwartz sequences as n→ ∞, while in the second set no approx-
imation is necessary. The same reasoning can be repeated for the projection
of ∂2a, and together these results suggest the definitions

∇1an(z, z′ ) = 2π i

⎡⎣ q2n∑
i,j=1

∑
k∈Z

i α
(n)

i+
[

q2n
2

]
0
,j;k

zk (Cq2n)i
(Sq2n(z)

)j

⊕
q2n−1∑
i′,j′=1

∑
k′∈Z

(
i′ + q2n−1k

′ ) α′ (n)

i′,j′+
[

q2n−1
2

]
0
;k′ z

′ k′

× (Sq2n−1(z
′ )
)i′ (Cq2n−1

)j′
]
,

∇2an(z, z′ ) = 2π i

⎡⎣ q2n∑
i,j=1

∑
k∈Z

(j + q2n−1k)α
(n)

i+
[

q2n
2

]
0
,j;k

zk

× (Cq2n)i (Sq2n(z)
)j

⊕
q2n−1∑
i′,j′=1

∑
k′∈Z

j′ α′ (n)

i′,j′+
[

q2n−1
2

]
0
;k′ z

′ k′(Sq2n−1(z
′ )
)i′ (Cq2n−1

)j′

⎤⎦ .

(4.8)

These two operations converge to the canonical linear derivations on the
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algebra Aθ and satisfy an approximate Leibniz rule which is proven in ap-
pendix E.

We now wish to express the “derivatives” (4.8) as operations acting on
an(z, z′ ) expressed as a pair of matrix-valued functions on circles,

an(z, z′ ) =
∑
k∈Z

q2n∑
i,j=1

a
(n)
ij;k z

k Pij
n ⊕

∑
k′∈Z

q2n−1∑
i′,j′=1

a
′ (n)
i′j′;k′ z

′ k′
P′ i′j′

n . (4.9)

For this, we need to find the appropriate change of matrix basis between the
two expansions (4.5) and (4.9). We will do this explicitly below only for the
first tower, the analogous formulæ for the second tower being the obvious
modifications.

The key formula which enables this change of basis is provided by the
identity

(Cq2n)i
(Sq2n(z)

)j =
q2n−j∑
s=1

(ωn)i(s−1) Ps,s+j
n +z

q2n∑
s=q2n−j+1

(ωn)i(s−1) Ps,s+j−q2n
n ,

(4.10)
which is readily derived from the orthonormality relation (3.11). A straight-
forward consequence of (4.10), the trace formula (3.17), and the identity

1
q2n

q2n∑
t=1

(ωn)t(s−s′ ) = δss′ for s, s′ ∈ Zq2n (4.11)

is that the elements of the matrix basis of the expansion (4.5) are orthogonal,

Tr
[(Sq2n(z)†

)j
(
C†

q2n

)i
] [

(Cq2n)s
(Sq2n(z)

)t
]

= q2n β2n δis δjt . (4.12)

From (4.12) it follows that the expansion coefficients of (4.5) may thereby
be computed as

α
(n)

i+
[

q2n
2

]
0
,j;k

=
1

q2n β2n

∮
dz

2π i zk+1
Tr an(z)

(Sq2n(z)†
)j

(
C†

q2n

)i
. (4.13)

By substituting (4.9) into (4.13), and using (4.10) along with (3.17), after
some algebra we arrive at the change of basis a(n)

ij;k �→ α
(n)
i,j;k in the form

α
(n)

i+
[

q2n
2

]
0
,j;k

=
1
q2n

[
q2n−j∑
s=1

a
(n)
s,s+j;k (ωn)−i(s−1)

+
q2n∑

s=q2n−j+1

a
(n)
s,s+j−q2n;k+1 (ωn)−i(s−1)

⎤⎦ . (4.14)
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On the other hand, from (3.17) it follows that the expansion coefficients of
(4.9) may be computed from

a
(n)
ij;k =

1
β2n

∮
dz

2π i zk+1
Tr an(z)Pji

n . (4.15)

By substituting (4.5) into (4.15), and again applying (4.10) and (3.17), we
arrive at the change of basis α(n)

i,j;k �→ a
(n)
ij;k in the form

a
(n)
ij;k =

q2n∑
s=1

(ωn)s(i−1) ×

⎧⎪⎨⎪⎩
α

(n)

s+
[

q2n
2

]
0
,j−i;k

i < j

α
(n)

s+
[

q2n
2

]
0
,q2n+j−i;k−1

i ≥ j
. (4.16)

Let us now deal with the derivative ∇1 acting on the first tower in (4.8),
and substitute i α(n)

i+
[

q2n
2

]
0
,j;k

in place of α(n)

i+
[

q2n
2

]
0
,j;k

in (4.16) to obtain the

canonical matrix elements b(n)
i,j;k of the expansion of ∇1an(z, z′ ) analogous

to (4.9). For i < j, it follows from (4.14) that they are given by

b
(n)
i,j;k =

1
q2n

q2n∑
s=1

s (ωn)si
[

q2n−j+i∑
s′=1

a
(n)
s′,s′+j−i;k (ωn)−ss′

+
q2n∑

s′=q2n+i−j+1

a
(n)
s′,s′+j−i−q2n;k+1 (ωn)−ss′

⎤⎦ , (4.17)

with a similar expression in the case i ≥ j. To understand the geometrical
meaning of the expression (4.17), we recall that the translation generators
on the ordinary torus T

2 are given by

e−x0 ∂1 f(x, y) e x0 ∂1 = f(x+ x0, y) (4.18)

plus the analogous expression for the shift in y. The canonical derivations
on the fuzzy torus, i.e. the discrete versions of these operators, are realized
in a unitary fashion (rather than Hermitian) and are given by clock and shift
matrices as [4, 5] (

C†
q2n

an Cq2n

)
i,j;k

= (ωn)j−i a
(n)
ij;k ,(

S†
q2n

an Sq2n

)
ij;k

= a
(n)
[i−1]q2n , [j+1]q2n ; k

(4.19)

with [ · ]q denoting the integer part modulo q. Given that the periodic delta-
function on the cyclic group Zq2n is represented by the finite Fourier trans-
form (4.11) in terms of the q2n-th roots of unity ωn, the sum

∑
t t (ωn)t(s−s′)
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may be formally identified as being proportional to a discrete derivative of
the delta-function5 on Zq2n .

The relation (4.17) thereby identifies a finite shift operator Σ acting on
functions f : Zq2n → C. It may be regarded as the “infinitesimal” version of
the shift operation in (4.19), according to the definition

−2π i
q2n

q2n∑
s,t=1

t (ωn)t(s−s′) f(s) := Σf(s′ ) . (4.20)

In components this operator can be written as Σf(s′ ) =
∑

s Σss′ f(s) with

Σss′ = −2π i
q2n

q2n∑
t=1

t (ωn)t(s−s′) . (4.21)

For the action on matrices we define

(Σan)ij;k := b
(n)
ij;k . (4.22)

In components its action on matrix-valued functions on a circle is given by
the expression Σan(τ)ij =

∑
s,t Σ(τ)ij,st an(τ)st, with

Σ(τ)ij,st = Σis ×

⎧⎪⎪⎨⎪⎪⎩
δt,s+j−i i < j 1 ≤ s ≤ q2n + i− j

δt,s+j−i−q2n e 2π i τ i < j q2n + i− j + 1 ≤ s ≤ q2n

δt,s+i−j j ≤ i 1 ≤ s ≤ q2n + j − i
δt,s+i−j−q2n e−2π i τ j < i q2n + j − i+ 1 ≤ s ≤ q2n

.

(4.23)
The skew-adjoint shift operator Σ defines the finite analog of the derivative
∂1 acting on the matrix part of the expansion (4.9).

Proceeding to the derivative ∇2 acting on the first tower in (4.8), by
defining the “infinitesimal” clock operator

Ξij := 2π i j δij (4.24)

we may write the canonical matrix expansion coefficients c(n)
ij;k of j α(n)

i+
[

q2n
2

]
0
,j;k

using (4.14) and (4.16) as

c
(n)
ij;k = (j − i) a(n)

ij;k =
1

2π i
[
Ξ , an

]
ij;k

. (4.25)

5To understand this identification better, it is instructive to recall the Fourier integral

representation of the Dirac delta-function δ(x) =
∫

R
dk e i k x on the real line R. From this

formula it follows that δ′(x) = i
∫

R
dk k e i k x is the Fourier expansion of the derivative

of the delta-function.
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The operator Ξ defines the “infinitesimal” version of the clock operation in
(4.19) and yields the finite analog of the derivative ∂2 acting on the matrix
part of the expansion (4.9). In this sense, the derivative terms in this matrix
model are more akin to the derivatives obtained by expanding functions on
the noncommutative plane in a soliton basis [54, 48, 11, 52, 33, 49].

Finally, the components of the derivations in (4.8) which are proportional
to the circular Fourier integers k are evidently proportional to the deriva-
tive operators z d/dz of S

1 acting on an(z). Completely analogous formulæ
hold also for the second tower in (4.8). In this way we may represent the
derivatives (4.8) acting on matrix-valued functions (4.9) on S

1 as

∇1an(τ, τ ′ ) = Σan(τ) ⊕ (
q2n−1 ȧ′n(τ ′ ) +

[
Ξ′ , a′n(τ ′ )

])
,

∇2an(τ, τ ′ ) =
(
q2n ȧn(τ) +

[
Ξ , an(τ)

]) ⊕ Σ′a′n(τ ′ ) , (4.26)

where ȧn(τ) := dan(τ)/dτ and ȧ′n(τ ′ ) := da′n(τ ′ )/dτ ′.

4.3 Approximate Actions

We can now write down an action defined on elements of An which approx-
imates well the action functional (4.1) as

Sn =
gs µ9

Gs

∫
M

√
detG

⎧⎨⎩β2n

1∫
0

dτ Tr L[Φn(τ) , ∇µΦn(τ)
]

+ β2n−1

1∫
0

dτ ′ Tr ′ L[Φ′
n(τ ′ ) , ∇µΦ′

n(τ ′ )
]⎫⎬⎭ , (4.27)

with ∇µ, µ = 1, 2 given by (4.26). The noncommutativity of the torus has
now been transformed into matrix noncommutativity. Note, however, that
this is not the Morita equivalence of noncommutative field theories, which
would connect a field theory on the noncommutative torus to a matrix theory
on the regular torus T

2. Here the matrix model is defined on a sum of two
circles, and the procedure is exact in the limit, in the sense that the algebras
An converge to Aθ in the manner explained in the previous section. The
fact that (4.27) already involves continuum fields is also the reason that the
derivations (4.26) are infinitesimal versions of the usual lattice ones (4.19),
and in the present case the removal of the matrix regularization does not
require a complicated double scaling limit involving a small lattice spacing
parameter. In the next section we shall study some explicit examples of
this approximation to field theories on the noncommutative torus and, in
particular, describe some aspects of their quantization in the matrix repre-
sentation.
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5 Applications

In this section we will briefly describe three simple applications of the matrix
quantum mechanics formalism. First, we shall analyse how the perturbative
expansion of noncommutative field theories is described by the matrix model.
We show that at any finite level n, there is no UV/IR mixing present in quan-
tum amplitudes, but that the standard divergences are recovered in the limit
n → ∞. This suggests that the present matrix formalism could be a good
arena to explore the renormalization of noncommutative field theories. Sec-
ond, we examine a simple model for the energy density in string field theory.
We show that the correct tension of a D-brane in processes involving tachyon
condensation is already reproduced at a finite level in the matrix model. This
feature fits well with the recent proposals on the description of tachyon dy-
namics in open string field theory, using one-dimensional matrix models for
strings in two-dimensional target spaces [57, 55, 41, 58, 2]. Finally, we briefly
initiate a nonperturbative analysis of gauge dynamics on the noncommuta-
tive torus by exploiting a Hamiltonian formulation of the matrix quantum
mechanics, and indicate how the results compare with the known exact so-
lution of noncommutative Yang-Mills theory in two dimensions [62]. More
complicated exactly solvable models are also readily analysed in principle,
in particular by exploiting the fact that the “time” direction of the matrix
quantum mechanics is compactified on a circle so that the regulated theory
is really a finite temperature field theory. For example, if one considers a
2 + 1 dimensional field theory with space taken to be the noncommutative
torus, then our regularization technique provides a dimensional reduction
of the model to a 1 + 1 dimensional matrix field theory with spacetime a
cylinder R × S

1.

5.1 Perturbative Dynamics

In this subsection we will demonstrate that perturbation theory within the
framework of the matrix quantum mechanics is easily tractable, in contrast
to some other matrix regularizations of noncommutative field theory, and
show how various novel perturbative aspects arise within the matrix ap-
proximation scheme. For definiteness, we will concentrate on the real scalar
φ4-theory which on the noncommutative torus is defined by the action

S[φ] =
∫
−

[
1
2
φ
(
� + µ2

)
φ+

g

4!
φ4

]
, (5.1)

where φ is a Hermitian element of the algebra Aθ and � = (∂1)2+(∂2)2 is the
Laplacian, while µ and g are respectively dimensionless mass and coupling
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parameters. Following the general prescription of the previous section, we
approximate this field theory by the Hermitian matrix quantum mechanics
with Euclidean action

Sn[φn,φ
′
n] = β2n

1∫
0

dτ Tr
[
1
2
φn(τ)

(
(∇1)2 + (∇2)2 + µ2

)
φn(τ)

+
g

4!
φn(τ)4

]
+ β2n−1

1∫
0

dτ ′ Tr ′
[
1
2
φ′

n(τ ′ )
(
(∇1)2 + (∇2)2 + µ2

)
φ′

n(τ ′ )

+
g

4!
φ′

n(τ ′ )4
]
. (5.2)

Everything we say in this subsection will hold independently and symmetri-
cally in both towers of the finite level algebra An, and so for brevity we will
only analyse the first tower explicitly.

To deal with this quantum mechanics in perturbation theory, it is most
convenient to use a power series expansion of the form (4.5) and expand the
Hermitian scalar fields φn ∈ u(q2n) ⊗ C∞(S1) in the first tower as

φn(z) =
q2n−1∑
i,j=0

∑
k∈Z

ϕ
(n)
ij;k z

k (Cq2n)i
(Sq2n(z)

)j
. (5.3)

For the quantum theory, we will use path integral quantization, defined by
treating the complex expansion coefficients ϕ(n)

ij;k as the dynamical variables
and integrating over the corresponding configuration space Cn := u(q2n) ⊗
S(Z). Quantum correlation functions are then defined as

〈
ϕ

(n)
i1j1;k1

· · ·ϕ(n)
iLjL;kL

〉
:=

∫
Cn

Dϕ(n) e−Sn[ϕ(n)] ϕ
(n)
i1j1;k1

· · ·ϕ(n)
iLjL;kL∫

Cn

Dϕ(n) e−Sn[ϕ(n)]
, (5.4)

where the integration measure is given by

Dϕ(n) :=
q2n−1∏
i,j=0

∏
k∈Z

dϕ(n)
ij;k (5.5)

with dϕ(n)
ij;k ordinary Lebesgue measure on C. Note that the expression

(5.5) is still formal because of the infinitely many Fourier modes on S
1.

Nevertheless, as we show in the following, the finiteness of the range of the
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matrix indices in Zq2n is sufficient to regularize the original noncommutative
field theory.

We now substitute the expansion (5.3) into the action (5.2), compute
derivatives using the definitions (4.8) and the (φn)4 interaction term using
the commutation relations (3.24), and then apply the orthogonality rela-
tions (4.12). The quadratic form in the free part of the action (5.2) is then
diagonal, and from its inverse we arrive at the free propagator

�(n) kl
ij;st :=

〈
ϕ

(n) †
ij;k ϕ

(n)
st;l

〉
g=0

=
1

(2π)2 q2n (β2n)2
1

i2 + (j + q2n k)2 + µ2
δis δjt δkl . (5.6)

Furthermore, the vertices for the φ4 field theory in the matrix representation
are given by

Sn

[
ϕ(n)

]
int

=
4∏

a=1

q2n−1∑
ia,ja=0

∑
ka∈Z

ϕ
(n) †
i1j1;k1

ϕ
(n) †
i2j2;k2

ϕ
(n)
i3j3;k3

ϕ
(n)
i4j4;k4

×V
(n) k1,k2,k3,k4

i1j1;i2j2;i3j3;i4j4
, (5.7)

where

V
(n) k1,k2,k3,k4

i1j1;i2j2;i3j3;i4j4
=

g

4!
q2n (β2n)2 (ωn)i3j2−i1j4

× δi1+i2,i3+i4 δj1+j2,j3+j4 δk1+k2,k3+k4 . (5.8)

The vertex function (5.8) is invariant under cyclic permutations of its argu-
ments (ia, ja, ka), a = 1, . . . , 4.

The propagator (5.6) in this representation is rather simple in form, in
contrast to the usual matrix regularizations of noncommutative field theory
wherein the kinetic terms of the action generically have a very complicated
form [5, 54, 49]. This is what makes the matrix quantum mechanics ap-
proach much more fruitful. The matrix quantum mechanics provides an
exact, finite regulated theory which precisely mimicks the properties of the
original continuum model. This is a physical manifestation of the fact that
the finite level algebras An converge to Aθ. In particular, from (5.6) and
(5.8) we see that the Feynman graphs have a natural ribbon structure with
an additional label by the circular momentum modes of the fields, and the
notion of planarity in the matrix model is the same as that in the noncom-
mutative field theory. Again, all of these features are in contradistinction to
the usual matrix model formulations.

As an explicit example of how perturbation theory works within this
setting, let us compute the quadratic part of the effective quantum action in
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the matrix representation. The one-loop dynamics is obtained by contracting
two legs in (5.8) using the propagator (5.6). All eight possible contractions
of two neighbouring legs are identical and sum up to give the total planar
contribution

8
q2n−1∑
i′,j′=0

q2n−1∑
s′,t′=0

∑
k′,l′∈Z

�(n) k′l′
i′j′;s′t′ V

(n) k,k′,l′,l
ij;i′j′;s′t′;st =

g

3
δis δjt δkl I

(n)
p

(
µ2

)
, (5.9)

where

I(n)
p

(
µ2

)
=

1
(2π)2

q2n−1∑
i′=0

∑
r∈Z

1
i′ 2 + r2 + µ2

. (5.10)

In (5.10) we have transformed the sums over j′ ∈ Zq2n and k′ ∈ Z into a
single sum over r := j′ + q2n k

′ ∈ Z. The infinite sum in (5.10) can be
evaluated explicitly to give

I(n)
p

(
µ2

)
=

1
4π

q2n−1∑
i′=0

coth
(
π
√
i′ 2 + µ2

)
√
i′ 2 + µ2

. (5.11)

For any finite q2n the function (5.11) is finite, for all µ2, and thus the
matrix quantum mechanics naturally regulates the ultraviolet divergence of
the one-loop scalar tadpole diagram. In the limit n → ∞, whereby q2n →
∞, the sum (5.11) diverges, and the leading divergent behaviour can be
straightforwardly worked out to be given by

lim
n→∞ I(n)

p

(
µ2

) � 1
4π

ln(q2n) , (5.12)

reproducing the standard logarithmic ultraviolet divergence of scalar field
theory in two dimensions. In particular, we see that the matrix rank q2n plays
the role of an ultraviolet regulator in the matrix quantum mechanics. This is
the characteristic feature of a fuzzy approximation to a field theory. In (5.11),
the limit q2n → ∞ requires an infinite mass renormalization µ = q2n µ̃,
keeping µ̃ fixed, in order to obtain a massive scalar field theory in the limit.

There are also four possible contractions of opposite legs in (5.8), which
all agree and sum to give the total non-planar contribution

4
q2n−1∑
i′,j′=0

q2n−1∑
s′,t′=0

∑
k′,l′∈Z

�(n) k′l′
i′j′;s′t′ V

(n) k,k′,l,l′
ij;i′j′;st;s′t′ =

g

6
δis δjt δkl I

(n)
np

(
µ2

)
ij
,

(5.13)
where

I(n)
np

(
µ2

)
ij

=
1

(2π)2

q2n−1∑
i′=0

∑
r∈Z

(ωn)i
′j−ir

i′ 2 + r2 + µ2
(5.14)
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and we have used the fact that (ωn)q2n = 1. The infinite sum in (5.14) can
be evaluated explicitly in terms of the generalized hypergeometric function

3F2

{
λ1 λ2 λ3

η1 η2

∣∣∣∣w} :=
∑
p∈N0

(λ1)p (λ2)p (λ3)p
(η1)p (η2)p

wp

p!
(5.15)

with w, λa, ηb ∈ C, a = 1, 2, 3, b = 1, 2, and (λ)p := λ(λ+ 1) · · · (λ+ p). One
finds

I(n)
np

(
µ2

)
ij

=
1

(2π)2
1
µ2 3F2

{
1 iµ − iµ

1 + iµ 1 − iµ

∣∣∣∣ (ωn)j
}

− 1
(2π)2

1
(q2n)2 + µ2 3F2

{
1 q2n + iµ q2n − iµ

1 + q2n + iµ 1 + q2n − iµ

∣∣∣∣ (ωn)j
}

+
1

2π2

q2n−1∑
i′=0

(ωn)2j−i

1 + i′ 2 + µ2

× 3F2

{
1 1 + i

√
i′ 2 + µ2 1 − i

√
i′ 2 + µ2

2 + i
√
i′ 2 + µ2 2 − i

√
i′ 2 + µ2

∣∣∣∣∣ (ωn)−i

}
. (5.16)

One can show from (5.15) that the leading large n behaviour of (5.16) is
given by

lim
n→∞ I(n)

np

(
µ2

)
ij
� 1

(2π)2 (q2n)2

(
2 (ωn)2j

1 − (ωn)i
− 1

1 − (ωn)j

)
(5.17)

with ωn → e 2π i θ in the limit. This quantity thereby vanishes, except when
either i = 0, j = 0 or θ = 0 in which case it diverges. This is simply the
UV/IR mixing property of the noncommutative field theory [60]. Integrating
out infinitely many degrees of freedom in the non-planar loop diagram gen-
erates an infrared singularity, making the amplitude singular at vanishing
external momentum and giving it a pole in the noncommutativity parameter
at θ = 0.

On the other hand, at any finite level n < ∞, the non-planar matrix
contribution is always finite. Generically, the generalized hypergeometric
function (5.15) has a branch point at w = 1, and for Re(λ1 + λ2 + λ3 −
η1 − η2) < 0 the series is absolutely convergent everywhere on the unit disc
|w| ≤ 1. Thus for finite matrix rank q2n, the function (5.16) is an analytic
function of the noncommutativity parameter, even for vanishing external
momenta i or j, i.e. there is no UV/IR mixing in the matrix regulated
theory, at least at one-loop order. Of course, there must be a transition
regime in q2n wherein a non-analyticity develops, as it appears in the limit
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(5.17). But integrating out all degrees of freedom in the loop does not
generate an infrared singularity in the regulated model.

The absence of UV/IR mixing at finite level n, along with the simplicity
of the propagator (5.6), implies that the matrix quantum mechanics is a good
arena to explore the renormalizability of noncommutative field theories, as
the usual mixing of high and low momentum scales would typically appear to
make standard Wilsonian renormalization to all orders of perturbation the-
ory hopeless. In particular, it confirms the expectations that an appropriate
non-perturbative regularization could wash away these effects. On the other
hand, it also seems to suggest that exotic non-perturbative phenomena, such
as the existence of vacuum phases with broken translational symmetry [34],
are unobservable at finite level. Indeed, for n <∞ and generic µ2 < 0, there
does not appear to be any qualitative difference in the infrared behaviour
of the noncommutative propagator from the case µ2 > 0. It is most likely
that there is again some transition regime for n � 1 wherein the exotic
broken symmetry phases dominate the vacuum structure of the theory, and
it would be interesting to find an analytic approach to detect these phases
in the matrix quantum mechanics. Heuristically, their existence can be de-
duced by looking at the soliton expansions (4.9) of φn(z) in the finite level
algebra An directly in terms of the projections and partial isometries of the
noncommutative torus. Recall that these solitons displayed themselves mo-
mentum non-conserving stripe patterns (see figs. 2 and 3). A striped phase
in the scalar field theory would then occur when, for n sufficiently large, the
mode numbers of the vacuum expectation value 〈ϕ(n)

ij;k〉 freeze about a partic-
ular value corresponding to a single projection or partial isometry Pij

n , and
thereby yielding the characteristic stripe patterns. From this argument it is
tempting to speculate that they may be due to a Kosterlitz-Thouless type
phase transition in the matrix quantum mechanics which occurs in the large
n limit, whereby a condensation of vortices in the vacuum is responsible for
the breaking of the translational symmetry.

Let us further remark that UV/IR mixing is also absent in the matrix
model regularizations of noncommutative field theory that are derived by
soliton expansion on the noncommutative plane [48, 49] (to be discussed in
section 6.3), but not in those which are derived through lattice regularization.
In these latter cases, UV/IR mixing is already present non-perturbatively
as a generic kinematical property of the lattice regularization of noncom-
mutative field theory [5]. Indeed, in the reduced models, striped phases of
the theory are observable for relatively small values of the matrix dimen-
sion [3, 13]. The relation between rational noncommutative theories and
matrix-valued commutative theories on the torus is applied to UV/IR mix-
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ing in [35].

5.2 Tachyon Dynamics

We will now examine how the matrix quantum mechanics can be used to de-
scribe D-branes as the decay products in tachyon condensation on unstable
D-branes in string field theory. We begin with the Type IIA case (equiv-
alently bosonic strings) described in section 2.2. We are interested in the
noncommutative field theory of the open string tachyon and gauge field on a
system of unstable D9-branes. This depends on the specification of a projec-
tive module over Aθ (see section 6.1) in order to define the anti-Hermitian
connection gauge field Aµ, but for simplicity we consider here only the free
module (Aθ)⊕N provided by N copies of the noncommutative torus algebra
itself, which corresponds to a topologically trivial connection on the world-
volume field theory of N noncommutative D9-branes. The components of
the curvature of the gauge connection are denoted Fµν . The tachyon field
is Hermitian and lives in the adjoint representation of the gauge group, and
its covariant derivatives are denoted DµT .

The action is given explicitly by [38, 37]

SIIA =
gs µ9

Gs

∫
M

√
detG

∫
−

[
1
2
f
(
T 2 − 11

)
Gµν DµT DνT − V

(
T 2 − 11

)
− 1

4
h
(
T 2 − 11

)
FµνF

µν + . . .

]
, (5.18)

where here and in the following repeated indices are always understood to
be summed over, and indices are raised by the inverse open string metric
Gµν . The dots in (5.18) denote possible higher-derivative contributions to
the effective action, but will not be required in the ensuing low-energy anal-
ysis. The functions f and h, and the tachyon potential V , are not known
explicitly, but they are constrained to satisfy certain conditions in accord
with the conjectures surrounding open string tachyon condensation [73]. In
particular, the tachyon potential has a local maximum at T = 0 representing
the unstable D9-branes, with µ9 = V (−1) giving their tension. It also has lo-
cal minima V (0) = 0 at T = ± 11 corresponding to the closed string vacuum.
The functions f and h vanish in the closed string vacuum, f(0) = h(0) = 0,
while f(−1) = h(−1) = 1.

We will consider a simplified version of this model to make the results
as transparent as possible. We study a 2 + 1-dimensional noncommutative
field theory, i.e. take M = R

1, and consider the action near T = 0. The
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corresponding energy functional

EIIA[A,T ] =
∫
−

[
1
2
DµT DµT + V

(
T 2 − 11

)
+

1
2
F 2

]
(5.19)

is then that of a D2-brane wrapped around T
2 in the presence of a constant

B-field, with DµT = ∂µT − [Aµ, T ], µ = 1, 2 and

F = ∂1A2 − ∂2A1 + [A1, A2] . (5.20)

The simplest classical extrema of (5.19) are given by spatially uniform tachyon
fields Ω−1(T ) on T

2 (Ω−1 being the Wigner map (2.6)) which are critical
points of the potential V (T 2 − 1), and vanishing gauge fields F = Aµ = 0,
µ = 1, 2. We will now proceed to analyse these vacua within the matrix
approximation. In the Hermitian matrix quantum mechanics, we replace
the energy functional (5.19) by the Euclidean action

EIIA
n [Tn,T

′
n] = β2n

1∫
0

dτ Tr
[
1
2

∇µTn(τ)∇µTn(τ) + V
(
Tn(τ)2 − 11q2n

)]

+β2n−1

1∫
0

dτ ′ Tr ′
[
1
2

∇µT′
n(τ ′ )∇µT′

n(τ ′ )

+V
(
T′

n(τ ′ )2 − 11q2n−1

)]
. (5.21)

Focusing for the time being on the first tower, we shall seek time inde-
pendent extrema of the energy functional (5.21), Ṫn = 0. From (4.24) and
(4.26) it then follows that the q2n(q2n +1)/2 equations for the critical points
are given by

−(2π)2 (i− j)2 (Tn)ij − (ΣTnΣ)ij =
(
Tn V

′((Tn)2 − 11q2n

))
ij

(5.22)

for 1 ≤ i ≤ j ≤ q2n. We have used the fact that both ∇1 and ∇2 satisfy an
“integration by parts” rule

Tr
(
a†n (∇µbn)

)
= − Tr

(
(∇µan)† bn

)
, µ = 1, 2 . (5.23)

It is straightforward to see from these equations that the off-diagonal ele-
ments of the matrix Tn vanish. This follows from the explicit form (4.23)
of the shift operator Σ, which for i < j would produce a τ -dependence in
the second term of (5.22), while the other two terms are time-independent.
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Thus Tn must be a diagonal matrix, which we write explicitly in terms of
projections on Aθ as

Tn =
q2n∑
i=1

ηi Pii
n . (5.24)

The moduli ηi ∈ R of this solution have constraints which may be found by
substituting (5.24) into (5.22), using (4.23) along with the fact that Σij,ss 
= 0
only if i = j, and by using TrΣ = π i (q2n + 1). We can thus write the
equation for the ηi’s as

ηi V
′((ηi)2 − 1

)
= π2 (q2n + 1)2

q2n∑
j=1

ηj (5.25)

which must be satisfied for each i = 1, . . . , q2n.

This result is fairly generic. It states that time-independent field config-
urations on the noncommutative torus correspond to diagonal matrices in
the matrix quantum mechanics. In particular, all classical ground states
commute with each other. This is reminescent of what happens in the
BFSS matrix model of M-theory [8], whereby the vacuum corresponds to
static, commuting spacetime matrix coordinates for D0-branes. Moreover,
this solution shows that the time-independent configurations of the matrix
quantum mechanics are naturally projection-type solitons on the noncom-
mutative torus. We will see in the next section how projections on Aθ also
arise by a somewhat different dynamical mechanism.

A class of solutions to the equations (5.25) can be constructed by de-
manding that Tn be a critical point of the tachyon potential V (T 2 − 11), i.e.
Tn V

′((Tn)2−11q2n) = 0. For this, we assume that n is sufficiently large, that
the matrix dimension q2n is even, and that V (λ) is a polynomial potential.
Let {λI}I≥1 be a set of distinct, real critical points of V (λ) which are each
bounded from below as λI ≥ −1. We then arrange the collection of real
numbers {ηj}q2n

j=1 pairwise according to the rule

ηI =
√

1 + λI , ηq2n−I+1 = −
√

1 + λI , I = 1, 2, . . . (5.26)

with the remaining ηi’s set equal to ± 1 in pairs. The solution (5.24) then
obeys

(Tn)2 − 11q2n =
∑
I≥1

λI

(
PII

n + Pq2n−I+1,q2n−I+1
n

)
(5.27)

and thereby satisfies the required extremization condition. In this case, both
sides of (5.25) vanish.

The energy of these classical solutions in the matrix quantum mechanics
may now be found by substituting (5.27) into (5.21). An identical analysis
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proceeds in the second tower, producing a solution parametrized by another
set {λ′I′}I′≥1 of critical points. After recalling the definition of the sequence
βk from appendix A, one finds

EIIA
n {λI , λ

′
I′} = 2 (p2n−1 − q2n−1 θ)

∑
I

V (λI) − 2 (p2n − q2n θ)
∑
I′
V (λ′I′) .

(5.28)
The lightest excitation corresponds to the configuration whereby all λI ’s
and λ′I′ ’s vanish except λ1 = −1. Then this formula gives the standard
contribution to the mass-shell relation from the tension µ2 = V (−1) of the
D2-branes, as can be found from the appropriate Born-Infeld action for the
D-brane dynamics. What is remarkable about this term is that it has the
correct θ-dependence already at a finite level in the matrix model. Since the
induced mass of a D0-brane bound to the D2-branes due to the background
B-field is given by µ0 = θ µ2, the term (p2n−1−q2n−1 θ)V (−1) arising in this
way from (5.28) represents the energy of p2n−1 D2-branes carrying −q2n−1

units of D0-brane monopole charge. Thus at any finite level n, it gives the
appropriate mass-shell relation on the noncommutative torus with energy
bounded between 0 and µ2.

Let us now turn to the Type IIB case. Following the prescription of
section 2.2, the appropriate version of the string field theory action (5.18)
can be written down [37]. By using the same steps as above, the analog of
the regulated energy functional (5.21) in the first tower reads

EIIB
n [Tn] = β2n

1∫
0

dτ Tr
[(∇µTn(τ)

)† (∇µTn(τ)
)

+ U
(
Tn(τ)† Tn(τ) − 11r2n

)
+ U

(
Tn(τ)Tn(τ)† − 11q2n

)]
,

(5.29)

where now the regulated tachyon field Tn(τ) is a q2n × r2n complex-valued
matrix, with Tn(τ)† its Hermitian conjugate. This functional describes an
approximation to the noncommutative field theory of a D2 brane-antibrane
system wrapping T

2. We will take the arbitrary integers r2n ≤ q2n for
definiteness, with r2n → ∞ in the limit n → ∞. Varying (5.29) on time-
independent configurations Ṫn = 0 yields the critical point equations

−(2π)2 (i− j)2 (Tn)ij + (Σ2Tn)ij
=

(
Tn U

′(T†
n Tn − 11r2n) + U ′(Tn T†

n − 11q2n)Tn

)
ij

(5.30)

with 1 ≤ i ≤ q2n and 1 ≤ j ≤ r2n, plus the analogous equations for the
conjugate matrix elements (T†

n)ij .
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As before, it is straightforward to show from (5.30) that all i 
= j matrix
elements of Tn vanish. We can thereby write down solutions as the q2n×r2n

complex matrices

Tn =

⎛⎝ r2n∑
i=1

σi Pii
n

(0)(q2n−r2n)×r2n

⎞⎠ (5.31)

of generic rank r2n with

T†
n Tn =

r2n∑
i=1

|σi|2 Pii
n , Tn T†

n =
r2n∑
i=1

|σi|2 Pii
n ⊕ (0)q2n×q2n , (5.32)

where the moduli σi ∈ C satisfy an equation completely analogous to (5.25).
Generically, these solutions are evidently determined by finite-dimensional
partial isometries on C

r2n → C
q2n . By taking |σi| = ηi, with ηi as in

(5.26), and substituting (5.31,5.32) into (5.29), we find that the energy of
this solution is given by

EIIB
n [Tn] = β2n

(
4
∑

I

U(λI) + (q2n − r2n)U(−1)

)
. (5.33)

When r2n = q2n, the energy (5.33) is precisely twice that of the Type IIA
case (5.28). By adjusting parameters as before, this is the energy appropri-
ate to q2n−1 D0-branes and q2n−1 D0-antibranes inside the original D2-D2
system. For r2n < q2n, the second term of (5.33) dominates in the limit
n → ∞. From appendix A, eqs. (A.5) and (A.8), we have β2n � 1/q2n−1 in
the large n limit, so that by taking r2n � q2n in this limit, we may adjust the
second term so that it yields the appropriate continuum mass-shell relation
for the D0 brane-antibrane system in the D2-D2 system. Furthermore, from
(5.32) it follows that, for generic moduli σi ∈ C, the index of the regulated
tachyon field configuration is given by

index(Tn) = Tr
(
11r2n − T†

n Tn

)
− Tr

(
11q2n − Tn T†

n

)
= r2n − q2n , (5.34)

and thus it carries the correct monopole charge of q2n D0-branes and r2n

D0-antibranes.

We conclude that the finite-level matrix quantum mechanics captures
quantitative properties of D-brane projection solitons in open string field
theory, through the standard mechanism of tachyon condensation on un-
stable D-branes. Heavier excitations correspond to more complicated con-
figurations of D0-branes in the matrix model. It would be interesting to
characterize also time-dependent solutions of the matrix quantum mechan-
ics. In this context, the classical ground states may mimick those of the
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BMN matrix model for M-theory in a plane wave background [12], which ad-
mits a multitude of supersymmetric time-dependent classical configurations.
A particularly interesting class of finite-dimensional 1

2 -BPS configurations
describes rotating non-spherical giant gravitons with the noncommutative
geometry of a fuzzy torus [59, 64]. The solution depends on two moduli
µ, ζ ∈ R and is given explicitly by

Zn(τ) = e µ τ/3

(
q2n−1∑
i=1

αi Pi,i+1
n + αq2n Pq2n,1

n

)
, (5.35)

where the parameters αi(µ, ζ) ∈ C are constrained by the pertinent BPS
equations. Time-dependent solutions are thereby expected to dynamically
generate off-diagonal elements of the soliton basis.

5.3 Yang-Mills Matrix Quantum Mechanics

Let p, q > 0 be a pair of relatively prime integers, and Ep,q a Heisenberg
module over a “dual” noncommutative torus Aα to Aθ

6. Choose a connection
on Ep,q with corresponding anti-Hermitian gauge fields Aµ ∈ Aθ, µ = 1, 2 and
curvature given by (5.20). Yang-Mills gauge theory on Aα is then defined
by the classical action

SYM[A1, A2] =
1

2g2

∫
− F 2 , (5.36)

with g the dimensionless Yang-Mills coupling constant. The corresponding
matrix quantum mechanics is the one-dimensional field theory of four anti-
Hermitian matrix fields with action

Sn[Xn,Yn;X′
n,Y

′
n] =

β2n

2g2

1∫
0

dτ Tr (∇1Xn(τ) − ∇2Yn(τ)

+
[
Xn(τ) , Yn(τ)

])2

+
β2n−1

2g2

1∫
0

dτ ′ Tr ′ (∇1X
′
n(τ ′ ) − ∇2Y

′
n(τ ′ )

+
[
X′

n(τ ′ ) , Y′
n(τ ′ )

])2
. (5.37)

In this subsection we will exploit the fact that the time direction of
the matrix quantum mechanics (5.37) is Euclidean and compactified on the

6These projective modules and dual algebras will be described explicitly in section 6.1.
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unit circle S
1. This implies that the corresponding path integrals compute

quantum averages of the system in a thermal ensemble. The vacuum energy,
for example, is given by the usual statistical mechanical partition function

Zn = Tr G
(

e−Ĥn

)
=

∑
λn∈spec(Ĥn)

e−λn , (5.38)

where the trace is over the Hilbert space G of physical states of the matrix
quantum mechanics and Ĥn is the quantum Hamiltonian operator, repre-
sented on G, corresponding to the action (5.37). The partition function may
thereby be readily obtained by computing the eigenvalues of Ĥn in canon-
ical quantization of the model (5.37) on R. Quantum gauge theory on the
noncommutative torus is known to be an exactly solvable model which is
given exactly by its semi-classical approximation [62]. In the following we
will study the manner in which its matrix approximation captures this fea-
ture. While we will not completely solve the problem at the level of the
matrix quantum mechanics, our analysis will illustrate in a straightforward
manner what properties to seek in the search for exactly solvable noncommu-
tative field theories. Analogous computations for the lattice regularizations
of noncommutative gauge theory in two dimensions can be found in [63, 32].

As always, we focus on the first tower in (5.37), and use (4.26) to write
the action explicitly as

Sn[Xn,Yn] =
β2n

2g2

1∫
0

dτ Tr
(
ΣXn(τ) − q2n Ẏn(τ) +

[
Xn(τ) − Ξ , Yn(τ)

])2
.

(5.39)
The canonical momentum conjugate to Yn is given by

(Πn)ij :=
δSn

δ(Ẏn)ij
= −q2n β2n

g2

(
ΣXn − q2n Ẏn + [Xn − Ξ,Yn]

)
ji
, (5.40)

while the momentum of the Xn field vanishes since (5.39) involves no time
derivatives of Xn. The matrix field Xn is thus non-dynamical and serves
simply as a Lagrange multiplier imposing the constraints δSn

δ(Xn)ij
= 0 for

1 ≤ i, j ≤ q2n. By using (5.40) these constraint equations may be written in
the simple matrix form

Gn := ΣΠn + [Yn,Πn] = 0 . (5.41)

The Hamiltonian corresponding to the action (5.39) is given using (5.40) as

Hn = Tr
(

g2

2(q2n)2 β2n
(Πn)2 +

1
q2n

(
ΣXn + [Xn − Ξ,Yn]

)
Πn

)
, (5.42)
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which after imposing the constraints (5.41) and using cyclicity of the trace
can be written as

Hn = Tr
(

g2

2(q2n)2 β2n
(Πn)2 − 1

q2n
[Ξ,Yn]Πn

)
. (5.43)

Note that the constraints (5.41) are explicitly time-dependent, while the
Hamiltonian (5.43) on the constraint surface is independent of τ .

In canonical quantization, we promote the matrix fields Yn,Πn to oper-
ators obeying the commutation relations[

(Πn)ij , (Yn)kl

]
= − i δik δjl . (5.44)

We will represent (5.44) in the Schrödinger polarization wherein the physical
states are the wavefunctions Ψ(Yn) ∈ L2

(
iu(q2n)

)
= L2

(
R

(q2n)2
)

:= G and
the canonical momenta are represented as the derivative operators

(Πn)ij = − i
∂

∂(Yn)ij
(5.45)

acting on G. By choosing a normal ordering prescription, the quantum
Hamiltonian operator on G is then given from (5.43) as

Ĥn =
q2n∑

i,j=1

(
− g2

2(q2n)2 β2n

∂2

∂(Yn)ij ∂(Yn)ji
+

2π
q2n

(i− j) (Yn)ij
∂

∂(Yn)ji

)
.

(5.46)

The constraints (5.41) should now be implemented on the Hilbert space
G, which truncates it to the subspace of physical wavefunctions Ψ obeying

GnΨ = 0 . (5.47)

From (5.45) and the explicit form (4.23) of the shift operator, we thereby
arrive at the set of (q2n)2 differential equations⎡⎣ q2n+i−j∑

s=1

Σis
∂

∂(Yn)s,s+j−i
+ e 2π i τ

q2n∑
s=q2n+i−j+1

Σis
∂

∂(Yn)s,s+j−i−q2n

+
q2n∑
s=1

(
(Yn)is

∂

∂(Yn)sj
− (Yn)sj

∂

∂(Yn)is

)]
Ψ(Yn) = 0 (5.48)

for i < j, and⎡⎣ q2n+j−i∑
s=1

Σis
∂

∂(Yn)s,s+i−j
+ e−2π i τ

q2n∑
s=q2n+j−i+1

Σis
∂

∂(Yn)s,s+i−j−q2n

+
q2n∑
s=1

(
(Yn)is

∂

∂(Yn)sj
− (Yn)sj

∂

∂(Yn)is

)]
Ψ(Yn) = 0 (5.49)
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for i ≥ j. These constraints have to be imposed at all times τ . With the
understanding that the i = j part is set trivially to 0, the τ -dependent parts
of (5.48,5.49) combine into the constraints

q2n∑
s=q2n−|i−j|+1

Σis
∂Ψ(Yn)

∂(Yn)s,s+|i−j|−q2n

= 0 (5.50)

which hold for all i, j = 1, . . . , q2n. One can show from (4.21) that the shift
matrix (Σss′)1≤s,s′≤q2n is invertible. It follows then from (5.50) that the
physical wavefunctions Ψ(Yn) are independent of the off-diagonal elements
(Yn)ij for i < j. By anti-Hermiticity, they are also independent of (Yn)ij =
−(Yn)ji for i > j. By setting i = j in (5.49) the same argument shows that
Ψ(Yn) are independent of all diagonal matrix elements of Yn, and thus must
vanish in L2( i u(q2n)).

It follows that there are no physical propagating modes left in the quan-
tum theory, and the quantum Hamiltonian (5.46) vanishes on the physical
state space, Ĥn = 0. This feature is the earmark of a topological quan-
tum field theory in which only global, topological degrees of freedom play a
role. It is exactly what is anticipated in two-dimensional noncommutative
Yang-Mills theory [62], whereby the gauge invariance of the theory under
area-preserving diffeomorphisms of T

2 kills all local degrees of freedom in
the model. We may take the present analysis in the matrix model to be a
direct proof of the topological nature of noncommutative gauge theory in
two dimensions.

While this feature would appear to make the statistical sum (5.38) triv-
ial, this is not the case, as there is a large moduli space of field configurations
obeying the constraints (5.41). The continuum version of the quantum the-
ory is given exactly by the semi-classical expansion, and we would expect
the matrix regularization to capture this property in some way. For this,
we write the thermal partition function (5.38) explicitly as the formal path
integral

Zn =
∫

(Cn)2

DXn DYn e−Sn[Xn,Yn] , (5.51)

where the configuration space is Cn := iu(q2n)⊗C∞(S1) and the integration
measure is the formal Feynman measure

DXn :=
q2n∏

i,j=1

∏
τ∈[0,1)

dXn(τ)ij . (5.52)

After a simple shift of the Xn field in (5.39), one is left with a functional



G. Landi, F. Lizzi and R.J. Szabo 51

Gaussian integration in (5.51) which may be formally carried out to yield

Zn =
∫
Cn

DYn
1

det′
(

β2n

2g2 (Σ − adYn
)
)2

+
∫
Cn

DYn

∫
ker(Σ−adYn

)

DXn exp

⎡⎣−β2n

2g2

1∫
0

dτ Tr
(
q2n Ẏn(τ)

−[
Ξ , Yn(τ)

])2
]
. (5.53)

The prime on the determinant in (5.53) indicates that zero modes are ex-
cluded in its evaluation, while the second contributions come from the flat
directions Xn(τ) of the operators Σ−adYn

for each field configuration Yn(τ).
We will always ignore irrelevant (infinite) constants arising from the func-
tional integrations.

The large n limit of (5.53) yields the fluctuation determinant that is
intractable directly in the continuum theory [62], and our matrix model pro-
vides a systematic means of evaluating such complicated objects. Moreover,
the second term can be expected to lead in the limit to the exact sum over
instantons of two-dimensional noncommutative Yang-Mills theory [62]. Let
us indicate how this may arise. For this, we need to study the structure of
the space ker(Σ−adYn

), or equivalently the moduli space of solutions to the
equations

ΣXn = [Yn,Xn] . (5.54)

To get a feeling for the type of solution spaces that occur, we first seek
time-independent solutions of (5.54). Repeating the argument of the previ-
ous subsection, this implies that the configurations Xn are diagonal,

Xn =
q2n∑
i=1

ixi Pii
n , (5.55)

with moduli xi ∈ R. Then (5.54) becomes

π (q2n + 1) δij
q2n∑
k=1

xk = i (xi − xj) (Yn)ij . (5.56)

Setting i = j in (5.56) yields the constraint

q2n∑
i=1

xi = 0 . (5.57)
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For each i 
= j, the equations (5.56) imply that either xi = xj or (Yn)ij = 0.
It is straightforward to characterize the number of independent moduli in
terms of the integer r with 0 ≤ r ≤ (q2n−1)/2 which specifies how many non-
vanishing components (Yn)ij , i 
= j there are in the given solution. If there
are r < q2n−1 such matrix elements, then the corresponding pairs xi = xj are
equal and each eliminate one degree of freedom. From the constraint (5.57)
it is straightforward to see that there are in all q2n − r− 1 real moduli xi. If
r ≥ q2n − 1, then the constraint (5.57) eliminates all the xi’s. In both cases
there are q2n real diagonal elements and r complex off-diagonal elements of
the Yn matrices. It follows that the kernel of the operator Σ−adYn

admits an
orthogonal decomposition into subspaces corresponding to constant (Xn,Yn)
configurations as

ker
(
Σ− adYn

)
=

q2n(q2n−1)/2⊕
r=0

Kr , (5.58)

where

Kr =
{

R
q2n−r−1 ⊕ R

q2n ⊕ C
r 0 ≤ r < q2n − 1

R
q2n ⊕ C

r q2n − 1 ≤ r ≤ q2n(q2n − 1)/2
. (5.59)

In the time-dependent case, we can exploit the invariance of the path
integration in (5.53) under arbitrary unitary transformations of the matri-
ces Xn(τ) to diagonalize them. Then our analysis of the contributions to
the second integral in (5.53) carries through in exactly the same manner
as described above. For each of them, the path integral over the matrix
trajectories Yn(τ) is Gaussian and yields the determinant of the operator
β2n

2g2 (q2n
d
dτ + adΞ)2 on the unit circle and restricted to the subspaces of

i u(q2n) in which Yn has r non-zero off-diagonal matrix elements. We may
evaluate (5.53) in this way to the formal expression

Zn =
∫
Cn

DYn
1

det′
(

β2n

2g2 (Σ − adYn
)
)2 +

q2n(q2n−1)/2∑
r=0

Vr

×
q2n∑

i1,...,ir=1

q2n∑
j1,...,jr=1

r∏
k,l=1
ik 
=jl

∏
m∈N0

(
2g2/β2n (q2n)2

m2 −
(

ik−jl
q2n

)2

)2

, (5.60)

where Vr is the suitably regulated volume factor Vr = vol(Rq2n−r−1) for 0 ≤
r < q2n − 1, while Vr = 1 otherwise. It would be interesting to examine now
how the appropriately regulated form of the expression (5.60) reproduces the
partition sum of the corresponding continuum theory in the limit n → ∞.
Although we have not completely solved the problem here, the expression
(5.60) once again illustrates the exact solvability of the gauge theory.
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6 Moduli Spaces and Soliton Regularization on
the Noncommutative Plane

In this final section we shall describe the relationship between our soliton
approximation of field theory on the noncommutative torus and the standard
solitons on the noncommutative plane. We shall deal only with the GMS soli-
tons which are obtained in the limit of large Moyal noncommutativity [29].
We will see that the matrix regularization of noncommutative field theory
in this context provides illuminating results concerning the moduli spaces of
these solitons. To help motivate the analysis, we will begin by showing how
a special class of projections on the noncommutative torus naturally arise
as the classical solutions of a model for the dynamics of solitons on the non-
commutative torus. We will then use these projections to obtain the matrix
analogs of GMS solitons, which among other things provides the starting
point for the construction of one-dimensional matrix model regularizations
of field theories on the noncommutative plane.

6.1 Soliton Dynamics on the Noncommutative Torus

We will begin by describing how to model the dynamics of projection soli-
tons on the noncommutative torus in an adiabatic approximation. Usually,
one would proceed by introducing a Kähler metric on the moduli space of
fixed rank projection operators, which is typically an infinite-dimensional
Grassmannian manifold. The Kähler form may be obtained as the curva-
ture of a determinant line bundle over the Grassmannian, and with it one
may construct a non-linear σ-model describing the moduli space dynam-
ics of solitons [50, 28]. The motion of the solitons may thereby be studied
by calculating geodesics on the moduli space in the obtained Kähler met-
ric. A non-trivial, curved geometry then corresponds to velocity dependent
forces between the solitons. Here we shall instead follow the approach of [20]
where non-linear σ-models in the context of noncommutative geometry were
proposed. This approach exploits the inherent non-linearity of the space of
projections of Aθ directly, without explicit reference to any Kähler geometry.

We define a noncommutative field theory whose configuration space is the
collection Pθ of all projections in the algebra Aθ. The σ-model dynamics is
governed by the action functional S : Pθ → R

+ defined by

S(P) =
1
2π

∫
− ∂µP ∂µP =

1
π

∫
− P ∂µP ∂µP , (6.1)

where ∂µ, µ = 1, 2 are the two linear derivations defined in (2.20). This
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is just the standard action that one would write down which captures the
dynamics of multiple solitons (within a certain energy range), except that
we utilize a flat metric in its definition. The second equality follows from
the constraint P2 = P and the Leibniz rule. The positivity of the trace

∫
guarantees that (6.1) is always a positive real number.

We will seek critical points of the action functional (6.1) in a given con-
nected component of Pθ, corresponding to an equivalence class of projections
of fixed rank and fixed topological charge. For this, we need to carefully
take into account the non-linear structure of the space Pθ. An element
δP ∈ TP(Pθ) in the tangent space to Pθ at a given point P is not arbi-
trary but must fulfill two requirements. First of all, it must be Hermitian,
(δP)† = δP. Secondly, it must obey (P + δP)2 = P + δP + O((δP)2), which
implies that (11 − P) δP = δPP. It follows that the most general tangent
vector in TP(Pθ) is of the form

δP = (11 − P) cP + P c† (11 − P) (6.2)

with c arbitrary elements of the algebra Aθ.

The equations of motion now follow as usual from the variational prin-
ciple

0 = δS(P) = − 1
2π

∫
− �(P) δP , (6.3)

where � = ∂µ ∂µ is the Laplacian. We have used the Leibniz rule, along with
invariance and cyclicity of the trace. By substituting in (6.2) and using the
fact that c ∈ Aθ is arbitrary, we arrive at the field equations

P�(P) (11 − P) = 0 , (11 − P)�(P)P = 0 , (6.4)

which together are equivalent to

P�(P) − �(P)P = 0 . (6.5)

These are non-linear equations of second order which are rather difficult to
solve explicitly. However, as we shall show presently, the absolute minima
of the action functional (6.1) in a given connected component of Pθ actually
satisfy first order equations which are easier to solve.

For this, we recall from section 2.3 that for any projection P ∈ Pθ, there is
a topological charge (the first Chern number) defined by (2.32) with c1(P) ∈
Z. Then, just as in four dimensional Yang-Mills theory, this topological
quantity yields a bound on the action functional. Due to positivity of the
trace

∫
and its cyclic property, we have∫

− (
∂µ(P)P ± i εµν ∂ν(P)P

)† (
∂µ(P)P ± i εµβ ∂β(P)P

) ≥ 0 . (6.6)
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By expanding out the left-hand side of (6.6) and comparing it with (2.32)
and (6.1), we then arrive at the inequality

S(P) ≥ ± 2 c1(P) . (6.7)

The inequality (6.7), which gives a lower bound on the action, is the analog
of the one for ordinary two-dimensional σ-models [10]. From (6.6) it is clear
that equality in (6.7) occurs exactly when the projection P satisfies the self-
duality or anti-self-duality equations(

∂µP ± i εµν ∂νP
)
P = 0 . (6.8)

The two equations (6.8) can be reduced to

∂(P)P = 0 , ∂(P)P = 0 , (6.9)

respectively; here ∂ = 1
2 (∂1 − i ∂2) and ∂ = 1

2 (∂1 + i ∂2). Simple manipula-
tions show directly that each of the equations (6.9) implies the field equations
(6.5), as they should. Solutions of (6.9) are called σ-model instantons.

The non-linear equations (6.9) can be reduced to linear ones by intro-
ducing gauge degrees of freedom and by lifting them to a bundle (a mod-
ule) [20, 21, 22]. The particular module is dictated by the given homo-
topy class that we are working in, which is in turn determined by the rank∫
P = p + q θ, p, q ∈ Z and topological charge c1(P) = q of the projection

solutions to (6.9). We will identify the algebra Aθ as the endomorphism
algebra of a suitable bundle and regard any projection P as an operator on
this bundle. For this, we need to consider the representation theory of an-
other copy Aα of the noncommutative torus with unitary generators Y and
Z obeying the relation

Z Y = e 2π i α Y Z . (6.10)

When α is an irrational number, every finitely generated projective module
over the algebra Aα which is not free is isomorphic to a Heisenberg module.
As these modules will also be of central importance in the following, we shall
review their basic properties here [18].

As already mentioned, any such module Ep,q is characterized by two
integers p, q satisfying p+ q α > 0, which can be taken to be relatively prime
with q > 0, or p = 0 and q = 1. As a vector space, the module

Ep,q = S(R) ⊗ C
q (6.11)

is the space of Schwartz functions of one continuous variable s ∈ R and one
discrete variable k ∈ Zq. By introducing the notation

ε = p/q − α (6.12)
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the space (6.11) is made into a right module over Aα by defining

(ξY )k(s) := ξ[k−p]q
(s− ε) ,

(ξZ)k(s) := e 2π i (s−k/q) ξk(s) (6.13)

for ξ ∈ Ep,q, with the relations (6.10) being easily verified. On the module
(6.11) one defines an Aα-valued Hermitian structure

〈 · , · 〉α : Ep,q × Ep,q −→ Aα (6.14)

by the formula

〈ξ, η〉α :=
∑

(m,r)∈Z2

q−1∑
k=0

∫
R

ds ξ[k−mp]q
(s−mε) ηk(s) e−2π i r (s−k/q) Y m Zr

(6.15)
for ξ, η ∈ Ep,q. Note the antilinearity of the first factor.

The endomorphism algebra EndAα(Ep,q), which acts from the left on Ep,q,
can be identified with the original copy Aθ of the noncommutative torus
where the noncommutativity parameter θ is “uniquely” determined by α in
the following way. Since p and q are relatively prime, there exist integers
a, b ∈ Z such that b q − a p = 1. Then the noncommutativity parameter is
given by the discrete Möbius transformation

θ =
aα− b

q α− p
. (6.16)

Notice that given any other pair of integers a′, b′ ∈ Z with b′ q−a′ p = 1, one
has θ′ − θ ∈ Z so that Aθ′ ∼= Aθ. It follows that the algebra EndAα(Ep,q) is
generated by the two unitary operators U and V which act from the left on
Ep,q by

(Uξ)k(s) := ξ[k−1]q
(s− 1/q) ,

(V ξ)k(s) := e
2π i

q
(s/ε+a k)

ξk(s) , (6.17)

and one easily verifies the defining relations (2.3) of the algebra Aθ.

On Ep,q there is also an Aθ-valued inner product

〈 · , · 〉θ : Ep,q × Ep,q −→ Aθ (6.18)

which is given explicitly by

〈ξ, η〉θ :=
1

|q ε|
∑

(m,r)∈Z2

q−1∑
k=0

∫
R

ds ξk(s) η[k−m]q
(s −m/q)

× e− 2π i
q ε

(s−m/q+a k ε) Um V r (6.19)
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for ξ, η ∈ Ep,q. Notice that now the antilinearity is in the second factor.
The key feature of this Hermitian structure is that it is compatible with the
Aα-valued one (6.14,6.15),

〈ξ, η〉θ ζ = ξ 〈η, ζ〉α (6.20)

for all ξ, η, ζ ∈ Ep,q. This means that the Aθ-Aα bimodule Ep,q provides a
Morita equivalence between the two algebras Aθ and Aα. Physically, the
compatibility condition (6.20) corresponds to T-duality between the vertex
operator algebras of (p′ − 2)-(p′ − 2) and p′-p′ strings acting on the Hilbert
space of p′-(p′ − 2) open string states in the low-energy limit [45, 72]. These
open string modes stretch between a single D(p′ − 2)-brane and a collection
of p coincident Dp′-branes carrying q units of vortex D(p′− 2)-brane charge.

Using the previous construction one can now build projections on the
algebra Aθ by picking suitable elements ξ′ ∈ Ep,q with 〈ξ′, ξ′〉α = 11. The
bimodule property (6.20) then implies that P = 〈ξ′, ξ′〉θ is a non-trivial pro-
jection in Aθ. Furthermore, by using the identification Aθ

∼= EndAα(Ep,q),
any such a projection may be equivalently written in the more suggestive
form

P =
〈
ξ (〈ξ, ξ〉α)−1/2 , ξ (〈ξ, ξ〉α)−1/2

〉
θ

= |ξ〉 11
〈ξ, ξ〉α

〈ξ| , (6.21)

where for each element |ξ〉 ∈ Ep,q the corresponding dual element 〈ξ| ∈ (Ep,q)∗

is defined by means of the Hermitian structure as 〈ξ|(η) = 〈ξ, η〉α ∈ Aα, and
we have only assumed now that 〈ξ, ξ〉α is an invertible element of the algebra
Aα.

In order to translate the self-duality equations (6.9) for P to equations
for ξ, we need to introduce a gauge connection on the right Aα-module Ep,q.
This is done by means of two covariant derivatives7 ∇1,∇2 : Ep,q → Ep,q

which are given explicitly by

(∇1ξ)k(s) :=
2π i
ε

s ξk(s) , (∇2ξ)k(s) :=
dξk(s)

ds
. (6.22)

Notice that the discrete index k is not touched. This connection has constant
curvature

[∇1,∇2] = −2π i
ε

11 , (6.23)

and the two operators (6.22) satisfy a Leibniz rule with respect to the right
action,

∇µ(ξa) = (∇µξ)a+ ξ(∂µa) , µ = 1, 2 , (6.24)
7The covariant derivative ∇ introduced here should not be confused with the approxi-

mate derivation ∇ introduced in section 4.2.
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for any ξ ∈ Ep,q and a ∈ Aα. They are also compatible with the Aα-valued
Hermitian structure,

∂µ 〈ξ, η〉α = 〈∇µξ, η〉α + 〈ξ,∇µη〉α , µ = 1, 2 , (6.25)

for any ξ, η ∈ Ep,q. Furthermore, by using compatibility (6.25) and the
right Leibniz rule (6.24) one can show that the induced derivations on the
endomorphism algebra,

δ1, δ2 : EndAα(Ep,q) −→ EndAα(Ep,q) , δµ(T ) := [∇µ, T ] , (6.26)

are proportional to the generators of the infinitesimal action of the commu-
tative torus T

2 on Aθ
∼= EndAα(Ep,q),

δµ =
1
q ε

∂µ . (6.27)

It is because of this property that we select the particular connection (6.22).

Then, by using these ingredients, it is straightforward to show that the
projection P in (6.21) satisfies the self-duality equations (6.9) if and only if
there exists an element ρ ∈ Aα such that

∇ξ = ξρ , (6.28)

with ∇ = 1
2 (∇1 + i∇2). This equation follows from a simple computation

with the element ρ = (〈ξ, ξ〉α)−1 〈ξ,∇ξ〉α. When ρ is constant (i.e. it is
proportional to the unit of Aα, ρ = λ 11 with λ ∈ C), the equation (6.28)
reduces to the simple differential equation

dξ
ds

+
(

2π s
ε

+ 2 iλ
)
ξ = 0 (6.29)

whose solutions are the Gaussian fields

ξλ(s) = A e−π s2/ε−2 i λ s . (6.30)

The vector A = (A1, . . . , Aq) ∈ C
q can be taken to lie in the complex

projective space CP
q−1 by removing an inessential normalization. It is

possible to prove that, for all values of the deformation parameter θ, the
norms 〈ξλ, ξλ〉α ∈ Aα are invertible [14, 76]. Accordingly, the Gaussian
functions (6.30) provide a complex one-parameter family of solutions Pλ =
|ξλ〉 (〈ξλ, ξλ〉α)−1 〈ξλ| of the self-duality equations (6.9). The projection Pλ ∈
Aθ has rank

∫
Pλ = p+ q θ and topological charge c1(Pλ) = q.

The physically relevant values of the complex parameter λ can be re-
stricted by gauge symmetry. Any two elements ξ and ξ′ of Ep,q provide
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different projections (6.21) if and only if they belong to different orbits of
the action of the group GL(Aα) of invertible elements of Aα which acts on
the right on Ep,q,

|ξ〉 �−→ |ξg〉 = |ξ〉g , g ∈ GL(Aα) . (6.31)

Note that we do not require g to be unitary. The action (6.31) preserves
the invertibility of 〈ξ, ξ〉α and leaves the corresponding projection (6.21)
invariant. Furthermore, from the Leibniz rule for the gauge connection it
follows that if ξ is a solution of the self-duality equation (6.28), then the
transformed vector ξg also solves an equation of the form (6.28), ∇ξg = ξgρg,
with the element ρ ∈ Aα modified to

ρ �−→ ρg = g−1 ρ g + g−1 ∂g . (6.32)

Elements of the group GL(Aα) thereby play the role of complex gauge trans-
formations.

In the case of the Gaussian fields (6.30), it is straightforward to show
from (6.32) with ρ = λ 11 and ρg = λ′ 11 that ξλ and ξλ′ are gauge equivalent
if and only if ξλ′ = ξλ U

mV r for some pair of integers (m, r) ∈ Z
2. The

parameters of the Gaussian functions are then related by

λ′ = λ+ π i (m+ i r) . (6.33)

It follows that the gauge inequivalent parameters λ make up an ordinary
torus T

2. As we will see later on, the moduli λ ∈ T
2 correspond to the

locations of the solitons on the underlying torus. The moduli space of Gaus-
sian fields (6.30) is thus CP

q−1 × T
2. For further aspects of these and other

constructions, see [20, 21, 22].

6.2 The Boca Projection

Let us now describe explicitly a particular instance of the globally minimizing
soliton projections of the previous subsection; it will play an important role in
the following. The Boca projection on the noncommutative torus comes from
choosing the simplest bimodule E0,1 = S(R), for which ε = 1/θ, a = p = 0,
b = q = 1, and α = −1/θ in the above construction. With the Gaussian
Schwartz function

ξ(s) = ξλ=0(s) = e−π θ s2
, (6.34)

which is such that the element 〈ξ, ξ〉−1/θ ∈ A−1/θ is invertible [14, 76], it
follows that

Bθ :=
〈
ξ
(
〈ξ, ξ〉−1/θ

)−1/2
, ξ

(
〈ξ, ξ〉−1/θ

)−1/2
〉

θ

(6.35)
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is a projection on Aθ which is homotopic to the Powers-Rieffel projection
(2.28).

The general form of the Boca projection (6.35) may be deduced by using
the A−1/θ-action (6.13) on (6.34) and the inner product (6.15) to explicitly
compute the element 〈ξ, ξ〉−1/θ ∈ A−1/θ. The square root may be computed
by using holomorphic functional calculus, and one thereby finds [56]

ξ(s)
(
〈ξ, ξ〉−1/θ

)−1/2
= e−π s2/θ

[
1 −

∑
k∈N

(2k − 3)!!
k!

(
θ

8

)k/2

×
∑

(m,r)∈Zk×Zk

(m,r)
=(0,0)

e−Qk(m,r)
k∏

i=1

e−(2π s/θ) (mi+ i ri)

]
,

(6.36)

with the convention (−1)!! := 1 and Qk the quadratic form on Z
k × Z

k

defined by

Qk(m, r) =
π

2 θ

k∑
i=1

[
(mi)2 + (ri)2

]
+
π

θ

(
k∑

i=1

mi

)2

+
π i
θ

⎛⎝ k∑
i=1

mi ri + 2
∑
i<j

mi rj

⎞⎠ . (6.37)

The corresponding projection is given by (6.35) and (6.19), and it will be
used in the following to relate the soliton basis of Section 3 to matrix non-
commutative solitons on R

2.

At the special rational values θ = 1/k, k ∈ N (in which case the algebra
A−1/θ

∼= C∞(T2) is commutative), the Boca projection can be expressed
in terms of theta-functions of the generators U and V of Aθ. For this, we
introduce the elliptic Jacobi-Erderlyi theta-functions

ϑ a
N

, b(ν | i σ) =
∑
m∈Z

e−π σ (m+a/N)2+2π i (m+a/N) b e 2π i (Nm+a) ν (6.38)

for a ∈ Z, b ∈ R and N ∈ N, which are holomorphic in ν ∈ C for moduli
σ ∈ C with Re(σ) > 0. We use the convention that N = 1 when a = 0 in
(6.38). Then by taking k ∈ N even for definiteness, and using the Weyl maps
ρ and ρ′ of (2.27) and (2.40), the Boca projection (6.35) may be expressed
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succinctly as [14]

B1/k =
1

k ρ
(
ϑ0,0

(
xk

∣∣ i k
2

))
ρ′
(
ϑ0,0

(
yk

∣∣ i k
2

))
×

k−1∑
l,m=0

e−π i l m/k ρ
(
ϑm

k
, l
2

(
x
∣∣ i k

2

))
ρ′
(
ϑ l

k
, m

2

(
y
∣∣ i k

2

))
.

(6.39)

The Wigner function on T
2 corresponding to the projection (6.39), which is

real and exhibits localized bump configurations, is displayed in [28]. This
form will be used later on to give a physical interpretation to the relationship
between torus solitons and solitons on the noncommutative plane.

6.3 GMS Soliton Expansions

Let us now consider the noncommutative plane R
2
Θ, which is defined heuris-

tically by the Heisenberg commutation relation [y, x] = 2 i Θ. We will as-
sume that Θ > 0 for definiteness. The algebra C∞(R2

Θ) may be identified
as the appropriate completion of the polynomial algebra F (R2)/IΘ, where
F (R2) = C 〈11, x, y〉 is the free unital algebra on two generators x, y, and IΘ
is the two-sided ideal of F (R2) generated by the element y x− x y − 2 i Θ 11.
As a Heisenberg algebra, it has a unique irreducible representation which is
the usual Fock space

F = �2(N0) = span
C

{ |m〉 ∣∣ m ∈ N0

}
(6.40)

for the Schrödinger representation of quantum mechanics. In (6.40), the
vectors |m〉 are the elements of the usual orthonormal number basis of a one-
dimensional harmonic oscillator, 〈m|n〉 = δmn, and the appropriate comple-
tion is indicated which will always be implicitly understood in what follows.
In particular, a basis for the algebra of bounded linear operators on F is
provided by the set { |n〉〈m| | m,n ∈ N0}.

The Weyl map Ω and star-product on the noncommutative plane are
defined analogously to (2.5), (2.6) and (2.9) by using Fourier transformation
of fields on R

2 [75]. In particular, the Wigner functions on R
2 corresponding

to the rank one Fock space operators |n〉〈m| are the Landau wavefunctions

ψn,m(w,w ) =
1√

4πΘ
Ω−1

(|n〉〈m|) , (6.41)

where w,w are complex coordinates on the plane. They are the orthonormal
eigenfunctions in L2(R2) of the Landau Hamiltonian for a charged particle
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moving on R
2 under the influence of a constant, perpendicularly applied

magnetic field B = Θ−1. The ground state wavefunction is the Gaussian
field

ψ0,0(w,w ) =
1√
πΘ

e−|w|2/2Θ , (6.42)

while the higher Landau levels can be obtained from (6.42) by application
of the differential creation operators

a† :=
1
2

(
−
√

Θ
∂

∂w
+

w√
Θ

)
, b† :=

1
2

(
−
√

Θ
∂

∂w
+

w√
Θ

)
(6.43)

as

ψn,m(w,w ) =

(
a†
)n

√
n!

(
b†
)m

√
m!

ψ0,0(w,w )

=
(−1)min(n,m)

max(n,m)!

√
n!m!
πΘ

( |w|2
Θ

)|n−m|/2

e i (n−m) arg(w)

× e−|w|2/2Θ L
|n−m|
min(n,m)

(|w|2/Θ)
, (6.44)

where

Lr
k(t) =

k∑
l=0

(−1)l
(
k + r

k − l

)
tl

l!
(6.45)

are the associated Laguerre polynomials.

From the Wigner representation (6.41) it follows immediately that these
functions obey the star-product projection relation

ψn,m � ψn′,m′ =
1√

4πΘ
δmn′ ψn,m′ , (6.46)

and thereby determine solitonic configurations of noncommutative field the-
ory on R2 [29]. The basic Gaussian soliton (6.42) can be centered about any
point on the plane by using the exact translational symmetry of noncom-
mutative field theory, and hence the one-soliton moduli space as a complex
manifold is isomorphic to C. The Wigner function of the rank k projection

P(k) =
k−1∑
m=0

|m〉〈m| (6.47)

describes k solitons, and the corresponding moduli space is the kth symmetric
product C

k/Sk of the single soliton moduli space, endowed with a smooth
Kähler metric [28]. The basic Murray-von Neumann partial isometry is
provided by the shift operator

S∞ =
∑

m∈N0

|m+ 1〉〈m| (6.48)
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with (S†∞)k (S∞)k = 11 and (S∞)k (S†∞)k = 11−P(k). Again the moduli space
of partial isometries (S∞)k, and hence the moduli space of k D-branes on
R

2, is manifestly C
k/Sk.

The key feature of the Landau wavefunctions within the present context
is that they are complete in L2(R2), so that any field f ∈ C∞(R2) may be
expanded as

f(w,w ) =
∑

(n,m)∈N2
0

fn,m ψn,m(w,w ) , (6.49)

where the expansion coefficients {fn,m} ∈ S(Z2) are chosen to yield finite
Landau semi-norms

‖f‖L,k :=

⎛⎝ ∑
(n,m)∈N2

0

Θ2k (2n + 1)k (2m+ 1)k |fn,m|2
⎞⎠1/2

<∞ ∀k ∈ N0 .

(6.50)
This suggests a natural regularization of noncommutative fields on R

2 in
which the Landau quantum numbers are truncated to a finite range 0 ≤
n,m ≤ N − 1, and the expansion coefficients of (6.49) are assembled into
an N ×N matrix (fn,m) ∈ MN (C) [49]. Similar truncations have also been
used as approximations of a disc [52], a strip [7] and a punctured plane [67].
Because of (6.46), the star-product f � f ′ of two fields corresponds to the
usual matrix product of (fn,m) and (f ′n,m) in MN (C) [30], and the noncom-
mutativity of the plane R

2
Θ is thereby mapped into the noncommutativity of

matrix multiplication. In addition, by orthonormality, spacetime integrals
over R

2 of fields f are given by traces of their matrices (fn,m). Thus the
expansion of functions in the GMS soliton basis provides a very natural way
to map noncommutative field theory on R

2 onto a zero-dimensional matrix
model [49]. The regularization provided by the finite matrix dimension N
controls both ultraviolet and infrared divergences at the same time [48] and
avoids the renormalization problems set in by UV/IR mixing. The limit
N → ∞ required to map back onto the original continuum field theory cor-
responds to the usual ’t Hooft planar limit [54, 49]. However, as mentioned
earlier, this is a subtle point, as the algebra of the noncommutative plane
is not the inductive limit of finite-dimensional algebras, and so one has to
define this limit carefully as in [46]. Moreover, in general this limit will not
commute with the scaling limits used in ordinary field theoretic renormaliza-
tion [49]. In the following we will relate the GMS soliton basis to that of the
previous sections and show how to regulate field theories on noncommutative
R

2 by means of one-dimensional matrix models.
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6.4 From Torus Solitons to GMS Solitons

To relate the GMS soliton regularization above to that of the previous sec-
tions, we shall first describe how to pass from solitons on the noncommu-
tative torus to the noncommutative solitons (6.44) on R

2 [43]. For this, we
consider the Boca projection (6.35) in the limit θ → 0. In that limit, the
Schwartz function (6.36) reduces to

ξ(s)
(〈ξ, ξ〉−1/θ

)−1/2 =
(

2
θ

)1/4

e−π s2/θ +O
(

e−2π s2/θ
)
. (6.51)

By substituting (6.51) into (6.35) and performing the resulting Gaussian
integrals over s in (6.19) we arrive at the Boca projection in this limit as

ψθ := lim
θ→0

Bθ = θ
∑

(m,r)∈Z2

e−π θ
2

(m2−2 i m r+r2) Um V r . (6.52)

By using the map (2.6) it follows that the Wigner function corresponding
to the element (6.52) of Aθ decouples the sums over m and r. It thereby
reduces to a product of elliptic functions of the form

Ω−1(ψθ)(x, y) = θ ϑ0,0

(
x
∣∣ i θ

2

)
ϑ0,0

(
y
∣∣ i θ

2

)
. (6.53)

The function (6.53) is plotted in Fig. 4. In contrast to the projections used
earlier, this soliton configuration resembles the Gaussian GMS soliton (6.42).
In particular, for any θ its height is always 2, and as θ decreases its width
becomes smaller and a spike develops. In the limit θ = 0, the function (6.53)
vanishes everywhere except at the origin of R

2 where it is finite. However,
this limit is not smooth, and for θ = 0 the soliton does not exist, as there
are no non-trivial projections in a commutative algebra.

By using the Jacobi inversion formula (equivalently Poisson resumma-
tion)

ϑ0,0(ν | i σ) =
1√
σ

e−π ν2/σ ϑ0,0

(
i ν
σ

∣∣ i
σ

)
, (6.54)

the θ → 0 limit will pick out the m = 0 mode of the corresponding theta-
functions in (6.53). This yields

Ω−1(ψθ)(x, y) = 2 e−2π (x2+y2)/θ . (6.55)

We now map the local coordinates (x, y) of the torus T
2 onto those (w,w )

of its universal covering space R
2 by rescaling the cycles of T

2 to give them a
radius R and then taking the decompactification limit R→ ∞. This relates
the two sets of coordinates as

(x+ i y, x− i y) =
(w,w )
2π R

(6.56)
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Figure 4: The soliton field configuration corresponding to the Boca projection
in the small θ limit. Axes are as in Fig. 2. Displayed are its shapes when the
noncommutativity parameter is taken to be the inverse of the golden mean
(left) and for θ = 1

10 (right).

which implies that the noncommutativity parameters are related through

θ =
Θ
π R2

, (6.57)

consistently with the small θ limit used above.

It follows that in the large area limit of the toroidal theory, with the
noncommutativity parameter Θ of R

2 held fixed, the Wigner function (6.55)
coincides with the basic Gaussian GMS soliton (6.42),

Ω−1(ψθ)(w,w ) =
√

4πΘ ψ0,0(w,w ) . (6.58)

Equivalently, by using (6.41) one may identify the operators

ψθ = |0〉〈0| (6.59)

in the decompactification limit of the torus. The higher Landau levels ψn,m

(or equivalently |n〉〈m|) can be similarly obtained by using higher rank pro-
jections on the noncommutative torus, but we will content ourselves here
with the fact that they can obtained from (6.58) through the identity (6.44).

A nice physical interpretation of this relationship between the toroidal
and planar noncommutative solitons may be given in the case of rational
θ = 1/k, with k ∈ N even, as used in arriving at (6.39). For this, we note
that the Landau wavefunction (6.42) can be multiplied by an arbitrary anti-
holomorphic function φ(w ) on C, which we may choose so as to give the
state a momentum p/2Θ along the x direction of R

2 and hence write

ψ0,0(w,w ; p) := φp(w )ψ0,0(w,w ) =
1√
πΘ

e−(2 p2−4 i p w−w 2)/2 Θ e−|w|2/2 Θ .

(6.60)
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We will assume that the area of the torus T
2 is quantized such that the

quantity 8
R2 is an integer; for definiteness we choose R2 = 8.

We can map the wavefunction (6.60) to one on the torus by regarding
a soliton on the torus as an infinite lattice of solitons on the plane. Taking
the quotient of R

2 by the momentum lattice Z
2 leads, using (6.57), to a

quantization condition p = 4πm/k, m ∈ Z on the momentum in the x
direction. On the other hand, p is also the y coordinate of the location of
the soliton (6.60) on R

2, and so for each quantum number m it can assume
k
2 different values p = 4πr

k + 2πm, r = 1, . . . , k
2 . By summing over all m ∈ Z

to take the quotient, we arrive from (6.60) at k
2 basic Landau wavefunctions

on the torus. Using (6.56) they may be written as

ψ0,0(x, y; r) =
∑
m∈Z

ψ0,0(w,w ; 2πm+ 4πr/k)

=
1√

8π2 θ
e 2π k (x− i y)2 e−2π k (x2+y2)

×ϑ 2r
k

, 0

(√
2 k (x− i y)

∣∣∣ i k
2

)
(6.61)

with r = 1, . . . , k
2 . One now takes an appropriate sum of the k

2 functions
(6.61) in order to obtain a star-product projection on T

2. By decoupling the
theta-function in (6.61), it is possible to thereby show that the Weyl image
of the resulting wavefunction coincides with the Boca projection in (6.39). A
similar derivation of this noncommutative soliton on T

2 is employed in [28],
based on the construction of the noncommutative torus algebra Aθ as the
commutant of Z

2 in the crossed product of the algebra C∞(R2
Θ) with the

momentum lattice Z
2.

6.5 Matrix GMS Projections

We will now apply the approximation of Aθ described in section 3.2 to obtain
a matrix regularization of the basic GMS soliton projections. We start from
the θ → 0 limit of the Boca projection in (6.52), and apply the map (3.28)
to get

Γn(ψθ) = θ
∑

(m,r)∈Z2

e−π θ
2

(m2−2 i m r+r2) (Un)m (Vn)r . (6.62)

We will evaluate (6.62) by regarding it as a matrix-valued function on a pair
of circles. Let us first examine the matrix elements corresponding to the
first tower. By using (4.5), (4.6) and (4.10), we may write the (ij)th matrix
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element of (6.62) with 1 ≤ i, j ≤ q2n as

(
Γn(ψθ)

)
ij

= θ
∑

(k,l)∈Z2

zκk

q2n∑
s=1

(ωn)s(i−1) exp
[−π θ

2

(
(s+ l q2n)2

− 2 i (s+ l q2n)(j − i+ κk q2n) + (j − i+ κk q2n)2
)]

,

(6.63)

where the integer κk depends on the circular Fourier momentum k ∈ Z and
the triangular block of the matrix as

κk :=
{

k i < j
k + 1 i ≥ j

. (6.64)

We can transform the sums over s ∈ Zq2n and l ∈ Z in (6.63) into a sum
over a single integer m = s+ l q2n ∈ Z, and the sum over k ∈ Z to one over
r = κk ∈ Z. Unlike the continuum case, in the matrix regularization one
cannot decouple the sums over m and r, and instead of factorizing into the
product of two genus one theta-functions as in (6.53), the matrix elements
(6.63) can generically only be written in terms of genus two Jacobi theta-
functions

ϑ(ν | iσ) =
∑

m∈Z2

e−π m ·σm+2π i m ·ν , (6.65)

where m · ν := m1 ν1 + m2 ν2. The functions (6.65) are holomorphic in
ν ∈ C

2 for symmetric 2 × 2 period matrices σ of positive definite real part.

With z := e 2π i τ/rn , τ ∈ [0, rn), after some algebra we may thereby write
(6.63) as (

Γn(ψθ)
)
ij

= θ e−π θ
2

(i−j)2 ϑ
(
ν

(n)
ij

∣∣∣ iσ(n)
)
, (6.66)

where

ν
(n)
ij =

(
i
(

p2n

q2n
(i− 1) + θ

2 (j − i)
)

q2n θ
2 (i− j) + i τ

rn

)
,

σ(n) =
θ

2

(
1 − i q2n

− i q2n (q2n)2

)
. (6.67)

The computation of the matrix elements corresponding to the second tower
is completely analogous with the replacements (p2n, q2n) → (p2n−1, q2n−1),
τ → τ ′ and rn → r′n in the above. In this way we arrive at the matrix
approximation to the Boca projection Bθ in the limit θ → 0 in the form

Γn(ψθ) = θ

⎛⎝(
e −π θ

2 (i−j)2 ϑ
(

ν
(n)
ij

∣∣∣ i σ(n)
))

(0)q2n×q2n−1

(0)q2n−1×q2n

(
e −π θ

2 (i′−j′)2 ϑ
(

ν
′ (n)

i′j′
∣∣∣ i σ′ (n)

))
⎞⎠ ,

(6.68)
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and thus the matrix regularization on the torus naturally involves hyperel-
liptic functions.

To transform to an appropriate small θ limit, as before we apply the
Jacobi inversion formula for the genus two theta functions (6.65),

ϑ(ν | iσ) =
e−π ν ·σ−1ν

√
detσ

ϑ
(

iσ−1ν
∣∣ iσ−1

)
, (6.69)

which now holds up to an irrelevant phase factor. By substituting (6.67) into
(6.65) it is straightforward to show that the θ → 0 limit of the right-hand
side of (6.69) also picks out the zero mode m = 0. Then, from (6.66), (6.67)
and (6.69), after some algebra we have in the first tower

(
Γn(ψθ)

)
ij

=
1
q2n

e−π θ
2

(i−j)2 exp
{
− π

(q2n)2 θ

[
(p2n)2 (i− 1)2

+ 2 i p2n (i− 1) τ
rn

−
(
q2n θ (i− j) + i τ

rn

)2
]}

. (6.70)

As before, we now substitute into (6.70) the rescaling (6.57) and the circular
coordinates

τ

rn
=

t

2π R
(6.71)

with t ∈ R, and take the large area limit R → ∞. Since θ → 0, it follows
from (6.57) and appendix A, eq. (A.6) that p2n → 0 as p2n ∼ q2n θ ∼ 1

R2

also in this limit. A completely analogous analysis carries through for the
second tower, and in this way we arrive finally at the matrix version of the
basic GMS soliton (6.59) (or (6.58)) in the form

Γn(ψΘ)(t, t′ )

=

(
1

q2n
e−t2/(2q2n)2 Θ (1)q2n×q2n (0)q2n×q2n−1

(0)q2n−1×q2n
1

q2n−1
e−t′ 2/(2q2n−1)2 Θ (1)q2n−1×q2n−1

)
.

(6.72)

The matrix regularization (6.72) determines solitons on noncommutative
R

2 as approximate projections in the algebra Mq2n(C∞(R))⊕Mq2n−1(C
∞(R))

of matrix-valued functions on two copies of the real line R. They are approx-
imate in the sense that while the matrices 1

q2n
(1)q2n×q2n , 1

q2n−1
(1)q2n−1×q2n−1

are projection operators in Mq2n(C), Mq2n−1(C), the Gaussian prefactors in
S(R) combine to projections only in the n → ∞ limit. After an appropri-
ate rescaling of the coordinates t, t′ ∈ R, the matrix soliton (6.72) evidently
converges to the GMS one-soliton configuration (6.42), and in particular,
by using translational symmetry, its moduli space is naturally isomorphic
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to (R × N) × (R × N), where the extra factors of N come from the free-
dom in replacing the matrices (1)q×q by 1

k (k)q×q and rescaling q2n → k q2n,
q2n−1 → k q2n−1 for any k ∈ N in the limit n→ ∞. Note, however, that since
the two towers are independent, the soliton moduli space is determined by a
pair of one-dimensional, localized matrix-valued functions on R and it is no
longer a complex manifold at the finite level. Higher Landau levels can be
approximated by constructing appropriate finite versions of the differential
operators (6.43), similarly to section 4, and applying them to the basic soli-
ton fields (6.72), as in (6.44). The corresponding k-soliton moduli space will
then be a symmetric orbifold of the single soliton one. We shall not pursue
this construction any further here, but in any case this gives a precise way
to regulate field theories on the noncommutative plane by means of matrix
quantum mechanics.
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A Continued Fraction Expansions

A well known result of number theory [36] states that any irrational number
θ can be uniquely represented as a simple continued fraction expansion

θ = lim
n→∞ θn , θn :=

pn

qn
(A.1)

involving positive integers ck > 0, k ≥ 1 and c0 ∈ Z. The continued fraction
is the definition of a sequence of rational numbers {θn} (the approximants),
which converge to θ. The nth approximant θn of the expansion is given by

θn = c0 +
1

c1 +
1

c2 +
1

. . . cn−1 +
1
cn

. (A.2)



70 MATRIX QUANTUM MECHANICS AND . . .

A short-hand notation for the expansion is

θ = [c0, c1, c2, . . . ] . (A.3)

The relatively prime integers pn and qn in (A.1) may be computed recursively
from (A.2) by using the formulæ

pn = cn pn−1 + pn−2 , p0 = c0 , p1 = c0c1 + 1 ,
qn = cn qn−1 + qn−2 , q0 = 1 , q1 = c1 (A.4)

for n ≥ 2. Note that all qn > 0 while pn ∈ Z, and that both qn and |pn|
are strictly increasing sequences which therefore diverge as n → ∞. The
sequence of convergents (A.2) can be shown to satisfy the bound

|θ − θn| ≤ 1
(qn)2

, (A.5)

showing how fast the limit in (A.1) converges.

When 0 < θ < 1 (so that p0 = c0 = 0 and all pn > 0), the even
order convergents are always smaller than θ, while the odd order ones are
larger. Thus the even (resp. odd) order convergents form an increasing
(resp. decreasing) sequence which converges to θ as

θ2n−2 < θ2n < θ < θ2n+1 < θ2n−1 . (A.6)

Furthermore, the approximants fulfill Diophantine properties(
p2n±1 p2n

q2n±1 q2n

)
∈ SL(2,Z) , (A.7)

which follow from the recursion relations (A.4) by induction on n. We also
define the decreasing sequence

β2n = p2n−1 − q2n−1 θ = q2n−1 (θ2n−1 − θ) , (A.8)
β2n−1 = q2n θ − p2n = q2n (θ − θ2n) , (A.9)

with βk > 0 and limk→∞ βk = 0. For each n the properties (A.7) imply that

q2n β2n + q2n−1 β2n−1 = 1 , q2n β2n+2 + q2n+1 β2n−1 = 1 . (A.10)

B Matrix Unit Relations

To prove that the collections of operators {Pii} and {Pi+2,i+1} in (3.4)
and (3.9) satisfy the relations

Pij Pkl = δjk Pil , (B.1)
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we will first prove that

P21 Pii = 0 ∀i > 1 . (B.2)

For this, we will show that P21 Pii|ψ〉 = 0 for all vectors |ψ〉 ∈ H of the
underlying Hilbert space on which the algebra Aθ is represented. If |ψ〉 has
no component in the subspace Hi = im(Pii), then this is trivially true, so we
suppose that |ψ〉 ∈ Hi. Note that the operator Π21 in (3.5) contains the pro-
jection P11 to its extreme right. With this observation, we can now exploit a
standard result of functional analysis (see for instance [61, Theorem 2.3.4])
which states that the kernel of a bounded linear operator coincides with the
kernel of the partial isometry in its polar decomposition. Since i > 1, we
have P11|ψ〉 = 0, and so

Hi ⊂ ker
(
Π21

)
= ker

(
P21

)
. (B.3)

It follows that for any vector |ψ〉 ∈ H we have

Pii|ψ〉 ∈ ker
(
P21

)
(B.4)

for i > 1, which establishes (B.2). By repeating this argument for the adjoint
operator (Π21)† and using the definition (3.10) one similarly proves

P12 P11 = 0 . (B.5)

We will now prove the identity

P21 P11 = P21 . (B.6)

For this, we decompose a generic vector |ψ〉 ∈ H as

|ψ〉 = |ψ1〉 ⊕ |ψ⊥
1 〉 (B.7)

with |ψ1〉 ∈ H1 and |ψ⊥
1 〉 ∈ H⊥

1 . Then

P21 P11|ψ〉 = P21|ψ1〉 , (B.8)

and the desired result now follows from the fact that

|ψ⊥
1 〉 ∈ ker

(
P11

) ⊂ ker
(
Π21

)
= ker

(
P21

)
. (B.9)

Finally, to establish the expression

P22 P21 = P21 , (B.10)
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we note first of all that since the operator Π21 contains an orthogonal pro-
jection on its right, it has closed range8. With this observation, we can now
exploit another standard functional analytic result (see for instance [77, The-
orem 15.3.8]) which states that the range of a closed operator is the same as
the range of the partial isometry in its polar decomposition. It follows from
this, and from the fact that the operator Π21 contains the projection P22 to
its extreme left, that

P21(H) = Π21(H) ⊂ H2 . (B.11)

Since P22 acts as the identity operator on the subspace H2, the relation
(B.10) follows. The corresponding identities for the projections and partial
isometries with index labels larger than 2 can then be constructed either by
direct multiplication or by use of the automorphism α defined in (3.2).

C Approximating the Torus Algebra

The proof of the fact that

lim
n→∞

∥∥a− Γn(a)
∥∥

0
= 0 , (C.1)

with a ∈ Aθ and Γn the projection onto the finite level subalgebra An

in (3.18), comes from repeated applications of the triangle and product
inequalities for the C∗-norm. For any m, r ∈ Z, by using the fact that
‖(Un)m‖0 = ‖(Vn)r‖0 = 1 and ‖Um‖0 = ‖V r‖0 = 1, we have∥∥(Un)m (Vn)r − Um V r

∥∥
0
≤ ∥∥(Un)m − Um

∥∥
0
+

∥∥(Vn)r − V r
∥∥

0
. (C.2)

Using (3.26), we now define Un = U +∆n with [U,∆n] = 0 and ‖∆n‖0 ≤ εn.
Then

∥∥(Un)m − Um
∥∥

0
=

∥∥∥∥∥∥
m∑

p=1

(
m

p

)
Um−p (∆n)p

∥∥∥∥∥∥
0

≤
m∑

p=1

(
m

p

)( ‖∆n‖0

)p

≤ 1 − (1 − εn)m < mεn . (C.3)

8The statement that a bounded linear operator T is closed is equivalent to the following

statements [77]: (a) 0 is an isolated point in the spectrum of the self-adjoint operators T †T
and TT †; (b) the right and left ideals T Aθ and Aθ T are closed in the norm topology on

Aθ ; and (c) there exist projection operators P and Q with Aθ T = Aθ P and T Aθ = QAθ .
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A completely analogous calculation gives∥∥(Vn)r − V r
∥∥

0
< r εn . (C.4)

From (3.28) we have∥∥a− Γn(a)
∥∥

0
≤

∑
(m,r)∈Z2

|am,r|
∥∥(Un)m (Vn)r − Um V r

∥∥
0
, (C.5)

and so from (C.2)–(C.4) it follows that∥∥a− Γn(a)
∥∥

0
< εn

∑
(m,r)∈Z2

(m+ r) |am,r| , (C.6)

which vanishes as n→ ∞ for Schwartz sequences {am,r}. Therefore, to each
element of Aθ there always corresponds an element of the subalgebra An to
within an arbitrarily small radius in norm.

D Inductive Limit

In this appendix we will show how to obtain the noncommutative torus as
an inductive limit9

Aθ =
∞⋃

n=0

Bn (D.1)

of an appropriate inductive system of algebras {Bn, ιn}n≥0, together with
injective unital ∗-morphisms ιn : Bn ↪→ Bn+1 [26]. It turns out that for
K-theoretical reasons one needs to take Bn = A2n+1 = Mq4n+2

(
C∞(S1)

) ⊕
Mq4n+1

(
C∞(S1)

)
. The crucial point is to explicitly construct the embed-

dings ιn in such a way that the K-theory groups (2.34) and (2.36) of the
noncommutative torus are obtained in the limit out of the “finite level”
counterparts (3.33). For this, one needs to exploit the continued fraction
expansion of θ and the recursion relations (A.4) in a very careful manner.

It is well known [25] that on the “matrix part”, the continued fraction
expansion of θ directly gives the required dimension group of the torus Aθ

while leading to a trivial K1-group, this being the appropriate setting for
immersions into an AF-algebra [65]. In the present case, in order to get the
correct K1-group (2.36), which is generated by the two independent classes

9Strictly speaking, the following discussion is only rigorously valid in the continuous

category. However, on the noncommutative torus the proof of [26] should go through also

for smooth functions, with the appropriate technical modifications.
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[U ] and [V ], one needs to modify the construction somewhat. The main
point is that the clock operators appearing in (3.20) are elements of finite-
dimensional matrix algebras and therefore have trivial K1-class. The non-
trivial group is thereby generated by the generalized shift operators in (3.20),
and this must be kept in mind when embedding from one level to the next.
To this end, one “skips” a step [26], by going from level n to level n+ 1 (so
as to send qn to qn+4) . With the skipping of steps, the roles of the clock
and shift operators in (3.20) change from one level to the next.

We thereby use the recursion relations (A.4) to define integer valued
matrices

Pn =
(
rn sn

tn un

)
, n = 0, 1, 2, . . . (D.2)

with the property that

Pn

(
q4n+2

q4n+1

)
=

(
q4(n+1)+2

q4(n+1)+1

)
. (D.3)

To simplify notation for the rest of this appendix, let us denote dn = q4n+2

and d′n = q4n+1. As mentioned before, we shall take the algebra in the
inductive limit to be

Bn = A2n+1 = Mdn

(
C∞(S1)

)⊕Md′n
(
C∞(S1)

)
, n = 0, 1, 2, . . . , (D.4)

and we are now ready to describe the embedding ιn : Bn ↪→ Bn+1.

Since a generic element of the matrix algebra (D.4) is of the form

an =
∑
k∈Z

dn∑
i,j=1

a
(n)
ij;k z

k Pij
n ⊕

∑
k′∈Z

d′n∑
i′,j′=1

a
′ (n)
i′j′;k′ z

′ k′
P′ i′j′

n , (D.5)

it suffices to give the immersions of the dn × dn and d′n × d′n matrices
(
a

(n)
ij;k

)
and

(
a
′ (n)
i′j′;k′

)
for given fixed values of the circular Fourier modes k and k′,

and of the two unitaries z and z′ which generate the center of the algebra
An. Denoting the mode restrictions by an�k, the embedding of the matrix
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degrees of freedom is given by

ιn

[(
an�k

(0)d′n×d′n

)]

=

⎛⎜⎜⎝
11rn⊗

(
a
(n)
ij;k

)
(0)sn d′n×sn d′n

11tn⊗
(
a
(n)
ij;k

)
(0)un d′n×un d′n

⎞⎟⎟⎠ ,

ιn

[(
(0)dn×dn

an�k′

)]

=

⎛⎜⎜⎝
(0)rn dn×rn dn

11sn⊗
(
a
′ (n)

i′j′;k′
)

(0)tn dn×tn dn

11un⊗
(
a
′ (n)

i′j′;k′
)

⎞⎟⎟⎠ ,

(D.6)

while z and z′ are embedded as

ιn

[(
z 11dn

(0)d′n×d′n

)]

=

⎛⎜⎜⎝
Srn (z)⊗11dn

(0)sn d′n×sn d′n
Stn (1)⊗11dn

(0)un d′n×un d′n

⎞⎟⎟⎠ ,

ιn

[(
(0)dn×dn

z′ 11d′n

)]

=

⎛⎜⎜⎝
(0)rn dn×rn dn

Ssn(1)⊗11d′n
(0)tn dn×tn dn

Sun(z′ )⊗11d′n

⎞⎟⎟⎠ .

(D.7)

When lifted to the K-theory groups, the homomorphism ιn acts as the matrix
Pn on K0(Bn) = Z ⊕ Z and as the identity on K1(Bn) = Z ⊕ Z, so that the
inductive limit algebra has the appropriate K-theory groups (2.34)–(2.36).
Furthermore, in [26] it is shown that the limit algebra is a simple unital
algebra that has a unique trace state. All of these properties select the
noncommutative torus algebra Aθ up to isomorphism.
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E Approximating the Leibniz Rule

In this appendix we will show that the two “derivatives” defined in (4.8)
satisfy an approximate Leibniz rule, which becomes the usual one in the n→
∞ limit. To keep formulæ from becoming overly cumbersome, we will only
indicate explicitly terms appearing in the first tower. Analogous expressions
are always understood to appear in the second tower. We will denote by [a]q
the integer part of a real number a modulo q, with the convention that [a]0
is its integer part in Z.

The product of two elements of the finite level algebra An with expansion
(4.5) is given by

anbn =
q2n∑

i,j,s,t=1

∑
k,l∈Z

α
(n)

i+
[

q2n
2

]
0
,j;k

β
(n)

s+
[

q2n
2

]
0
,t;l

(ωn)js−it z
k+l+

[
j+t
q2n

]
0

× (Cq2n)[i+s]q2n
(Sq2n(z)

)[j+t]q2n

⊕ (second tower) . (E.1)

By using (4.8) one may calculate the derivative of the product (E.1) to be

∇1(anbn) = 2π i
q2n∑

i,j,s,t=1

∑
k,l∈Z

[i+ s]q2n α
(n)

i+
[

q2n
2

]
0
,j;k

β
(n)

s+
[

q2n
2

]
0
,t;l

× (ωn)js−it z
k+l+

[
j+t
q2n

]
0 (Cq2n)[i+s]q2n

(Sq2n(z)
)[j+t]q2n

⊕ (second tower) , (E.2)

while a direct calculation using the definition (4.8) and the product formula
(E.1) gives

(∇1an)bn + an(∇1bn) = 2π i
q2n∑

i,j,s,t=1

∑
k,l∈Z

(i+ s)

×α
(n)

i+
[

q2n
2

]
0
,j;k

β
(n)

s+
[

q2n
2

]
0
,t;l

× (ωn)js−it z
k+l+

[
j+t
q2n

]
0

× (Cq2n)[i+s]q2n
(Sq2n(z)

)[j+t]q2n

⊕ (second tower) . (E.3)

The difference between these two expressions occurs when at least one of the
integers i or s is of order

[ q2n

2

]
0
, in which case the corresponding coefficient
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of an or bn is exponentially small in the limit. The two expressions thereby
coincide at n→ ∞. A completely analogous computation gives

∇2(anbn) = 2π i
q2n∑

i,j,s,t=1

∑
k,l∈Z

{
[j + t]q2n + q2n

(
k + l +

[
j+t
q2n

]
0

)}
×α

(n)

i+
[

q2n
2

]
0
,j;k

β
(n)

s+
[

q2n
2

]
0
,t;l

(ωn)js−it z
k+l+

[
j+t
q2n

]
0

× (Cq2n)[i+s]q2n
(Sq2n(z)

)[j+t]q2n

⊕ (second tower) (E.4)

and

(∇2an)bn + an(∇2bn) = 2π i
q2n∑

i,j,s,t=1

∑
k,l∈Z

(
j + t+ q2n( k + l )

)
×α

(n)

i+
[

q2n
2

]
0
,j;k

β
(n)

s+
[

q2n
2

]
0
,t;l

× (ωn)js−it z
k+l+

[
j+t
q2n

]
0

× (Cq2n)[i+s]q2n
(Sq2n(z)

)[j+t]q2n

⊕ (second tower) . (E.5)

Again the two expressions differ only for large momenta j and t.
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