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A NO BREATHERS THEOREM FOR SOME NONCOMPACT RICCI

FLOWS∗

QI S. ZHANG†

Abstract. Under suitable conditions near infinity and assuming boundedness of curvature
tensor, we prove a no breathers theorem in the spirit of Ivey-Perelman for some noncompact Ricci
flows. These include Ricci flows on asymptotically flat (AF) manifolds with positive scalar curvature,
which was studied in [DM] and [OW] in connection with general relativity. Since the method for the
compact case faces a difficulty, the proof involves solving a new non-local elliptic equation which is
the Euler-Lagrange equation of a scaling invariant log Sobolev inequality.

It is also shown that the Ricci flow on AF manifolds with positive scalar curvature is uniformly
κ noncollapsed for all time. This result, being different from Perelman’s local noncollapsing result
which holds in finite time, seems to have implications for the issue of longtime convergence.
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1. Statement of result. A basic question in the study of the Ricci flow is:
Are periodic orbits called breathers trivial? Here triviality means that metrics only
move by diffeomorphisms and scaling through out the period. A Ricci flow (M, g(t)),
t ∈ [t1, t2], is called a breather if there is a positive constant c and a diffeomorphism Ψ
on M so that g(t2) = cΨ∗(g(t1)). Perelman’s no breathers theorems ([P] Sections 2,
3) say that all periodical solutions of compact Ricci flows are gradient Ricci solitons,
and hence trivial. See also earlier proof of this result by Ivey [I] in three dimension
steady and expanding case, and [Ca] and [L] for further development on compact
breathers. However, similar result in the noncompact case is conspicuously absent.
Finding nontrivial periodic orbits has always been an useful topic in the study evo-
lution equations, which also include Ricci flows. As indicated in the paper [OSW],
the nonexistence of nontrivial breathers is associated to the irreversibility of world
sheet in renormalization group flow in string theory. See also the papers [FLW] and
[AKW] for further motivations coming from physics, where the authors wish to rule
of solitons which are also breathers by definition. Ruling out nontrivial breathers is
also helpful in the study of long time convergence problem in Ricci flow. For example,
suppose one knows that a Ricci flow (M, g(t)), t ∈ [k, k+1], k → ∞, converges in C∞

loc

sense to a limit Ricci flow (M∞, g∞(s)), s ∈ [0, 1]. If the end points (M∞, g∞(0)) and
(M∞, g∞(1)) differ only by scaling and diffeomorphism, then a no breather theorem
would imply that (M∞, g∞(s)), s ∈ [0, 1] is a gradient Ricci soliton. Actually Theorem
1.4 below implicitly implies that if certain scaling invariant log Sobolev functionals
at the end points share the same infimum which can be reached by a minimizer, then
(M∞, g∞(s)), s ∈ [0, 1] is a gradient Ricci soliton. This condition on the log Sobolev
functional can be verified for many manifolds, including the asymptotically flat ones.
See Corollary 1.6 below.

The purpose of this paper is to prove a no breathers theorem for some noncom-
pact Ricci flows. Some times an extension of a theorem from the compact case to
a noncompact one merely involves some technical improvements of the method, plus
some extra conditions near infinity. However the no breathers theorem is different for
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two reasons. First, noncompact Ricci flows arise naturally as the blow up limits of
finite time singularity of compact Ricci flows. In fact, most of the essential singularity
models for compact Ricci flows are noncompact. This includes the well known cylinder
S2 ×R in the 3 dimensional case, which is also a trivial breather. Thus even if one is
only interested in compact Ricci flows, one still needs to study noncompact Ricci flows.
Second, the method of proof by Perelman for the no breathers theorem does not seem
to work for the noncompact case, especially for the steady breather case. Recall that
Perelman introduces the F functional which is defined as F (v) =

∫

M
(4|∇v|2+Rv2)dg

where R is the scalar curvature of the manifold and v ∈ W 1,2(M) and ‖v‖L2(M,g) = 1.
He proved that the infimum of F is a nondecreasing function of time along a Ricci
flow (M, g(t)); moreover it is a constant if and only if the Ricci flow is a steady gra-
dient soliton. Using the fact that the infimum is reached by a minimizer when M is
compact, Perelman proved that there is no nontrivial steady breathers for compact
Ricci flows, i.e. a steady breather is necessarily a steady gradient soliton. If one
attempts to extend this argument to noncompact Ricci flow, one faces an immediate
difficulty. Namely, the infimum of the F functional is not reached by a function on a
typical noncompact manifold such as Rn or S2 ×R. In fact, on Rn, the F functional
is nothing but the Dirichlet energy (multiplied by 4) and it is well known that there
is no L2 minimizer. For this reason, we need to look for a different method.

In this paper, we consider the functional (1.1). When the parameter α = 1,
it is the limiting case of Perelman’s W entropy and which can be regarded as a
scaling invariant version of the Log Sobolev inequality introduced by Weissler [W].
The corresponding Euler-Lagrange equation is a nonlocal, nonlinear elliptic equation.
Unlike the F functional, the minimizer of (1.1) exists on many typical noncompact
manifolds. Using this we prove a no breathers theorem on some noncompact Ricci
flows. The study of the functional (1.1) and its minimizer equation potentially has
further applications.

Let’s introduce notations and definitions to be used in the paper. We use M to
denote a n(≥ 3) dimensional Riemannian manifold and g(t) to denote the metric at
time t; d(x, y, t) is the geodesic distance under g(t); Unless stated otherwise, we assume
the curvature tensor is bounded at each time t. B(x, r, g(t)) = {y ∈ M | d(x, y, t) < r}
is the geodesic ball of radius r, under metric g(t), centered at x, and |B(x, r, t)|g(t) is
the volume of B(x, r, t) under g(t); when no confusion arises we may also use B(x, r) or
B(x, r, t) to denote B(x, r, g(t)); dg(t) is the volume element; x0 is a reference point on
M . We also reserve R = R(x, t) as the scalar curvature under g(t). A generic positive
constant is denoted by C or c whose value may change from line to line. When we say
that a sequence of pointed manifolds converges in C∞

loc sense, we mean they converge
in the usual Cheeger-Gromov sense. That is, subject to diffeomorphisms, the metrics
converge in C∞

loc sense. The definition of asymptotically flat manifolds can be found
in the beginning of Section 2.

Definition 1.1. (Log Sobolev functionals, infimum, infimum at infinity) Let
(M, g) be a n dimensional Riemannian manifold with metric g and D ⊂ M be a
domain.

(a). Given functions v ∈W 1,2
0 (D, g) with ‖v‖L2(D) = 1, and a number α ≥ 1, the

log Sobolev functionals with parameter α is defined by

(1.1)
L(v, g, α,D) = −

∫

D

v2 ln v2dg + α
n

2
ln

(
∫

D

(4|∇v|2 +Rv2)dg + E−
0

)

+ sn

≡ −N(v) + α
n

2
ln(F (v) + E−

0 ) + sn.
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Here R is the scalar curvature; E−
0 = −min{0, inf{F (v) |, v ∈ C∞

0 (D), ‖v‖L2 = 1}};
sn = −n

2 ln(2πn)− n
2 .

(b). The infimum of the log Sobolev functional is denoted by

λ(g, α,D) = inf{L(v, g, α,D) | v ∈ W 1,2
0 (D, g), ‖v‖L2(D) = 1}.

(c). When α = 1 and D = M , the infimum of the log Sobolev functional at
infinity is

λ∞(g, 1,M) = lim
r→∞

λ(g, 1,M −B(x0, r))

where x0 is a reference point in M .

If D =M , then for simplicity we write

L(v, g, α) = L(v, g, α,M), λ(g, α) = λ(g, α,M).

If α = 1, we may suppress α and write

L(v, g) = L(v, g, 1), λ = λ(g) = λ(g, 1) = λ(g, 1,M) λ∞ = λ∞(g) = λ∞(g, 1,M).

Remark 1.2. When M = Rn and α = 1, then L(v, g) is the log Sobolev
functional introduced by Weissler [W], which is a scaling invariant version of the log
Sobolev functional originally introduced by Gross [G] and Federbush [F]. Observe
that λ(g) is invariant under scaling and diffeomorphism. See the beginning of proof
of Theorem 1.4 below.

λ(g) is related to Perelman’s ν invariant in Section 3 of [P]. We are not sure if
they are the same.

When F (v) becomes 0 but L(v) is finite, the functional L is regarded as −∞.
When the scalar curvature R ≥ 0, it is clear that E−

0 = 0.

Definition 1.3. (gradient Ricci solitons) A Riemannian manifold (M, g) is called
a gradient Ricci soliton if there exists a smooth function f on M and a constant ǫ
such that

(1.2) Ric+Hessf +
ǫ

2
g = 0.

(M, g) is called a expanding, steady and shrinking gradient Ricci soliton if ǫ >
0, ǫ = 0 and ǫ < 0 respectively.

The following is the main result of the paper.

Theorem 1.4. Let (M, g(t)), ∂tgij = −2Rij, t ∈ [0, T ] be a complete, noncompact
Ricci flow with bounded curvature tensor and nonnegative scalar curvature. Suppose
(M, g(t)) is a breather, i.e. for two moments t1, t2 ∈ [0, T ], t1 < t2, there is a positive
constant c such that (M, cg(t1)) and (M, g(t2)) differ only by diffeomorphism.

Suppose also the following conditions hold.
(a) −∞ < λ(g(t1)) < λ∞(g(t1)).
(b) Either |B(x0, r, t1)|g(t1) ≤ Crn, for some C > 0 and all r > 0, or R(x, t1) ≥
C

1+d(x,x0,t1)2
for some constant C > 0.

Then (M, g(t)) is a gradient Ricci soliton.
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Remark 1.5. Although Condition (a) looks similar to a well known condition on
the existence of point spectrum for the Laplacian on noncompact manifolds, however,
our condition is much less restrictive in the case the scalar curvature is nonnegative.
It is well known that the Laplacian on asymptotically flat (AF) manifolds does not
have a point spectrum. But Proposition 2.3 (b) and Proposition 2.4 below say that
AF manifolds with positive scalar curvature satisfy Condition (a) unless they are
shrinking gradient solitons.

It would be interesting to find more manifolds such that Condition (a) holds. We
suspect that certain decay condition of the curvature near infinity is sufficient.

Naturally one is obliged to present some examples of Ricci flows where the condi-
tions of the theorem is met. Condition (a) is easy to be met since one can modify the
metric on a compact domain of a manifold so that λ(g) becomes arbitrarily negative,
while λ∞(g) remains the same. Let x0 be a reference point, we can construct a met-
ric g(t1) such that the volume of the unit ball B(x0, 1) is very small but the scalar
curvature is bounded by 1. A flat cylinder with small aperture is such an example.
So given a positive number κ, the manifold is κ collapsed at scale 1. Hence λ(g(t1))
is very negative. Indeed, by Proposition 2.6, if λ(g(t1)) > −C > −∞, then (M, g(t1))
is κ non-collapsed below scale 1. Here C depends on κ. But λ∞(g(t1)) is totally
independent of λ(g(t1)).

Condition (b) is satisfied automatically by ancient κ solutions of 3 dimensional
Ricci flow, which include gradient shrinking solitons with nonnegative sectional cur-
vature. See [P] and [P2].

Another type of examples is the Ricci flow on asymptotically flat (AF) manifolds
(c.f. Definition 2.1), which is interesting due to connections to general relativity.
Useful properties of these kind of Ricci flows have bee proven in [DM], [OW]. For
example, they proved that the AF property is preserved under Ricci flow.

Corollary 1.6. Let (M, g(t)) be a Ricci flow on an asymptotically flat manifold
with positive scalar curvature. If (M, g(t)) is a breather then it is a gradient Ricci
soliton.

Proof. By Proposition 2.3 (a), we know λ(M, g(t)) > −∞. If (M, g(t)) is a
gradient shrinking Ricci soliton, then the proof is done. So we assume (M, g(t))
is not a gradient Ricci soliton. By Theorem 2.7 and Proposition 2.6, (M, g(t)) is
κ noncollapsed. Applying Proposition 2.3 (b) and Proposition 2.4, we find that
λ(M, g(t)) < 0 ≤ λ∞(M, g(t)). By Definition of AF manifolds, we also have
|B(x0, r, t)|g(t) ≤ Crn, for some C = C(t) > 0. Therefore, all the conditions of
the theorem are satisfied and the conclusion follows.

Remark 1.7. In a recent paper [Ha], Haslhofer considered Ricci flows on some
AF manifolds with positive scalar curvature. Under the extra assumption that the
scalar curvature is integrable, he modified the domain of Perelman’s F entropy to
include only smooth functions converging to 1 sufficiently fast at infinity. Using the
monotonicity of this modified F entropy, one can also prove that steady breathers are
steady solitons in this case, under further assumptions near infinity on the diffeomor-
phism in the definition of breathers. Also a no breather theorem for some noncompact
Ricci flows in the case of shrinking solitons is proven in [Z2].

Remark 1.8. One may wonder if a no breathers theorem still holds when the
scalar curvature changes sign. When the operator −∆+R has a negative eigenvalue,
under mild assumptions near infinity, one can prove that the eigenfunction decays to
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zero exponentially fast. Then one can use Perelman’s original method described earlier
to prove that steady breathers are steady gradient solitons. However, steady gradient
solitons are ancient solutions. According to [Ch], the scalar curvature is nonnegative.
So the operator −∆+R can not have negative eigenvalue. This contradiction shows
that no steady breathers exist in this case.

Let us outline the proof of the theorem. The main hurdle is to prove the following
theorem which states that the infimum of the functional L(v, g(t2), 1,M) is reached
by a smooth function in W 1,2(M, g(t2)).

Theorem 1.9. Let (M, g) be a noncompact manifold with bounded curvature and
nonnegative scalar curvature, which also satisfies

(a) −∞ < λ(g) < λ∞(g).
(b) Either |B(x0, r)|g ≤ Crn, for some C > 0 and all r > 0, or R(x) ≥ C

1+d(x,x0)2

for some constant C > 0.
Then there exists a minimizer v for the Log Sobolev functional L(·, g, 1,M), which

satisfies the equation

n

2

4∆v −Rv
∫

(4|∇v|2 +Rv2)dg
+ 2v ln v

+

(

λ(g, 1,M) +
n

2
− n

2
ln

∫

(4|∇v|2 +Rv2)dg − sn

)

v = 0.

(1.3)

The proof is done by an approximation process that involves a priori estimates
and a blow up analysis. This strategy has been used to study variational problems
involving critical functionals. Recently in [DE] Dolbeault and Esteban treated a
similar functional on the cylinder Sn × R. We benefitted from the ideas in that
paper. However, we are facing new difficulties since our functional is scaling invariant
and its component lnF (v) may not be bounded from below. These make it difficult to
apply P. L. Lions’ concentrated compactness method near infinity directly. However
under the extra assumption λ(g(t2)) < λ∞(g(t2)), we can show that the Lions’ method
[Lio] works on special regions where the L2 norm of v has faster than usual decays.
We also use a fact that a sequence of Boltzmann entropy N(vk) satisfies the reverse
Fatou lemma when {vk} is a sequence of bounded functions with the same L2 norm.
Once a minimizer is found, we can use Perelman’s monotonicity formula to show that
(M, g(t)) is a gradient Ricci soliton since λ(g(t1)) = λ(g(t2)).

2. Preliminaries and all time κ noncollapsing on AF manifolds. In this
section, we present a number of elementary results to be used in the proof of the
theorems and the corollary. We also prove that the Ricci flow on AF manifolds with
positive scalar curvature is uniformly κ noncollapsed for all time.

Definition 2.1. A complete, noncompact Riemannian manifold M is called
Asymptotically Flat of order τ if there is a partition M = M0 ∪M∞, which satisfies
the following properties.

(i). M0 is compact.
(ii). M∞ is the disjoint union of finitely many components each of which is

diffeomorphic to (Rn −B(0, r0)) for some r0 > 0.
(iii). Under the coordinates induced by the diffeomorphism, the metric gij satis-

fies, for x ∈M∞,

gij(x) = δij(x) +O(|x|−τ ), ∂kgij(x) = O(|x|−τ−1), ∂k∂lgij(x) = O(|x|−τ−2).
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Remark 2.2. For convenience we will equip the compact component M0 with a
reference point 0. We will also assume that M∞ has only one connected component.
This assumption does not reduce any generality for Corollary 1.6 and the results in
this section. Since the key inequality λ∞(g) ≥ 0 always holds regardless the number
of connected components for M∞.

According to Theorem (1.1) in [BKN], if M has one end, the curvature tensor
decays sufficiently fast near infinity and |B(0, r)| ≥ crn when r is large, then M is
AF. Here n is the dimension.

Proposition 2.3. Let (M, g) be an AF manifold of dimension n ≥ 3. Suppose
the scalar curvature R is positive everywhere.

(a). Then there exists a constant A > 0, such that

(2.1)

(
∫

M

v2n/(n−2)dg

)(n−2)/n

≤ A

∫

M

(4|∇v|2 +Rv2)dg, ∀v ∈W 1,2(M, g);

moreover λ(g) is bounded from below i.e.

(2.2)

∫

M

v2 ln v2dg ≤ n

2
ln

(

A

∫

M

(4|∇v|2 +Rv2)dg

)

,

∀v ∈W 1,2(M, g), ‖v‖L2(M,g) = 1.
(b). λ∞(g) ≥ 0.

Proof. (a). We just need to prove (2.1) since (2.2) follows from Jensen inequality.
Pick and fix r0 > 0 sufficiently large, so that a coordinate system onM−B(x0, r0)

exists, which satisfies the defining condition of AF manifolds. Let φ ∈ C∞
0 (M) be a

cut-off function such that φ = 1 on B(0, r0), φ = 0 on M −B(0, 2r0), 0 ≤ φ ≤ 1
and |∇φ| ≤ C/r0. For any v ∈ C∞

0 (M), the function v(1 − φ) is supported in
M −B(0, r0).

Let J :M −B(0, r0) → Rn be the coordinate map. Then the function

(2.3) f ≡ [v(1− φ)] ◦ J−1

is a smooth, compactly supported function in Rn, after extending by zero value. By
the Euclidean Sobolev inequality, the following inequality holds

(2.4)

(
∫

Rn

f2n/(n−2)dx

)(n−2)/n

≤ S0

∫

Rn

|∇Rnf |2dx

where dx is the Euclidean volume element and ∇Rn is the Euclidean gradient. Ac-
cording to the definition of AF manifolds, there exists a positive constant c such
that

(2.5) c−1dx ≤ dg(x) ≤ cdx, c−1|∇Rnf | ≤ |∇[v(1− φ)]| ≤ c|∇Rnf |.

Here |∇[v(1 − φ)]| is the length of the gradient of v(1 − φ), both with respect to g.
Therefore, there exists a positive constant C such that

(2.6)

(
∫

M

|v(1 − φ)|2n/(n−2)dg

)(n−2)/n

≤ C

∫

M

|∇[v(1 − φ)]|2dg.
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By this and Minkowski inequality, together with the standard Sobolev inequality in
the ball B(0, 2r0), we deduce

(2.7)

(
∫

M

v2n/(n−2)dg

)(n−2)/n

≤ 2

(
∫

M

|v(1− φ)|2n/(n−2)dg

)(n−2)/n

+ 2

(
∫

M

(vφ)|2n/(n−2)dg

)(n−2)/n

≤ C

∫

M

|∇[v(1 − φ)]2dg + C

∫

M

|∇(vφ)|2dg + C

∫

M

(vφ)2dg.

Hence
(
∫

M

v2n/(n−2)dg

)(n−2)/n

≤ C

∫

M

|∇v|2dg + C sup |∇φ|2
∫

B(0,2r0)

v2dg + C

∫

B(0,2r0)

(vφ)2dg.

(2.8)

Since R(x) > 0 for every x ∈ Rn by assumption, this implies, for some constant
A > 0, that

(2.9)

(
∫

M

v2n/(n−2)dg

)(n−2)/n

≤ A

∫

M

(4|∇v|2 +Rv2)dg.

This is (2.1), i.e. part (a).

Now we prove part (b).
First we prove the following assertion.

When the radius r is sufficiently large, we have

(2.10) λ(g, 1,M −B(0, r)) ≥ λ(gE , 1,R
n − J(B(0, r)) + o(1).

Here J is the coordinate map near infinity in the definition of AF manifold; o(1) is a
quantity whose absolute value goes to 0 when r → ∞; gE is the Euclidean metric.

Pick a function v ∈ C∞
0 (M − B(0, r)) with ‖v‖L2 = 1. Given any ǫ > 0, by

definition of AF manifolds, for x ∈M −B(0, r) with r sufficiently large, there are the
following relations

(2.11) (1− ǫ)dx ≤ dg(x) =
√

detg(x)dx ≤ (1 + ǫ)dx,

(2.12) (1 − ǫ)|∇Rnf | ≤ |∇v| ≤ (1 + ǫ)|∇Rnf |

where f = v ◦ J−1 and J is the coordinate map. Also ∇Rn is the Euclidean gradient.
Hence

(2.13)

∫

M

(4|∇v|2 +Rv2)dg ≥ (1− ǫ)2
∫

Rn

4|∇Rnf |2
√

detg(x)dx.

Write
√

detg(x) = w2, a routine calculation shows

(2.14)

∫

Rn

4|∇Rnf |2
√

detg(x)dx =

∫

Rn

4|∇Rnf |2w2dx

=

∫

Rn

4|∇Rn(fw)|2dx + 4

∫

Rn

(fw)2
∆w

w
dx.
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By definition of AF manifolds, we know that |∆w(x)|
w(x) ≤ c

|x|2+τ with τ > 0. Hence, by

the Hardy’s inequality in the Euclidean space, we have

(2.15)

∫

Rn

4|∇Rnf |2
√

detg(x)dx ≥ (1 + o(1))

∫

Rn

4|∇Rn(fw)|2dx,

which implies

(2.16)

∫

M

(4|∇v|2 +Rv2)dg ≥ (1− ǫ)2(1 + o(1))

∫

Rn

4|∇Rn(fw)|2dx.

Also

(2.17)

∫

M

v2 ln v2dg =

∫

Rn

(fw)2 ln f2dx

=

∫

Rn

(fw)2 ln(fw)2dx −
∫

Rn

(fw)2 lnw2dx

=

∫

Rn

(fw)2 ln(fw)2dx + o(1).

This and (2.16) imply that

(2.18) L(v, g, 1,M −B(0, r)) ≥ L(fw, gE, 1,R
n − J(B(0, r))) + o(1)− nǫ.

Since ‖fw‖L2(Rn) = 1, by taking the infimum of this inequality, it is easy to see that

(2.19) λ(g, 1,M −B(0, r)) ≥ λ(gE , 1,R
n − J(B(0, r)) + o(1)− nǫ.

Since ǫ is arbitrary, the assertion is proven.
Using λ(gE , 1,R

n − J(B(0, r)) ≥ λ(gE , 1,R
n) = 0, we see that

(2.20) λ∞(g) = lim
r→∞

λ(g, 1,M −B(0, r)) ≥ 0.

This proves part (b).

Proposition 2.4. Let (M, g(t)) be a noncompact Ricci flow on the time interval
(A,B) such that the curvature tensor is bounded for each time t ∈ (A,B). Suppose
also (M, g(t)) is κ noncollapsed below scale 1 and the scalar curvature is nonnegative.
If (M, g(t)) is not a gradient shrinking soliton, then

(2.21) λ(g(t0)) ≡ λ(g(t0), 1,M) < 0, t0 ∈ (A,B).

Moreover, for any x0 ∈M , when r0 is sufficiently large, we have

(2.22) λ(g(t0), 1, B(x0, r0)) < 0.

Here B(x0, r0) = B(x0, r0, g(t0)).

Proof. For compact Ricci flows, Perelman ([P] Section 3) already proved a similar
inequality for his ν invariant. The following proof for the noncompact case is similar,
except that one needs to justify integration by parts near infinity.

Without loss of generality we assume t0 < 0 ∈ (A,B). Let u = u(x, t) =
G(x, t;x0, 0) be the fundamental solution of the conjugate heat equation

(2.23) ∆u−Ru+ ∂tu = 0, t < t0.
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Let s = −t and

(2.24) W (g(t), u(·, t), t) =
∫

M

[

s(
|∇u|2
u

+Ru)− u lnu− n

2
ln(4πs)u − nu

]

dg(t)

be Perelman’s W entropy corresponding to u = u(x, t). According to [P] Section 3,

(2.25)
d

dt
W (g(t), u(·, t), t) = 2s

∫

|Ricg(t) −Hessg(t) lnu− 1

2s
g(t)|2udg(t) ≥ 0

with strict inequality holding unless (M, g(t)) is a gradient shrinking soliton. More-
over limt→0W (g(t), u(·, t), t) = 0. We comment that Perelman proved the result for
compact Ricci flows. In the noncompact case one needs to justify the integrability
of the quantities involved. Since (M, g(t)) has bounded geometry within any finite
time interval and u, as fundamental solution has Gaussian decay near infinity, the
integrability issue has been worked out in [CTY] and [C++] Chapter 19 e.g..

Since (M, g(t)) is not a gradient shrinking soliton, d
dtW (g(t), u(·, t), t) is strictly

positive. From the assumption t0 < 0, we obtain

(2.26) W (g(t0), u(·, t0), t0) < lim
t→0

W (g(t), u(·, t), t) = 0.

Observe that with ρ > 0 regarded as a free parameter and taking v =
√

u(·, t0), we
have
(2.27)

L(
√

u(·, t0), g(t0), 1) = −
∫

M

v2 ln v2dg(t0) +
n

2
ln

(
∫

M

(4|∇v|2 +Rv2)dg(t0)

)

+ sn

= inf
ρ>0

∫

M

[

ρ(
|∇u|2
u

+Ru)− u lnu− n

2
ln(4πρ)u− nu

]

dg(t0)

≤
∫

M

[

|t0|(
|∇u|2
u

+Ru)− u lnu− n

2
ln(4π|t0|)u − nu

]

dg(t0)

=W (g(t0), u(·, t0), t0) < 0.

Here u = u(·, t0) and R = R(·, x0). This shows, since λ(g(t0)) is the infimum of the
log Sobolev functional L, that λ(g(t0), 1) < 0.

The second statement of the lemma is an easy consequence of the fact that
λ(g(t0)) = limr0→∞ λ(g(t0), 1, B(x0, r0)).

Proposition 2.5. Let (M, g) be a noncompact manifold such that λ(g) > −∞.
(a). For any x0 ∈ M , r0 > 0, and for all α ≥ 1, the infimum of the log Sobolev

functionals L(·, g, α,B(x0, r0)) satisfy:

λ(g, α,B(x0, r0)) ≥ −C

where C is a constant depending only on α, n, the constant λ(g) and |B(x0, r0)|.
(b). limα→1+ λ(g, α,B(x0, r0)) = λ(g, 1, B(x0, r0)).

Proof. For simplicity we use B to denote B(x0, r0) and E
−
0 = 0 in the proof. Pick

a function v ∈ C∞
0 (B) such that ‖v‖L2(B) = 1. Then

(2.28) L(v, g, α,B) = L(v, g, 1, B) + (α− 1)
n

2
ln

(
∫

B

(4|∇v|2 +Rv2)dg

)

,
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and hence

(2.29) L(v, g, α,B) ≥ λ(g) + (α− 1)
n

2
ln

(
∫

B

(4|∇v|2 +Rv2)dg

)

.

This shows,

(2.30) L(v, g, α,B) ≥ λ(g) + (α− 1)
n

2
ln
(

A−1‖v‖2L2n/(n−2)(B)

)

,

which implies, via Hölder inequality,

(2.31) L(v, g, α,B) ≥ −n
2
+ (α − 1)

n

2
ln
(

A−1‖v‖2L2(B)/|B|2/n
)

.

Thus

(2.32) L(v, g, α,B) ≥ −n
2
− (α − 1)

n

2
ln
(

A |B|2/n
)

,

proving part (a) of the proposition. One can also use the fact that L(v, g, α,B) ≥
λ(g) + (α− 1)(

∫

B
v2 ln v2dg − C) and v2 ln v2 ≥ −e−1 to get the proof.

Now we prove part (b). Notice that in the last paragraph we actually showed
that

L(v, g, α,B) ≥ L(v, g, 1, B)− (α − 1)
n

2
ln(A|B|2/n).

Hence

lim inf
α→1+

λ(g, α,B) ≥ λ(g, 1, B).

Next we pick, for any given ǫ > 0, a function v ∈ C∞
0 (B) such that ‖v‖2 = 1 and

that

(2.33)

λ(g, 1, B) ≥ L(v, g, 1, B)− ǫ

= −
∫

B

v2 ln v2 +
α

2
n lnF (v) + sn + (1− α)

n

2
lnF (v)− ǫ

≥ λ(g, α,B) + (1− α)
n

2
lnF (v)− ǫ.

Since v is fixed, we deduce, after letting α → 0, that

(2.34) λ(g, 1, B) ≥ lim sup
α→1+

λ(g, α,B)− ǫ.

Part (b) of the proposition follows from this when ǫ→ 0.

Proposition 2.6. Let (M, g) be a noncompact manifold with bounded curvature
such that λ(g) > −∞. If also the scalar curvature R ≥ 0, then there exists a positive
constant A depending only on λ(g) and n such that

(2.35)

(
∫

M

v2n/(n−2)dg

)(n−2)/n

≤ A

∫

M

(4|∇v|2 +Rv2)dg, ∀v ∈W 1,2(M, g).

Moreover, M is κ non-collapsed under all scales. i.e. there exists κ > 0 such that

(2.36) |B(x, r)| ≥ κrn, r ∈ (0,∞)
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provided that R ≤ 1/r2 in B(x, r).

Proof. This statement is nothing but the well known equivalence of the Sobolev
inequality and log Sobolev inequality, which is proved via an upper bound for the
heat kernel e(4∆−R)t. When R = 0 one can find a proof in Davies [Da] Chapter 2.
When R ≥ 0, then the L1 to L1 norm of the heat kernel is less than or equal to 1.
The same proof still goes through as written in [Z] Section 6.2.

Now, we assume R ≤ 1/r2 in B(x, r). Then

(2.37)

(

∫

B(x,r)

v2n/(n−2)dg

)(n−2)/n

≤ A

∫

B(x,r)

(4|∇v|2 + 1

r2
v2)dg, ∀v ∈ W 1,2

0 (B(x, r), g).

It is well known that the above Sobolev inequality implies that |B(x, r)| ≥ κrn for
some κ > 0. See [Ak] and [Cn] e.g. Since x and r are arbitrary, M is κ noncollapsed
under all scales.

As an application of the log Sobolev functional, we next show that the Ricci flow
on AF manifolds with positive scalar curvature is uniformly κ noncollapsed for all
time. This result, being different from Perelman’s local noncollapsing result which
holds in finite time, seems to have implications for the issue of longtime convergence.
For example, if the scaled curvature stays bounded, then the Gromov-Hausdorf limit
as t→ ∞ is still a smooth Riemannian manifold.

Theorem 2.7. Let (M, g(t)), t ∈ [0, T ), T ≤ ∞, be a smooth Ricci flow on
AF manifold M of dimension n ≥ 3. Suppose the scalar curvature R is positive
everywhere. Then (M, g(t)) is uniformly κ noncollapsed under all scales and for all
time. Moreover, there exists A > 0 which depends only on the initial metric g(0) such
that

(2.38)

(
∫

M

v2n/(n−2)dg(t)

)(n−2)/n

≤ A

∫

M

(4|∇v|2 +Rv2)dg(t), ∀v ∈ W 1,2(M, g(t)), t ∈ (0, T ).

Proof. We just need to prove (2.38) since the statement on κ noncollapsing follows
as mentioned in the previous proposition.

According to Proposition 2.3, λ(g(0)) ≥ −C > −∞. We claim that λ(g(t)) is
monotone nondecreasing in time. Here goes the proof. Let t1, t2 ∈ [0, T ) and t1 < t2.
For any ǫ > 0, there exists a function φ ∈ C∞

0 (M, g(t2)) such that ‖φ‖L2(g(t2)) = 1
and that

(2.39) λ(g(t2)) ≥ L(φ, g(t2), 1)− ǫ.

Now, following Perelman, let u = u(x, t) be the solution of the conjugate heat equation
with final value u(x, t2) = φ2(x). Then, as shown in (3.127) during the proof of
Theorem 1.4 below,

(2.40)
d

dt
L(
√

u(·, t), g(t)) ≥ 0.
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Hence

(2.41) λ(g(t2)) ≥ L(φ, g(t2), 1)− ǫ ≥ L(
√

u(·, t1), g(t1), 1)− ǫ ≥ λ(g(t1))− ǫ.

This proves the claim and therefore

(2.42) λ(g(t)) ≥ λ(g(0)) ≥ −C, ∀t > 0.

By Proposition 2.6, we know that (2.38) is true.

3. Proof of Theorems. We will prove a number of lemmas first and proceed
to prove Theorems 1.9 and 1.4. During the proof, we will often consider the scaled
up manifolds (M, ckg, xk) where ck → ∞ and xk is a sequence of points in M that
may or may not be fixed. By the boundedness assumption of the curvature tensor
and κ noncollapsing condition, we know that this sequence of pointed manifolds sub-
converges in C∞

loc sense, to the Euclidean space with flat metric. This process obviously
works for asymptotically flat manifolds. Notice that the asymptotical flatness in
Corollary 1.6 does not contribute or interfere with this limiting process. We also do
not require that each of the manifold (M, ckg, xk) is asymptotically flat in a uniform
way. The key quantities λ∞ and λ only enter the proof through the equations of the
minimizers.

First we show that a minimizer for the functional L(·, g, α,B) exists when α > 1
and B is a ball.

Lemma 3.1. Let (M, g) be a noncompact manifold such that λ(g) > −∞ and the
scalar curvature R ≥ 0.

(a). For any x0 ∈ M , and r0 > 0, write B = B(x0, r0). Then for all α > 1, the
infimum of the log Sobolev functionals L(·, g, α,B) is reached. Namely, there exists a
function v ∈ C∞

0 (B) with unit L2 norm such that

(3.1) L(v, g, α,B) = λ(g, α,B).

(b). The function v, called the minimizer, satisfies the equation

(3.2) α
n

2

4∆v −Rv
∫

B
(4|∇v|2 +Rv2)dg

+ 2v ln v + βv = 0,

where

(3.3) β = λ(g, α,B) + α
n

2
− α

n

2
ln

[
∫

B

(4|∇v|2 +Rv2)dg

]

− sn.

Here sn is the number given in Definition 1.1.

Proof. By Proposition 2.5, the log Sobolev functional is bounded from below.
Hence there exists a sequence of functions {vk} ⊂ W 1,2

0 (B) with unit L2 norm such
that

(3.4) L(vk, g, α,B) → λ(g, α,B) > −∞, k → ∞.

So, for all large k, we have

(3.5) −
∫

B

v2k ln v
2
kdg + α

n

2
ln

[
∫

B

(4|∇vk|2 +Rv2k)dg

]

+ sn ≤ λ(g, α,B) + 1.
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By the assumption λ(g) >∞ and Proposition 2.5,

(3.6)
−
∫

B

v2k ln v
2
kdg +

n

2
ln

[
∫

B

(4|∇vk|2 +Rv2k)dg

]

≥ λ(g, 1, B) ≥ −λ(g, 1) ≤ −C > −∞.

Substituting this to the previous inequality, we obtain

(3.7) (α− 1)
n

2
ln

[
∫

B

(4|∇vk|2 +Rv2k)dg

]

≤ λ(g, α,B) + C − sn + 1.

By Proposition 2.6

(3.8)
A−1

(
∫

B

v
2n/(n−2)
k dg

)(n−2)/n

≤
∫

B

(4|∇vk|2 +Rv2k)dg

≤ exp
[

(α− 1)−1 (λ(g, α,B) + C − sn + 1)
]

.

Pick a number q ∈ (2, 2n/(n− 2)). Since the embedding to Lq(B) is compact, we can
find a subsequence, still denoted by {vk}, which converges strongly to a function v in
Lq(B) norm. By (3.7), clearly v ∈ W 1,2

0 (B).
Now we show that v is a minimizer for L(·, g, α,B). By Fatou’s lemma

(3.9)

∫

B

(4|∇v|2 +Rv2)dg ≤ lim
k→∞

∫

B

(4|∇vk|2 +Rv2k)dg.

According to Theorem 2 in [BL],

(3.10)

∫

B

v2 ln v2dg = lim
k→∞

∫

B

v2k ln v
2
kdg + lim

k→∞

∫

B

(vk − v)2 ln(vk − v)2dg.

Write Bk = {x | |vk(x) − v(x)| ≤ 1}. Then

(3.11)

∫

B

(vk − v)2 ln(vk − v)2dg

=

∫

Bk

(vk − v)2 ln(vk − v)2dg +

∫

B−Bk

(vk − v)2 ln(vk − v)2dg,

and therefore

(3.12)

∣

∣

∣

∣

∫

B

(vk − v)2 ln(vk − v)2dg

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Bk

(vk − v)2 ln(vk − v)2dg

∣

∣

∣

∣

+ Cq

∫

B−Bk

|vk − v|qdg.

Applying dominated convergence theorem on the first term of the right hand side, we
obtain, since also vk → v in Lq(B) norm, that

(3.13) lim
k→∞

∫

B

(vk − v)2 ln(vk − v)2dg = 0.

Consequently

(3.14)

∫

B

v2 ln v2dg = lim
k→∞

∫

B

v2k ln v
2
kdg.
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By this and (3.9), we find that

(3.15) L(v, g, α,B) ≤ limk→∞L(vk, g, α,B) = λ(g, α,B) ≤ L(v, g, α,B).

Hence v is a minimizer. By the Lagrange multiplier method, there is a constant β
such that

(3.16) α
n

2

4∆v −Rv
∫

B
(4|∇v|2 +Rv2)dg

+ 2v ln v + βv = 0.

Since F ≡
∫

B
(4|∇v|2 +Rv2)dg is a finite number, we can multiply it on both sides of

the equation to obtain

(3.17) α
n

2
4∆v −Rv + F2v ln v + Fβv = 0.

Since the nonlinear term v ln v is very mild, it is known that v ∈ C∞
0 (B). See [Rot]

e.g.
Multiplying (3.16) by v and integrating, we deduce

(3.18) −αn
2
+

∫

B

v2 ln v2dg + β = 0.

Since we have proven that v is a minimizer for L(·, g, α,B), we know that

(3.19) λ(g, α,B) = −
∫

B

v2 ln v2dg + α
n

2
lnF + sn.

Combining the last two identity, we see that

(3.20) β = λ(g, α,B) + α
n

2
− α

n

2
lnF − sn,

which is just (3.3).

The next lemma deals with the case α = 1.

Lemma 3.2. Let (M, g) be a noncompact manifold such that λ(g) > −∞ and that
the scalar curvature R ≥ 0.

(a). For any x0 ∈ M and r0 > 0, let B = B(x0, r0). If λ(g, 1, B) < 0, then, the
infimum of the log Sobolev functionals L(·, g, 1, B) is reached. Namely, there exists a
function v ∈ C∞

0 (B) with unit L2 norm such that

(3.21) L(v, g, 1, B) = λ(g, 1, B).

(b). The function v, called the minimizer, satisfies the equation

(3.22)
n

2

4∆v −Rv
∫

B
(4|∇v|2 +Rv2)dg

+ 2v ln v + βv = 0,

where

(3.23) β = λ(g, 1, B) +
n

2
− n

2
ln

[
∫

B

(4|∇v|2 +Rv2)dg

]

− sn.

Here sn is the number given in Definition 1.1.
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Proof. The proof is consisted of a number of steps.
Step 1. constructing an approximating sequence.
Pick a sequence αk → 1+, as k → ∞. Let vk be a minimizer for L(·, g, αk, B),

which exists according to Lemma 3.1, and which satisfies

(3.24) αk
n

2

4∆vk −Rvk
∫

B
(4|∇vk|2 +Rv2k)dg

+ 2vk ln vk + βkvk = 0,

where

(3.25) βk = λ(g, αk, B) + αk
n

2
− αk

n

2
ln

[
∫

B

(4|∇vk|2 +Rv2k)dg

]

− sn.

Write

(3.26) Fk ≡
∫

B

(4|∇vk|2 +Rv2k)dg, mk = max{vk(x) |x ∈ B}.

Since vk = 0 on ∂B, we know ∆vk ≤ 0 at the maximum point of vk. Hence (3.24)
implies, at the maximum point,

(3.27) 2vk ln vk ≥ −βkvk + αk
n

2
RvkF

−1
k ≥ −βkvk.

By Lemma 2.5

(3.28) lim
k→∞

λ(g, αk, B) = λ(g, 1, B) < 0.

Therefore, for sufficiently large k, we also have λ(g, αk, B) < 0. This fact and (3.25)
infer that

(3.29) mk = max vk ≥ e−αkn/4F
αkn/4
k esn/2.

Next we perform the scaling

(3.30) gk = m
4/n
k g, Rk = m

−4/n
k R, ṽk = m−1

k vk.

Notice that 0 ≤ ṽk ≤ 1 and that

(3.31) ‖ṽk‖L2(M,gk) = 1.

By (3.24), ṽk satisfies the equation

(3.32)
αk
n

2
F−1
k m

4/n
k (4∆gk −m

−4/n
k R)(mkṽk) + 2mkṽk ln(mkṽk)

+ (λ(g, αk, B) + αk
n

2
− αk

n

2
lnFk − sn)(mkṽk) = 0

which becomes, after simplification,

(3.33)
αk
n

2
(4∆gk − Rk)ṽk + (2ṽk ln ṽk + λ(g, αk, B)ṽk + αk

n

2
ṽk − snṽk)Fkm

−4/n
k

− αk
n

2
Fkm

−4/n
k ln(Fkm

−4/(nαk)
k ) ṽk = 0.

Here B = B(x0, r0, g) again.



742 Q. S. ZHANG

Step 2. We prove that for all sequences {αk} ⊂ (1, 2] such that αk → 1, and
fixed r0 sufficiently large, there exists a uniform constant C0 such that

(3.34) lim sup
k→∞

Fk ≤ C0 = C0(r0).

Suppose for contradiction that there exists a sequence of numbers {αk} ⊂ (1, 2]
such that αk → 1, and that vk is a minimizer of L(·, g, αk, B(x0, r0)) but

(3.35) lim
k→∞

Fk = lim
k→∞

∫

B(x0,r0)

(4|∇vk|2 +Rv2k)dg = ∞.

Then (3.29) shows that mk → ∞ as k → ∞ and that there exists a constant C such
that

(3.36) Fkm
−4/(nαk)
k ≤ C,

and when k is large

(3.37) Fkm
−4/n
k ≤ Fkm

−4/(nαk)
k ≤ C; ak

n

2
Fkm

−4/n
k | ln(Fkm

−4/(nαk)
k )| ≤ C.

Therefore the coefficients of equation (3.33) are uniformly bounded. Moreover the

manifold (M, gk) has uniformly bounded geometry since gk = m
4/n
k g and mk → ∞.

Now we extend ṽk to be a function on the whole manifoldM by setting ṽk = 0 outside

of B(x0, r0, g) = B(x0,m
2/n
k r0, gk). The extended function, still denoted by ṽk, is a

subsolution of the equation in (3.33); further more 0 ≤ ṽk ≤ 1 and ‖ṽk‖L2(M,gk) = 1.
Let xk be a maximum point of ṽk and r > 0 be a large number. Construct

a standard cut-off function φ such that φ = 1 on B(xk, r, gk), φ = 0 outside of
B(xk, 2r, gk), 0 ≤ φ ≤ 1 and |∇gkφ| ≤ C/r. Since the extended function ṽk is a sub-
solution of (3.33), we can use ṽkφ

2 as a test function to conclude, using the bounds
in the previous paragraph, that

(3.38)

∫

B(xk,r,gk)

|∇gk ṽk|2dgk

≤ C

r2

∫

B(xk,2r,gk)

ṽ2kdgk + C(1 + |λ(g, αk, B)|)Fkm
−4/n
k

∫

B(xk,2r,gk)

ṽ2kdgk

≤ C

r2
+ C(1 + |λ(g, αk, B)|)Fkm

−4/n
k .

Here B = B(x0, r0, g) again.
We consider 2 cases.

Case 1. A subsequence of {Fkm
−4/n
k }, denoted by the same symbol, converges

to 0.
Let xk be a maximum point of vk. Since mk → ∞ and gk = m

4/n
k g, we know that

a subsequence of the pointed manifolds {(M, gk, xk)}, converges in C∞
loc topology, to

the pointed Euclidean space (Rn, 0). This is due to the Cheeger-Gromov compact-
ness theorem. By the bound (3.38) and the fact Rk → 0, λ(g, αk, B) → λ(g, 1, B),
we know that a subsequence of ṽk converges pointwise, modulo composition with
diffeomorphisms, to a function v∞ on Rn, which is a sub-solution of the Laplacian.
Furthermore ‖v∞‖L2(Rn) ≤ 1 and v∞(0) = 1. By (3.38) again

(3.39)

∫

B(0,r)

|∇v∞|2dx ≤ C

r2
.
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Here all expressions are in the Euclidean setting. Letting r → ∞, we see that∇v∞ = 0
and therefore v∞ ≡ 1. But this is impossible since ‖v∞‖L2(Rn) ≤ 1.

Case 2. {Fkm
−4/n
k } is bounded away from 0.

Then we can find a subsequence of {Fkm
−4/n
k }, denoted by the same symbol,

which converges to a number A > 0. As in the previous paragraph, {(M, gk, xk)},
converges in C∞

loc topology, to the pointed Euclidean space (Rn, 0). Also a subse-
quence of the extended function ṽk converges pointwise, modulo composition with
diffeomorphisms, to a function v∞ on Rn. Furthermore ‖v∞‖L2(Rn) ≤ 1 , v∞(0) = 1
and, in the weak sense,

(3.40)
n

2
4∆v∞ +A(2v∞ ln v∞ + λ(g, 1, B)v∞ +

n

2
v∞ − snv∞)− (

n

2
A lnA) v∞ ≥ 0.

Dividing both sides by A and recalling from Definition 1.1 that sn = −n
2 ln(2πn)− n

2 ,
we obtain

(3.41) λ(g, 1, B)v∞ ≥ − n

2A
4∆v∞ − 2v∞ ln v∞ − nv∞ +

n

2
ln(2πnA) v∞.

We multiply the last inequality by v∞. By Moser’s iteration, it is easy to prove
that v∞ has Gaussian decay near infinity. See [Rot] or Lemma 2.3 in [Z2] e.g. There-
fore, we can carry out integration by parts to deduce

(3.42)

λ(g, 1, B)‖v∞‖2L2(Rn)

≥
∫

Rn

( n

2A
4|∇v∞|2 − v2∞ ln v2∞ − nv2∞ − n

2
ln(2πn/A) v2∞

)

dx

=

∫

Rn

(

s4|∇v∞|2 − v2∞ ln v2∞ − n

2
ln(4πs) v2∞ − nv2∞

)

dx,

where s = n
2A . Write v̂ = v∞

‖v∞‖L2(Rn)
. Then, by ‖v∞‖2L2(Rn) ≤ 1, we have

(3.43)

λ(g, 1, B)‖v∞‖2L2(Rn)

≥ ‖v∞‖2L2(Rn)

∫

Rn

(

s4|∇v̂|2 − v̂2 ln v̂2∞ − n

2
ln(4πs) v̂2∞ − nv̂2∞

)

dx

− ‖v∞‖2L2(Rn) ln ‖v∞‖2L2(Rn) ≥ 0.

Here we just used the fact that the best constant for the log Sobolev inequality for
functions with unit L2 norms in Rn is 0. This is a contradiction with the assumption
that λ(g, 1, B) < 0. This proves (3.34), i.e.

(3.44) Fk =

∫

B(x0,r0)

(4|∇vk|2 +Rv2k)dg ≤ C0.

Step 3. We prove vk converges to a minimizer of L(·, g, 1, B).

By (3.24), we know that vk satisfies

(3.45)
n

2
(4∆vk −Rvk) + α−1

k Fk2vk ln vk + α−1
k Fkβkvk = 0,

where

(3.46) βk = λ(g, αk, B) + αk
n

2
− αk

n

2
lnFk − sn.
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Since, by Step 2, Fk is uniformly bounded, we know that the coefficients in the above
equation are uniformly bounded. Since the nonlinear term vk ln vk is only mildly
nonlinear, it is easy to prove that ‖vk‖L∞ is also uniformly bounded. See Lemma
2.1 in [Z2] e.g. Now, since the ball B is bounded,a routine argument shows that a
subsequence of vk converges to a minimizer v of L(·, g, 1, B). Using the same argument
near the end of the proof of Lemma 3.1, we see that v satisfies equation (3.22). This
proves the lemma .

The next lemma shows that the minimizers of L(·, g, 1, B) are uniformly bounded
even if the radius of B tends to ∞.

Lemma 3.3. Under the same assumption as in Lemma 3.2, let v be a minimizer
for L(·, g, 1, B), where B = B(x0, r0). Then the quantity

(3.47) F =

∫

B

(4|∇v|2 +Rv2)dg

is uniformly bounded for all large r0. Furthermore ‖v‖L∞(B) is uniformly bounded for
all large r0.

Proof. The idea of the proof is similar to that for the previous lemma. Suppose
for contradiction that there exists a sequence of radii {r0k} and that vk is a minimizer
of L(·, g, 1, B(x0, r0k)) but

(3.48) lim
k→∞

Fk = lim
k→∞

∫

B(x0,r0k)

(4|∇vk|2 +Rv2k)dg = ∞.

From the previous lemma vk satisfies

(3.49)
n

2

4∆vk −Rvk
Fk

+ 2vk ln vk + βkvk = 0,

where

(3.50) βk = λ(g, 1, Bk) +
n

2
− n

2
lnFk − sn.

Here and later Bk = B(x0, r0k) = B(x0, r0k, g). Since vk = 0 on ∂Bk, we know
∆vk ≤ 0 at the maximum point of vk. Hence (3.49) implies, at the maximum point,

(3.51) 2vk ln vk ≥ −βkvk +
n

2
RvkF

−1
k ≥ −βkvk.

Since by definition

(3.52) lim
k→∞

λ(g, 1, Bk) = λ(g, 1,M) < 0,

for sufficiently large k, we also have λ(g, 1, Bk) < 0. This fact and (3.50) infer that

(3.53) mk ≡ max vk ≥ e−n/4F
n/4
k esn/2.

Next we do the scaling

(3.54) gk = m
4/n
k g, Rk = m

−4/n
k R, ṽk = m−1

k vk.
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Notice that 0 ≤ ṽk ≤ 1 and that

(3.55) ‖ṽk‖L2(M,gk) = 1.

By (3.49), ṽk satisfies the equation

(3.56)

n

2
F−1
k m

4/n
k (4∆gk −m

−4/n
k R)(mkṽk) + 2mkṽk ln(mkṽk)

+ (λ(g, 1, Bk) +
n

2
− n

2
lnFk − sn)(mkṽk) = 0

which becomes, after simplification,

(3.57)

n

2
(4∆gk −Rk)ṽk + (2ṽk ln ṽk + λ(g, 1, Bk)ṽk +

n

2
ṽk − snṽk)Fkm

−4/n
k

− n

2
Fkm

−4/n
k ln(Fkm

−4/n
k ) ṽk = 0.

Since Fk → ∞ by assumption, (3.53) shows that mk → ∞ as k → ∞ and that
there exists a constant C such that

(3.58) Fkm
−4/n
k ≤ C,

Therefore the coefficients of equation (3.57) are uniformly bounded. Moreover the

manifold (M, gk) has uniformly bounded geometry since gk = m
4/n
k g and mk → ∞.

Now we extend ṽk to be a function on the whole manifoldM by setting ṽk = 0 outside

of Bk = B(x0, r0k, g) = B(x0,m
2/n
k r0k, gk). The extended function, still denoted by

ṽk, is a subsolution of (3.57); further more 0 ≤ ṽk ≤ 1 and ‖ṽk‖L2(M,gk) = 1.
Let xk be a maximum point of ṽk and r > 0 be a large number. Construct

a standard cut-off function φ such that φ = 1 on B(xk, r, gk), φ = 0 outside of
B(xk, 2r, gk), 0 ≤ φ ≤ 1 and |∇gkφ| ≤ C/r. Since the extended function ṽk is a sub-
solution of (3.57), we can use ṽkφ

2 as a test function to conclude, using the bounds
in the previous paragraph, that

(3.59)

∫

B(xk,r,gk)

|∇gk ṽk|2dgk

≤ C

r2

∫

B(xk,2r,gk)

ṽ2kdgk + C(1 + |λ(g, 1, Bk)|)Fkm
−4/n
k

∫

B(xk,2r,gk)

ṽ2kdgk

≤ C

r2
+ C(1 + |λ(g, 1, Bk)|)Fkm

−4/n
k .

We consider 2 cases.

Case 1. A subsequence of {Fkm
−4/n
k }, denoted by the same symbol, converges

to 0.
Let xk be a maximum point of vk again. Since mk → ∞ and gk = m

4/n
k g, by

Cheeger-Gromov compactness theorem, we know that a subsequence of the pointed
manifolds {(M, gk, xk)}, converges in C∞

loc topology, to the pointed Euclidean space
(Rn, 0). By the bound (3.59) and the fact Rk → 0, λ(g, 1, Bk) → λ(g, 1,M), we
know that a subsequence of ṽk converges pointwise, modulo composition with dif-
feomorphisms, to a function v∞ on Rn, which is a sub-solution of the Laplacian.
Furthermore ‖v∞‖L2(Rn) ≤ 1 and v∞(0) = 1. By (3.59) again

(3.60)

∫

B(0,r)

|∇v∞|2dx ≤ C

r2
.
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Here all expressions are in the Euclidean setting. Letting r → ∞, we see that∇v∞ = 0
and therefore v∞ ≡ 1. But this is impossible since ‖v∞‖L2(Rn) ≤ 1.

Case 2. {Fkm
−4/n
k } is bounded away from 0.

Then we can find a subsequence of {Fkm
−4/n
k }, denoted by the same symbol,

which converges to a number A > 0. As in the previous paragraph, {(M, gk, xk)},
converges in C∞

loc topology, to the pointed Euclidean space (Rn, 0). Also a subse-
quence of the extended function ṽk converges pointwise, modulo composition with
diffeomorphisms, to a function v∞ on Rn. Furthermore ‖v∞‖L2(Rn) ≤ 1 , v∞(0) = 1
and, in the weak sense,

(3.61)
n

2
4∆v∞ +A(2v∞ ln v∞ + λ(g, 1,M)v∞ +

n

2
v∞ − snv∞)− (

n

2
A lnA) v∞ ≥ 0.

Dividing both sides by A and recalling from Definition 1.1 that sn = −n
2 ln(2πn)− n

2 ,
we obtain

(3.62) λ(g, 1,M)v∞ ≥ − n

2A
4∆v∞ − 2v∞ ln v∞ − nv∞ +

n

2
ln(2πnA) v∞.

We multiply the last inequality by v∞. By Moser’s iteration, it is easy to prove,
as in Lemma 2.3 in [Z2], v∞ has Gaussian decay near infinity. Therefore, we can carry
out integration by parts to deduce

(3.63)

λ(g, 1,M)‖v∞‖2L2(Rn)

≥
∫

Rn

( n

2A
4|∇v∞|2 − v2∞ ln v2∞ − nv2∞ − n

2
ln(2πn/A) v2∞

)

dx

=

∫

Rn

(

s4|∇v∞|2 − v2∞ ln v2∞ − n

2
ln(4πs) v2∞ − nv2∞

)

dx,

where s = n
2A . Write v̂ = v∞

‖v∞‖L2(Rn)
. Then, by ‖v∞‖2L2(Rn) ≤ 1, we have

(3.64)

λ(g, 1,M)‖v∞‖2L2(Rn)

≥ ‖v∞‖2L2(Rn)

∫

Rn

(

s4|∇v̂|2 − v̂2 ln v̂2 − n

2
ln(4πs) v̂2 − nv̂2

)

dx

− ‖v∞‖2L2(Rn) ln ‖v∞‖2L2(Rn) ≥ 0.

Here we just used the fact that the best constant for the log Sobolev inequality for
functions with unit L2 norms in Rn is 0. This is a contradiction with the assumption
that λ(g, 1,M) < 0. This proves that Fk is uniformly bounded.

The uniform boundedness of vk comes from the following arguments. By (3.49),
we know that vk satisfies

(3.65)
n

2
(4∆vk −Rvk) + Fk2vk ln vk + Fkβkvk = 0,

where

(3.66) βk = λ(g, 1, Bk) +
n

2
− n

2
lnFk − sn.

Since Fk is uniformly bounded, we know that the coefficients in the above equation
are uniformly bounded. As explained at the end of the proof of Lemma 3.2, it is easy
to show that ‖vk‖L∞ is also uniformly bounded. This proves the lemma.
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Now we are ready to give

Proof of Theorem 1.9. We will use the minimizers vk on balls of radius rk to
construct a minimizer on the whole manifold. The core argument is to show that vk
has a non vanishing limit.

Step 1. Pick rk → ∞ and let vk be a minimizer for L(·, g, 1, B(x0, rk)) whose
infimum is λk. Then

(3.67)

λk = L(vk, g, 1, B(x0, rk))

= −
∫

B(x0,rk)

v2k ln v
2
kdg +

n

2
ln

(

∫

B(x0,rk)

(4|∇vk|2 +Rv2k)dg

)

+ sn.

According to the previous 2 lemmas, vk exists and is uniformly bounded. By standard
elliptic theory, a subsequence of {vk}, still denoted by the same symbol, converges in
C∞

loc sense, to a limit function v∞ ∈ C∞(M). In this step, we prove that v∞ is not
0. We will use P. L. Lion’s concentrated compactness method at infinity. But a new
twist occurs. That is, even though λk is bounded, the components on the right hand
side of (3.67) may not be bounded from below uniformly.

Suppose for contradiction that v∞ = 0. Then vk → 0 a.e. as k → ∞. Then there
exists a sequence of positive integers {ik} and a subsequence of {vk}, denoted by the
same symbol, such that ik → ∞ as k → ∞ and that

(3.68)

∫

B(x0,22ik )

v2kdg → 0, k → ∞.

For any positive integer i we introduce the following notations

(3.69)

Ωi = B(x0, 2
i)−B(x0, 2

i−1),

F (vk) =

∫

M

(4|∇vk|2 +Rv2k)dg, N(vk) =

∫

M

v2k ln v
2
kdg.

Here vk is considered 0 outside of the ball B(x0, rk).
By λ ≡ λ(g) = λ(g, 1) > −∞ in assumption (a) of the theorem and Proposition

2.6, there exists a positive constant A such that

(3.70)

(

∫

B(x0,rk)

v
2n/(n−2)
k dg

)(n−2)/n

≤ AF (vk).

Hence

(3.71)

(

Σ2ik
i=ik

∫

Ωi

v
2n/(n−2)
k dg

)(n−2)/n

e−N(vk)2/n

≤
(

∫

B(x0,rk)

v
2n/(n−2)
k dg

)(n−2)/n

e−N(vk)2/n

≤ CF (vk)e
−N(vk)2/n = Ce(λk−sn)2/n ≤ C,

where we also used (3.67) and the fact that λk is uniformly bounded. Thus, there
exists an integer jk ∈ [ik, 2ik] such that

(3.72)

(

∫

Ωjk

v
2n/(n−2)
k dg

)(n−2)/n

≤ Ci
−(n−2)/n
k eN(vk)2/n.
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By partition of unity, we can choose a sequence of cut-off functions φk, ηk on M
such that φk = 1 on B(x0, 2

jk−1), supp φk ⊂ B(x0, 2
jk); ηk = 1 on M −B(x0, 2

jk),
supp ηk ⊂M −B(x0, 2

jk−1); |∇φk|+ |∇φk| ≤ C/2jk ; φ2k + η2k = 1. We introduce the
notations

(3.73) ak ≡ ‖vkφk‖2L2 , bk ≡ ‖vkηk‖2L2 ;

(3.74) Ak ≡ exp(
2

n
N(vkφk)), Bk ≡ exp(

2

n
N(vkηk)).

By (3.68), we know that

(3.75) ak → 0, bk → 1, as k → ∞.

Now we will split the terms in the log Sobolev functional into terms involving
vkφk and vkηk. By direct computation

(3.76)

∫

(4|∇vk|2 +Rv2k)dg

=

∫

(4|∇(vkφk)|2 +R(vkφk)
2)dg +

∫

(4|∇(vkηk)|2 +R(vkηk)
2)dg

− 4

∫

(|∇φk|2 + |∇ηk|2)v2kdg,

where we have used the identity

(3.77) 0 = ∆(φ2k + η2k) = 2|∇φk|2 + 2φk∆φk + 2|∇ηk|2 + 2ηk∆ηk.

Suppose Condition (b) on volume of geodesic balls holds, namely |B(x0, r)| ≤
Crn. Using Hölder’s inequality we deduce

(3.78)

4

∫

(|∇φk|2 + |∇ηk|2)v2kdg ≤ C2−2jk

∫

Ωjk

v2kdg

≤ C2−2jk |Ωjk |2/n
(

∫

Ωjk

v
2n/(n−2)
k dg

)(n−2)/n

≤ C

(

∫

Ωjk

v
2n/(n−2)
k dg

)(n−2)/n

.

Using (3.72), we know that

(3.79) 4

∫

(|∇φk|2 + |∇ηk|2)v2kdg = o(1)eN(vk)2/n.

Here o(1) is a quantity that goes to 0 when k → ∞. This and (3.76) imply

(3.80) F (vk) = F (vkφk) + F (vkηk)− o(1)eN(vk)2/n.

Now, suppose Condition (b) on the scalar curvature holds, namely R(x) ≥
c

1+d2(x0,x)
. Then

(3.81) 4

∫

(|∇φk|2 + |∇ηk|2)v2kdg ≤ C2−2jk

∫

Ωjk

v2kdg ≤ C

∫

Ωjk

Rv2kdg.
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By the second line of (3.71), we have

(3.82) Σ2ik
i=ik

∫

Ωi

(4|∇vk|2 + Rv2k)dg ≤ Ce2N(vk)/n.

Therefore one can also find a jk ∈ [ik, 2ik] such that (3.79) and (3.80) hold.
Next, observe that

(3.83)

∫

v2k ln v
2
kdg −

∫

(vkφk)
2 ln(vkφk)

2dg −
∫

(vkηk)
2 ln(vkηk)

2dg

=

∫

(vkφk)
2
[

ln((vkφk)
2 + (vkηk)

2)− ln(vkφk)
2
]

dg

+

∫

(vkηk)
2
[

ln((vkφk)
2 + (vkηk)

2)− ln(vkηk)
2
]

dg

≤ C

∫

v4kφ
2
kη

2
kdg ≤ C

∫

Ωjk

v2k dg.

Here we just used the uniform boundedness of vk, proven in Lemma 3.3. This means

(3.84) N(vk) = N(vkφk) +N(vkηk) + o(1).

Recall that vk is a minimizer for the log Sobolev functional. By (3.67),

(3.85) e
2
n (λk−sn) =

F (vk)

exp( 2nN(vk))
.

By (3.80) and (3.84), this implies

(3.86)

e
2
n (λk−sn) =

F (vkφk) + F (vkηk) + o(1) exp( 2nN(vk))

exp( 2nN(vk))

=
F (vkφk) + F (vkηk)

exp( 2nN(vkφk)) exp(
2
nN(vkηk)) eo(1)

+ o(1).

On the other hand, by definition of λk, we have
(3.87)

F (vkφk) ≥ e
2
n (λk−sn)‖vkφk‖2L2 exp

(

− 2

n
ln ‖vkφk‖2L2

)

exp

(

2

n
N(vkφk)/‖vkφk‖2L2

)

.

Since the support of ηk is outside of the ball B(x0, 2
jk−1), by definition of λ∞ ≡ λ∞(g)

in Definition 1.1, we know
(3.88)

F (vkηk) ≥ e
2
n
(λ∞−sn+o(1))‖vkηk‖

2
L2 exp

(

−
2

n
ln ‖vkηk‖

2
L2

)

exp

(

2

n
N(vkηk)/‖vkηk‖

2
L2

)

.

Write λ = λ(g, 1). Combining the last three expressions, we deduce, since λk =
λ+ o(1) that

(3.89) 1 ≥ a
−2/n
k akA

1/ak

k + b
−2/n
k bkB

1/bk
k e(λ∞−λ)2/n+o(1)

AkBkeo(1)
+ o(1),

where

(3.90) ak ≡ ‖vkφk‖2L2, bk ≡ ‖vkηk‖2L2 ;
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(3.91) Ak ≡ exp(
2

n
N(vkφk)), Bk ≡ exp(

2

n
N(vkηk)).

Therefore

(3.92) min{a−2/n
k , b

−2/n
k } akA

1/ak

k + bkB
1/bk
k e(λ∞−λ)2/n+o(1)

AkBkeo(1)
+ o(1) ≤ 1,

Since ak and bk are positive numbers in the interval (0, 1), this shows

(3.93) ln(akA
1/ak

k + bkB
1/bk
k e(λ∞−λ)2/n+o(1)) ≤ ln(AkBk) + o(1).

Notice that ak + bk = 1. By concavity of ln function we obtain

(3.94) bk(λ∞ − λ)2/n+ o(1) ≤ o(1).

Letting k → ∞ and using the fact that bk → 1 (from (3.75) ), we arrive at

(3.95) 0 < λ∞ − λ ≤ 0.

This is a contradiction which proves that v∞ is not identically zero.

Step 2. We prove ‖v∞‖L2(M) = 1.
This is done by adopting a method by Dolbeault and Esteban [DE], which is in

the spirit of P. L. Lions’ concentrated compactness.
Suppose for contradiction that ‖v∞‖L∞(M) = δ < 1. Then for all large integer k,

there exists lk > 0 such that lk → ∞ when k → ∞ and

(3.96)

∫

B(x0,lk)

v2∞dg = δ − 1

k
,

∫

B(x0,4lk)−B(x0,lk)

v2∞dg ≤
1

k
.

Fixing this k for the moment, by C∞
loc convergence of vk to v∞ and the fact that the

L2 norm of vk is 1, we can find a subsequence {nk} of positive integers so that

(3.97) δ − 2

k
≤
∫

B(x0,lk)

v2nk
dg ≤ δ − 1

2k
,

∫

B(x0,4lk)−B(x0,lk)

v2nk
dg ≤ 2

k
,

and that

(3.98) 1− δ − 2

k
≤
∫

M−B(x0,4lk)

v2nk
dg ≤ 1− δ +

2

k
.

Renaming nk as k, we have found a subsequence of {vk}, which is still denoted by
{vk}, such that

(3.99)

lim
k→∞

∫

B(x0,lk)

v2kdg = δ, lim
k→∞

∫

B(x0,4lk)−B(x0,lk)

v2kdg = 0,

lim
k→∞

∫

M−B(x0,4lk)

v2kdg = 1− δ.

By partition of unity, we can choose a sequence of cut-off functions φk, ηk on (M,x0, g)
such that φk = 1 on B(x0, lk), supp φk ⊂ B(x0, 2lk); ηk = 1 on M − B(x0, 2lk),
supp ηk ⊂M −B(x0, lk); |∇φk|+ |∇φk| ≤ C/lk; φ

2
k + η2k = 1. Using (3.99), we know

that

(3.100) lim
k→∞

∫

B(x0,lk)

(vkφk)
2dg = δ, lim

k→∞

∫

M−B(x0,4lk)

(vkηk)
2dg = 1− δ.
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Next we will again split the terms in the log Sobolev functional into terms in-
volving vkφk and vkηk. Since |∇φk| + |∇ηk| → 0 when k → ∞, it is easy to see
that

(3.101)

∫

(4|∇vk|2 +Rv2k)dg

=

∫

(4|∇(vkφk)|2 +R(vkφk)
2)dg +

∫

(4|∇(vkηk)|2 +R(vkηk)
2)dg + o(1).

Here o(1) is a quantity that goes to 0 when k → ∞. As in Step 1,

(3.102)

∫

v2k ln v
2
kdg −

∫

(vkφk)
2 ln(vkφk)

2dg −
∫

(vkηk)
2 ln(vkηk)

2dg

=

∫

(vkφk)
2
[

ln((vkφk)
2 + (vkηk)

2)− ln(vkφk)
2
]

dg

+

∫

(vkηk)
2
[

ln((vkφk)
2 + (vkηk)

2)− ln(vkηk)
2
]

dg

≤ C

∫

v4kφ
2
kη

2
kdg ≤ C

∫

B(xk,4lk)−B(xk,lk)

v2k dg.

Here we just used the uniform boundedness of vk, proven in Lemma 3.3. This and
(3.99) shows

(3.103)

∫

v2k ln v
2
kdg =

∫

(vkφk)
2 ln(vkφk)

2dg +

∫

(vkηk)
2 ln(vkηk)

2dg + o(1).

Recall that vk is a minimizer for λk ≡ λ(g, 1, B(x0, rk)). By (3.67),

(3.104) e
2
n (λk−sn) =

F (vk)

exp( 2nN(vk))
.

By (3.101) and (3.103), this implies

(3.105) e
2
n (λk−sn) =

F (vkφk) + F (vkηk)

exp( 2nN(vkφk)) exp(
2
nN(vkηk))

+ o(1).

Here we just used the fact that exp( 2
nN(vk)) is bounded away from zero. The reason

is

(3.106) lim inf
k→∞

exp(
2

n
N(vk)) = lim inf

k→∞
e−

2
n (λk−sn)F (vk) ≥ e−

2
n (λ−sn)F (v∞) > 0,

which is due to Step 1.

On the other hand, by definition of λk, we have
(3.107)

F (vkφk) ≥ e
2
n (λk−sn)‖vkφk‖2L2 exp

(

− 2

n
ln ‖vkφk‖2L2

)

exp

(

2

n
N(vkφk)/‖vkφk‖2L2

)

;

(3.108)

F (vkηk) ≥ e
2
n (λk−sn)‖vkηk‖2L2 exp

(

− 2

n
ln ‖vkηk‖2L2

)

exp

(

2

n
N(vkηk)/‖vkηk‖2L2

)

.
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Plugging the last two expressions into (3.105), we deduce

(3.109)
a
−2/n
k akA

1/ak

k + b
−2/n
k bkB

1/bk
k

AkBk
≤ 1 + o(1),

where

(3.110) ak ≡ ‖vkφk‖2L2 , bk ≡ ‖vkηk‖2L2 ;

(3.111) Ak ≡ exp(
2

n
N(vkφk)), Bk ≡ exp(

2

n
N(vkηk)).

Therefore

(3.112) min{a−2/n
k , b

−2/n
k } akA

1/ak

k + bkB
1/bk
k

AkBk
≤ 1 + o(1),

Notice that ak+bk = 1. Therefore we have the Young’s inequality:
akA

1/ak
k +bkB

1/bk
k

AkBk
≥

1. Letting k → ∞ and using (3.100), we arrive at

(3.113) min{δ−2/n, (1− δ)−2/n} ≤ 1.

This is a contradiction with the assumption that δ = ‖v∞‖L2(M∞,g∞(0)) < 1.

Step 3. Finally we prove that v∞ is a minimizer.
Using Fatou’s Lemma, it is clear that F (v) ≤ limk→∞ F (vk). We claim that

(3.114) N(v∞) ≥ lim
k→∞

N(vk),

which is a reversed inequality comparing with that in Fatou’s lemma. Here goes the
proof. Let C be a uniform upper bound for ‖vk‖∞. Then ln(C/vk)

2 ≥ 0. By Fatou’s
lemma

(3.115)

∫

v2∞ ln(C/v∞)2dg ≤ lim
k→∞

∫

v2k ln(C/vk)
2dg,

Since ‖v∞‖L2 = ‖vk‖L2 = 1, the above shows

(3.116) N(v∞) =

∫

v2∞ ln v2∞dg ≥ lim
k→∞

∫

v2k ln v
2
kdg = lim

k→∞
N(vk),

which is the claim.
Taking k → ∞ in (3.85), using the claim and Fatou’s lemma on F (vk), we deduce

(3.117) e
2
n (λ−sn) = lim

k→∞
e

2
n (λk−sn) = lim

k→∞

F (vk)

exp( 2
nN(vk))

≥ F (v∞)

exp( 2nN(v∞))
.

Taking ln on both sides, we see that v∞ is a minimizer. From here, it is straight
forward to see that v∞ satisfies equation (1.3).

Now we are ready to give

Proof of Theorem 1.4. For simplicity, we use the notations L(v, g) ≡ L(v, g, 1,M)
and λ(g) ≡ λ(g, 1,M) during the proof.
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First we claim that λ(g) is invariant under scaling and diffeomorphism. The
proof is quite easy. But we present it here to stress its independence on the behavior
of the diffeomorphism at infinity. Given any positive number a. It is clear that
L(v, g) = L(a−n/4v, ag) and ‖v‖L2(g) = ‖a−n/4v‖L2(ag). Hence λ(g) is invariant
under scaling.

Next, let ψ be a diffeomorphism on M and write h = ψ∗g. For any v ∈ C∞
0 (M),

we have

(3.118)

∫

M

(4|∇v|2 +Rv2)dg =

∫

M

(4|∇h(v ◦ ψ−1)|2 +R(v ◦ ψ−1)2)dh,

(3.119)

∫

M

v2 ln v2dg =

∫

M

(v ◦ ψ−1)2 ln(v ◦ ψ−1)2dh.

These imply L(v, g) = L(v◦ψ−1, ψ∗g). Taking the infimum on both sides, we see that
λ(g) is also invariant under diffeomorphism.

Hence, we know from the assumption g(t2) = cψ∗g(t1) that

(3.120) λ(g(t1))− λ(g(t2)) = 0.

According to Theorem 1.9, there exists a function v2 ∈ W 1,2(M, g(t2)), which is
a minimizer for λ(g(t2)), i.e.

(3.121) L(v2, g(t2)) = L(v2, g(t2), 1,M) = λ(g(t2)).

Moreover, by Moser’s iteration, it is known, as done in Lemma 2.3 in [Z2], v2 has
Gaussian type decay at infinity.

Next, we solve the conjugate heat equation for t < t2, with final value as v22 . This
solution is denoted by u = u(x, t). Write v =

√
u, then by Definition 1.1

(3.122) L(v, g(t)) = −N(v) +
n

2
lnF (v) + sn,

where, due to v =
√
u,

(3.123)

N(v) =

∫

M

u lnu dg(t); F (v) =

∫

M

(
|∇u|2
u

+Ru)dg(t) =

∫

M

(4|∇v|2 +Rv2)dg(t).

According to Perelman [P] Section 1, d
dtN(v) = F (v) and

(3.124)
d

dt
F (v) = 2

∫

M

|Ric−Hess(lnu)|2udg(t).

We mention that although Perelman only proved the formulas for compact manifolds,
but his proof also works for noncompact manifolds with bounded geometry when the
functions involved have sufficiently fast decay such as the Gaussian function. See
[C++] Chapter 19 and [CTY] e.g. for a detailed computation. In our case, the
function v has Gaussian type decay at each time level just like the final value v(t2)
does. Hence

(3.125)
d

dt
L(v, g(t)) =

(

n

∫

M

|Ric−Hess(lnu)|2udg(t)− F 2(v)

)

F−1(v).
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Following Perelman’s computation,
(3.126)

|Ric−Hess(lnu)|2 ≥
∣

∣

∣

∣

Ric−Hess(lnu)− 1

n
(R−∆ lnu)g

∣

∣

∣

∣

2

+
1

n
(R−∆ lnu)2;

Using the relation F (v) =
∫

M
(R−∆ lnu)u dg(t), we deduce

(3.127)
d

dt
L(

√
u, g(t)) ≥ Q(u)

F (v)
≥ 0

where

(3.128)

Q(u)(t) = n

∫

M

|Ric−Hess(lnu)− 1

n
(R−∆ lnu)g|2udg(t)

+

∫

M

(R−∆ lnu)2u dg(t)−
(
∫

M

(R−∆ lnu)u dg(t)

)2

;

F (v) = F (v)(t) = F (
√
u)(t) =

∫

M

(
|∇u|2
u

+Ru)dg(t).

Observe that
√

u(·, t2) = v2(·) by definition. So by (3.121) we deduce

(3.129)

∫ t2

t1

d

dt
L(

√
u, g(t))dt = L(

√

u(·, t2), g(t2))− L(
√

u(·, t1), g(t1))

≤ λ(g(t2))− λ(g(t1)) = 0.

The last line is due to (3.120). By (3.127), we then have

(3.130) F−1(v)Q(u) = 0.

By (3.128), this shows that (R −∆ lnu)(·, t) = l(t), where l = l(t) is a function of t
only. Also

(3.131) Ric−Hess(lnu)− 1

n
l(t)g = 0.

Therefore, (M, g(t)) is a gradient Ricci soliton.
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