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ASYMPTOTIC SPECTRAL FLOW FOR DIRAC OPERATORS OF
DISJOINT DEHN TWISTS*

CHUNG-JUN TSAIf

Abstract. Let Y be a compact, oriented 3-manifold with a contact form a. For any Dirac
operator D, we study the asymptotic behavior of the spectral flow between D and D + Cl(—%a) as
r — oo. If a is the Thurston—Winkelnkemper contact form whose monodromy is the product of Dehn
twists along disjoint circles, we prove that the next order term of the spectral flow function is O(r).
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1. Introduction.

1.1. Asymptotic spectral flow. For a pair of purely imaginary-valued 1-forms
Ap and Ay, choose a path of 1-forms A(s) connecting Ay to A;. For a Dirac operator
D, consider the family of Dirac operators {Ds(5) = D + CI(@)}SE[OJ}, which is D
perturbed by the Clifford action of A(s). The eigenvalues of each D 4(,) are unbounded
from above and below, and vary continuously along the path. The spectral flow is the
algebraic count of the zero crossings: a zero crossing contributes to the count with +1
if the eigenvalue crosses zero from a negative to a positive value as s increases, and
count with —1 if the eigenvalue crosses zero from a positive to a negative value as s
increases. If the path is suitably generic, only these two cases arise. This count is the
spectral flow function. Moreover, Atiyah, Patodi and Singer ([APS3, p.95]) observed
that the spectral flow function is equal to a certain index on [0,1] x Y. They also
proved that this index ([APS1, (4.3)]) is path independent ([APS3, p.89]). Therefore,
the spectral flow function depends only on the ordered pair (Da,,Da,).

If we have a real-valued 1-form a, we can consider the spectral flow with Ag =0
and A; = —%a. The spectral flow can be thought as a function of r, which we denote
by sfo(D,r). In [T2, section 5] and [T3], Taubes studied the asymptotic behavior of
the spectral flow function as r — oco. He proved:

THEOREM 1.1 ([T2]). There exists constants 6 € (0,1/2) and ¢ with the following
significance. Suppose thatY is a compact, oriented 3-manifold equipped with a Spin®-
structure, and D s the corresponding SpinC-Dimc operator. Then, for any real-valued
1-form a with ||a||cs < 1, the spectral flow function satisfies

2

(1.1) \sfa(p,r)_#/ywdﬂ < epito

for allr > c.

This theorem specifies the leading order term of the spectral flow function, and
gives a bound on the next order term.

As mentioned previously, Atiyah, Patodi and Singer ([APS3, p.95]) showed that
the spectral flow gives the index of an associated Dirac operator. To give the basic
idea, we briefly explain the finite dimensional case. Suppose that H_ and H are two
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m X m, non-degenerate Hermitian matrices. Connect them by a path of Hermitian
matrices: H(s) with H(s) = H_ for s < —1 and H(s) = H; for s > 1. The zero
crossings of the eigenvalues of H(s) is the spectral flow for H_ and H,. It is easy to
see that the spectral flow only depends on H_ and H, not on the path H(s). With
H(s), define the operator © : C*(R,C™) — C>*(R,C™) by

D =0,+H(s)

where s is the coordinate on R. This operator © is a Fredholm operator. Its index is
given by the spectral flow between H_ and H .

1.2. Next order term on a contact 3-manifold. Theorem 1.1 is one of the
main ingredients in the proof of the Weinstein conjecture ([T2]). It is used to obtain
the energy bound. However, theorem 1.1 is established for any 1-form. When a is
a contact form, much evidence (see below) suggests that the Dirac operator D_;.q
is related to the Reeb vector field, and its spectral flow function sf,(D,r) behaves
better. In this paper, we consider the size of the next order term when a is a contact
form.

QUESTION. For a contact form a with an adapted Riemannian metric, is the next
order term of the spectral flow function sf, (D, r) of order O(r) as r — co?

The construction of Dirac operators requires a Riemannian metric. We always
choose an adapted metric to make it easier to compare the spectral flow function. On
a contact 3-manifold, an adapted Riemannian metric is a metric such that |a] = 1
and da = 2 xa, where x is the Hodge star operator. The existence of such a metric
is proved by [CH]. In this paper, we give an affirmative answer to the question in
following situation:

MAIN THEOREM (Theorem 2.2). Suppose that the monodromy of an open book
decomposition is the product of Dehn twists along disjoint circles, and a is the asso-
ciated Thurston—Winkelnkemper contact form. Then, with a certain adapted metric,
the next order term of the spectral flow function of the canonical Dirac operator D is
of order O(r). Namely, there exists a constant ¢ such that

r2

’sfa(D,r) ~ 352 /Ya/\da‘ <ecr.

for allr > 1.

Here is why such a bound on the next order term is expected. As r — oo, the
zero modes of the Dirac operators D_;,., have the following properties:

(i) their derivative along the direction of the Reeb vector field is close to the

multiplication by ir/2;

(ii) on the contact hyperplane, they almost satisfy the Cauchy—Riemann equation.
The precise statements appear in proposition 3.1. In this regard, the Dirac equation
is very similar to the almost holomorphic equation in [D] and [IMP]. This being the
case, the general case looks locally like the circle bundle case.

Suppose that Y is a U(1)-bundle over a Riemann surface ¥ with negative Euler
number, and a is a connection 1-form whose curvature form is nowhere zero. It follows
that —ia is a contact form on Y. The adapted metric is chosen to be invariant under
the U(1)-action. Its spectral flow function can be computed by the Riemann—Roch
formula, and the next order term is of order O(r). A careful study of the Dirac
operator on such 3-manifolds can be found in [N].
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The above explanation also suggests that the zero locus of the zero modes v is
related to the Reeb vector field. Since the derivative of ¥ along the Reeb vector field
is about ir1)/2, the derivative of |1)|? along the Reeb vector field is small. Since 1)
almost solves the Cauchy—Riemann equation on the contact hyperplane, the number
of zeros of ¢ on the contact hyperplane should be dominated by r. Therefore, the
question of the next order term of the spectral flow can be viewed as the first step to
understand the zero modes of D_;,,.

This paper is organized as follows:

Section 2 provides the background for this paper. In section 2.1, we set up the
conventions of Dirac operators on contact 3-manifold and spectral flow functions. Sec-
tion 2.2 is a review on open book decompositions and the constructions of Thurston—
Winkelnkemper contact forms.

Section 3 contains some basic estimates on the zero modes of D_;..,. Proposition
3.1 is the cornerstone of all the estimates in this paper.

In section 4, we writes down the Dirac equation on different regions of the open
book decomposition. For the tubular neighborhood of the binding and the Dehn-
twist region, we construct a contact form on S! x S2. This contact form captures the
geometry of these two regions, and it is easier to study the Dirac equation on S* x S2.
On the region with trivial monodromy, almost zero modes of the Dirac operator are
constructed by the Riemann—Roch theorem.

In section 5, we study the Dirac equation on the model manifold S'xS2. There are
two main ingredients. First, we construct an approximation for the zero eigensections
of the Dirac operator in this model case. Second, we cut the interval [0,r] into
subintervals such that there are sparse zero crossings near the endpoints of each
subinterval.

In section 6, we combine above results to obtain the lower bound of the spectral
flow function.

Section 7 is a further study of the Dirac equation on the region where the mon-
odromy is trivial. We describe the boundary behavior of the solutions carefully.

In the last section, we prove the upper bound of the spectral flow function. Unlike
the eigensections of a fixed Dirac operator, zero eigensections of a family of Dirac
operators are not necessarily orthogonal to one another. This section is devoted to
overcoming this difficulty.

Acknowledgements. This paper forms part of the author’s Ph.D. thesis. The
author would like to thank his thesis advisor Cliff Taubes for his guidance in this
project. He would also like to thank Po-Ning Chen and Valentino Tosatti for helpful
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gestions and corrections. Part of this work was done while the author visited MSRI
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2. Preliminary. In this section, we set up the background on the spectral flow
function and the open book decomposition.

2.1. Spectral flow of a contact form. We now review the Dirac operator and
its spectral flow. We focus on the canonical Dirac operator perturbed by the contact
form. We will not do the general Spin“-structure constructions. See [M, ch.2 & ch.3]
for a complete treatment for general Spin®-structures. Below we mostly follow [T2].
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2.1.1. Canonical Spinc-structure. Let Y be a closed oriented connected 3-
manifold with a contact form a. Fix an adapted metric on Y. Denote the Reeb vector
field by es. It has unit length measured by any adapted metric.

Consider the contact hyperplane field ker(a) C TY. With the orientation given
by da, it is a Hermitian line bundle over Y. More precisely, for any v € ker(a), let
J(v) be the metric dual of vida. The complex line bundle is spanned by local sections
v —iJ(v) with v € ker(a). The Hermitian metric is induced from the adapted metric.
We denote this Hermitian line bundle by K !, and its inverse bundle K is called the
canonical line bundle. The bundle C @ K ! has a Clifford action

c:TY — End(Co K1)

defined as follows. The bundle C is the pull-back of C over a point by the map
Y — point. Let 1¢ be the pull-back of 1 by the map ¥ — point. For any oriented
orthonormal frame on the contact hyperplane {e1, ea}, \%(el —ieg) is a unit-normed,
trivializing section of K~1. With this trivialization, the Clifford action is given by

the Pauli matrices

cl(el)—[(l) ‘01}, c1(62)_[9 é} c1(eg)_[é 0.}.

2 —1

The bundle C & K ~! together with this Clifford action is called the canonical Spin®-
structure.

2.1.2. Dirac operator. A Spin(c-connection on the canonical Spin(c-structure
is a Hermitian connection V4 on C @ K ', which is compatible with the Clifford
action in the following sense:

Va(cl(v)y) = (Vo) + cl(v)Vay

for any vector field v and any section 1 of C® K ~!. Here Vv is the covariant derivative
of v with respect to the Levi-Civita connection on TY .
Given a Spin(c-connection, define the Dirac operator to be the composition

CRCaK ) YA eco(TYeCoK ) -LeoCe K.

The Clifford action is extended to the cotangent bundle by the metric dual.
According to [H, lemma 10.1], there exists a unique Spin(c-connection such that

the section (1¢,0) is annihilated by the associated Dirac operator. This connection is

called the canonical connection. We denote it by Vg, and denote its associated Dirac

operator by Dy. Perturb the canonical connection by —ira/2 with r > 0

(21) Vr = Vo - %

a )
and consider the corresponding Dirac operator

—ir
(22) DT = DO + CI(TG) .

Note that cl(a) acts as i on the C-component and as —i on the K ~!-component.
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2.1.3. Local expression of the canonical connection. We now write down
the canonical connection in terms of the trivialization explained in 2.1.1. The complete
treatment of the local computation of a Spinc—connection and its Dirac operator can
be found in [M, section 3.2 & 3.3].

Let {eq, ez, e3} be a local orthonormal frame as explained in 2.1.1, and let {9;c }istk
be the Levi-Civita connection 1-form. Namely, Ve; = 3, . 9;“ ® ey, where V is the
Levi-Civita connection. Using the trivialization {1c, %(el —ieg)} of C® K1, we
identify the local sections with C2-valued functions. We claim that the canonical
connection Vo) is

(2.3) dyp — %(6‘% cl(es) + 05 cl(e2) + 05 cl(er)) () + %(—2@ + 02

where d¢) is the usual exterior derivative of a C2-function. According to [M, (3.3)],
(2.3) defines a Spin®-connection.

To prove that the above expression is the canonical connection, it remains to
check that (1c,0) is annihilated by the associated Dirac operator. Let {w!,w? w3}
be the dual coframe of {e;}. Since the metric is adapted, w?* is the contact form a.
By comparing da = 2w’ A w? with the structure equation dw? = — 2#3 9? Awl, we
conclude that 3 (e3) = 0 = 03(e3) and 03(ez) — 03(e1) = 2. By calculating d%a = 0 =
2d(w! Aw?) in terms of the structure eqaution, we conclude that 63(eq) + 63 (e2) = 0.
With these relations, the Dirac operator of (2.3) is

3 02(e1) — 02(es
(2.4) ZCl(ei)ei(%/f) + [ 8 _29_15 41_)9%(9625 ) P .
i=1

It is clear that (1¢,0) is annihilated by the operator. Thus, the local expression of the
canonical connection Vj is given by (2.3), and the local expression of its associated
Dirac operator Dy is given by (2.4).

2.1.4. Spectral flow function. We now define the spectral flow function for
the family of Dirac operators {D;}sco,,j.- The construction is borrowed from [T2,
subsection 5.1].

The spectral flow for the family {Ds} cjo,r) is defined with the help of a certain
stratified, real-analytic set in R x [0,7]. This set is denoted by £. Its stratification is
given by

E=EDED: -,

where & of the set of pairs (), s) such that \ is an eigenvalue of Dy with multiplicity
l or greater. Each & is a closed set. Moreover, as can be proved using the results
in [K, chapter 7], each &- = & — &4+1 is an open and real analytic submanifold
of R x [0,7]. The collection {&~} are called the smooth strata of £. When the 1-
dimensional smooth strata are oriented by the pull-back from R x [0, 7] of the 1-form
ds. The zero dimensional strata can be consistently oriented so that the formal,
weighted sum &, =}, &~ defines a locally closed cycle in R x [0,7]. Tt also follows
from the results in [K, chapter 7] that

Z/gl*dhzo

leN



638 C.-J. TSAI

for any smooth function kA on R x (0,r) with compact support.

Sard’s theorem finds a dense, open set U C R with the property that the two
maps from a point x to R x [0, ] that send x to (A,0) and to (A, r), respectively, are
both transverse to the smooth strata of £ for all A € U. With this understood, the
spectral flow for {Ds},ejo,r is defined as follows. Fix A\g € U and A9 < 0. By Sard’s
theorem, there exist smooth, oriented paths o C R x [0, 7] that start at (Ao, 0), end at
(Ao, 7), and are transverse to the smooth strata of £. Such a path has the following
well-defined intersection number with &:

Sfa(Ta A0) = Z Z L(p)l 5

IEN pEon&p«

where «(p) € {—1,1} is the sign of intersection. To describe the sign of intersection,
suppose that o is the graph of a smooth function from [0,7] to R. The pull-back of
dA from € to R x [0,7] at a point (A, u) can be written as X' du with

(2. v = [ wdigam,

where 1 is a unit-normed eigensection of D, with eigenvalue A. The sign of X" at an
intersection point with the image of a graph o is the factor ¢(p).

If Ao is sufficiently close to 0, sf,(r, Ag) is independent of A\g. The spectral flow
Junction for {Dy}yueo, is defined to be

ste(r) = lim sfy(r, Ao) -
)\0‘)07
2.2. Open book decomposition. We briefly review open book decompositions
of disjoint Dehn twists. For a complete discussion of open book decompositions, see
[0S, chapter 9] or [E] and the references therein. The notations introduced in this
section will be used throughout the paper.

2.2.1. Open book decomposition. An (abstract) open book decomposition
consists of a Riemann surface ¥ with boundaries {C;} e, and a self-diffeomorphism
7 which is the identity near the boundary. The map 7 is called the monodromy of the
open book. The 3-manifold Y is obtained by the following construction. First, form
the mapping torus

¥ x [0, 27]
(p,2m) ~ (7(p),0) -

Its boundary is the disjoint union of tori, [[; C; x S1. Next, attach solid tori I, St x
D? to ¥ x, S, where the longitude is identified with the Cj-factor, and the meridian
is identified with the S'-factor. Note that there is an S'-family of ¥ in Y, and they
are referred as the pages. The cores of the attached solid tori are called the bindings.

In the next section, the handle attaching will be described explicitly in terms of
local coordinates.

Y x, St =

2.2.2. Contact form. Given an open book decomposition, Thurston and
Winkelnkemper [TW] construct a contact form a on it, which has the following sig-
nificance:

e on the mapping torus ¥ x,S', the Reeb vector field is transverse to the pages,
and da restricted on the pages is an area form;
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e on the attaching solid tori, a is of a certain standard form, and the bindings
are Reeb orbits.

By the celebrated work of Giroux [G], this construction produces every contact
structure up to isotopy.

We now describe the contact form. We first explain the case when the monodromy
is the identity map, then do the case when the monodromy is the product of Dehn
twists along disjoint circles. In what follows, € is a constant smaller than 1/100. The
precise value of € will be chosen in the construction of Dehn twists.

With trivial monodromy. If the monodromy is the identity map, the mapping
torus is ¥ x S'. Near each boundary circle Cj, let pe't be the coordinate on its collar
neighborhood where p € [1,1 4+ 20¢) and C; = {p = 1}. Choose a 1-form us on ¥
satisfying

e dus is an area form on ¥;

e 2/5 = (2 — p)dt on the collar neighborhood of C;.
Such pus always exist ([OS, p.141]). Let €!® be the coordinate on the S!-component
of ¥ x S'. The contact form on this region is taken to be

(2.6) a=Vdo+2us

where V' is a constant greater than 1. Later, V' will be adjusted to be a larger constant.
We remark that the total area of dus is given by

/ dps = Z/ us = 7 - #{boundary components} .

Attaching handles. Let (e, pe’®) be the coordinate on the attaching solid torus

S1 x D? where pe® is the polar coordinate and p < 1. The handle attaching is done
by identifying the coordinates with the above region. Choose two smooth functions
f and g which only depend on p such that

e when p € [1 — 5¢, 1], the function f is V, and g is 2 — p;

e when p € [0,10¢], the function f is p?, and g is 2 — p?;

e f'(p) >0, and ¢’(p) < 0 except at p = 0.
It is not hard to see the existence of f and g. The contact form on the attaching solid
torus is taken to be

(2.7) a= f(p)de + g(p)dt .

When p < 10¢, it is equal to xdy — ydx + (2 — 22 — y?)dt in terms of the rectangular
coordinate x + iy = pe’®. Hence, the 1-form a is smooth on the solid torus S* x D2,

Disjoint Dehn twists. A Dehn twist along a simple closed curve T is a certain
type of monodromy. Roughly speaking, it is obtained by cutting a collar neighborhood
of ', twisting 27 to the right and re-gluing. The precise description in terms of local
coordinates will be given shortly.

If the monodromy is the product of Dehn twists along disjoint circles {I';}, the
contact form only needs to be modified on the tubular neighborhood of {T';}.

Note that dus is a symplectic form and I is a Lagrangian submanifold. By
the Weinstein tubular neighborhood theorem, there exists a coordinate (p,e®) on a
tubular neighborhood of T'; such that duss = dt A dp with T'; = {p = 0}. Choose ¢
small enough so that p € (—35¢, 35¢). By adding the differential of a smooth function,



640 C.-J. TSAI

we may assume that 2us is 2(v; — p)dt on the tubular neighborhood of T';. The period
constant 2wy, = fl‘z w5 is determined by the original choice of us.
To perform the Dehn twist along I';, choose a smooth function o;(p) satisfying

) 0 when p < —10e
g, =
e +N; when p > 10¢

where the plus/minus sign corresponds to the right-handed/left-handed (posi-
tive/negative) Dehn twist, and N; € N corresponds to the power of the Dehn twist.
With o chosen, the (+N;)-Dehn twist along T is given by (p, et) = (p, e!(t+27o1(p))),
The mapping torus of the tubular neighborhood of I'; is

(—35¢,35¢) x S x [0, 27]
(p, e, 27) ~ (p, eilt+2mai(p)) )

Let ¢ be the coordinate on the interval [0,27]. If we take V' to be a large constant
such that

(2.8) V> 1+ 2|(v = p)?oi(p)| + 2| (v — p)au(p)]
for |p| < 35¢, then the 1-form
(2.9) a=Vd¢+2(vi — p)dt + 24(v; — p)oi(p)dp

is a contact form which coincides with (2.6) when |p| > 10e. More precisely, (2.9) is
a contact form on (—35¢, 35¢) x St x [0,27], and is invariant under the identification
map (p, ¢, ¢) v (p, T2, 6 — 27r).

DEFINITION 2.1. Let ¥ be the surface obtained by cutting out the tubular
neighborhood of Ty, {|p| < 20€}, from 3. The monodromy is the identity on 3. The
restriction of us on ¥ is denoted by px.

2.3. Spectral flow estimate. With the above construction, here is the precise
statement of our main result:

THEOREM 2.2. Suppose that the monodromy of the open book decomposition is
the product of Dehn twists along some disjoint circles. For the contact form a given
by (2.6), (2.7) and (2.9), there exist an adapted Riemannian metric and a constant ¢
such that

2
sto(r) — #/}/a/\da’ <ecr

for allr > 1.

The proof is done by the gluing construction. For simplicity, we will assume that
there is only one Dehn twist and one binding, and we will suppress the subscript {. If
there is more than one Dehn twist or binding, the argument is essentially the same.

REMARK. Throughout this paper, the constants ¢ only depend on the contact
form and the adapted Riemannian metric, and do not depend on r. Within each
proof, the subscript of the constants c(,) is only for indicating that they might change
(usually increase) after each step. The constants c(,) in two different proofs have
nothing to do with each other.
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3. Some estimates. The purpose of this section is to derive some basic esti-
mates on the zero eigensections of D,. It is crucial that the perturbation term of
D, is the contact form. The estimates in this section do not involve the open book
decomposition.

We write a section 1 of the canonical Spin® bundle C ® K~ as (, B). We will
refer to a and [ as the first and the second component of 1, respectively. Remember
that under the Clifford action, a acts as 7 on the first component and acts as —i on
another component.

PROPOSITION 3.1. For any 61 > 0, there is a constant ¢ determined by the contact
form and the adapted metric such that the following holds.
(i) Suppose that 1 = («, ) is a eigensection of D, for some r > ¢, and the
magnitude of the corresponding eigenvalue is less then or equal to §1. Then

/|ﬁ|2+r_1/ |Vrﬁ|2§cr_1/ laf? .
% % %

Hence, [, |D:BI* <c [y |af?.
(ii) Furthermore, suppose that there is a C*-family of eigenvalues \(s) of Dy
near some r > ¢, and |A(0)| < é;. Then

IN(0) - 5l <

ﬁlﬁ

[\D|’—‘

Therefore, there exist only positive zero crossings for the spectral flow for
r>c.

Proof. The Weitzenbock formula ([M, proposition 5.1.5]) reads

FAO

D% = ViV, + ¢+ cl( Vip — irel(xa)e

where & is the scalar curvature and Fla, is the curvature of the canonical connection.
Take the inner product with 5, and integrate the equation over Y. We have

5 / E / V.82 + (N(Vsa) + N'(), B)
+ 516 4 fai( T

), 0) +7181%)

where N (V,a) = icl(tr(Va, V,a)) and N'(a) = £ cl(V*Va)a. The term N(V,a) +
N’(«) has the same K ~!-component as V:V,«. Notice that N and N’ are operators
independent of r. After integration by parts, we conclude that

1
7 [ 18R = [ ((r=clBl + 519,88 — calal)

Property (i) of the proposition follows from this inequality.

To prove property (ii), let ©» = («, 8) be a unit-normed eigensection of D, with
eigenvalue A(0). According to (2.5),

V) =3 [ (0P = 3OP) = 5 - [ 180)F
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This equation together with property (i) proves property (ii). O

Property (ii) of proposition 3.1 says that the rate of change of the spectrum near
a zero crossing gets closer to 1/2 as r — co. It has the following consequence.

COROLLARY 3.2. For any 61 > 0, there exist a constant ¢ > 0 determined by the
contact form and the adapted metric such that the following holds. Suppose that X is
an eigenvalue of D, with r > ¢ and 4|\| < 61. Then, (r, \) belongs to a trajectory of
eigenvalues which contributes to the spectral flow with +1 somewhere in the interval

[r—2)\—f,r—2)\+£].
r r

Proof. According to 2.1.4, we may choose a trajectory (r + s,u(s)) for s €
(—=3AX,3)) such that p(0) = A and p(s) is continuous and piecewise differentiable.
Such a trajectory is not unique, but any choice will suffice. By (2.5), [¢/(s)] < &
as long as p(s) is differentiable at s. It follows that |u(s)] < 2|A| < 61 for any
s € (=3X,3)). Therefore, property (ii) of proposition 3.1 implies that |p/(s) — 3] < ¢
provided p is differentiable at s. The corollary follows from this estimate. O

Two zero eigensections at different  might not be orthogonal to each other. How-
ever, property (i) of proposition 3.1 implies that they are close to being orthogonal.
More precisely, we have:

PROPOSITION 3.3. There exists a constant ¢ > 0 which determined by the contact
form and the adapted metric such that the following holds. Suppose that 11 and o
are zero modes of Dy, and Dy, with r1 > ¢, ro > ¢ and r1 # ro and they are of unit
L?-norm. Then

’/Y<1/11,1/12>’ <e(rr) 77

Proof. We write ¢1 = (aq, 81) and ¢ = (ag, 82), and compute

0= [ (D) = (1. D)) = [ (Dry = Dryin )
= (7”1 - 7”2)/Y (<a1,a2> - <[31,[32>) .

It follows from 71 # 7y that [, (a1,02) = [,(B1,02). Hence, [ (¢1,102) =
2 [(B1,B2). By property (i) of proposition 3.1 and the Cauchy-Schwarz inequal-
ity, this completes the proof of the proposition. O

4. The Dirac equations. In this section, we will write down the Dirac equa-
tions on different regions of the 3-manifold of an open book decomposition. The
adapted metric for theorem 2.2 will also be specified.

4.1. The tubular neighborhood of the binding. The tubular neighborhood
of the binding has coordinate (e, pe’?) € S' x D2. The contact form is given by
(2.7),

a= fdo+ gdt .
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The contact form with the following two coframes

w! = cospdp — sin¢(f/d¢ + dt)

!/
w? = sin ¢dp + cos gb(f do + dt)
specifies the Riemannian metric, a® + (w')? 4 (w?)?. It is easy to see that the coframe
is smooth except at p = 0. For p < 10¢, w! = dx + ydt and w? = dy — xdt in terms
of the rectangular coordinate x + iy = pe*®. Thus, they form a smooth orthonormal
coframe on S' x D?. As explained in 2.1.1, their dual frame induces a trivialization of
Ca@ K~'. On the tubular neighborhood of the binding, this trivialization identifies the
sections of C® K1 with C2-valued functions. By (2.2) and (2.4), the Dirac operator

D, on¢ = (a,p) is

2o E( 9'0p0 + f’@a)
| — A
+ (= 9,8+ (9048 — F1B) + T5—B) .
(4 1) Dy = ) :
el¢ (apa -+ Z(ga¢a — fata))
fl/ !/ f/ "
—(5+1-ax + 8- 2A( 9'998 + f'0)

where A = $(f'g — fg'). The volume form is Adp A d¢ A dt. Note that the Dirac
operator is invariant under the two S'-actions in e** and e’.

At p = 0, the coordinate has a singularity, and we shall use the rectangular
coordinate z = pe’®. Remember that f = p? and ¢ = 2 — p? when 0 < p < 10e. The
Dirac operator is

ot (8¢a+8ta) (2azﬁ—iz(a¢5+at5)—§/3),

(42) Dy = T+3

(20z00 — 5 2(0pa + Opx)) — B— _(3¢ﬁ +0:0) .

The volume form is 2pdp Adp Adt = idz AdZ Adt. We can regard (4.2) as an operator
on C x St.

4.2. The Dehn-twist region. For the Dehn-twist region, we work on
(—35¢, 35¢) x S1x [0, 2], and consider the operators and functions which are invariant
under the identification map. Before making the identification, we have coordinate
(p, e, p) € (—35¢,35¢) x S x [0, 2nr]. With this understood, the contact form is given
by (2.9),

a=Vde+2(v—p)dt +2¢(v—p)o'dp .
The following two coframes

w! = cos pdp — sin p(—dt — ¢o'dp — (v — p)o’de) ,
w? = sin ¢dp + cos ¢(—dt — ¢a’dp — (v — p)o’do)

together with the contact form specify the Riemannian metric, a? + (w!)? + (w?)?.
Note that w' and w? are both smooth and invariant under the identification map.
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As explained in 2.1.1, their dual frame gives a trivialization of C @ K—!. On the
Dehn-twsit region, we use this trivialization to identify the sections of C @ K ! with
C2%-valued functions on (—35¢, 35¢) x St x [0, 2] satisfying

W(p, 27N, 0) = w(p, e, 2m)
By (2.2) and (2.4), the Dirac operator D, on ¢ = («, ) is

o7 (— (9,8 — do'hB) + %(—M + w‘%ﬂ)) !

¢ (8,0 — ¢’ yar) + %(—Bta + 2(“‘/_ ) p0))
L (Clat)
2 A 2A

where A = V —2(v—p)20’. The volume form is Ad¢AdtAdp. Consider the untwisting
of o and f3:

)8~ (003 — (v~ p)o'0,)

(4.3) a(p,t,¢) = alp,t — ¢o(p), ¢) , Blp,t,¢) = B(p,t — ¢o(p),¢) -
After the untwisting, the Dirac operator on ¢ = (&, 3) is
. . ) A
gd + %(&bd - ((v - p)a)’@td) + e_z‘z’i%v Z) 3
- + e (= 08+ < (=V +2(0 = P)0)2B +2(0 = p)0sB)) .
(4.4) Dy = . A
" (0pa + %((—V +2(v — p)o)drd + 2(v — p)Dy))
1 _ " - - - , -
—~ (g 1<+ (& =plo)® 2£)0) )B = %(f%ﬁ —((v=p)o)a.p) .

The untwisting operator (4.3) and the Dirac equation (4.4) have the following

features.

(i) The untwisting operator (4.3) is only defined locally. In general, it cannot
extend to the whole 3-manifold.

(ii) Note that a(p,t,27) = a(p,t — 2nwo(p),27) = a(p,t,0) = &(p,t,0). Hence,
after the untwisting & and B are 2m-periodic in both ¢ and ¢. With this
understood, the Dirac operator (4.4) is invariant under these two S!-actions.
Namely, for any (e®0,e?®0) € St x St

D’r(z/;(pat—’—t07¢+¢0)) - (ﬁqu)(put+t07¢+ ¢0) .

(iii) The Dirac operator (4.4) is of the same form as that on the tubular neighbor-
hood of the binding (4.1). More precisely, it corresponds to f =V —2(v—p)o
and § = 2(v — p) in (4.1), and A is equal to 3(f'g — f§').

4.3. Associated contact form on S! x S2. In this section, we construct S x
5%’s by compatifying the tubular neighborhood of the binding and the Dehn-twist
region. We also construct contact forms on these S! x S2 associated to (2.7) and
(2.9). It is convenient to regard the Dirac operators in section 4.1 and 4.2 as being
defined on S* x S2.
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4.3.1. On the tubular neighborhood of the binding. The tubular neighbor-
hood of the binding is a solid torus, S' x D2. Topologically, we construct the S x 52
by attaching another solid torus, S* x D%, The attaching map on 9(S! x D?) = St x S!
is the identity map.

We now describe the S x S? in terms of the coordinate. Let e be the co-
ordinate for the S'-factor. Let (p,e’®) € [0,2] x S! be the (re-parametrized)
spherical coordinate for the S2-factor. To be more precise, choose a positive
smooth function u(p) in p € [0,2] such that v(p) = 1 when p < 10e or p >
2 — 10¢, and fo p)dp = w/2. The parametrization of the unit sphere is given by
(sin( ) v(s)ds) cos (b, sin( [ v(s)ds) sin ¢, cos( [y v(s)ds)).

To construct the contact form, choose two smooth functions f(p) and g(p) in
p € [0,2] such that:

e when p € [0, 1], the functions f(p) and g(p) coincide with the functions con-
structed in section 2.2;
e when p € (1,1 +10¢|, f(p) =V and g(p) =2 — p;
e when p € [2-10¢,2], f(p) = (2 p)* and g(p) = =2+ (2 - p)*;
e the functions f and f'g — f¢’ are positive when p € (0, 2).
It is not hard to see that there always exist such f and g. The contact form is taken
to be

(4.5) a= f(p)d¢ +g(p)dt .

The above conditions on f and g guarantee that a is a smooth contact form. The
volume form %a Ada is equal to Adp A d¢ A dt where

(46) A=3(f'g-fd).

4.3.2. On the Dehn-twist region. After the untwisting (4.3), the Dehn-twist
region is the solid torus (e, p,e!?) € S! x [~35¢,35¢] x St. Topologically, S x S?
is obtained by attaching two solid torus, S* x D?. The original solid tori has two
boundary components, S* x {£35¢} x S!. The attaching map is the identity map on
St x st

In this case, we take a similar coordinate on the S' x S2. Let e’ be the coordi-
nate for the S'-factor. Let (p,e!?) € [-2,2] x ST be the (re-parametrized) spherical
coordinate for the S2-factor.

To construct the contact form, choose two smooth functions f(p) and g(p) in
p € [0,2] satisfying the following properties:

e when p € (=35¢,35¢), f(p) =V —2(v — p)o(p) and g(p) = 2(v — p);

o when p € [2—10¢,2], f(p) = (2 p)* and g(p) = —2[v[ -2+ (2 — p)*;

e when p € [-2,—2+ 10¢], f(p) = (p+2)? and g(p) = 2|v|+ 2 — (p+ 2)%

e the functions f and f’§ — f§ are positive when p € (— 2,2).
With these two functions, the contact form is taken to be a = f(p)de + G(p)dt. The
volume form 2 sa Adais Adp A de A dt where A = (f’g fq ).

4.3.3. The canonical Spin®-structure of the associated contact form.

DEFINITION 4.1. For each boundary component and Dehn-twist region of the
page, the above construction gives a contact form (4.5) on S* x S2. These contact
forms will be referred as the associated contact forms.

We now choose an adapted metric and fix a trivialization of C @ K—! of the
associated contact form on the S! x S2. We focus on the associated contact form
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of the tubular neighborhood of the binding. For the associated contact form of the
Dehn-twist region, the construction is essentially the same. The only difference is
that f and g are replaced by f and g.

Consider the following two coframes
f/
2

/ / /
w! = cos pdp — sin p(=-de + %dt) . w?=singdp + cos ¢(%d¢> T %dt) .
As explained in section 4.1, they are smooth on the whole space, S! x S2. The adapted
metric is taken to be a?+(w')?+(w?)?. Let {e1, €2, e3} be the dual frame of {w?!, w?, a}.

According to section 2.1.1, {1¢, %(el — jes)} induces a global trivialization of the

canonical SpinC-bundle C @ K~'. When working with the Dirac operator on the
associated S' x S2, we will always use this trivialization to identify the sections of
C @ K—! with C?-valued functions on S* x S2.

With such a choice of the metric and the trivialization, the local expression of
the Dirac operator is given by (4.1) and (4.4), respectively. We will study the Dirac
equations of the associated contact forms carefully in section 5.

4.4. The part with trivial monodromy. On the part of the page where the
monodromy is the identity map, the contact form is

a:Vd¢+2ug .

Choose a Riemannian metric ds% on ¥ such that
e the area form is dus;

e near the tubular neighborhood of the binding, ds% = dp? + %dt2 in terms of
the coordinates in section 4.1;

e near the Dehn-twist region, ds% = dp? + dt? in terms of the coordinates in
section 4.2.
The Riemannian metric on ¥ x S! is taken to be a? + ds%. Near the binding and
the Dehn-twist region, it is not hard to check that this metric agrees with the metric
defined in 4.1 and 4.2.
Any locally defined, oriented orthonormal frame on X, u; and wg, gives rise to
the following frame for the contact hyperplane on the 3-manifold:

2
€1 = oS ¢uy1 — sin pug — VME(COS ouy — sin gug)dy

eo = sin ¢uq + cos pug — é,ug(sin pu1 + cos pug)dy
As discussed in 2.1.1, the dual frame induces a trivialization of C® K ~!. By examining
the transition function of K~! in terms of this trivialization, we find that K—! =
T Ky, ! where Ky ! is the anti-canonical bundle of ¥ determined by the metric and
dps;. More precisely, let ' and 6% be the dual coframe of u; and us on ¥. Then
e1—iey is identified as ' —i6%. By (2.2) and (2.4), the Dirac operator D, on ¢ = (a, )
is

r ) . . 2 .
3@ + V(%a + e_“i’( —u1(B) +iuz(B) — Vug(—ul + iug)0y 3
9
D,y = + Vluz(—m + iug)B + 65 (—u1 + iUZ)ﬂ) ;
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where 6% is the Levi-Civita connection for the metric ds% on ¥; namely, Ve; = 07 @es.
Consider the separation of variables:

(4.7) o= aneimi’(QWV)*%7 8= Bnei(n+1)¢(27TV)7%.

Before separation of variables, « is a function on S* x ¥, and 3 is a section of K !
over S' x ¥. After the separation of variable, a,, is a function on ¥, and 3, is a
section of Ky L over ¥. The Dirac operator on the frequency n components is

T n

(5 — 5 )on + 056
(48) 2V
anO[n - (5 + 1 - V)ﬂn

where 9,, and 5:; are the Cauchy-Riemann operators on C® Ky, ! with the connection
perturbed by — 217" us. Subject to suitable boundary conditions, their index is given by
[APS1, (4.3)]. The boundary conditions will be explained later. By the computation
in [BGV, p.148-149] and [APS1, (4.5)], the characteristic class term can be expressed
in terms of the curvature of the connection and the Euler characteristic of ¥. The

formula reads

(4.9) dim ker 9,, — dim ker 9} = L // dps + 1X(E) + l(77” + hy,)(0X)

Vr J)s 2 2
where x(X) is the Euler characteristic of ¥, and 7, (0X) and h,,(0X) are the correction
terms from the boundary. Since the boundary of ¥ is a disjoint union of circles, the
correction terms 7, (0X) and h,,(9%) are uniformly bounded for all n.

In [APS1], the connection is required to depend only on d% in a small neighbor-
hood of 9%. With the notation in subsections 4.1 and 4.2, the connection is required
to be independent of p near 9%. Our connection uy does not satisfy this property.
However, us is affine in p, and 9 is a disjoint union of S*’s. With a slight modifica-
tion, the index formula (4.9) still holds in our setting. We will explain the modification
at the end of this section.

In [APS1], there are adjoint boundary conditions for d,, and 9*. On the collar
neighborhood of the boundary,

On=0,+p  and 8 =—0,+p .

where p is the coordinate transverse to the boundary. The operator @, is the restriction
of 9, and 9; on the boundary, and it is a Dirac operator on the boundary. The Atiyah—
Patodi—Singer (APS for short) boundary condition says that the restriction of «,, on
the boundary only has components in the negative eigenspaces of @, and g, only has
non-negative ones. We now give an explicit description of the boundary conditions.

Adjacent to the tubular neighborhood of the binding. We follow the
notations in section 4.1, and take uy = 0,, uz = 20;. The surface X is described by
p > 1. The operators 0,, and 0 are

_ M2 —
Onatn = Oppn — 200y, — uozn ,

= . 2n(2 —
8 B = — 0, — 20048 — Mﬁn :

(4.10)
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and @, is —2i0; — 27” Let an, = anm(p)e™ and B, = Bnm(p)e™. The APS
boundary condition is

anm(1)=0 when m >
(4.11)
Bnm(1) =0 when m <

<|s<s

Adjacent to the Dehn-twist region. We follow the notations in section 4.2,
and take u; = 0, ug = d;. The region ¥ is the union of where p > 20e and p < —20e.
The operators 0, and 0 are

5nan = 8p05n — Zatan - Man ,
(4.12) ) ‘(f )

_ , (v —

0B = ~0pBa = 104 — =B

At p = 20¢, B, is —i0; — M. At p = —20¢, since J, does not point inward, @,
is 10y + w. Let ay, = anm(p)e’™ and B, = Bn.m(p)e™t. The APS boundary
condition at p = 20e is

—-20
an,m(20€) =0 when m > 2n> v ‘<,
(4.13)

—20
Brn,m(20€) =0 when m < 2n> ‘.

The condition at p = —20¢ is

20
0n,m (—20€) =0 when m < 2nv +V ¢ ,

(4.14)
20
Bn,m(—20¢) =0 when m > P + 20¢

In order to use the index formula (4.9) to compute dim ker On, we need to know
that dimker 9} = 0.

LEMMA 4.2. There exists a constant ¢ such that the following holds. For all
n > ¢, if Bn satisfies the APS boundary condition,

/ 1Bal? < en”! / 1382
> >

In particular, 9} only has trivial solution for any n > c.

Proof. The integration by parts formula gives

L= [198P + [(GF+ 0P+ [ uap)

where ky is the scalar curvature. The APS boundary condition for 3,, implies that
faz@'?nﬂn, Bn) is non-negative. Hence, if n > V max |ky|, we obtain the inequality of
the lemma. O
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For any integer n > ¢ in lemma 4.2, the dimension of ker 0, is given by the right
hand side of (4.9). Solutions of 9,, automatically solve the Dirac equation (4.8) with
r given by

2n
(4.15) =
However, they only solve the Dirac equation on ¥ x S'. In order to get smooth
sections on the 3-manifold Y, we need to do some modifications.

DEFINITION 4.3. For any 0 € (—15¢, 5¢), let X5 be the extension/curtailment of
Y defined by
e {p > 1—4} for the part adjacent to the tubular neighborhood of the binding,
in terms of the coordinate in section 4.1.

o {p < —20e+0 or p > 20e— 4} for the part adjacent to the Dehn-twist region,
in terms of the coordinate in section 4.2.

Positive ¢ corresponds to the extension, and negative § corresponds to the curtailment.
When § =0, Xg = X.

DEFINITION 4.4. Let x5 be the cut-off function which is equal to 1 on ¥, x S*
and equal to 0 on Y\ (X, x S'), and only depends on p over (X2.\X,) x S! in terms
of the coordinate in sections 4.1 and 4.2.

Suppose that a,, solves 0,. On the part adjacent to the tubular neighborhhood
of the binding, «,, is equal to

(4.16) Z Cn,m €XD ( - %(p — 2+ VTm)2)eimt

n
m<7

where ¢, ., are constants. The expression also solves 0,, on the region where p > 1—2e,
and it also obeys the corresponding APS boundary condition. On the part adjacent to
the Dehn-twist region, the situation is similar. Therefore, any solution of 9, on ¥ can
be extended uniquely to a solution on Y5, and the extension obeys the corresponding
APS boundary condition on Ya.. When m < %, the function (p — 2 + £2)? is
monotone decreasing for p € (1 — 2¢, 1]. It implies that

/ |an|2s/ |an|2s/ o2
225\2 Z\E 2 >

and thus the extension is still square integrable.

Consider the following construction of the almost eigensections: for each solution
of Op, extend it to ¥y, and multiply it by the cut-off function ys. This process is
linear, and it ends up with a vector space of the same dimension as ker 9,,. Choose an
orthonormal basis with respect to the L2-inner product on Xo.. Denote the basis by
{&n.1}, where [ runs from 1 to the number on the right hand side of (4.9). They are
smooth functions on Y. Their properties are summarized in the following proposition.

PROPOSITION 4.5. There exists a constant ¢ which has the following significance:
For any integer n > c, let 1, be the section of C® K~! over ¥ x S whose first
component s

§nylem¢(2ﬂ'V)7%
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and second component is zero. Here, &, is given by the above construction. Then,

r
/ |Drwn,l -
Y

for any r > 0, and v, is defined by (4.15). Moreover,

< cexp(—ﬁ)
c

/Y<¢n,z7¢n,l/>Z/Y<Dr¢n7l,¢n7l,> —0
‘/Y<Drwn,laDrwn7l/>

< cexp(—ﬁ)
c

for any 1 #1'.

Proof. For each section v, ;, there exists a function «,; which solves O, on Yo,
and is extended from ¥, such that &, ; = xzan,. From the expression (4.16), there
exists a constant c¢; such that

(4.17) / ani? < e eXP(—ﬁ)/ |t 1?
S2e\Be ‘ Js

By (4.8), the first component of D, ; is

1

T —Tn XEan,lein¢(27TV)_% _ r —2'771&17 zn¢(27_rv) 5

2

The second component of D, ; is equal to
X/Eanylei(”+1)¢(27ﬂ/)7%

which is supported on 33 \X.. Since {xsan,i} = {&n,} forms an orthonormal set in
L?(X3.), the above expression of D,.1),,; with (4.17) proves the proposition. O

4.4.1. A remark on the APS index theorem. We now explain why the index
formula (4.9) still holds in our setting. For simplicity, we only emphasize it for the
boundary component adjacent to the tubular neighborhood of the binding. To start,
choose a smooth function h(p) in p € [1,1 + 20¢) such that

o h(p) =1 for p € [1,1¢];

o h(p) =2—pfor p € [1+ 261+ 20¢);

e h(p) is non-increasing in p.
Let pp be the 1-form which is equal h(p)dt near the boundary of ¥, and is equal to
ps away from the boundary of X. Stokes theorem implies that [ [i, dug = [ [ dpn.

We take the same metric dsE on Y. Let Bn n and 8 h be the Cauchy—Riemann

2zn

operators on C @ Ky ! with the connection perturbed by ip. Since h(p) is equal
to 1 on the tubular neighborhood of 9%, it meets the requlrement of [APS1, (4.3)].
Thus, the index is given by the right hand side of (4.9).

We claim that dimkerd, = dim ker (?n n. The operators 0, and (?n n share the
same boundary condition, as described by (4 11). For any solution o, of 0y, it can
be expressed as (4.16) on X\X_op.. Let ay, p, be equal to a,, on ¥_s, and equal to

Z Crm €xD ( 2‘?/ (h(s)—VTm)ds) exp(—v(Qe—l—i-V—m) )ermt
1+2¢

m<V
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on X\X_g0.. It is not hard to see that a, j, is smooth and solves gn,h- The construction
of oy, from «, gives a linear map from ker Oy, to ker 5,17;“ which we denote by ITj,.
On the other hand, the inverse map H,;l is given by solving the ordinary differential
equation on X\X_gg.. Therefore, ker d,, and ker 9, 5, are isomorphic to each other. A
similar construction implies that ker 9 and ker 5:;) ;, are isomorphic to each other.

5. The model case: S! x S2. In this section, we study the Dirac equations
of the associated contact forms (4.5) on S! x S2. The S* x S? associated to the
tubular neighborhood of the binding will be denoted by Y. The Dirac operators will
be denoted by D,, and the sections will be denoted by ¢. The S! x S§? associated
to the Dehn-twist region will be denoted by Y. The Dirac operators will be denoted
by D,, and the sections will be denoted by 1/; Their spectral flow function will be
denoted by sf,(r) and sf,(r), respectively. We will focus on the associated contact
form of the tubular neighborhood of the binding. For the associated contact form of
the Dehn-twist region, the argument is completely parallel, and the details will be
omitted.

Recall that we fix a global trivialization of C & K ! to identify its sections with
C2-valued functions. The corresponding Dirac operator is given by (4.1), and it is
invariant under the two global S'-actions in e'? and e’. Hence, the eigenspaces of the
Dirac operator split according to the frequencies with respect to these two S'-actions.
The splitting allows us to study the spectral flow function directly. Let Sj ., be the
following space of sections:

{v= (0, B) | O = ikyp +1(0, B), Outp = imap}.
The following notions will be used throughout the paper.

DEFINITION 5.1. For the associated contact form (4.5) of the tubular neighbor-
hood of the binding, the function g/ f is monotone decreasing in p. For each positive in-
teger k and integer m, there is a unique Pk € (0,2) such that kg(pk,m) = mf(Pr,m)-
Let 4k m be

mf' (Pk.m) — kg’ (Pr,m) 2k 2m
) f(Pr,m) 9(Pr,m)

A(pk,fn
where A is defined by (4.6). The last equality only makes sense at where g(pg,m) # 0.
If k=0and m >0, let pr.m =0 and Y5, —m. If k=0 and m <0, let pgn,m = 2 and
ﬁk,m = —m.

For the associated contact form of the Dehn-twist region, 7y ., is defined in the
same way: replace f, g and A by f, g and A, and pi, , lies in the interval [—2,2]. For

k:Oandm;éO,%,m:Sigﬁf%)m-
We will have various cut-off functions for different purpose. They will be denoted

by x with some sub/superscript. If there is no sub/superscript, it is the following one:

DEFINITION 5.2. Let x(x) be the cut-off function on R with x(x) = 1 when
|z| < % and x(z) = 0 when |z| > 1.

5.1. Uniqueness of zero crossing. In order to prove the upper bound in the-
orem 2.2 for the associated contact forms, we need to know that the zero crossing of
D, on each S ., is unique.
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PROPOSITION 5.3. For the associated contact form (4.5) on Y, there exists a
constant ¢ > 0 such that the following holds.
(i) For each k and m, the Dirac operator D, on Sk,m has at most one zero
crossing for r > c.
(ii) If k is negative, or both k and m are zero, there is no zero crossing for r > c.
(i11) If the Dirac operator does have a zero crossing on Sk, at some r > ¢, then

€ [;Yk,m — ¢ Yem + q .

Proof. Suppose there is a 1) = (&, ) € Sk such that D, = 0 and Iy |2 = 1.
We will first prove that v is small except near Pk,m, then prove that v is similar to
the unique solution of the linearized equation at p. .

By proposition 3.1 and (4.1), there exists a constant ¢; such that

(5.1) [ lo= D)6l = [ lon (DA < e [ lar
(5.2) /Y\ew(ap kg mf /Ipr D.p)| <c1/lal2

provided r > ¢;. Here, pr; and pr, stand for the projection onto the C and K ~!-

component, respectively. We denote (r + kg,gmf,)d by D1, and €'?(0,c — Wd)
by ng.

Rough relations between k, m and r. Consider the integral of the real part
of (D1a, f&) + (Dacv, ' f'a). With (5.1), (5.2), we have

y y 1 y y
~ei [1aP < [ ((F ~20laP + 5ro,aP) < [ 1ar
Y Y Y

Note that f’0, is a globally defined vector field on Y. With integration by parts,
there exist a constant ¢y such that

—er [ 1P < [ o5 =2mlaP <o [ Jal
—er [ 1P < [ g —2m)laf <o [ JaP

provided r > ¢;. The second line is obtained by the same argument on (D&, g&) +
(D, e'®g'at). Let c3 = co + max{f,|g|}. It follows from (5.3) that

(5.3)

(5.4) 2k <res, 2|m| < res

provided r > ¢;. On the other hand, it is straightforward to bound r in terms of k
and m. By (5.1), there exists a constant ¢4 such that

(5.5) r < ca(|k[ +[ml])

provided r > ¢4. It follows that k and m cannot both be zero.
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Some estimates on . Consider the integral of | fD;& + e~ f'Dyc|?. By (5.1)
and (5.2), we have

/Y (rf — 2K)2(a % + [f'0,0[ + (rf — 2k) f'D,lal? < ¢! /Y a2

Throw away the second term, and perform integration by parts on the third term.
With (5.4), there exists a constant c; such that

(5.6) [ = 2wlap < res [ laP

provided r» > ¢;. The same argument on |gDié 4+ e ?¢'Do|? and |e *? ADydl?
implies that

(5.7) /Y (rg — 2m)2(af? < res /Y af? |
(5.8) /Y (kg — mf)?af? < res /Y 62

provided r > ¢;.
We separate the discussion into two cases according to whether

1

<(zz= — Dk > (—=— — 1k
ml < (53— 1) or ml > (g5~ 1)

Case 1. When |m| < (33 — 1)k, k can only be positive. We are going to use
(5.8) to obtain a refined estimate on «. Note that pp ., (given by definition 5.1)
lies within (8¢,2 — 8¢). The function |kg — mf| can only be small near py .. More
precisely, there is a constant cg > 0 such that

Ly when |p — prp.m| > €,

Ce

(5.9) kg —mfl =1, )
2Tlp = pr;m|  When [p = prm| <e€.

provided r > cg. Here is the proof of (5.9): The condition |m| < (53 — 1)k and
(5.5) implies that k is greater than some multiple of r. When p < 7e or p > 2 — Te, it
is straightforward to verify (5.9). When p € (7¢,2 — Te), (5.9) follows from Taylor’s
theorem on %(kg —mf) and the monotonicity of %(kg —mf).

With (5.8) and (5.9), there exist a constant ¢7 such that

(5.10) / a2 < 07/ lap

provided r > c7.
Refined estimate on r. By (5.1) and (5.10),
mf — kg

cl/ |(fv|2 Z/ (r— —=)a
Y Ip—ﬁk,m\SWf% ‘ A

(T - ﬁk m)2 <12 . .

> [ (=Tl e — e~ L
Ip—ﬁk,m\SWf% 2 ’ " A

s 2
Z/ (T 2'Yk,m) |d|2 _CS/ |(54|2 )
Y C7 Y

2
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kg’

For the last inequality, note that the derivative of = at Pg,m is zero. Taylor’s

mf

theorem on g m — Tkg implies that

5 mf' —kg' |2 y
}’W@,m_ fA g)’ §0é7°2|P_Pk,m|4§08

_1
2.

for any p with |p — pr.m| < e7r
Thus, there exits a constant cg such that

(5.11) " — Fkm| < ¢y

provided r > cg. It follows that any zero crossing on Sy ,, must happen somewhere
very close to ¥i,m. It also implies that ¥y ., and r are of the same order.

Zeroth order approximation of &. Consider the linearized operator of e ~*¢Dy
at Pg,m:

ﬁk,m = am + ;Yk,mx

where  is p — pr,m. If we regard Ly ., as an operator on R, the theory of the 1-
dimensional harmonic oscillator applies. See [R, chapter 9] for the properties of the
harmonic oscillator. If ¥y, > 0, Ly, has the following properties. Its kernel is
1-dimensional, and is spanned by

Yk,m )% exp(_ ’Yk,mxg) '

(5.12) Epom = ( - 5

It has a right inverse operator Gy : Cop(R) — C*°(IR) which satisfies

. 1
/<Gk,mn7§k,m> =0 and / Grmn]® < — / n|?
R R Vk,m JR

for any 1 € CZ5(R). More precisely, the operator -0% + 'yk m®? + &,m has positive

spectrum, and induce an spectral decomposition. According to R, (9.3)], Gi.m is
given by

. . . -1

(= 00 + hm) © (= OF + 5 m®® + Fi.m)

Consider the cut-off function y(r3z). By (5.8) and (5.9),

(513) [ Ja=xtsepal <cwrs [ jap

We compute Ly, (x(r3z)d):

/ ‘Ekm (x(réx &
v

< 2/‘8 7“3:10 al? + (x(r%x))zyﬁkm(d)
< 2/‘31(X(r§x))d|2+4/(X(r%x))2|'D2d|2
+4/(X(T‘%$))2’(£k)m—67i¢D2)(d)
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The second term is controlled by (5.2). The operator Ly, — e~ D, does not involve
taking derivatives, and |Lg , — e Dy| < cjorz? on the support of x(r2z) by the
Taylor series expansion. With (5.2) and (5.11), we have

(5.14) /Y ],ck,m (x(r¥z)a)

gcg'o(r%/ 1 1|@|2+/ |a|2+r%/ , 2%al?)
Lr S <lal<r s v o] <r 3

provided r > c19. Let
X(r%x)éz = dkﬁm(x)ei(k“bert)A*%(271')71 .

If we regard dy m(z) as being defined on R and apply Gi.m on Lim (dkﬁm(x)), we
conclude that

(5.15) m = Chmm T Eitm

. 4 -2 «
with /|§,§)m|2§011r g/ |o<|2,
R Y
b4 -1 <
and 61 = fann = G = (L= e ™) [ Jaf
Y

for some constant cj7.

Now, (5.15), (5.13) and (5.11) imply that there exists a constant ci2 with the
following significance. Suppose that D, on Sk,m has two zero modes ¥y and 1)y at
r1 > c12 and ro > 19, respectively. Then,

. . 2 _1 . .
‘/<017a2>| > (1—cior é)/ |a1|2/ |ca|* .
v v v

This contradicts proposition 3.3, and the uniqueness in case 1 follows.

Case 2 with m > 0. When |m| > (33 — 1)k, let us further assume that m > 0.

The case when m < 0 will be discussed later. The first task is to show that ¢ is small
on the region where p > 9e. To start, (5.7) implies that

/ a2 < C57°_1/ a2 .
p>2—9¢ Y

If £ <0, (5.6) implies that

/ |6[|2 S ClgTil/v |6[|2 .
9e<p<2—9¢ Y
for some constant ci3.

If £ > 0, it is easy to see that there exists a constant ¢4 > 0 such that
kg—mf < —cium when 9e¢ < p<2—09¢.

By (5.8) and (5.5), there exists a constant ¢15 such that

[ apzast [ jar
9e<p<2—9¢ Y
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provide r > ¢15.
The above estimates finds a constant ¢ig such that

(5.16) / |a|2§c16r—1/ |2
p>9e Y

provided 7 > ci6.

Refined estimate on . When p < 10¢, the function % (mf’ —kg’) is identically
equal to Y m = k +m. By (5.1) and (5.16),

; ; ; cier”" .
[ =mmPlaPa [aP<ans 25y [ jap
p<9e¢ Y — C167 p<9e

Therefore, there exists a constant cy7 such that
(517) |T — ':Yk,m| S C17

provided r > ¢17.

Zeroth order approximation of &. When p < 10¢, the operator Ds is

Lim =20+ 2505

where z = pe'®. If we regard Ly ,, as an operator on C, the theory of 2-dimensional
harmonic oscillator applies. If Fx ., > 0, Lk, has the following properties. C*(C)
splits according to the frequency with respect to the S'-action by —id, = 20, — 205.
For any | € Z, Ly, ,, maps the frequency ! subspace to the frequency [ + 1 subspace,
and we only care about Ly, ,, on the frequency k subspace.

When k < 0, the kernel of Ly, ., is trivial. It has a right inverse operator Gy, p,
which maps the frequency & + 1 subspace of CZ5,(C) to the frequency k subspace of

C>®(C). G m satisfies
2 1 2
[ G < == [ 1
C Yk,m JC

for any n € CZ5,(C) with frequency k + 1.

When k > 0, L, has a 1-dimensional kernel spanned by

k

¢

(518) fem = (NP (- T

El

It has a right inverse operator Gy, satisfying

1 .
/ |Gk,m77|2 S - / |77|2 and /<Gk,mn7§k,m> =0
C Vem JC C

for any n € CZ5,(C) with frequency & + 1.
Let xp be the cut-off function depending only on p = |z|, with xp(p) = 1 when
p < 9e and xg(p) = 0 when p > 10e. By (5.16) and (5.2), there exists a constant c;g

such that

(5.19) / i (x50 < s / &
Y Y
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provided r > cis.
If k < 0, we apply G,m on (5.19) to find a constant cqg so that

/led|2=/ |><Bd|2§c19r‘1/ l&f? .
Y Cx St Y

This contradicts (5.16). Thus, k can only be nonnegative. If k > 0, we apply G, on
(5.19) to obtain a similar zeroth order approximation as that in case 1. By the same
token, we end with a contradiction to proposition 3.3.

Case 2 with m < 0. Similar estimates imply that ¢ peaks on the region where
p>2—9e. When p > 2 — 10e, let w = (2 — p)e’®. The Dirac operator is
r— 2
2

(8¢a — Opk) + (QBwB + iﬁi(aqsﬁv — 0B) + %B) ;

Tl L @B -a).

With the same argument, there can be at most one zero crossing happening near
k,m = k —m. This completes the proof of proposition 5.3. O

5.2. Second order approximation of eigensections. We need a further un-
derstanding of eigensections in this model. In particular, we need to know where the
zero crossing happens up to an error of O(r~1). It will be achieved by the second
order approximation of eigensections with small eigenvalues.

There are two ingredients. The first ingredient is that the true Dirac operator D,
can have at most one small eigenvalue on Sj,,,. The second ingredient is an iteration
scheme to construct an approximation by the linearized operator. The following two
lemmata constitute the first ingredient.

LEMMA 5.4. There exists a constant ¢ > 1 which has the following significance.
Suppose that v be a eigensection of D, for some r > ¢, and the magnitude of the
corresponding eigenvalue is less than \/g . Then

/ B2 471 / VAP < o / a2 .
Y Y Y

Proof. The same as proof of proposition 3.1. 0

LEMMA 5.5. There exists a constant ¢ > 10 such that the following holds. For any
r > ¢, the Dirac operator D, on Sk,m has at most one eigenvalue A whose magnitude
is less than \/g If k is negative or k = m = 0, there is no such eigenvalue. Moreover,
if there does exist such eigenvalue, then

Proof. The proof is parallel to the proof of proposition 5.3. We explain it briefly.
Suppose that ¢ € Sk, is an eigensection whose eigenvalue has magnitude less
than /3. By lemma 5.4, (5.1) and (5.2) would be replaced by

T kg —mf 9
— <
/ MGt T Cl/ &

: k
/ ‘e“"(ap g Amf )‘ < Cl/ |5‘|2 .
Y Y
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Based on these two estimates, the bound in (5.3) becomes c2+/r. The estimates (5.6),
(5.7), (5.8) and (5.9) remain the same. They imply that
e the refined estimate on 7: |\ — (3 — 'Yk Lem )| < ¢3 for some constant cs;
e the same zeroth order approximation of a.
If D, has two such eigensections, their orthogonality with lemma 5.4 implies that
the inner product between their first components is small. It contradicts to the zeroth

order approximation of their first components. O

Suppose that D, on Sk,m has an eigenvalue A\g with |Ao| < 1. Similar to (5.11)
and (5.17), there exists a constant ¢4 such that

(5.20) [P — Fiem| < ca

provided r > ¢4. Because of (5.20), r anfi Yk,m are of the same order. It follows from
lemma 5.5 that if X is an eigenvalue of D, on S, other than Ay, then

(5.21) A= Aol > \/g

We are going to approximate the eigensection of Ag to the second order. Again, we
separate it into two cases according to whether
Im| < (555

- Dk or |m| > ( -1k .

32¢2

Case 1. When |m| < (55 — 1)k, let

32¢2
& = dkﬁm(p)ei(kqﬁ—i_mt)A_% (271')_1 7

(5.22) L , ,
B = B (p)e EHDIAMY A=3 (9) =1

The Dirac operator on ¢, ., and B, is

(5.23)
r kg —mf <, kg — mf Al
(2 2A ) km+( Bkﬂn Bkm 2Aﬁk,m) 3
, kg_mfv A/ _ r kg/_mf/ f// /_f/g// .
(8m A Ckm = gpOkm) = (G I+ T T ) B

For simplicity, change the variable by © = p — pj,,,. The Taylor series expansion of
the eigensection equation at = 0 is of the following form

T m o
Adk,m=(§ 72 + 122 4 g2 + RY)a

] v
T m?m,m ,

. d
MNiom = (E + Akm® + ¢ + tox? + cox + tax® + RY )y

r m
- (5 7162 + c3 +t1.’L' +9{B)Bkm .

(5.24)

By Taylor’s theorem, there exists a constant cs > 0 such that the coefficients |¢;| < ¢s5
and |vj| < esr; the remainder terms [R$| < ¢s5(2? + ra?) and |S)‘if| < cs(|z| + r|z)?)
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for |z| < e. These coefficients and the remainder terms depend on k and m. Similar
to 5.4), the assumption on the existence of small eigenvalue implies that k and |m|
are less than some multiple of r.

Equation (5.24) can be used to construct higher order approximation of the eigen-
section by the following procedure. Rewrite the equation as

d . - T
(—a + Vem®) Bem = S1(Qk,ms Brm) + (A — 5)‘5"“” '
d 5 "\p
(a + ':Yk,mx)dk,m = 82(6”67771’ ﬂk,m) + (/\ + E)ﬂkvm ’

Start with dy, = (222)7 exp(— 257 22), By = 0, and X = 0. The next order term
of &, is determined by the second equation. The next order term of A is determined
by the condition that §1(dx,m, Bkm) + (A= 5)ak,m is L?-orthogonal to exp(—;YkT‘m:v?).
The next order term of B ., is determined by the first equation.

Following this procedure, we have the second order approximation:

2 ﬁk,m 1 ﬁk,m
(5.25) x%m:(m@w+m@»ﬂmx—;ﬁ4mm—j;w%,
r ;Yk m 151
A= — — 2
2 2 + 2%k, m
where
a(x) = —qa — %2:103 ,
2
_ (4~ t < t ) 2 1
ag(w,r) = ( 5 e (r — Ykm + T +¢3) ) ( .
(ﬁ_t_zl_ = 4 3) tg(G 15)
3 4 8Ykm 457 o 18 Yo m’
131
bi(x) = —— 1,
1( ) 27k,m
C1t; — T3 T1T2 2 1 Tit2 4
ba(z) = - - - — " .
2( ) ( 2’7k,m 4’713,m)( 2’77@,771) 6’7k,m

To estimate the error term, note that
k 2 3 (4l
[ latexp( 25 P < (143 ()4

for any integer [ > 0. If we plug (5.25) into (5.24), the size of the error term can be
computed directly. Let ¢, ., be the section whose components are given by (5.22)
and (5.25), then there exists a constant cg such that

.. r Vie.m.
(526) /‘Drwk,m_(i_% 2v 1/)ka <CGT /|¢km|
Y

provided r > cg. The properties of this second order approximation are summarized
in the following proposition.
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PROPOSITION 5.6. There exists a constant ¢ which has the followmg szgmﬁcance

For any r > ¢ and |m| < (53 — 1)k, suppose that the Dirac operator D, on Sk h
an eigenvalue Ao with |Ao| < 1. Then the corresponding eigensection is

elg qk mz/]k m + ¢

with Vg is given by (5.22) and (5.25), and

/ E P =1, / WEOL <™, and i — 1] <o
Y

Moreover,

ho— (G- 4 o) <!

where t1 is the coefficient of the second order term in the Taylor series expansion of
%(kg/ —mf') at prm-

Proof. Let pry, be the L?-orthogonal projection onto the eigenspace of \g. Write
Yk,m as Pry, (d’k,m) + (d’k,m —Pry, (d’k,m)) By (5'26) and (5'21)7

/ Dk — DTay (B < Begr™ / AL
Y Y

From the expression (5.25), there exists a constant ¢; such that
‘1 _/ |1Z)k,m|2| S 077”71 .
Y

After normalizing the L?-norm of ¢y, ,,, + (pry, (Vk.m)) — Vk.m), we obtain the desired
expression of welg The estimate on A follows from (5.26). O

There is a subtlety about the section ¢y, given by (5.25): it depends on r,
particularly the as(z,r) term. However, that term is small, and it implies that the
difference between eigensections at different r is small.

COROLLARY 5.7. There exists a constant ¢ such that the following holds. Suppose
that D,, and D,, both have an eigenvalue whose magnitude is less than or equal to 1

= — L)k. Let 1/1mg (r1) and 1/1mg (ro) be the

corresponding eigensections of unit L?-norm. Then

1
| / € ()] < e(min{ri, ra}) / [?)?

for any 7 with [ (7, PP S.(r2)) = 0.

Proof. By proposition 5.6, |r1 — ro| < 8. From the expression (5.25),

on Sgm, and 1 > ¢, T2>cand|m|<(

[ 1@k r2) a2 < stz = [ 2 Gin) exp( =5 ms?)
Y

R
< ¢g(min{ry, 7“2})74
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for some constant cg and cg. Since the terms a1 (z) and by (z) in (5.25) do not depend
on r, there exists a constant c1¢ such that

2 2
c cit 15Y%
St o o
2'Yk,m 27]@,771 247]9,771

©? . _
L+ ( + 8“; )—/ |¢k,m(rj)|2‘ < cyor;”
Vie,m Y

for j = 1, 2. Using this improved estimate in the proof of proposition 5.6, we find that

|Gk, (71) = Grym (12)] < c11(min{ry,ro}) ™2

for some constant c1;. The difference between these eigensections is

JEE (1) — 8 (r2) = (Bkm(r1) — Aom (r2)) Orm (1) + D), (1)
+ Ak (1) (Vresm (1) = P (r2)) — 1&;@,@(7”2)-
Take the inner product of 77 with the above expression, and integrate over Y. With

proposition 5.6 and some simple manipulations, it completes the proof of the corol-
lary. O

Throughout the discussion for proposition 5.6, r is fixed. We can forget the
assumption of proposition 5.6, and look at (5.25) independently. The inequality (5.26)
still holds as long as r and 7y ,,, differ by O(1). In other words, we can rephrase it as
the existence of small eigenvalues.

LEMMA 5.8. There exist a constant ¢ which has the following significance. For
any k, m and r with |m| < (g3 — 1)k, km > ¢ and |7 = Fiem + 5. | < 1, the section

Y defined by (5.22) and (5.25) satisfies
= r ;Yk m
Dr m — \5 — + m < cr / m
/Y‘ Yk, (2 5 2 o )Ur, ’ Vr,m|?
1 _/|1Lk,m|2’ <er™!

with the same vy as that in proposition 5.6. Therefore, there exists an eigenvalue A of
D, on Sk.m with

Proof. We only need to check that the coefficients and remainder terms of equation
(5.24) remains the same order. According to the equation of ¥, in definition 5.1,
k < c12%k,m for some constant ci2, and |m| < (326 —1)c12%k,m. Hence, the bound on
the coefficients and remainder terms of equation (5.24) remains the same order. By

considering the Rayleigh quotient of D, — (5 — &=+ 2;}3 ) on Sk m, we conclude

the existence of such an eigenvalue A. O

Case 2. When |m| > (332 —1)k, the linearized equation can be solved completely.
Let us further assume that m > 0. The discussion for m < 0 is completely parallel,
and will be omitted.

The functions &, defined by (5.18) are the almost eigensections. They are
exponentially small when p > Oe.
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LEMMA 5.9. There exist a constant ¢ such that the following holds. For any

integers k and m with m > (# — 1)k > 0, the function ékﬂn defined by (5.18)
satisfies
e ﬁk,m
eml? < coxp(~T)22)

for any z with |z| > 9e.

Proof. Remember that 4, is k+m when m > (32 > —1)k > 0. Within this proof

we simply denote it by 7, and we are going to think v as a variable with v >

e
From the expression
¢ 1
A7 Gl = 75 (5)F 2 exp(— 3 |217),
|€.m|? is monotone increasing in k, for any fixed v > 32% and |z| > 9e. Thus,
47T2|€k m|2
7 \32e2y+1], |64€? Y2
< Y il
< 3262% T (T exp(- Ll
_ YV \32e24+1] (6462 L1 2 _T2
(raarr QP ™ e (= (5 = DbP) ) exp(- L)
where I'(s) = [;° 2*"'e~*dxz is the usual gamma function. If ¢ is sufficiently large,

Stirling’s formula 1mphes that the whole expression in front of exp(—2|z|?) is uni-
formly bounded for all v > 0 and |z| > 9e. O

Recall that xp is the cut-off function depending only on p = |z|, with xg(p) =1
when p < 9¢ and xp(p) = 0 when p > 10e. Let vy, be the section whose first
component is

(527) dk,m = XBEkﬁmeimt y

and whose second component is zero. By lemma 5.9 and (4.2), there exists a constant
c13 such that

r

m 2
(5.28) / | Dyt — (5 — %T — 1)hk,m|” < crsexp(——) .
€13

With (5.21) and (5.20), we conclude that:

PROPOSITION 5.10. There exists a constant ¢ which has the following szgmﬁcance
For any r > ¢ and m > (32 > — 1)k > 0, suppose that the Dirac operator D, on Skm
has an eigenvalue Ao with |A\o| < 1. Then the corresponding eigensection is

01g qk m1/1k m + 1/)

with Yg . given by (5.27), and

el ¥ T . r
JlsE =1, [ BEE <con(-1) . and i =11 < cexp(—)
Y



DIRAC SPECTRAL FLOW FOR DISJOINT DEHN TWISTS 663

Moreover,

In this case, [m| > (33 — 1)k, the section ¢4, does not depend on r, but djmg

does depend on r. However, the dependence is small. Similar to corollary 5.7, we
have:

COROLLARY 5.11. There exists a constant ¢ such that the following holds. Sup-
pose that D,, and D,., both have an eigenvalue whose magnitude is less than or equal
557 — 1k > 0. Let 1/1mg (r1) and wzlfn(rg)

be the corresponding eigensections of unit L*-norm. Then

|/Y<ﬁ,1zlzf§n(r1)>\ scexp(—w)(/ylﬁﬁ)%

Jor any 7 with [ (1, Clg 5.(r2)) = 0.

In this case, the sections J}km also guarantees the existence of small eigenvalues.

to1 on Sim, and r1 > c, r2>candm>(

LEMMA 5.12. There exist a constant ¢ which has the following significance: For
any k, m and r with m > (32 s — 1)k >0, Y5,m > ¢ and |r — Fp,m| < 1, the section
Y defined by (5.27) satisfies

/|Dr1/}km_ E_%—mwkm‘ <Cexp__/|7v/}km|

and ‘1 -y |1Lk7m|2| < cexp(—%). Therefore, there exists an eigenvalue A of D, on
Sk,m with

k,m

A= (5 — ™)) < cexp(—1) .

N3

Since the coeflicient t; in lemma 5.8 is equal to 0 for m > (@ —1)k > 0, we can
also formally put the — 2%: term in proposition 5.6 and lemma 5.12.

5.3. Estimating the spectral flow function. We now prove theorem 2.2 for
this model case.

THEOREM 5.13. For the associated contact form (4.5) of the tubular neighborhood
of the binding, there exists a constant ¢ such that

2 2
T)—Z/O Adp| < er

for all r > c. The function A is defined by (4.6).

Proof. Proposition 5.3 implies the following upper bound of the spectral flow
function

svfa(r) < #{integers k>0 and m, with J , <7+ cl} +c
= #{integers k> 1 and m, with Y5 m <r+ cl} + 2r + 3¢
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for some constant ¢;. Thus, it suffices to count the total number of the lattice points
(k,m) with g m <7+ c1.
Consider the reparameterized polar coordinate (s, p) on the right half-plane: k =

_1 1

s(f2(p) +9%(p)) *f(p), m=s(f*(p) +9%(p)) *9(p). Let
_1

(s.p) = 25(*(p) + 9%(p)

Then (s, p) is equal to Jj,m at any lattice points (k,m). From the expression of

(s, p), it is not hard to see that there exists a constant co > 0 such that the total

number of lattice points with ¥4, < r is less than the area of where ¥ < r 4 c3. The

area can be evaluated directly

VF2+g2

2 (7‘+02) A 2 2 2 2
o Jo f?+g 4 0

This proves the assertion on the upper bound of the spectral flow function.
Lemma 5.8 and lemma 5.12 finds a constant c3 > 0 such that D, on S ., has a
zero eigenvalue within [Y m — ¢3, k,m + 3], provided j m > c3. Therefore,

svfa(r) > #{integers k > 0 and m, with ¢ < g m <7+ c3} .

The same area computation gives the desired lower bound on the spectral flow func-
tion. O

Theorem 5.13 can be used to find a sequence of numbers such that there are not
too many zero crossings near these numbers. Here is the precise statement:

LEMMA 5.14. For any 03 > 0, there exist a constant ¢ and a sequence of numbers
{sn}nen determined by the associated contact forms and with the following signifi-
cance:

(i) the total number of zero crossings of D, and D, happening between sp —

and s, + S‘;il
2n

(ii) for eachn €N, |s, — v — | < 1+ where v, = 32,

03
n—1

is less than c for all mn € N;

Proof. For n < 8(03 + 1)V2, take s, to be v, 4+ . For n > 8(d5 + 1)V, we are
going to define s, inductively. By theorem 5.13, there exists a constant ¢; > 0 such
that the total number of zero crossings happening within the interval

3 5
In: n s In
b+ 37010 + 7]

is less than cyn < ¢1V's,—1. Divide I, into sub-intervals whose lengths are 526:*1. It

Sn—1

805V °
sub-interval which contains less than 8c;63V? zero crossings. Let s,, be the midpoint
of that sub-interval. By the construction, {s, }nen has the desired properties. O

follows that the total number of sub-intervals is greater than There must be a

5.4. Higher order approximation on certain regions. This section is a
remark on the approximation eigensections. On the region where 1 —5e < p < 14 15¢
of Y, the function f =V and g = 2 — p, and the Dirac operator on Sk,m is already
linear on this region, see (5.23).

If %(1 —1le) <m < %, Pk.m lies between 1 and 1 + 11¢, and “ p, is equal to
%. All the higher order terms in (5.24) are equal to zero, and the correction terms
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in (5.25) are also equal to zero. Meanwhile, the almost solution (5.25) only supports
within the interval [1 — €, 1 + 12¢]. Therefore, these almost solutions solve the Dirac
equation up to an exponentially small error term. We have similar statements as
proposition 5.10 and lemma 5.12.

LEMMA 5. 15 There exists a constant ¢ which has the following szgmﬁcance For
any r > ¢ and £ (1= 11e) <m < L1 v+ suppose that the Dirac operator D, on Sk,m has
an eigenvalue )\0 with [Ao| <1, then

- )
N — (5 — 55| < cexp(—2) .

On the other hand, if Ykm > ¢, |1 — em| < 1, and k and m satisfy the same
constraint, the Dirac operator D, on Sk, does have an eigenvalue Ao satisfying the
above estimate.

Similarly, for the associated contact form of the Dehn-twist region, the Dirac
operator is already linear on the region where —35¢ < p < —10¢ or 10e < p < 35e.

LEMMA 5.16. There exists a constant ¢ with the following significance. For and
r>c and
2(v—31e) 2(v—20¢)
V+2(v3316)éa(205)k sm=< V+2(v3205)€o(205)k or

2(v+20¢) 2(v+31le)
v+2(u+2oe)a(—2oe)k sm< V+2(’U+316)o'(—206)k

suppose that the Dirac operator D, on Sk.m has an eigenvalue Ao with |\o| < 1, then
T Vkm r
A — (= — —=2—)| <cexp(—-).
o= (5= 2om)| < coxp(-1)

On the other hand, if Akm > ¢, |r — em| < 1, and k and m satisfy the same

constraint, the Dirac operator D, on Sk.m does have an eigenvalue Ay satisfying the
above estimate.

2(k+mo(20€))
1%

Note that for £ and m in the first range, Ji,m = . For k and m in the

second range, Vi, = 72(16“““7,(7206)).

5.5. Contact forms with two S'-symmetry. The method in this section
works for the contact forms that are invariant under two global S!'-actions. For
instance, one can use the same method to prove theorem 2.2 for the overtwisted
contact form in [T1], or some contact forms on T3. There are two main differences:

(i) the frequency k might be negative;

(ii) there might be more than one zero crossing on each S ,,,. But the number is

decided by f(p) and g(p), and the zero modes peak at different region.

With this understood, the condition (2.8) is a shortcut for dealing the Dehn-twist
region. It ensures the positivity of f If f is not always positive, we can still extend
(the untwisting of) a to a contact form of the type (4.5) on S x S2. The frequency
k can be negative, and it requires more work to discuss it.

Here is a remark from the viewpoint of contact topology. With the terminology
of Giroux correspondence [G], our associated contact form is supported by an annulus
with the identity map, and thus Stein fillable. If f is not always positive, the extension
ends up with an overtwisted contact form on S* x S2.



666 C.-J. TSAI

6. Lower bound of the spectral flow. We are going to prove a stronger
statement which implies the lower bound in theorem 2.2.

DEFINITION 6.1. Let us introduce the following notions:

(i) for the associated contact form of the tubular neighborhood of the binding,
let 1 (r',r) be the total number of zero crossings of D, happening within the
interval (1, 7] and on Sy, with m > &;

(i) for the associated contact form of the Dehn-twist region, let I(r/,7) be the
total number of zero crossings of D, happening within the interval (/,7] and
on Si ,m with

200-200 2(v + 20¢) _
V —2(v—20€)0(20e) —  — V —2(v+20€)o(—20¢) '

(iii) for any n € N, let I (n) be the dimension of ker .
If we fix r’ = 0, these functions obey the following estimates:

LEMMA 6.2. There exists a constant ¢ > 0 which has the following significance:

3 F2 1
}I(O,r)—— Adp| < cr
0
2 20¢ _
I(0,r) — — Adp| <er,
—20e
2] Vr?
I -— [ d <
Z =(n) o /E us| <er

for all v > ¢. The functions A and A are defined by (4.6).

Proof. The proof for the first two inequalities is similar to that of theorem 5.13.
We briefly explain it for 7(0,r), and use the same notation as that in the proof of
theorem 5.13. There exists a constant ¢; such that I(0,r) is less than

Area({p <1and ¥(s,p) <r+c1}) +ar
k k
—i—Area({V <m< v +1and y(s,p) <r+c1})
for all » > ¢;. The first term is given by the integral of A. It is not hard to see that
the third term is less than cor for some constant cs.
The third inequality on Is(n) follows directly from the index formula (4.9) and
lemma 4.2. O

Here comes the main theorem of this section.

THEOREM 6.3. There exist a constant ¢ and a sequence of numbers {sp }nen
which have the following significance:
(i) for alln > 2,

Sfa(sn) - Sfa(sn—l) Z IZ(n) + I(Sn—lu Sn) + I(Sn—17 Sn) —C;

(ii) for eachn €N, |s, — vy — | < 3, where v, = 22 as in (4.15).
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It is clear that the lower bound of the spectral flow function claimed in theorem
2.2 follows from theorem 6.3 and lemma 6.2.

We will prove theorem 6.3 by constructing almost eigensections. The following
lemma measures the difference between true eigenvalues and almost eigenvalues. It is
an issue of linear algebra, but we state it for a Dirac operator.

LEMMA 6.4. Let D be a Dirac operator on the bundle S. If there exist a constant
b1, a finite number of smooth sections {1}, of S, and real numbers {ju}-, with
the properties:

(i) {Wi}E | is an orthonormal set with respect to the L*-inner product;

(ii) [ D — pupn|* < 84 for all I;
(iii) [(Dyy,vr) =0 for all 1 #1';
(iv) > | [(DY, Dyw)| < da.

1<L,I'<L
and 1#£1’

Then, there exist L eigenvalues (counting multiplicity) {\}£, of D such that |\, —
| <264 for alll.

Proof. Clearly the lemma is true for L = 1. Suppose the lemma holds for L — 1,
we are going to show that it is true for L. Without loss of generality, we may assume
that {4 }£ | is non-decreasing in [.

For each ! € {1,2,---, L}, remove ¢; and p;, and apply the lemma. If there are L
eigenvalues (counting multiplicity), we are done. If there are only (L — 1) eigenvalues,
{N}SE they must satisfy

|)\l - Ml' < V 254 and |)\[ — M[+1| < v/ 254

for alll € {1,2,---,L — 1}. The triangle inequalities implies that

I — g1 | < 24/264

foralll € {1,2,---,L —1}.

Suppose that {e;} " are the eigensections corresponding to {\;}5'. There exist
complex numbers {cl}le such that Zle le;]? = 1, and Ele ¢,y is orthogonal to ¢
for alll € {1,2,---,L —1}. For any real number v, the operator D — v on Elel aty
satisfies the estimate:

Ji@=oawl <Ytk [I0-vulf+ Y [ 0w Do)
=1 =1

1<,I'<L
and £l

L
< Z I 2(V/6s + v — u)? + 64
=1

< (v/264 —I—mlax|u—m|)2 .

Lt
2

EL " the above inequality produces another eigenvalue A, with

1 — V204 < Ap < pp 4+ V204,

and the eigensection associated to Ay, is orthogonal to {el}lL:_ll. Therefore, there exist
some [ € {1,2,---, L} such that |Ar — ]| < +/204. After re-numbering the indices of
{N}E |, these L eigenvalues satisfy the assertion of the lemma. O

Consider v =
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The following proposition is the prototype of theorem 6.3.

PROPOSITION 6.5. There exist a constant ¢ > 0 such that the following holds.
For any integer n > ¢ and any 85,67 € [51, 5], let vy = 32 as in (4.15), then

sta(yn + (67 + Vi» — sfa(ym — (05 + vi))

n n

Proof. The proof contains three steps.

Step 1. This step constructs almost eigensections of D, from those three terms
on the right hand side.

From the page. By proposition 4.5, for any n > co, there exists a L2-orthonormal
set of sections {1, 1} where l € {1,2,---,Ixn(n)}, with

(0.1 [ 1 < cxesp(-22)
Y C2

f <D'Ynz/]’ﬂ lawn l,> - 0 and |fY D'Ynz/]n l7D'Yn¢7l l,>| < C2 exp( ) fOl“ a'ny l # l/

From the tubular neighborhood of the binding. If D, has a zero crossing at v €
(Yo — 05 s Yn +65] on S with m > %, proposition 5.6 and 5.10 for r = ~y imply that
there exists a constant c3 such that

provided n > ¢s. Then apply lemma 5.8 and lemma 5.12 for r = , to find a constant
¢4 and a section ¥y ., such that

= b Yn k,m 2
D nwk,m - (_ - T a wk m < 04’7 / |wk m|
/Y ‘ v 2 2 2”yk m |

< eyt < 203y,

Y Yem
2 2 2%%,m

and ‘1 - Iy |z/v1km|2‘ < ¢4, . Using the triangle inequality, we have

(62) ‘/Y ‘D’yn/lLk,m - (77” - % wk m’ < C5Vn / |wk m|

for some constant c5. The section 1/3k7m can be regarded as being defined on Y.

From the Dehn-twist region. The same construction as the tubular neighborhood
of the binding produces sections z/;k,m. After undoing the untwisting (4.3) on @km,
they can be regarded as sections on Y, and also obey (6.2).

Step 2. In order to apply lemma 6.4 on D, and the sections constructed in step
1, we need to check that they meet the conditions of lemma 6.4.

Condition (i). The orthogonality is clear between any two sections constructed
from the same region, and between one section from ¥ and another section from Y.

For a section 1,,; from the page and another section 1/3k,m from Y, their L?-inner
product can be nonzero only when k = n. For the section @n)m, m is required to be
greater than or equal to {;. It is complementary to the APS boundary condition for
U, see (4.11) and (4.16). Therefore, [, (¥n1, Yrm) = 0.

For a section from the page and another section from Y, the argument is basically
the same. At a first glance, the condition in definition 6.1 (ii) does not seem to match
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with the boundary conditions (4.13) and (4.14). However, the untwisting operator
(4.3) shifts the frequency. A direct computation shows that these conditions are
complementary to each other.

Condition (ii). By (6.1), the almost eigenvalues of {t,;} are all equal to 0. By
(6.2), the almost eigenvalues are equal to %(Wn —y) for z/;k,m and z/;k)m, and 7 is where
the zero crossing happens of D, or D, on Sk,m. The error term d4 is ce7;, 2 for some
constant cg.

Condition (iii). For any two sections from the page, it is given by proposition 4.5.
The arguments for other situations are the same as that for requirement (i).

Condition (iv). The L?-inner product can only be nonzero between two sec-
tions from X. With the help of proposition 4.5, the summation is less than
2Iz(n)ezexp(—12) < ceY 2

The L?-norm of some sections are not equal to 1, but almost. It can be easily
fixed by normalizing these almost eigensections. The constant cg is replaced by cg(1+
ey L), which is still uniformly bounded.

Step 3. With these almost eigensections, lemma 6.4 gives the following eigenval-
ues for D, :
e there are I (n) eigenvalues whose magnitude is less than /2c67,, 1;
o if [(v, — 05,70 +0F) or (7, — 05 ,vn + 05 ) gets a spectral flow count at -,
there is an eigenvalue \ associating to it, with

e all the above eigenvalues are different.
Note that the magnitude of these eigenvalues are less than 07 + 65 < % provided
n > 10c5V2. Let c7 be the constant given by corollary 3.2 for §; = %, then

2 2
—”j“ﬁ) R —”j*”))

This completes the proof of proposition 6.5. O

sfo(yn + (5;r +

We now prove the main theorem of this section.

Proof of theorem 6.3. Let cg be the constant given by proposition 6.5. Lemma 5.14
with d3 = cg gives a constant ¢y and a sequence {s, }nen such that |s, —y, — %| < ﬁ
and

v C. C,
I(Sn_s—875n+88 )§097
-1 -1
(6.3) o "o
I(sn — ;Sn + ) < co
Sn—1 Sn—1

for all n € N. If n > 10csV?, 05 = vp — Sp—1 — s—g and 5;’ =Sp — Vn — s—g meet the
requirement of proposition 6.5. Hence,

sfa(sn) — sfa(sn—1)
> Cg Cs ~ Cs
>Is(n) +1(sn—1+ ot — )+ I(Sn—1+— 80— —)

Tn Tn Tn
>Is(n) +1(sn—1,5n) + I(5p-1,5n) — 4co
provided n > 10cgV2. The last inequality follows from (6.3) and 7, > 5,1 > 5,_2.
This completes the proof of theorem 6.3. O
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7. The Dirac operator of trivial monodromy. In order to prove the upper
bound on the spectral flow function, we need a further understanding of the Dirac
operator on ¥ x S'. With the help of the S!'-action, the Dirac operator reduces to
Cauchy-Riemann operators (4.8), which we denote by D, ,,. This section follows the
same notations as that in section 4.4.

We first establish two estimates on (dy,S3,) € C®(C ® Ky') in terms of
'Dr,n(den)- Roughly speaking, the estimates imply that if ’Dnn(dn,ﬁn) is small,
then r is close to v, = 2n/V, and &, almost solves O

We first consider the case when |r — y,| > rz.

LEMMA 7.1. There exists a constant ¢ with the following property. For anyr > ¢
1
and integer n with |r — v,| > rz,

/ (ol + |3l < or! / Dy (s )
> >

for any &y, and B satisfying the APS boundary condition for 0, and O}, respectively.
Y is defined by (4.15).

Proof With the APS boundary condition, 0, and 07 are adjoint operators.
Performing integration by parts, we have

[Pl = [P0 + 1350 = @)

= T
+ |8n0‘n|2 + (

(7.1)

n=295 012 5~ A

2 ) |ﬂn| - <8nanaﬂn> .

With the Cauchy—Schwarz inequality, it completes the proof of this lemma. O
We then consider the case when |r —7,| < r2.

PROPOSITION 7.2. There exists a const(mt ¢ such that the following holds. For

any r > ¢ and integer n with |r — y,| < rz , suppose that &, and ﬂn vanish near 0%.
Then

N PPN 52 _ NPT
[ an = pro@nf + 5 < [ [Drnln. )
b b
where pr,, is the L?-orthogonal projection onto the kernel of O,,. Moreover, if 7 # Yn,

/ 1Bt (@) < A(r — )2 / [(pry © Do) (@ )|
> >

where pry is the projection onto the first component.

Proof. The condition |r — ~,| < r2 implies that n > %r, provided r > 4.

According to lemma 4.2, there exists a constant ¢; > 0 such that

/ a2 < crr—? / 1828,
> >

for any r > ¢;. According to [APSI, p.51 and p.56], 9,0, and 0;:0,, have the same
non-zero eigenvalues. Hence,

2
/|o¢n pr,, (é,)|> < ert /’3 n))‘
:clrfl/ |0 Gt |2
b

(7.2)



DIRAC SPECTRAL FLOW FOR DISJOINT DEHN TWISTS 671

It follows from (7.1) and the above two inequalities that

~ A T = Yn\2| 4 T4 5
[P BB 2 [ (P00 + DB 215,
) ) 1

T A2 "= =295 2
+ 201|an pr,, (Gn)[” + ( B )71Bnl” -
This proves the first assertion of this lemma.
For the second assertion, note that
~ /A "= o
Dy (B, (60), 0) = (F522r(60), 0) -
N - ~ A " —=Yn /A ~ A~ a% >
Drv" (a" - pI‘n(Oén), ﬁn) = ( 2 (an - prn(an)) + 871571’ o ) :

Therefore, D,.,, preserves the L?-orthogonality between (ﬁrn(dn),O) and (dn —
pr,, (ém), Bn) The desired estimate on pr,,(éy,) follows. O

In next section, we will study the zero modes on Y through ¥ x S!, ¥ and Y.
The cut-off function causes some overlaps of these models. To tackle this issue, we
need to study ker d,, carefully.

As discussed in section 4.4 and (4.16), any solution of 9, on ¥_1;, naturally ex-
tends to a solution on ¥, and still satisfies the corresponding APS boundary condition.
Let kerg 0, be the subspace of ker d,, which are extended from ¥._;i.. Consider the
following sections which peak on ¥\X_q1..

Adjacent to the tubular neighborhood of the binding. For any integers
n >0 and m with (1 — 11e) <m < g, let

(T3 G =x(elp =2+ ) (o) e (0 rm

Adjacent to the Dehn-twist region. For any integers n > 0 and m with
22 (v + 31€) > m > 22(v + 20€) or 22(v — 31e) < m < 22 (v — 20¢), let

F 14 1 2 ,
(7.4) Cn,m :X(E(p +TZ>)(2‘?F3)4 exp(— Vn(p_v_i_%y)ezmt '

LEMMA 7.3. There exists a constant ¢ > 0 with the following significance. For
any n > ¢, the kernel of 0, has the orthonormal basis

{orthornomal basis of kerg 9} ® {Pn.mCn.m + Cfﬁ;} @ {ﬁmmén)m + fffg;

with respect to the L?-inner product on X. The range of m for the second summand is
{#(1—11€) <m < {+}; the range ofm for the third summand is {32 (v+3le) > m >
2 7 (v+20¢€)} and {2" (v—31€e) < m < 22(v—20¢)}. The elements in the decomposition
have the following features:

1) Pn.m s a constant between s and 2, and mm 2 <cexp(—12);
Pn, b))

n
c
n
c

and 2, and [ |} (rem |2 < cexp(—2);

Nl= N—

(i) Pn.m is a constant between

(iii) for any v, € kerg Op, fE\E,zé o |? < cexp(—2 fz o |2
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Proof. Consider the orthogonal set:
(7.5) {orthonormal basis of kergdp} @ {Com} @ {Com} -

By the APS index theorem [APS1], the total number of (7.5) is equal to the dimension
of ker 8,: The first summand form a basis for ker d,, on ¥_11. with the corresponding
boundary condition. Thus, the total number of the first summand can be computed by
the APS index formula (4.9) and lemma 4.2. Similar to (4.16), the last two summands
(without the cut-off function) form a basis for ker O, on 3\¥_11e. The total number
can also be computed by the APS index formula. If we sum up the index formulae,
the boundary contribution from 9% _1;. cancels with each other, and it turns out to
be the index formula of ker 8, on X.

The elements in the last two summand have L2?-norm between % and 1. They

are not annihilated by 9,. We modify them by the following procedure.
Start with an orthonormal basis of ker 0,,, and take any (, . A direct compu-
tation shows that there exists a constant co such that

~ n
/ 100G m? < c2 exp(—2L) .
b)) C2

Let pvrn(én)m) be the L2-orthogonal projection of Cvmm onto kerd,,. By (7.2), there
exists a constant cs such that

J

If we apply the Gram—Schmidt process on

v v n

(Cn,m - pvrn(Cn,m))’2 <cs exp(—c—) :
3

ﬁrn(én,m) = C:n,m + (prn(énm) - énm)

with respect to the orthonormal basis of kerg 5n, the output would be ﬁn_’mén_’m + éff,‘?l
satisfying property (i).

We can keep doing this projection and Gram—Schmidt process. Since the total
number of steps is less than n, the error term is always less than cy4 exp(—%) for some
constant c4. It produces an orthonormal basis for ker d,, with property (i) and (ii).

The proof of property (iii) is the same as that for proposition 4.5. O

8. Upper bound of the spectral flow. What follows is the main theorem of
this section. With lemma 6.2, it implies the upper bound of the spectral flow function
asserted by theorem 2.2.

THEOREM 8.1. There exist a constant ¢ and a sequence of numbers {s,}nen

which have the following significance:
(i) for alln > 2,

sfa(sn) —sfa(sn—1) < In(n) + Iv(sn,l, Sn) + f(sn,l, Sn)+c;

(ii) for eachn €N, |s, — v — | < 3>, where 7y, is defined by (4.15).

The strategy is to project true zero modes onto the vector space spanned by
certain almost eigensections. The following lemma is the technical tool to do the
counting after the projection. It is implied by the Welch bound ([W]). We include its
proof for completeness.
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LEMMA 8.2. For any d¢ > 0, there exists a constant ¢ with the following signifi-
cance. For any integer L, > 2dg, suppose that {ul}lL:1 is a set of unit vectors in Cle
such that their inner product satisfying

<2—6 forall 1#£1" .

o

| (g, upr)

Then L < L, + c.

Proof. We may assume L > L,. Let U be the L x L, matrix whose [-th column
is the vector u;. Consider the matrix H = U*U. The matrix H is Hermitian, and
its kernel has dimension no less than L — L,. Suppose that the eigenvalues of H are
{M, " ,AL,,0,---,0}, then \y +--- 4+ Ap, = L. By the Cauchy—Schwarz inequality,

= (A + +)\L)
< Le(Af+ -4+ A% )=L trace(H* H)
Lo(

L—I—Z‘ ul,ul/

1AV

2
< Lo(L+L(L— 1)22) .

It follows that L < L, +e¢. O
The remainder of this section is devoted to the proof of theorem 8.1.

Proof of theorem 8.1. This proof contains ten steps. Before getting into the
details, we briefly outline the strategy. Write 1 as

Y|binding + ¥|Dehn + Y|ux st -

First, regard these sections as being defined on the associated S' x §% or ¥ x S, and
project them onto the space spanned by small eigensections of the model manifolds.
Next, multiply the projections by suitable cut-off functions, and regard them as sec-
tions on the original 3-manifold Y. By doing the cut and paste carefully, their inner
product is still small after the procedure. It allows us to invoke lemma 8.2 to obtain
the upper bound on the spectral flow.

Step 1. In this step, we construct the sequence {s, }»en. Let ¢1 be the constant
given by corollary 3.2 for the associated contact forms with §; = 1. It follows that for
any r > ¢y, if D, or f)T has an eigenvalue Ag with [Ag| < r~1 on Sk,m, there is a zero
crossing on Sk, happening somewhere in the interval

2 2
(S Skl

r r

Proposition 5.3 says that it is the only zero crossing on Sy, for r > ¢;.
By lemma 5.14 with 3 = ¢1 + 2, there exists a sequence {s, }»ey and a constant
co > 0 such that
(i) the total number of zero crossings of D, and D, happening between s,, —

ilf is less than co for any n € N;

01+2
n—1

and s, +

(i) for each n € N, |sp — v — | < 7t where v, = 22.
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Step 2. In this step, we introduce the index sets of the vector space of almost
eigensections. For each n € N, consider the following condition on k and m

1
(8.1) min min_ [N\ < —.
r€[Sn—1,5n] A€SpecD,. Sn
on Sk m

In other words, the condition means that for some r € [s,—1, $n], Dr|gk1m has an

eigenvalue within [—2, L]. We define the following index sets:

(i) E¢ is the set of the (k,m) € Z? satisfying m > £ and condition (8.1);
(ii) E, is the set of the (k,m) € Z? satisfying m > £(1 — 11¢) and condition
(8.1);
(iii) ES is the set of the (k,m) € Z? satisfying

k
v
>

2(v — 20¢) o < 2(v + 20¢)
V —2(v— 206)0(206) = "= V = 2(v + 20¢)o(—20¢)

and condition (8.1) for D,;
(iv) E, is the set of the (k,m) € Z? satisfying

2(v — 31e) o < 2(v + 31e)
V —2(v—3Le)o(206) = "= V —2(v + 31e)o(—20¢)

and condition (8.1) for D,.

From the construction in step 1,

j(sn—lu Sn) S #EO S j(sn—lu Sn) + 202 )

(8.2) ~ e
I(Sn—lu Sn) S #EO S I(Sn—lu Sn) + 202

for all n > ¢4. See definition 6.1 for I and I. According to lemma 6.2,

(8.3) I(sp—1,5n) < 385 and I(sp—1,8n) < c38p .

With these estimates, theorem 8.1 is equivalent to the following claim: there
exists a constant ¢4 such that

(8.4) sfq(sn) — Sfa(sn_1) < In(n) + #E° + #E° + ¢4
for any n > ¢4. The proof of this claim occupies step 3 to step 10.
The differences between the index sets E,\F? and E,\FE? can be completely

characterized by lemma 5.15 and lemma 5.16: there exists a constant c; > 0 such
that

E\ES = {(k,m)|k =n, and %(1—116)§m<%} , and
~ 2n 2n
(8.5) \ES = {(k,m)|k + mh(20¢) = n, V(U —3le) <m < V(U —20€) }
2n 2n
U {(k, m)|k + mh(—20¢) = n, V(U +20¢) <m < V(U +3le)}

for any n > cs.
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Step 3. In this step, six cut-off functions are defined. Let x° and x be the cut-off
functions which are supported only on the tubular neighborhood of the binding, and
which depend only on p in terms of the coordinate in subsection 4.1, with

o 1 when p <1+ 4e . 1 when p <1+ 8¢
X°(p) = , X(p) = -
0 when p > 1+ 6¢ 0 when p > 1+ 10¢

Note that x o x° = x°.
Let x° and x be the cut-off functions which are supported only on the Dehn-twist
region, and depend only on p in terms of the coordinate in subsection 4.2, with

2 (p) = 1 when |p| < 24e (o) = 1 when |p| < 28¢
X ~ 10 when |p| > 26¢ = 0 when |p| > 30e

Note that x o x° = x°.

Let x° be 1 — x° — x°. In terms of the terminology introduced by definition 4.3,
=1on3Y g xS and {° = 0 on Y\(Z_4c x S'). Let X be the similar cut-off
function depending only on p near 9% x S, with

. J1 on¥_p xS!
10 onY\(Z xS

Also, x o x° = x°.

Step 4. For any zero mode 9 of D,, we study X% and x% in terms of the
eigensections on ¥ and Y.

With the results in section 5.2, there exists a constant cg with the following
property. Suppose that n > ¢ and (k,m) € E,,. Then for each r € (Sn—1, 8n]s D, has
a unique eigenvalue A\g on Sk, with [Ag| < 1. To be more precise, uniqueness follows
from proposition 5.6 and 5.10. Existence follows from lemma 5.8 and 5.12.

With this understood, let pr, be the LZ-orthogonal projection onto the
eigenspaces of small eigenvalues arising from FE,. Similarly, let pr, be the L>-
orthogonal projection onto the eigenspaces of small eigenvalues arising from E,.

LEMMA 8.3. There exists a constant ¢ such that the following holds. For any
n>candr € (Sp—1,5n], suppose that ¢ is a zero mode of D, with unit L?-norm.
Regard x1 as being defined on'Y, and let " = xb — pr,.(x¢). Then

J 1 < e and JRERT
Y Y

for any 1) in the image of pr,. The assertion also holds for x°+, and the untwisting
(4.3) of X and X°¥ on'Y with the projection pr,..

Proof of lemma 8.3. The orthogonality between ¥ and 7 follows directly from
the construction.
With the spectral decomposition given by D,., let
° 1Li” be the L2-orthogonal projection of ¥ onto the subspace spanned by
the eigensections whose eigenvalue A satisfies |\ > \/g ;

° 1L§,? be the L2-orthogonal projection of ¥ onto the subspace spanned by
the eigensections whose eigenvalue A satisfies ﬁ <Al < \/g , and does not

arise from F,;
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° z/;g” be the L2-orthogonal projection of ¥ onto the subspace spanned by
the eigensections whose eigenvalue A satisfies i <A < ﬁ, and does not
arise from E,,.

It follows that yy = pr,.(xv) + Q/,err + we” 1/35”. It is an orthogonal decomposition
with respect to the L2-inner product, and D, preserves the orthogonality. We are
going to estimate the size of the three error-components. Note that

(8.6) Dr(xy) = X'cl(dp)y .

The function ¥’ is supported only on the region where 1 + 8¢ < p < 1 + 10¢, and the
Clifford action of dp switches the two components of 9, see (4.1).

The component with large eigenvalue. The estimate on 1/1‘” is easy to come
by. By (8.6), there exists a constant cg such that

/|1/)e”|2<2r_1/ |D e” |2<2T_1/ |D X1/))| < cgr !

The component with medium eigenvalue. By lemma 5.5, all the eigenvalues
A with [\ < /T correspond to different S m’s. Let V.5, be the corresponding

eigensection with elg 2 = 1. By (8.6), there exists a constant cg so that
v

| / (X, 95 )|

-5l [ racne i)

32001/2(/ I(X)’Bk,ml2/ |dZ’§n|2+[ 169 O"””F/ =l
< /| ﬁkm|2+r_l/| ) akml’)

where ((X)'0k,m> (X)'Br,m) is the Sk m-component of (¥)'s. The first inequality fol-
lows from the fact that cl(dp) switches the components. The second inequality follows
from lemma 5.4 on 1/)°1g

After summing up the above inequality over all (k,m) involving in 1/1°“ we have

e <o [ 10087+ [ 10

With proposition 3.1, we obtain the estimate on 1/)1‘{/?.

The component with small eigenvalue. By the same token, all the eigenval-
ues A with [\ < 10V correspond to different S . Proposition 5.6 and proposition
5.10 give the approximation of the corresponding eigensections

elg _qkmwkm""w

Ifm> & orm< £(1- 116) the support of ¢y, ,, and ()" are disjoint. By (8.6),
there exists a constant cg such that

[ ol = 1 [ (e, o)

< crs2r? / () Dom | < 10¢107" / 160 B ?
Y Y
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for all r > cqg.

If £(1—11e) < m < £, lemma 5.15 with the condition that [A| < & implies
that & = n. However, lemma 5.15 also implies that such (k,m) belongs to FE.
Therefore, these (k,m) do not involve in ™.

By summing up the above inequality over the (k,m) involving in 1/)"” we obtain
the estimate on Q/,err

It is clear that the assertion also holds for x°. The discussion for y1 and x°
are parallel to the above argument, and is omitted. O

From now on, we will implicitly apply the untwisting (4. 3) when working with
X on Y. On the other hand, when we regard some section on Y as being defined on
Y, we will implicitly undo the untwisting.

Step 5. For any zero mode v of D,, consider pr,,(xy) where pr,, is the compo-
sition of the following three projection
U — Yo — Rane™® (27V) 72— pr, (Ran)e™? (27V) 72 .

The first map is the projection onto the first component of . The second map is
the projection onto the frequency n component with respect to the S'-action in e?,
and (27TV)_% is simply a normalizing constant. The last map is the L?-orthogonal
projection onto the kernel of 0, as discussed in section 7. We use the same notation
for the last projection and the composition of the three projections.

LEMMA 8.4. There exists a constant ¢ such that the following holds. For any
n>candr € (s,_1,5n], suppose that 1 is a zero mode of D, with unit L?-norm.

Regard X2 as defined on > x S', and let Yo = XY — pr,,(x). Then

/ |2 < er and / @ h) =0
xSt xSt

for any 0 in the image of pr,,. The assertion also holds for X°.

Proof of lemma 8.4. The orthogonality between z/AJe” and 7) follows directly from
the construction. R
To estimate the size of ¥, consider the Fourier expansion of x:

fo=3Rane™@rV)E and (B =Y gt VO(2nV)
nez nez

where ay are functions on X, and 3, are sections of Ky, L over 3. Tt follows that

Xl =) [ [Raw[®  and 817 =D | 1B
Lt =2 [ Lo =%

nez nez

Let Dy, be the operator (4.8) with n replaced by n. Since D,(xy) = cl(dy)y,
Dy n(X0m, XPn) is supported only on ¥\X_g, and

(8.7) Dy n(Ran, XBn) = (= (R)'Ba, (V) an).

The main task is to estimate Ya,. The argument is separated into three cases ac-

cording to the value of n. Remember that v, = 27“
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Case 1: |y, —r| > rz. With lemma 7.1 and (8.7), there exists a constant ¢ such
that

[ anP 1 <enr ([ a4 [5P)
> P —6e
for all r > ¢17.

Case 2: the (ker 8,)--component of Yoy, when |y, —r| < rz. With the first
inequality of proposition 7.2 and (8.7), there exists a constant cj2 such that

/ |)A(04n - pArn()A(O‘n)P + |>A(ﬁn|2 < 0127'_1(/ |04n|2 + |Bn|2)
> E\Zfﬁe
for all r > ¢19.

Case 3: the ker d,-component of Yo, when n # n and |y, — 7| < r2. For

any n #£ n, |r — v,/ is no less than ﬁ. By the second inequality of proposition 7.2

and (8.7), there exists a constant ¢i3 such that

/ Bt (o) < 13 / 1Bal?
) S\Z_6

—6e

for all » > ¢13 and n # n.

After summing up the estimates of these three cases, we have

/ |7jjcrr|2 < / ((011 + 012)7“71|1/}|2 + Cl3|ﬂ|2).
xSt (B\Z_ge)x S*

With proposition 3.1, it completes the proof of lemma 8.4. The proof for x° is the
same. O

Step 6. In this step, we project the zero modes onto a vector space spanned by
certain almost eigensections. The projection will depend on r. In other words, the
zero modes are not projected onto the same vector space.

PROPOSITION 8.5. There exists a constant ¢ which has the following significance.
For any n > ¢ and r € (Sn—1,8n|, suppose that ¢ is a zero mode of D, with unit
L?-norm. Let

IL(¢) = XPr,, (X"¢) + Xpr, (X"¢) + Xpr,(X°¥) ,

then
(7’) fy |Hr(w)|2 >1- 05;1;

(ii) if there are two such zero modes 1 and Yo at r1 and ro with s,—1 < 11 <
ro < Sp, then

|/Y<HT1 (1/}1)71_17“2(1/)2»‘ < cs;l :

(i11) if there are two zero modes 1 and ¥y at the same r € (Sp—1,5n], and

[y (¥1,1b2) =0, then
’/Y<HT1(1/}1)7HT2(¢2)>‘ <es, .
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Proof of proposition 8.5. We start with assertion (ii). Suppose that there are two
such zero modes {%;};=1,2. We apply lemma 8.4 on x°¢;, and lemma 8.3 on x°¢;
and x°v;. After multiplying them by the cut-off functions with larger support, we
have

Xy = XR°W; = XPr, (R°%;) + X5
X°U5 = XX b = XPr, (X°¢;) + XU§Te
X°W; = XX°%; = XPr,(X°45) + Xu5™ .

All terms can be regarded as being defined on Y.
We also apply lemma 8.4 on Xx;, and lemma 8.3 on x%; and x%;. We have

Xy = Pr,, (Xey) + U5, by = b, (Xy) + 5™ and ¢ = pr,(Xe;) + 5™, without
the cut-off function on the error-term. Not all these terms can be regarded as being
defined on Y.

The inner product between II,, (11) and II,,(1)2) is equal to

/ <w1 _ )%z//}frro chrro chrrC,’w XQ/JCI‘I‘O chrro _ crro> .
Y

We would like to show that the magnitude of all these sixteen pairings is less than
c14S,, I for some constant c¢14. There are four types of these pairings.

Type 1: fy<z/11, t2). The estimate on this term is given by proposition 3.3.

Type 2: the pairings between 1); and the error term on ¥ x S'. By lemma
8.4,

J sy = [ g™y = [ g G+ 0 d5m)

= [ ).
X

We conclude that | [, (¢1, X95™)

1
2 < 2¢y5s, ! for some constant cg5.

< ci5(rire)

Type 3: the pairings between 1; and the error term on Y or Y. Similarly,

[ tonis) = [ o, Gon) g5+ (50

Lemma 8.3 implies that the second term | [ (¢§™, < 2ci65, ! for some constant
c16. Unlike type 2, the first pairing might not be zero. However, corollary 5.7 and
corollary 5.11 imply that there exists a constant ci7 such that

|/ prrl le 4 ro>

erro>

1

<o B[ 155

By (8.2) and (8.3), E, is less than some multiple of s,, and 5™ is estimated by
lemma 8.3. Hence, there exists a constant c¢ig such that

e

< cigs,’
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Type 4: the pairings between two error terms. Lemma 8.3, lemma 8.4
and the Cauchy—Schwarz inequality implies that these pairings are of O(s;1).

The proof for assertion (i) and (iii) is the same up to a minor modification for
type 1. This completes the proof of proposition 8.5. O

Step 7. This step is a digression on the r-dependence of the eigensection approx-
imation constructed in section 5.2. We start with Y. Suppose that D, on Sk,m has
an eigenvalue Ay with |Ag| < 1, then proposition 5.6 and proposition 5.10 apply.

Case 1. When |m| < (345 — 1)k, the main term 1, ,, in proposition 5.6 consists
of the zeroth, first and second order terms, see (5.25). Let 7,/) be the section which
consists of only the zeroth and first order term of z/Jk,m. Namely, throw away the
az(x,r) and by(x) terms in (5.25). The key feature of these sections 1/3,20371 is that they
are independent of r. Let 151(57)71 be /‘Lk,m — qkmﬁ,ﬂl Namely, z/;,(fr)n is the sum of the

second order term in E{kmz/?k)m and 151(37)71 Under the assumption of proposition 5.6,
it is easy to see that there exists a constant c19 such that

/ W)k 2 |2 < 0197”72 .

The coefﬁcients dk,m in proposition 5.6 also depends on 7, but they are only scalars.
Note that w can be regarded as a section on Y.
Accordlng to the discussion in section 5.4, when %(1 —1le) <m < ﬁ the first
i ¥ 7(2
and second order term are zero, and ¥y = Vg m and fY |1/),(“)n|2 < ¢20 exp(—é)
Moreover, for k = n, the first component of 7/’1(907)71 is the same as (nymem“"(%ﬂ/)*‘

given by (7.3), and second component of 7,/3,(@07)71 is zero.

Case 2. When |m| > (327 — 1)k, the main term ¢y, in proposition 5.10 is
already independent of r. To unify the notation, let 1/3,(607)71 = p.m and 1/3,223n =3

k.m*

On Y. The discussion on the r-dependence is the same as that for Y. We just
state the result on the special regions discussed in section 5.4. When

k+mh(20e) =n and 2%(v —3le) <m < 32 (v — 20¢) , or
k+mh(—20e) =n and 3%(v+20e) <m < 3% (v + 3le) ,
the first component of z/;,(cor)n is the same as the untwisting of én,mei"‘i’(%rV)_% given

by (7.4), and second component of 7,/;,(@07)71 is zero. The remainder term satisfies
Iy Wfk m|2 < cgo exp(— o).

Step 8. In this step, we throw away the r-dependent part of xpr,(¥°%) and
Xpr,.(X°v¢). In other words, the projection is modified to be r-independent.

LEMMA 8.6. There exists a constant ¢ with the following property. For anyn > ¢
and v € (8,_1,8n|, suppose that v is a zero mode of D, with unit L>-norm. Then
there exists a section Y™™ such that

(i) the support of ™ is contained in the support of x. Thus, V'™ can be

regarded as a section either on'Y orY;
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(,”) fY |1Lrem|2 < 087_12,'

(iii) Xpr, (X°Y) — ™ belongs to the vector space spanned by

{1L£O%z (k,m) € ES} & {ﬁiozl‘k =n, and %(1 —Te) <m < %} .

Proof of lemma 8.6. For each (k,m) € E,, D, has a unique eigenvalue A\ on
Sk,m with [Ag|] < 1. Let z/;zl’cfn be the corresponding eigensection given by proposition
5.6 and proposition 5.10. If we apply the projection operator pr, introduced in step
4, we have

P (XY = D> Gmtns,

(k)m)eEn

where ¢, = fYOV(Ow,iLZii).
Remember that E,\E? is characterized by (8.5). Let 4™ be the sum of the
following terms:
. )V(Ekymdv),(f,)n for (k,m) € E;
o )V(Ekmiﬁ,(f?n for (k,m) € E,\E% and m >
o XEk,miLZifn for (k,m) € E,\E2 and m <
We now estimate their L?-norm.

e For the terms of the first and second kind, step 7 gives a constant co; such
that

(L —"7e);

v
(1 —Te).

(2 _ o
/ |Xck,mw](612n|2 S C21T 2[ |(X Q/J)k,m|2
Y Y

where (X°%)k,m is the Sk m,-component of x°.
e For the terms of the third kind,

o Yei ~ ~0 vei 2
[ e P < el = | [ o)
Y Y
~0 < 7 7, 2
.y /Y (X s BB, + D))
r ~0
< cagexp(——) / W) eml? -
C20 Y

For the last inequality, note that the support of x° and 1/3k7m are disjoint, and

the L2-norm of ‘/31227)71 is exponentially small by step 7.
After summing up the above inequalities, we obtain the assertion (ii) of the lemma.
Assertion (i) follows from the construction of ™™,

For the last assertion, it is clear that xpr, (x°v) —1)™™ belongs to the vector space
spanned by those elements in assertion (iii), multiplied by x. However, the support
of Xpr,(x°1) — '™ is contained in the support of Y. Since ¥ is equal to 1 on the
support of those elements in assertion (iii), it completes the proof of lemma 8.6. O

The argument for the Dehn-twist region is the same. We just state the result.

LEMMA 8.7. There exists a constant ¢ with the following significance. For any
n > cand r € (Sn—1,8n), suppose that 1 is a zero mode of D, with unit L2 -norm.
Then there exists a section ™™ such that
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(i) the support of wrem is contained in the support of X; hence, up to the untwist-
ing (4.3), z/ﬂem can be regarded as defined either on'Y or Y:

(ii) [ |07 < esy?;

(iii) Xpr, (YY) — U™ belongs to the vector space spanned by
{0 |(k,m) € B2}
&) {ﬁéozlyk + mh(20¢) = n, and 27”(1) —27¢) <m <
® {0, |k +mh(206) = n, and 2(v + 20€) < m <

22 (v — 20¢) }
2 (v +27€)} .

Step 9. In this step, we apply lemma 7.3 to study xpr,, (x°¢).

LEMMA 8.8. There exists a constant ¢ such that the following holds. For any
n>candr € (s,_1,5n], suppose that ¥ is a zero mode of D, with unit L?-norm.
Then there exists a section Y™™ such that

(i) the support of ™ is contained in the support of X;
(ii) [y [mom)® < es?;

(iii) the second component of Xpr, (X°0) — ™™ is zero. The first component of
XDPr, (X°) — Y™™ belongs to the vector space spanned by

{)A(eind) . kel"o 571} @ {én,meind)’ 1 - 116) <m< %(1 - 36)}
& {Q:n,mei"‘z"%"(v +23¢) <m < 22(v + 3le), or

27”(1) —3le) <m < 27"(1) — 236)} .

Proof of lemma 8.8. According to the decomposition given by lemma 7.3, the first
component of pr, (x°y) can be expressed as

CO"’chm pnm(nm"’ rcm +chm pnm(nm"’ rcm)

where (o € kerg 0,,. Let 1/3““1 be the sum of the following terms:
o Xnm(Pr.mCom + Cm) for ££(1—3€) <m < $;
® Xin, mCrem for (1 —11e) <m < (1 — 3e);
® ch m(pn anm + mm) for —(U + 206) <m< —(1} + 236) or 2771(1) — 236)
m < 32 (v — 20¢);

® XCp. mCmm for 22 (v4+23€) < m < 2% (v+31e) or 32 (v—31€) < m < 22 (v—23¢).
For the terms of the first and third kind, lemma 7.3 gives a constant cao such that their
L?-norm is less than cao exp(—g=). For the terms of the second and fourth kind, the
supports of Cn m and (n m are disjoint from the support of x°. A similar argument as

in the proof of lemma 8.6 shows that their L?-norm is less than cao exp(—). With
the triangle inequality,

o 110¢ noy2 _
/ [ < (e exp(——))" < exs,”
Y

C22

for some constant cg3. This proves assertion (i) and (ii) of the lemma.



DIRAC SPECTRAL FLOW FOR DISJOINT DEHN TWISTS 683

For the last assertion, it is clear that xpr,, (Y°%) —z/;rem belongs to the vector space
spanned by those elements in assertion (iii), multiplied by x. However, for those Cvmm
and En,m in the last two summand of (iii), x is equal to 1 on their supports. This
completes the proof of lemma 8.8. O

Step 10. In this step, we combine all the results to prove the claim (8.4).

PROPOSITION 8.9. There exists a constant ¢ with the following significance. For
anyn > c and r € (s,_1,5,], suppose that 1 is a zero mode of D, of unit L*-norm.
With proposition 8.5 and lemma 8.6, 8.7 and 8.8, let

TI(¢)) = T, () — "™ — o — grem

then
(i) [y T@)*>1—ecs,t;

(i) TI(3p) belongs to a vector space whose dimension is
In(n) + #E; + #E7, ;

(i) if there are two such zero modes 11 and oy at r1 and ro with s$,—1 < 11 <
ro < Sp, then

|/Y<H(1/)1),H(1/}2)>‘ < CSr_Ll ;

(iv) if there are two such zero modes 1 and o both at v € (Sp—1,8n|, and

fy<1/}1, 1/}2> = 0, then

|/Y<H(1/)1),H(1/12)>\ <es, .

Proof of proposition 8.9. Assertion (i), (iii) and (iv) follows from proposition 8.5
and lemma 8.6, 8.7 and 8.8.
With the observation in step 7, II(4) belongs to the vector space spanned by
{)Zei"‘z’ - kerg 5n} ® {Cvmmei"‘b’%(l —1le) <m < %}
& {(Nnymei"‘z"%"(v +20¢) <m < 322 (v + 1+ 3le), or
20 (y—31e) <m < 22(v — 206)}
o {0 (k,m) € B} o {90 (k,m) € B3}

To be more precise, the first three summands consist of sections whose first component
is given by those elements and the second component is zero. By dimension counting,
the dimension of the subspace spanned by the first three summands is I (n). This
completes the proof of proposition 8.9. O

According to lemma 4.2, (4.9), (8.2) and (8.3), there exists a constant cg5 such
that

Is(n) + #E2 + #E° < ca5sp,
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for all n > co5.

Let L,, be the index set {1,2, I sfa(sn_l)}. We may assume that
there are only positive zero crossings. For each zero crossing happening between
(Sn_1,5n], choose a zero eigensection with unit L?-norm. If there are more than
one zero crossings happening at some 7 € (s,_1,5y], choose L2-orthonormal zero
eigensections. Let {¢;}cr, be the set of these zero modes.

According to proposition 8.9, there exists a constant cog such that

() [y @) =1 = cagsy; s
(ii) ‘ fY<H(¢l),H(¢l/)>| < cops;, ! for any [ # I;
(iii) II(¢1) belongs to a vector space (8.8), whose dimension is

Is(n) + #E2 + #E2 < ca55,

for all n > co6. After normalizing the L?-norm of II(¢;), lemma 8.2 applies. This
proves claim (8.4), and completes the proof of theorem 8.1. O
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