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STABLE LOGARITHMIC MAPS TO DELIGNE–FALTINGS PAIRS II∗

DAN ABRAMOVICH† AND QILE CHEN‡

Abstract. We make an observation which enables one to deduce the existence of an algebraic
stack of logarithmic maps for all generalized Deligne–Faltings logarithmic structures (in particular
simple normal crossings divisors) from the simplest case with characteristic generated by N (essen-
tially the smooth divisor case).
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1. Introduction. The idea of stable logarithmic maps was introduced in a leg-
endary lecture by Bernd Siebert in 2001 [Sie01]. However, the program has been on
hold for a while, since Mark Gross and Bernd Siebert were working on other projects
in mirror symmetry. Only recently they have taken up the unfinished project of
Siebert jointly [GS]. The central object is a stack KΓ(Y ) parameterizing what one
calls stable logarithmic maps of log-smooth curves into a logarithmic scheme Y with Γ
indicating the relevant numerical data, such as genus, marked points, curve class and
other indicators (contact orders) related to the logarithmic structure. One needs to
show KΓ(Y ) is algebraic and proper. Gross and Siebert’s approach builds on insights
from tropical geometry, obtained by probing the stack of logarithmic maps using the
standard logarithmic point. It covers the case of targets with Zariski logarithmic
structures, under assumptions spelled out in [GS, Definition 3.3].

In [Chen], the second author considers another combinatorial construction of the
stack KΓ(Y ) when the logarithmic structure Y on the underlying scheme Y is associ-
ated to the choice of a line bundle with a section. The motivating case is that of a pair
(Y ,D), where D is a smooth divisor in the smooth locus of the scheme Y underlying
Y . It should be pointed out that these stable logarithmic maps are not identical to
those of Kim [Kim09], though they are closely related.

Our point is that based solely on this special case, one can give a “pure thought”
proof of algebraicity and properness of the stack KΓ(Y ) whenever Y is a so called
Deligne–Faltings logarithmic structure, see Theorem 2.6. By saying Y is a generalized
Deligne–Faltings logarithmic structure we mean that there is a fine saturated sharp
monoid P and a sheaf homomorphism P → MY which locally lifts to a chart P →
MY ; the slightly simpler Deligne–Faltings logarithmic structure is the case where
P = Nk. This in turn covers many of the cases of interest, such as a variety with a
simple normal crossings divisor, or a simple normal crossings degeneration of a variety
with a simple normal crossings divisor. We generalize it a bit further in Theorem 3.15,
and deduce the case of a family X → B in Theorem 5.7. Our present results do not
cover the case of a normal crossings divisor which is not simple, but we expect to
cover this case using descent arguments.

The purpose of this note is to set up a general categorical framework which
enables us to make this construction. This general setup is of use not only for KΓ(Y ).
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In particular we have applications, pursued elsewhere [ACGM], to constructing the
target of evaluation maps of logarithmic Gromov-Witten theory.

All logarithmic schemes in this note are assumed to be fine and saturated log-
arithmic schemes - abbreviated fs logarithmic schemes - unless indicated otherwise.
Following Ogus [Ogu06], logarithmic schemes are denoted by roman letters, and their
underlying schemes indicated by underlines.

We work over the field of complex numbers C; more general base schemes are
certainly possible but would require additional care.

Acknowledgements. We thank Danny Gillam, Mark Gross, Davesh Maulik,
Martin Olsson, Bernd Siebert, and Angelo Vistoli for numerous helpful comments
on this work. We thank the referee for detailed comments on the manuscript. This
research was supported in part by NSF grant DMS-0901278.

2. Logarithmic maps: a tale of two categories.

2.1. Stable maps. Recall that an n-pointed prestable curve (C, p1, · · · , pn) over
an algebraically closed field is a proper connected curve with at most nodes as sin-
gularities, along with n ordered smooth distinct closed points on C. An n-pointed
family of prestable curve over S is a flat family of curves over S, along with n sections,
such that every geometric fiber is an n-pointed prestable curve.

Let Y be a projective scheme over C. The stack of stable maps to Y is defined as
follows: one fixes discrete data (g, n, β) where g, n are non-negative integers standing
for genus and number of marked points, and β ∈ H2(Y ,Z) is the homology class of
an algebraic curve on Y . A pre-stable map to Y over a scheme S is a diagram

C //

��

Y

S

where C → S is a proper flat family of n-pointed prestable curves, and C → Y a
morphism. The prestable map is stable if on the fibers the groups AutY (Cs) are
finite. Morphisms of prestable maps are defined as cartesian diagrams

C′ //

��

C //

��

Y

S′ // S.

One easily sees that prestable maps form a category fibered in groupoids over
the category of schemes. It is an important theorem that this fibered category is an
algebraic stack Kpre(Y ), and the substack Kg,n(Y , β) of stable maps of type (g, n, β)
is proper with projective coarse moduli space [Kon95]. When Y is smooth, there is a
perfect obstruction theory, giving rise to a virtual fundamental class [Kg,n(Y , β)]

virt

underlying the usual algebraic treatment of Gromov–Witten theory [LT98, BF97].
The main result of this section, Theorem 2.6, is an analogue of the following

evident result: assume Y = Y 1 ×Y
2
Y 3. Then

Kpre(Y ) = Kpre(Y 1) ×
Kpre(Y

2
)
Kpre(Y 3).
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2.2. Stable logarithmic maps as a stack over LogSch. Let Y be a fs loga-
rithmic scheme with projective underlying scheme Y . One can repeat the construction
above, replacing prestable curves by proper logarithmically smooth curves [Kat00], and
replacing all morphisms of schemes by morphisms of logarithmic schemes: a pre-stable
logarithmic map over S is a diagram of logarithmic schemes

C //

��

Y

S

such that C → S is a logarithmically smooth curve, where the underlying curve
C → S is a family of usual proper pre-stable curves with markings.

Given the above pre-stable logarithmic map over S, one obtains a family of usual
pre-stable maps C → Y over S by removing the logarithmic structures, but keeping
all the marked points. We define a pre-stable logarithmic map to be stable if the
associated underlying prestable map is stable; this is equivalent to requiring the sheaf
ΩC/S of logarithmic differentials to be ample relative to Y × S. Arrows are again
defined using cartesian diagrams:

C′ //

��

C //

��

Y

S′ // S.

Again this is evidently a category fibered in groupoids, but this time over the
category LogSch of fs logarithmic schemes. It is proven in [Chen] when the logarithmic
structure Y is given by a line bundle with a section, and more generally in [GS],
that this category is represented by an fs logarithmic algebraic stack Kg,n(Y, β) =
(K,MK): there is an algebraic stack K, along with an fs logarithmic structureMK,
such that stable logarithmic maps over S are equivalent to logarithmic morphisms S →
Kg,n(Y, β). We refer to [Ols03b, Section 5] for more details on logarithmic structures
on stacks. Denote the universal logarithmically smooth curve by C→ Kg,n(Y, β).

It is natural to search for general criteria for algebraicity of such logarithmic
moduli analogous to Artin’s work [Art74]. We do not address this general question
here.

2.3. Stable logarithmic maps as a stack over Sch. The existence of K :=
Kg,n(Y, β) has immediate strong implications on the structure of stable logarithmic
maps. Objects of the underlying stack K over a scheme S can be understood as
follows: an object is after all an arrow S → K. It automatically gives rise to a
cartesian diagram

Cmin //

��

C //

��

Y

Smin //

��

K

��

S // K,



468 D. ABRAMOVICH AND Q. CHEN

in particular an object Smin → K, but here the logarithmic structure Smin is pulled
back from K. Moreover, every stable logarithmic map factors uniquely through one
of this type: Given a stable logarithmic map over S we have a morphism S → K by
definition, giving rise to an extended cartesian diagram

C //

��

Cmin //

��

C //

��

Y

S // Smin //

��

K

��

S // K.

Following B. Kim [Kim09] we call a logarithmic map over S minimal (not to be con-
fused with logarithmic minimal models of the minimal model program) if S → K is
strict, namely the logarithmic structure on S is the pullback of the logarithmic struc-
ture on K. It follows tautologically that the underlying stack K precisely parametrizes
logarithmic maps with minimal logarithmic structure.

In fact this thought process is reversible: the construction of [Chen] in the case
of a Deligne–Faltings logarithmic structure of rank-1 goes by way of constructing a
proposed minimal logarithmic structure associated to any logarithmic map, and veri-
fying that logarithmic maps where the logarithmic structure is the proposed minimal
one are indeed minimal (every object maps uniquely to a minimal one), and form
an algebraic stack over Sch carrying a logarithmic structure. In short, the second
categorical interpretation, of K as a stack over Sch, takes precedence here.

One is tempted to try to mimic the same construction in general. This is not
the route taken here. In fact we use the universality of the category K over LogSch

for given Y to deduce its algebraicity from cases of simpler Y . Minimal object are
obtained as an afterthought in Proposition 3.18 and described combinatorially in
Section 4.1. It is worthwhile setting this up in general.

2.4. The general setup. Consider a commutative diagram

X

��

  @
@@

@@
@@

@ W

��

~~}}
}}
}}
}}

B

��

X
f

//

��
??

??
??

?
W

����
��
��
��

B

where X → B and W → B are morphisms of fs logarithmic schemes or algebraic
spaces, the bottom triangle consists of morphisms of usual schemes, and the vertical
arrows are the canonical maps from a logarithmic scheme to its underlying scheme.
We define a contravariant functor

Liftf : LogSch→ Sets
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as follows: an element of Liftf (S) over an fs logarithmic scheme S is a pair

(S → B, fS : XS →WS)

where S → B is a morphism, and fS : XS → WS is an S-morphism which makes the
diagram

XS
fS

//

��

WS

��

XS

f
S

// WS

commutative. Given a morphism g : S′ → S we define Liftf (S)→ Liftf (S
′) by taking

pullbacks.
We can ask the following:

Problem 2.5. Is the functor Liftf represented by an fs logarithmic algebraic
space Liftf? Under what conditions is it proper?

Problem 2.5 was solved when X → B is a family of log smooth curves and
W = Y ×B with Y a rank-1 DF logarithmic scheme in [Chen]. A much more general
situation is covered in [GS]. In this paper we use a reduction step given in Theorem
2.6 to deduce the case where W is a generalized DF logarithmic scheme from the
case covered in [Chen]. The case where X → B is an isomorphism is investigated in
[ACGM] using similar methods.

Reformulation using a space of sections. Following the techniques of Olsson
[Ols06], we remove the geometry of W entirely from the picture as follows: consider
W = W ×B B and set Z = X ×W W . Then Z is a logarithmic scheme over X . The
functor Liftf is evidently isomorphic to the functor of sections SecX/B(Z/X), which

assigns to S the set of pairs (S → B,XS → ZS), where S → B is a logarithmic
morphism and XS → ZS is a section of ZS → XS .

The key observation is the following:

Theorem 2.6. Let ∆ = (Zα, παβ : Zα → Zβ) be a finite diagram of fs logarithmic
schemes over X. Assume

Z = lim
←−

(∆)

in the category of fs logarithmic schemes. Then the canonical map

SecX/B(Z/X)(S)→ lim←−SecX/B(Zα/X)(S)

is bijective for any fs logarithmic schemes S over B.
In particular, if SecX/B(Zα/X) are represented by logarithmic schemes, then

SecX/B(Z/X) is represented by their limit.

If the reader finds these limits a bit off-putting, we point out that the result is
equivalent to the case of fiber products.

The existence of such limits in the category of fs logarithmic schemes is proven
in [Kat89]: the case of arbitrary logarithmic structures is treated in (1.6), coherent
logarithmic structures in (2.6), and fine logarithmic structures follow from (2.7); the
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case of fs logarithmic structures follows from the analogous adjoint functor with P int

replaced by P sat ([Ogu06, Chapter I, Proposition 1.2.3]).

Proof of the theorem. An element of SecX/B(Z/X) over an arrow S → B is by
definition a section s : XS → Z, and composing with the canonical maps Z → Zα

we get sections sα : XS → Zα such that for each arrow παβ : Zα → Zβ in ∆
we have παβ ◦ sα = sβ . This in particular gives us a diagram of elements sα ∈
SecX/B(Zα/X)(S) with παβ(sα) = sβ , namely an element of lim

←−
SecX/B(Zi/X)(S).

The process is completely reversible, hence the bijection.

Setup with stacks. Below we use a slight generalization: we replace B,X,W
by logarithmic algebraic stacks, keeping the morphisms X → B and W → B repre-

sentable by schemes. In this situation we prefer to define a category L̃iftf , fibered in

groupoids over LogSch, whose objects over S are pairs (S → B, fS : XS → WS) as
above and arrows are defined by cartesian diagrams.

The construction of Z remains the same, and in this situation SecX/B(Z/X) is
naturally a category fibered in groupoids over LogSch. We obtain the following:

Corollary 2.7. In this situation SecX/B(Z/X)(S) → lim←−SecX/B(Zα/X)(S)
is an equivalence. In particular, if SecX/B(Zα/X) are represented by logarithmic
algebraic stacks which are representable over B, then SecX/B(Z/X)(S) is represented
by their limit.

Proof. This can be tested after a base change B′ → B where B′ is a logarithmic
scheme, where the Theorem 2.6 applies.

3. The stacks of stable logarithmic maps. Theorem 2.6 applies directly to
the category Liftf and Problem 2.5. In the present section we make this as explicit
as possible in case X → B is a family of logarithmically smooth curves, including a
discussion of contact orders, the deformation-invariant numerical data encoded in the
logarithmic structure.

Recall that a toric sharp monoid is a finitely generated, torsion free and saturated
monoid whose only invertible element is the origin.

3.1. The case of Deligne–Faltings pairs: setup.

Definition 3.2. A logarithmic structureMY on Y is called a Deligne–Faltings
logarithmic structure, if there exists a finitely generated free monoid P and a map
P → MY , which locally lifts to a chart. The logarithmic scheme Y = (Y ,MY ) is
called a Deligne–Faltings (DF) pair.

If P is only assumed to be a toric sharp monoid instead of free, then MY is
a generalized Deligne–Faltings logarithmic structure, and Y = (Y ,MY ) is called a
generalized Deligne–Faltings pair.

An even more general situation is considered in Section 3.14.

Remark 3.3. Let Y be a fs logarithmic scheme over C, and x ∈ Y a point.
Then étale locally near x one can choose a chart using the characteristic monoid:
MY,x → MY . We refer to [Ols03b, Section 2] for more discussions on charts of
logarithmic structures.

Let the target Y be a DF pair. We first break up the logarithmic structureMY

into cases covered in [Chen]. We write P ∼= Nm, and index the m copies of N by the
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set {1, 2, · · · ,m}. We denote by Ni →֒ P the i-th copy of N. Note that we have the
following composition

Ni → P →MY

which induces a pre-logarithmic structure by the following composition:

Ni ×MY
MY →MY → OY .

LetMi be the logarithmic structure associated to the above pre-logarithmic structure.
Note that Mi is a rank-1 DF-logarithmic structure on Y . Furthermore, the inclu-
sion Ni → P identifies Mi as a sub-logarithmic structure ofMY , and the following
decomposition holds:

(3.3.1) MY =M1 ⊕O∗

Y
M2 ⊕O∗

Y
· · · ⊕O∗

Y
Mm.

Denote Yi = (Y ,Mi) for i = 1, . . . ,m. Viewing Y = Y0 as a logarithmic scheme
with trivial logarithmic structure, the above decomposition is equivalent to

(3.3.2) Y = Y1 ×Y0
Y2 ×Y0

· · · ×Y0
Ym,

which can be written as

Y = lim
←−

Yi.

3.4. Review of contact orders in the rank-1 case. Consider a morphism
f : C → Yi from a logarithmically smooth curve to Yi, and a marked point pj in
C with local parameter x. In [Chen, Definition 3.2.3] one defines the contact order
cji of f at pj. The characteristic monoid of C at pj is of the form MS ⊕ N, where
the second factor is generated by log x. The morphism f induces a homomorphism
f̄ ♭ : N→MS ⊕ N, and f̄ ♭(δ) = e+ cji with the generator δ ∈ N, an element e ∈MS ,

and cji ∈ N. The integer cji is the required contact order of f at pj .
Note that the logarithmic structureMi corresponds to a pair (Li, si), consisting

of a line bundle Li on Y , and a section si ∈ H
0(L∨

i ). The contact orders satisfy the
following relation:

deg f∗L∨
i =

n∑

j=1

cji .

3.5. Numerical data and the associated moduli. We can now introduce
notation for the numerical data of a logarithmic map f : C → Y :

Notation 3.6. Denote Γ = (g, n, β, c) where
1. g ∈ Z≥0 denotes the genus of the source curve;
2. n ∈ Z≥0 denotes the number of marked points;
3. β ∈ H2(Y ,Z) denotes the class of an algebraic curve;
4. c = {(cji )

m
i=1}

n
j=1 where cji ∈ Z≥0 denotes the contact order of the j-th mark-

ing with respect toMi. We require that

β · c1(L
∨
i ) =

n∑

j=1

cji ,

where c1(L
∨
i ) is the first chern class of L∨

i .



472 D. ABRAMOVICH AND Q. CHEN

Definition 3.7. Denote by KΓ(Y ) (respectively Kpre
Γ (Y )) the category fibered

over LogSch, which parametrizes stable logarithmic maps (respectively pre-stable
logarithmic maps) with the discrete data Γ in Notation 3.6.

Note that the set c, hence KΓ(Y ), depends on the choice of P and its decompo-
sition. For example, consider the union of two disjoint divisors D = D1 ∪ D2 in Y .
Denote by Ii the ideal sheaf of Di, and si : Ii → OY the natural injection. LetMY

be the standard logarithmic structure associated to D on Y , and Y the logarithmic
scheme (Y ,MY ). Now we have two maps of sheaves of monoids

(3.7.1) N→MY , and N
2 →MY ,

where the first one is given by the ideal sheaf ID of D with the natural injection
sD : ID → OY , and the second one is given by the two pairs (Ii, si) for i = 1, 2. Note
that both maps of monoids in (3.7.1) can be lifted locally to charts ofMY .

Consider a marked point p with assigned contact order c under the choice P = N.
This includes the following two cases: p can have contact orders c with D1 and 0 with
D2, or it can have contact order c with D2 and 0 with D1. However if we choose the
second case where P = N

2, then the contact orders along both D1 and D2 will be
specified. Thus, for different choices of P we obtain different c, resulting in different
stacks KΓ(Y ).

The category Kg,n(Y, β) introduced in 2.2 parametrizes minimal stable logarith-
mic maps without restricting the contact orders. It does not depend on the choice of
the monoid P . For any choice of P and Γ, the category KΓ(Y ) is open and closed in
Kg,n(Y, β). We clearly have

Kg,n(Y, β) =
∐

c

K(g,n,β,c)(Y ),

where (g, n, β, c) runs through all possible choices of c.

3.8. Canonical contact orders. A further refined and entirely canonical for-
malism of contact orders follows from [ACGM]: given any fs logarithmic scheme Y
one defines an Artin stack ∧Y , locally of finite type over Y , parameterizing standard
logarithmic points in Y . We call it the evaluation space of Y . Given a stable logarith-
mic map f : C → Y and an integer j with 1 ≤ j ≤ n, the restriction fΣj

: Σj → Y
of f to the j-th marking, is an element of ∧Y . This defines the j-th evaluation map
Kg,n(Y, β)→ ∧Y .

Definition 3.9. A logarithmic sector of Y is an element c ∈ π0(∧Y ), namely
a connected component of the evaluation space of Y . A stable map f is said to
have canonical contact order c = (c1, . . . , cn) if the j-th evaluation map lands in the
logarithmic sector cj ∈ π0(∧Y ). Given Γ = (g, n, β, c) with c = (c1, . . . , cn) and
ci ∈ π0(∧Y ) we define KΓ(Y ) precisely as in Definition 3.7.

In [GS, Formula (1.6)], Gross and Siebert introduce numerical data denoted up.
This data is closely related to our canonical contact orders; the relationship is made
more precise in [ACGM].

The discussion which follows works equally well with the explicit and down-to-
earth contact orders of Definition 3.6, as with the canonical contact orders of Definition
3.9.
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3.10. The case of Deligne–Faltings pairs: the stacks. Fix numerical data
Γ = (g, n, β, c), with c as in 3.6. For each i = 1, . . . ,m, we have the contact orders
ci = {cji}

n
j=1. Consider the discrete data Γi = (g, n, β, ci). Then by [Chen] we

have the logarithmic Deligne–Mumford stack KΓi
(Yi), parametrizing minimal stable

logarithmic maps with discrete data Γi. If instead we use canonical contact orders
of 3.9, then we can take ci to be the image of c under the canonical map π0(∧Y )→
π0(∧Yi).

Consider the stack Kg,n(Y , β) of usual stable maps. Since the universal curve
is prestable, it has a canonical logarithmically smooth structure coming from Mg,n;
for stable curves this is F. Kato’s theorem [Kat00], see [Ols03a, Theorem 1.2] for
the general result in arbitrary dimension. We put this in the setup of SecX/B(Z/X)
by setting B to be Kg,n(Y , β) or Kpre

g,n(Y , β) with the pull-back logarithmic struc-
ture coming from Mg,n; X to be the universal curve with its canonical logarithmic
structure; and W = Y × B. Consider Z = X ×(W×BB) W as before. Denote by
Wi = Yi × B, and Zi = X ×(W×BB) Wi for i = 1, · · · ,m. Let Z0 = X ×(W×BB) W .
Then by (3.3.2), we have

Z ∼= Z1 ×Z0
Z2 ×Z0

· · · ×Z0
Zm,

or equivalently

Z = lim←−Zi.

Corollary 3.11. The fibered categories KΓ(Y ) and Kpre
Γ (Y ) are represented

by algebraic stacks equipped with fs logarithmic structures. Furthermore, KΓ(Y ) is
representable and finite over Kg,n(Y , β).

Proof. For the first statement, it follows from Theorem 2.6 and Corollary 2.7 that

(3.11.1) Kpre
Γ (Y ) ∼= K

pre
Γ1

(Y1)×K
pre
g,n(Y ,β) · · · ×K

pre
g,n(Y ,β) K

pre
Γm

(Ym),

where the fibered product are taken in the category of fs logarithmic stacks. It was
shown in [Chen] that the first statement holds for Kpre

Γi
(Yi). Note that

KΓ(Y ) ∼= K
pre
Γ (Y )×K

pre
g,n(Y ,β) Kg,n(Y , β).

Thus, the first statement follows.
Similarly, we have a fiber product of fs logarithmic stacks

(3.11.2) KΓ(Y ) ∼= KΓ1
(Y1)×Kg,n(Y ,β) · · · ×Kg,n(Y ,β) KΓm

(Ym).

Now the second statement follows from the finiteness of products in the category of
fs logarithmic schemes, see [Ogu06, Chapter 2, 2.4.5].

3.12. The case of generalized Deligne–Faltings pairs. Consider the target
Y with generalized DF logarithmic structureMY , with a fixed map P →MY as in
Definition 3.2. Again we haveB = Kg,n(Y , β) with the pull-back logarithmic structure
coming from Mg,n; X is the universal curve of B with its canonical logarithmic
structure; W = Y ×B; and Z = X ×(W×BB) W as before.

By [Ogu06, Chapter 1, 2.1.9(7)], we have the following coequalizer diagram of
monoids

(3.12.1) Nn2

v1 //

v2
// Nn1

q
// P,



474 D. ABRAMOVICH AND Q. CHEN

where n1 and n2 are non-negative integers. This is equivalent to say that

P = lim
→

(Nn2 ⇉ N
n1).

Thus we have the following push-out diagram of fs monoids:

(3.12.2) Nn2 ⊕ Nn2
id⊕id

//

v1⊕v2
��

Nn2

��

Nn1 // P.

Consider the composition N
ni → P → MY . Again, we can construct a logarithmic

structureMi associated to the pre-logarithmic structure

N
ni ×MY

MY →MY → OY .

Thus, we obtain two DF logarithmic structures M1 and M2, with the following
coequalizer diagram of logarithmic structures:

(3.12.3) M2

v1 //

v2
//M1

q
//MY .

Denote byM3 =M2 ⊕O∗

Y
M2. SinceM2 is DF, the natural map

N
n3 := N

n2 ⊕ N
n2 →M3

locally lifts to a chart. ThusM3 is also a DF logarithmic structure. The coequalizer
diagram (3.12.3) is equivalent to the following push-out diagram:

(3.12.4) M3
id⊕id

//

v1⊕v2

��

M2

��

M1
//MY .

Denote by Yi = (Y ,Mi), for i = 1, 2, and 3. Then (3.12.3) induces an equalizer
of logarithmic schemes:

Y → Y1 ⇉ Y2,

or equivalently

(3.12.5) Y = lim←− Yi.

By construction, the map Nni →Mi locally lifts to a chart. Hence each Yi is a DF
pair.

The diagram (3.12.4) implies that (3.12.5) is equivalent to the following cartesian
diagram of fs logarithmic schemes:

(3.12.6) Y //

��

Y2

��

Y1 // Y3.
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Denote byWi = Yi×B, and Zi = X×(Wi×BB)Wi. Then (3.12.5) and (3.12.6) implies
that

(3.12.7) Z = lim
←−

Zi,

or equivalently the cartesian diagram of fs logarithmic schemes:

(3.12.8) Z //

��

Z2

��

Z1
// Z3.

We can define discrete data using canonical contact orders c as in Definition 3.9.
Alternatively, we can define a concrete and down-to-earth version using Irr(P ), the
set of irreducible elements in P . Since the monoid P is toric and sharp, Irr(P ) forms a
finite set of generators of P . For each element α ∈ Irr(P ), there is a free sub-monoid
Nα
∼= N →֒ P , which induces a rank-1 DF sub-logarithmic structure Mα ⊂ MY .

Denote by (Lα, sα) to be the pair of line bundles and sections corresponding toMα.
Again, we fix the numerical data Γ = (g, n, β, c) such that

1. the data g, n, β denote the genus, number of marked points, and curve class
as in Notation 3.6;

2. c = {(cjα)α∈Irr(P )}
n
j=1 is a set of tuples, where cjα denotes the contact order

of the j-th marking with respect toMα satisfying

β · c1(L
∨
α) =

n∑

j=1

cjα.

For any stable logarithmic map f : C → Y over a geometric fiber with discrete
data Γ, the composition

f ′ : C → Y → Yi

induces a stable logarithmic map to Yi, with discrete data Γi given as follows.
In fact, Γ and Γi have the same data g, n, β. To determine Γi we only need to

consider the contact orders. By the construction of Mi, we have a map from the
constant sheaf of free monoid N

ni →Mi, which locally lifts to a chart. Denote by δ′

the image of δ in P given by (3.12.2). Then we have a decomposition:

(3.12.9) δ′ =
∑

α∈Irr(P )

kα · α

where kα is a non-negative integer. Thus, for the j-th marking, the contact order of
δ in Γi is given by

cjδ :=
∑

α∈Irr(P )

kα · c
j
α.

Note that the decomposition in (3.12.9) is not necessarily unique. But one can check
that the above cjδ does not depend on a choice of (3.12.9). In fact, consider the
composition of morphisms of monoids at the j-th marking:

cj : P → f∗MX →MC
∼=MS ⊕ N→ N
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where the last arrow is the projection to the second factor, and S is the base fs log
scheme of the geometric fiber. Then we check that cj is given by the correspondence
δ 7→ cjδ for any δ ∈ P . Thus, we see that Γi depend uniquely on Γ andMi.

Corollary 3.13. Assume that the logarithmic structure of Y is a generalized
Deligne–Faltings logarithmic structure. Then the categories KΓ(Y ) and Kpre

Γ (Y ) are
algebraic stacks with fs logarithmic structures. Furthermore, the stack KΓ(Y ) is rep-
resentable and finite over Kg,n(Y , β).

Proof. Again Theorem 2.6 implies that

(3.13.1) Kpre
Γ (Y ) ∼= K

pre
Γ1

(Y1)×K
pre

Γ3
(Y3) K

pre
Γ2

(Y2)

and

(3.13.2) KΓ(Y ) ∼= KΓ1
(Y1)×KΓ3

(Y3) KΓ2
(Y2)

where this is a fibered product of fs logarithmic stacks. Now the statement follows
from the same argument as in Corollary 3.11.

As before, we have Kg,n(Y, β) =
∐

Γ∈ΛKΓ(Y ), where Λ is the set of all possible
Γ = (g, n, β, c) with fixed g, n and β. Similarly, we have Kpre

g,n(Y, β) =
∐

Γ∈ΛK
pre
Γ (Y ).

3.14. A further generalization. We can weaken the Deligne–Faltings assump-
tion in Corollary 3.13 as follows. Consider a fine and saturated logarithmic scheme
Y with a surjective homomorphism of sheaves of monoids Nk

Y →MY . For example,
if Y is a projective toric variety with log structure given by its toric boundary, then
the above surjection exists. In fact, it is proved in [CS, Appendix A] that in this case
MY is a generalized Deligne-Faltings log structure. In other cases, including toroidal
cases, it is easier to check the natural condition Nk

Y ։ MY imposed here than to
construct a monoid exhibiting the generalized Deligne-Faltings property.

Again, we can takeMY ′ to be the logarithmic structure associated to the following
pre-logarithmic structure:

N
k
Y ×MY

MY →MY → OY .

Thus,MY ′ is a DF logarithmic structure with a natural map of logarithmic structures
over Y :

MY ′ →MY .

Consider the new logarithmic scheme Y ′ = (Y ,MY ′). We have a natural map ψ :
Y → Y ′ with ψ = idY .

As in Section 2.2, we have a fibered category Kg,n(Y, β) parameterizing genus g,
n-pointed stable logarithmic maps with curve class β to Y over LogSch. One can also
introduce canonical contact orders as in Definition 3.9. Note that the map ψ induces
a natural map of the fibered categories

(3.14.1) φ : Kg,n(Y, β)→ Kg,n(Y
′, β).

Theorem 3.15. The fibered category Kg,n(Y, β) is a logarithmic algebraic stack.
Furthermore, the underlying morphism φ is representable and finite, and the map of
logarithmic structures φ∗MKg,n(Y ′,β) →MKg,n(Y,β) is surjective.
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Proof. By Corollary 3.13, we have that Kg,n(Y
′, β) is a proper logarithmic alge-

braic stack. It therefore suffices to prove the second statement.

We construct Kg,n(Y, β) locally over Kg,n(Y
′, β). We may assume we have a fs

logarithmic scheme of finite type B′ and a stable logarithmic map (C′/B′, C′ → Y ′).
We claim that B := B′×KΓ(Y ′)KΓ(Y )→ B′ is a finite map of the underlying schemes,
and the logarithmic structure of B′ surjects to that of B.

We take Z = Y ×Y ′ C′ to be the fiber product in the category of fine logarithmic
schemes. Then the canonical projection Z → C′ induces a closed embedding Z → C ′.
By [SGA64, VIII Theorem 6.4] and the reduction argument [Abr94, Theorem 6(3)],
there is a universal closed sub-scheme W ⊂ B′ with the following property: for any
T → B′, if Z ×B′ T → C ′ ×B′ T is an isomorphism, then the map T → B′ factors
through W uniquely. Note that any element of B over some fs logarithmic scheme T
is a commutative diagram

(3.15.1) ZT
//

��

Z //

��

Y

��

C′
T

//

��

sT

CC

C′

��

// Y ′

T // B′.

where the two upper squares are cartesian squares of fine logarithmic schemes, and the
bottom one is a cartesian square of fs logarithmic schemes. The map sT is a section
of ZT → C′

T . Thus we have an isomorphism of the underlying schemes ZT
∼= C ′

T .
This implies that the map T → B′, hence B → B′ factors through W . We replace B′

by W , with the pullback logarithmic structure.

Since the problem is local, we may assume that there are sections σi : B
′ → C′

for i = 1, 2, · · · , n landing in the generic locus, and meeting every component of every
fiber. Let B′

0 = B′, Z0 = Z, and C′
0 = C′. We construct B by induction.

Denote by B′
1 = B′

0 ×C′

0
Z0, where the product is taken via σ1 in the category

of fs logarithmic schemes. It follows that the underlying map of the first projection
h1 : B′

1 → B′
0 is finite, and the map of logarithmic structures h♭1 : MB′

0
→ MB′

1
is

surjective. Let Z1 and C′
1 be the pull-back of Z0 and C′

0 via h1. By restricting to
the universal closed sub-scheme, we might assume that the fibers Z1 and C′

1 are fine
logarithmic schemes with isomorphic underlying schemes. We claim that the map
B → B′ factors through B′

1 uniquely. To see this, we pick a commutative diagram as
in (3.15.1). This induces a commutative diagram

Z0,T
//

��

Z0

��

C′
0,T

//

��

sT

DD

C′
0

��

T //

(σi)T

EE

B′
0,

σi

[[
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hence a commutative diagram

T

##  
@

@
@

@

��

B′
1

//

��

Z0

��

B′
0

σ1 // C′
0

where the dashed arrow is induced by the universal property of fibered product. This
proves the claim.

Replacing B′
i−1 by B′

i one at a time, and repeating the previous step, we obtain
a sequence of maps {hi : B′

i → B′
i−1}i such that

1. the underlying map hi is finite;
2. the map of logarithmic structures h♭i : h

∗
iMB′

i−1
→MB′

i
is surjective;

3. There is a canonical map B → B′
i−1 of fibered categories over LogSch which

factors through B′
i uniquely.

Denote by Zn → C′
n → B′

n the pull-back of Z → C′ → B′ via B′
n → B′. By the

reduction procedure using the universal closed subscheme argument, we have that the
fibers Zn and C′

n have the same underlying structure.

By [Ols03b, Lemma 3.5], the characteristic monoid of any fine logarithmic struc-
tures are constructible, and the characteristic of a fine logarithmic structure at a
point determines the characteristic in a neighborhood. Thus, after taking finitely
many sections σi, we may assume Zn → C′

n → B′
n has the property that the map

Zn → C′
n gives an isomorphism of characteristics along the smooth non-marked locus

of each fiber, hence is isomorphic along the smooth non-marked locus as a logarithmic
scheme.

We claim that Zn → C′
n is an isomorphism of logarithmic schemes. Since the

underlying map is an isomorphism, it is enough to show that the induced map of
characteristics l̄ : MC′

n
→ MZn

is an isomorphism. Note that we have a cartesian
diagram of fine logarithmic schemes:

Zn
//

��

Y

��

C′
n

// Y ′.

Since the map of logarithmic structuresMY ′ →MY is surjective, the map of monoids
l̄ is also surjective.

Denote by f : C′
n → Y the underlying stable map, and πn : C′

n → B′
n the map of

logarithmic curves. Locally at a marked point p ∈ C′
n, we have a push-out diagram

of fine monoids:

f∗MY ′
//

����

N p ⊕ π∗
nMB′

n

l̄
����

f∗MY
//MZn
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where N p
∼= N = 〈 δ 〉 is the characteristic of the standard logarithmic structure given

by the marking at p. Pick two elements c1δ + e1, c2δ + e2 ∈ N p ⊕ π∗
nMB′

n
locally

at p, where e1, e2 ∈ π∗
nMB′

n
, and c1, c2 are two non-negative integers. Assume that

l̄(c1 · δ+ e1) = l̄(c2 · δ+ e2). By generalizing to a nearby smooth non-marked point of
p, we have l̄(e1) = l̄(e2). Since l̄ is an isomorphism at the generic smooth non-marked
points, this implies that e1 = e2. Since Zn is fine, we have l̄(c1δ) = l̄(c2δ). Note
that l̄(cδ) = 0 implies c = 0, since if l̄(cδ) comes from an element of O∗, so does cδ.
So if c1 6= c2, then since Zn is fine there exists another positive integer c3 such that
l̄(c3δ) = 0, which implies that c3 = 0, which gives a contradiction. Therefore, we have
c1 · δ + e1 = c2 · δ + e2. This implies that l̄ is injective, hence an isomorphism at each
marked point. A similar argument implies that l̄ is also an isomorphism at each node.
Therefore, the map Zn → C′

n is an isomorphism of logarithmic schemes.
Note that we have an element of B over B′

n, which is given by the identity
map id : C′

n → Zn. This induces a map B′
n → B. We claim that this map is an

isomorphism of fibered categories over LogSch. Given an element of B over T as in
(3.15.1), it is equivalent to having a commutative diagram

ZT
//

��

Zn

��

C′
T

//

��

sT

CC

C′
n

��

T // B′
n,

where the two squares are cartesian squares of logarithmic schemes. Note that having
sT is equivalent to have a commutative diagram

f∗

T
MY ′

zzuu
uu
uu
uu
u

$$I
II

II
II

II

f∗

T
MY

//MC′

T
.

Since the morphism f∗

T
MY ′ → f∗

T
MY is a surjection, the section sT if exists, is

unique. Hence, it is the pull-back of id : C′
n → Zn via T → B′

n. This proves that
B = B′

n.

3.16. Minimal objects. Consider the universal family of stable logarithmic
maps with discrete data Γ:

(3.16.1) C //

��

Y

KΓ(Y ).

This brings us to the definition of minimal stable logarithmic maps:

Definition 3.17. A stable logarithmic map f : C → Y over a logarithmic
scheme S is called minimal, if there exists a map g : S → KΓ(Y ) of the underlying
structure, such that f is obtained by strict pull-back of (3.16.1) via g.
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Proposition 3.18. Given any stable logarithmic maps f : C → Y over a loga-
rithmic scheme S, there exists (up to a unique isomorphism) a unique minimal stable
logarithmic map fmin : Cmin → Y over Smin, and a logarithmic map S → Smin such
that

1. The logarithmic map f is given by the pull-back of fmin via S → Smin.
2. The underlying map S → Smin is the identity.

Proof. This follows from the universal property of KΓ(Y ) as a fibered category
over LogSch.

4. The combinatorial description of minimality.

4.1. The case of Deligne–Faltings pairs. The main result of [Chen] gives
more than just Corollary 3.13 for the case P = N: we have an explicit combinatorial
description of the minimal logarithmic structure associated to a given logarithmic
map, in terms of marked graphs. A similar description is possible in general. We first
present here the case P = Nm.

4.1.1. The graph. Fix a logarithmic map f : C → Y over S, such that S is a
geometric point. Recall that we have a decomposition of Y as in (3.3.2). Denote by
fi the following composition

(4.1.1) C
f
→ Y → Yi, i = 1, . . . ,m.

In analogy to Definition 3.3.2 and Construction 3.4.1 of [Chen], we associate to
the logarithmic map f an m-marked graph G, formed out of the dual graph of the
curve C with the following extra data:

1. m partitions of the vertices of G in two types V (G) = V
(i)
0 (G) ⊔ V

(i)
1 (G),

where a vertex v ∈ V
(i)
0 (G) if and only if the associated component Cv ⊂ C

is non-degenerate with respect to the map C → Yi.

2. m integer weights c
(i)
l ≥ 0, i = 1, . . . ,m on the edges l ∈ E(G), such that c

(i)
l

is the contact order of fi along l ([Chen, Definition 3.2.6]).

3. m orientations of edges: whenever an edge l has extremities v, v′ and c
(i)
l > 0,

we choose one orientation v >i v
′ or v′ >i v of the edge l, given by fi as in

[Chen, Definition 3.2.7].

4.1.2. The monoid. We introduce a variable el for each edge l ∈ E(G), and

m variables e
(i)
v , i = 1, 2, · · · ,m for each vertex v ∈ V (G). Denote by hl,i the edge

equations e
(i)
v′ = e

(i)
v + c

(i)
l el for every edge l with extremities v ≤i v

′; and hv,i the

vertex equations e
(i)
v = 0, for v ∈ V

(i)
0 (G). Consider the monoid

M(G) =
〈
e(i)v , el

∣∣∣ v ∈ V(G), l ∈ E(G)
〉 /〈

hl,i, hv,i
∣∣ l ∈ E(G), v ∈ V

(i)
0 (G)

〉
.

Denote by T (G) the torsion part ofM(G)gp. Then we have the following composition

M(G)→M(G)gp →M(G)gp/T (G).

Denote by N(G) the image of M(G) in M(G)gp/T (G), andM(G) the saturation of
N(G) in M(G)gp/T (G).

Remark 4.2. When m = 1, the description in 4.1 is identical to the case in
[Chen].



STABLE LOGARITHMIC MAPS TO DELIGNE–FALTINGS PAIRS II 481

Proposition 4.3. There is a canonical morphism M(G)→MS. A logarithmic
structure is minimal if and only if this morphism is an isomorphism.

Proof. Consider the minimal stable logarithmic map fmin : Cmin → Y over Smin,
and a logarithmic map S → Smin, which satisfy the conditions in Proposition 3.18.
Denote by fi the stable logarithmic map given by the composition (4.1.1). Consider
the minimal stable logarithmic map fmin

i : Cmin
i → Yi over S

min
i and the logarithmic

map Smin → Smin
i given by Proposition 3.18. By (3.11.2), we have a fiber product of

logarithmic schemes:

(4.3.1) Smin ∼= Smin
1 ×S · · · ×S S

min
m .

Note that the characteristic monoid of the right hand side of (4.3.1) is given byM(G).
Thus, we obtain the map

M(G)→MS .

Assuming the logarithmic map f is minimal, this is equivalent to the map S → Smin

being an isomorphism, which is equivalent to the map on the level of characteristic
MSmin →MS being an isomorphism of monoid. This proves the statement.

4.4. The case of generalized Deligne–Faltings pairs. Consider a logarith-
mic map f : C → Y over S, such that S is a geometric point. We now assume that Y
is a generalized DF pair with a fixed global presentation P →MY . Thus by (3.12.6),
we have a cartesian diagram of logarithmic schemes:

(4.4.1) Y
h2 //

h1

��

Y2

u1

��

Y1 u2

// Y3

where Yi are DF pairs for i = 1, 2, 3. Let fi be the following composition

(4.4.2) C
f
→ Y → Yi, for i = 1, 2, 3.

Then we obtain the marked graph Gi for the stable logarithmic map fi as in Section
4.1. Note that by removing all the weights and orientations, the underlying graph
Gi is the dual graph G of the underlying curve C over S, for all i. Denote by
fmin
i : Cmin

i → Yi over Si the associated minimal logarithmic maps of fi, and by
fmin : Cmin → Y over Smin the associated minimal logarithmic map of f . By (3.13.2),
we obtain a cartesian diagram of logarithmic schemes:

(4.4.3) Smin

��

// S2

��

S1
// S3.

LetM be the push-out of the following diagram in the category of toric sharp monoids:

(4.4.4) M(G3)

��

//M(G2)

M(G1).
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Then we have:

Proposition 4.5. There is a canonical map φ : M → MS. The logarithmic
map f is minimal if and only if φ is an isomorphism.

Proof. The statement can be proved similarly to the argument of Proposition 4.3,
using the fact that (4.4.3) is cartesian.

Remark 4.6. We feel that the expression of M using the push-out diagram
(4.4.4) is good enough for the purpose of calculations. But it is possible to write
down an explicit formation of the base monoids as in Section 4.1.2. We leave it for
interested readers.

4.7. Compatibility with Gross-Siebert’s construction. As mentioned in
the introduction, another construction of the stack of stable logarithmic maps is given
by Gross and Siebert using so called basic stable log maps when the target is equipped
with Zariski log structures Satisfying a certain global generation property. In fact,
when our condition in Theorem 3.15 applies to the logarithmic structures on the
targets, the notions of basic log maps and minimal logarithmic maps are identical.

Proposition 4.8. A stable logarithmic map is minimal if and only if it is basic
in the sense of [GS, Definition 1.17].

Proof. This follows since basic logarithmic maps and minimal logarithmic maps
satisfy the same universal property: by Proposition 3.18, any given logarithmic map
is uniquely the pullback of a unique minimal logarithmic map on the same underlying
base scheme. The same universal property holds for basic logarithmic maps by [GS,
Proposition 1.20].

Remark 4.9. Both minimality and basicness can be defined by putting con-
straints on the characteristic monoids of the bases. Thus, Proposition 4.8 can be
proved directly by comparing the base monoids of both minimal and basic stable
log maps. We provide an argument when the logarithmic structure on the target Y
is Deligne–Faltings. The general situation can be proved similarly, but with more
complicated notation and combinatorics.

We assume that there is a map Nk → MY locally lifting to a chart of MY .
Consider the logarithmic scheme Yi as in Section 4.1. Let Di be the locus with non-
trivial logarithmic structure in Yi. Consider a stable logarithmic map f : C → Y
over a logarithmic scheme S. Since both minimality and basicness can be defined
fiber-wise, we might assume that S is a geometric point.

Consider a generic point η ∈ C with associated irreducible component v ∈ V (G),
where G is the marked graph of f . In [GS, Construction 1.15], the factor Pη can be
viewed as the free monoid generated by the degeneracy ev,i of v for i = 1, 2, · · · , k
with the condition that ev,i = 0 if and only if the component v does not map into Di,
or equivalently v ∈ V i

nd(G). Consider the monoid
∏

q∈C N appearing as a factor in

the expression [GS, (1.15)], where q ∈ C denotes the nodes. It can be viewed as the
free monoid generated by the elements el for each l ∈ E(G). Note that the condition
aq(m) in [GS, Construction 1.15] is exactly the edge condition hl,i in Section 4.1.2.
Thus, the description of Pη and

∏
q∈C N using the elements associated to vertices and

edges induces a natural isomorphism Q →M(G), where Q is the monoid defined in
[GS, (1.14)]. In fact, the object (Q,MC , ψ, φ) defined in [GS, Construction 1.15] is
equivalent to the data of a marked graph G. This provides an explicit derivation of
Proposition 4.8 in this case.



STABLE LOGARITHMIC MAPS TO DELIGNE–FALTINGS PAIRS II 483

5. The case of a degeneration.

5.1. Stable logarithmic maps relative to a base. Consider a family of pro-
jective logarithmic schemes π : X → B, such thatMX andMB are generalized DF
logarithmic structures. We defined in [Chen, Definition 2.1.2] a family of pre-stable
logarithmic maps over S with target X/B as a commutative diagram of logarithmic
schemes:

(5.1.1) C
f

//

��

X

��

S
φ

// B,

such that the family C → S is a pre-stable logarithmically smooth curve. For sim-
plicity, we denote it by ξ = (C → S, f, φ), and omit the target X → B, if there is no
danger of confusion. The logarithmic map ξ is called stable, if the underlying map ξ
is stable in the usual sense.

Consider two pre-stable logarithmic maps ξ1 = (C1 → S1, f1, φ1) and ξ2 = (C2 →
S2, f2, φ2). An arrow ξ1 → ξ2 is given by a pair (g : C1 → C2, h : S1 → S2) which fits
in the following commutative diagram:

C1
g

//

��

C2
f2

//

��

X

��

S1
h // S2

φ2
// B,

such that the square on the left is a cartesian square of logarithmic schemes, and
f1 = f2 ◦ g and φ1 = φ2 ◦ h.

We fix a curve class β on the fiber of π. Define Kg,n(X/B, β) (respectively
Kpre

g,n(X/B, β)) to be the fibered category over LogSch, parameterizing stable (re-
spectively pre-stable) logarithmic maps to X/B with genus g, n marked points and
curve class β on the fiber.

5.2. The case when π : X → B is strict. Note that we have a natural
map Kg,n(X/B, β)→ Kg,n(X/B, β) by removing all logarithmic structures from the
target. Thus, the stack Kg,n(X/B, β) is the stack of usual stable maps to X/B with
the canonical logarithmic structure associated to the underlying curves as in [Kat00]
and [Ols03a, Theorem 1.2]. By [FP97] or [AO01, Theorem 2.8], we know that the stack
Kg,n(X/B, β) is proper over B. Similarly, we have the natural map Kpre

g,n(X/B, β)→
Kpre

g,n(X/B, β), where K
pre
g,n(X/B, β) is the stack parameterizing usual pre-stable maps

to X/B with the canonical logarithmic structure associated to the underlying curves.
We first consider the strict case:

Lemma 5.3. Assume that the map π : X → B is strict. Then there is a canonical
isomorphism of logarithmic stacks

Kpre
g,n(X/B, β)

∼= Kpre
g,n(X/B, β)×B B.

In particular, by requiring the stability conditions, we have

Kg,n(X/B, β) ∼= Kg,n(X/B, β)×B B.
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Proof. Consider the natural commutative diagram

(5.3.1) Kpre
g,n(X/B, β)

//

��

B

π

��

Kpre
g,n(X/B, β)

// B.

We need to prove the above diagram is cartesian. Consider an object

ξ = (p : C → S, f : C → X,φ : S → B) ∈ Kpre
g,n(X/B, β).

This is equivalent to the data of

ξ′ = (p : C → S, f : C → X,φ : S → B) ∈ Kpre
g,n(X/B, β)

together with maps of logarithmic structures f ♭ : f∗MX →MC and φ♭ : φ∗MB →
MS such that the following diagram of logarithmic structures is commutative:

(5.3.2) f∗ ◦ π∗MB
//

��

f∗MX

��

p∗MS
//MC .

Since the map π is strict, the data of f ♭, φ♭, satisfying (5.3.2) is equivalent to giving
a map of logarithmic schemes φ : S → B, whose underlying structure is compatible
with φ in ξ′. This proves that (5.3.1) is cartesian.

The second statement follows since

Kg,n(X/B, β) ∼= Kg,n(X/B, β)×K
pre
g,n(X/B,β) K

pre
g,n(X/B, β)

5.4. Stack parameterizing logarithmic sources and targets. Denote by
Mg,n the stack of pre-stable curves with its canonical logarithmic structure associ-
ated to the family of curves. It is proved in [Kat00, Theorem 4.1] in the stable case,
and further developed in [Ols07], that the logarithmic stack Mg,n represents the cat-
egory of all genus g, n-marked pre-stable logarithmically smooth curves over LogSch.
Consider the stack

B = B ×Mg,n.

It represents a fibered category over LogSch, such that for each logarithmic scheme
S, it associates the groupoid of diagrams of the following form:

(5.4.1) C

��

S
φ

// B,

where C → S is a logarithmically smooth curve. Denote (5.4.1) by ζ = (C/S, φ).
Given two objects ζ1 = (C1/S1, φ1) and ζ2 = (C2/S2, φ2), an arrow ζ2 → ζ1 is given
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by the following commutative diagram:

(5.4.2) C1
g

//

��

C2

��

S1
h // S2

φ2
// B,

such that the square is cartesian of logarithmic schemes, and φ1 = φ2 ◦ h.

Lemma 5.5. We have the following canonical isomorphism of logarithmic stacks:

B ∼= Kpre
g,n(B/B, 0).

Proof. By Lemma 5.3, we have

Kpre
g,n(B/B, 0)

∼= Kpre
g,n(B/B, 0)×B B ∼= (Mg,n ×B)×B B ∼= B.

5.6. Construction of Kg,n(X/B, β). We have the following:

Theorem 5.7. The fibered categories Kg,n(X/B, β) and Kpre
g,n(X/B, β) are rep-

resented by algebraic stacks with a natural fs logarithmic structures. Furthermore, the
underlying stack of Kg,n(X/B, β) is a DM-stack of finite type.

Proof. Consider the stack Kpre
g,n(B, 0), and the natural map Kpre

g,n(X, β) →
Kpre

g,n(B, 0) induced by π : X → B as π∗β = 0. We have the following commuta-
tive diagram:

(5.7.1) Kpre
g,n(X/B, β) //

��

Kpre
g,n(X, β)

��

B // Kpre
g,n(B, 0),

where the right arrow is induced by π, the left and top arrow is obtained by removing
the maps to X and to B in (5.1.1) respectively, and the bottom arrow is obtained by
the composition in (5.4.1).

In fact, giving an object ξ = (C/S, f, φ) ∈ Kpre
g,n(X/B, β) over S is equivalent to

giving an object ζ = (C/S, φ), and a pre-stable logarithmic map f : C → X , which
induce the same map C → B. Thus (5.7.1) is a fibered diagram of fs logarithmic
stacks. This proves that Kpre

g,n(X/B, β) is an algebraic stack with a natural fs log-
arithmic structure. Note that with the stability condition, Kg,n(X/B, β) forms an
open substack of Kpre

g,n(X/B, β), hence is also algebraic.
Note that the image of the Kg,n(X/B, β) in B is contained in an open substack

of finite type. Therefore, the stack Kg,n(X/B, β) is of finite type.
Finally, since B ∼= Kpre

g,n(B/B, 0) by Lemma 5.5, it follows that the bottom arrow
of (5.7.1) is representable. Since the underlying stack of Kg,n(X, β) is a DM-stack,
the finiteness of saturation implies that the underlying stack of Kg,n(X/B, β) is also
a DM-stack.

This finishes the proof of the statement.

Proposition 5.8. The stack Kg,n(X/B, β) is proper over B.
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Proof. Denote by X = X ×B B. Thus we have a canonical map X → X, and a

strict map π′ : X → B. Note also that X is a generalized Deligne–Faltings logarithmic
structure. By Theorem 5.7 and (5.7.1), we have the following cartesian diagram:

(5.8.1) Kg,n(X/B, β) //

��

Kg,n(X, β)

��

Kg,n(X/B, β) //

��

Kg,n(X, β)

��

B // Kpre
g,n(B, π∗β).

Note that by Corollary 3.13 both Kg,n(X, β) and Kg,n(X, β) are representable and
finite over Kg,n(X, β). It follows from [LMB00, Lemma 3.12] that the canonical map
Kg,n(X, β) → Kg,n(X, β) is representable and finite, hence is proper. By Lemma
5.3, the stack Kg,n(X/B, β) is proper over B. Thus the statement of the proposition
follows.

5.9. Minimal objects in the degeneration case. By (5.7.1), we have a uni-
versal diagram of stable logarithmic maps:

(5.9.1) C //

��

X

��

Kg,n(X/B, β) // B.

Definition 5.10. Consider a stable logarithmic map ξ = (C → S, f, φ) as in
(5.1.1). It is called minimal if there is a map of underlying structures g : S →
Kg,n(X/B, β), such that ξ is obtained by the strict pull-back of (5.9.1) via g.

Corollary 5.11. Given a stable logarithmic map ξ = (C → S, f, φ), there
exists a minimal stable logarithmic map ξmin = (Cmin → Smin, fmin, φmin), and a
logarithmic map g : S → Smin such that

1. ξ is obtained by pull-back ξmin via g.
2. The underlying map g is an identity.

Furthermore, the pair (ξmin, g) is unique up to a unique isomorphism.

Proof. By Theorem 5.7, the logarithmic map ξ is equivalent to a logarithmic map
S → Kg,n(X/B, β). Define ξmin to be the minimal logarithmic map given by the
underlying map S → Kg,n(X/B, β). This proves the statement.

5.12. Compatibility of minimality. We show that minimality in the degen-
eration case is equivalent to minimality of the map to the total space. First a lemma:

Lemma 5.13. Given a stable logarithmic map ξ = (C → S, f, φ) ∈ Kg,n(X/B, β),
its image in Kpre

g,n(B, 0) is a logarithmic map with zero contact orders.

Proof. Note that the map Kg,n(X/B, β) → K
pre
g,n(B, π∗β) factors through B =

B ×Mg,n, which induces stable logarithmic maps with only zero contact orders.

Proposition 5.14. Consider ξ = (C → S, f, φ) ∈ Kg,n(X/B, β) a stable loga-
rithmic map over S. It is minimal in the sense of Definition 5.10, if and only if the
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induced stable logarithmic map f : C → X over S in Kg,n(X, β) is minimal in the
sense of Definition 3.17.

Proof. In fact, we will prove that the top arrow in (5.7.1) is strict. This is
equivalent to showing that the bottom arrow in (5.7.1) is strict. This can be checked
directly using the construction in the push-out diagram (4.4.4).

Consider a diagram

C

��

S
φ

// B,

induced by a strict map S → B. It is enough to consider the case that S is a geometric
point. Then we obtain an induced logarithmic map h : C → B over S. Consider the
minimal logarithmic map h′ : C′ → B over S′ with the following commutative diagram

(5.14.1) C
j

//

��

C′ h′

//

p

��

B

S
k // S′

φ

>>~
~

~
~

such that h = h′ ◦ j, the underlying map k is the identity, the square is cartesian of
fs logarithmic schemes, and φ is the underlying map of φ. It is enough to show that

the map on the level of characteristics k̄ :MS′ →MS is an isomorphism.
Note that the map h′ has only zero contact orders. Otherwise, the composition

h = h′ ◦ j will have non-zero contact orders, which violates Lemma 5.13. Since all
nodes of C are non-distinguished, all the edge equations in Section 4.1.2 are trivial.

Hence the construction in Section 4.4 implies a natural splittingMS′ =M
C/S

S ⊕M,

where M
C/S

S can be viewed as the submonoid in MS′ generated by the elements

associated to edges, andM is generated by the element associated to vertices.

On the other hand, we have MS = M
C/S

S ⊕ φ∗MB. The map k̄ induces a

map g : M → φ∗MB. Using the fact that all contact orders are zero and the

construction in (4.4.4), we can check that g is an isomorphism. This implies that k̄ is
an isomorphism.
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