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CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS IN THE
IMPERFECT RESIDUE FIELD CASE*

KAZUMA MORITAT

Abstract. Let K be a p-adic local field with residue field k such that [k : kP] = p® < oo
and V be a p-adic representation of Gal(K/K). Then, by using the theory of p-adic differential
modules, we show that V is a potentially crystalline (resp. potentially semi-stable) representation of
Gal(K/K) if and only if V is a potentially crystalline (resp. potentially semi-stable) representation of
Gal(KPt/KPf) where KPf/K is a certain p-adic local field whose residue field is the smallest perfect
field kPf containing k. As an application, we prove the p-adic monodromy theorem of Fontaine in
the imperfect residue field case.
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1. Introduction. Let K be a complete discrete valuation field of characteristic
0 with residue field k of characteristic p > 0 such that [k : kP] = p® < co. Choose an
algebraic closure K of K and put Gx = Gal(K/K). By a p-adic representation of
Gk, we mean a finite dimensional vector space V' over Q, endowed with a continuous
action of G. As in the perfect residue field case, we can define the imperfect residue
field versions of Bs and By and, by using these rings, crystalline and semi-stable
representations of G .

Now, we shall state the main results of this article. Let us fix some notations.
Fix a lift (b;)1<i<e of a p-basis of k in Ok (the ring of integers of K) and for each
m > 1, fix a p™-th root b;/”" of b; in K satisfying (b;/pmﬂ)p =b/P" . put KO =
UmZOK(b;/pm,l < i < e) and let KP!f be the p-adic completion of K®H. These
fields depend on the choice of the sequences (bi/ P m)meN. Note that, if V is a p-
adic representation of G, it can be restricted to a p-adic representation of G gpr =
Gal(KPf/KPf) where we choose an algebraic closure KPf of KPf containing K. Since
KPf is a complete discrete valuation field with perfect residue field, we can apply

the classical theory (i.e. in the perfect residue field case) to p-adic representations of
G rpt. Our main results are the following.

THEOREM 1.1. With notation as above, we have the following equivalences.
1. V is a potentially crystalline representation of Gk if and only if V is a po-
tentially crystalline representation of Gy,
2. V is a potentially semi-stable representation of Gk if and only if V is a
potentially semi-stable representation of G gpt.

COROLLARY 1.2. Keep the notation as in Theorem 1.1. Then, V is a de Rham

representation of Gk if and only if V is a potentially semi-stable representation of
Gk.

This paper is organized as follows. In Section 2, we shall review the definitions and
basic known facts on crystalline and semi-stable representations, first in the perfect
residue field case and then in the imperfect residue field case. In Section 3, first we
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shall review the theory of p-adic differential modules and then shall introduce some
special elements which behave well under the action of p-adic differential operators.
In Section 4, by using these elements, we shall prove the main theorem. In Section
5, as an application, we deduce the p-adic monodromy theorem of Fontaine in the
imperfect residue field case (Corollary 1.2) by using results of Berger [Be] and author
[M].
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2. Review of crystalline and semi-stable representations.

2.1. Crystalline and semi-stable representations in the perfect residue
field case. (See [F1] for details.) Let K be a complete discrete valuation field of char-
acteristic 0 with perfect residue field k of characteristic p > 0. Put Ky = Frac(W (k))
where W denotes the ring of Witt vectors with coefficients in k. Choose an algebraic
closure K of K and consider its p-adic completion C,. Put

E = im0 Cp = {2, 2M, ) | @D = 2O 0 e C, 3

For two elements = (2()) and y = (y) of E, define their sum and product by
(x4 y)® = lim; o0 (x 2(9) 4y (i+D)P and (a:y)(z) = 20y Let e = (¢™) denote
an element of E such that ¢® = 1 and ¢ # 1. Then, E is a perfect field of
characteristic p > 0 and is the completion of an algebraic closure of k((e — 1)) for
the valuation defined by vg(x) = v,(z(?)) where v, denotes the p-adic valuation of

Cp normalized by v,(p) = 1. The field E is equipped with an action of a Frobenius
o and a continuous action of the Galois group G = Gal(K/K) with respect to the

topology defined by the valuation vg. Define E+ to be the ring of integers for this
valuation. Put AT = W(E") and Bt = AT[1/p] = {Zk>> P TE] | a € E*}

where [#] denotes the Teichmiiller lift of x € E+. This ring B+ is equipped with a
surjective homomorphism

G:IE%JF—»(CP: Zp x »—>Zpk ©,

Let p denote (p™) € ET such that p(© = p. Then, Ker () is the principal ideal
generated by w = [p] —p . The ring B;‘R’K is defined to be the Ker ()-adic completion

of Bt
B, o = lim,>oB1/(Ker (6)™).
dR,K l<1_n20 /(Ker (6)")

This is a discrete valuation ring and ¢ = log([e]) which converges in BJ;  is a
generator of the maximal ideal. Put Bqr x = B(TR k[1/t]. The ring Bqr,x becomes a
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field and is equipped with an action of the Galois group G'x and a filtration defined
by Fil'Bar,x = tiB;{RAK (i € Z). Then, (Bqr.x)“X is canonically isomorphic to
K. Thus, for a p-adic representation V' of Gx, Dar,x (V) = (Bar,x ®q, V)Cr s
naturally a K-vector space. We say that a p-adic representation V of Gk is a de
Rham representation of G if we have

dimeV = dimKDdR,K(V) (We always have dlmeV Z dimKDdR,K(V)).

Let 0 : At — Oc, be the natural homomorphism where Oc, denotes the ring of
integers of C,,. Define the ring Auis x to be the p-adic completion of the PD-envelope
of Ker (#) compatible with the canonical PD-envelope over the ideal generated by p.
Put B;S,K = Aais,k[1/p] and Beyis, k. = Bctis,K[l/t]' These rings are Kjy-algebras
endowed with an action of Gk and an action of Frobenius ¢ which commutes with
the action of Gi. Furthermore, since we have the inclusion K ® g, Beris,x — BdRr, K,
the ring K @, Beris, i 18 endowed with the filtration induced by that of Bar, x. Then,
(Beris, K)GK is canonically isomorphic to Ky. Thus, for a p-adic representation V of
Gk, Deris,k (V) = (Beris,k ®q, V)Ex is naturally a Ky-vector space endowed with a
Frobenius operator and a filtration after extending the scalars to K. We say that a
p-adic representation V of Gk is a crystalline representation of G if we have

dimg,V = dimp, Deris, x (V) (we always have dimg, V' > dimg, Deris,x (V))-

Furthermore, we say that a p-adic representation V' of G is a potentially crystalline
representation of G if there exists a finite field extension L/K in K such that V is
a crystalline representation of G..

Fix a prime element p of Ok (the ring of integers of K) and an element s =
(s(M) € E* such that s = p. Then, the series log(sp~!) converges to an element
U In B(J{R,K and the subring Beyis, ik [us] of Bar,x depends only on the choice of .
We denote this ring by B . Since we have the inclusion K ®g, Bst,x = Bar,k,
the ring K ®g, Bst,x is endowed with the action of Gk and the filtration induced
by that of Byr,x. The element us is transcendental over B x and we extend the
Frobenius ¢ on Beyis,x t0 Bg,x by putting ¢(us) = pus. Furthermore, define the
Beyis, k-derivation N : By g — Bst x by N(us) = —1. It is easy to verify Ny = poN.
As in the case of Beis i, we have (BSt,K)GK = K. Thus, for a p-adic representation
V of G, Dst,x (V) = (Bst,x @q, V)Ex is naturally a Ky-vector space endowed with
a Frobenius operator and a filtration after extending the scalars to K. We say that a
p-adic representation V of Gk is a semi-stable representation of G if we have

dimg,V = dimg, D¢, x (V) (we always have dimg, V' > dimg, Dst x (V)).

Furthermore, we say that a p-adic representation V' of Gk is a potentially semi-stable
representation of G if there exists a finite field extension L/K in K such that V is
a semi-stable representation of G .

2.2. Crystalline and semi-stable representations in the imperfect
residue field case. Let K be a complete discrete valuation field of characteristic
0 with residue field k of characteristic p > 0 such that [k : kP] = p® < co. Here, we
do not assume that the residue field k is perfect. Choose an algebraic closure K of K
and put G = Gal(K/K). As in Introduction, fix a lift (b;)1<;<. of a p-basis of k in
Ok (the ring of integers of K) and for each m > 1, fix a p™-th root bg/pm of b; in K

satisfying (67" )P = b1/7" . put

K®) — UmZOK(b;/pm, 1<i<e) and KP' = p-adic completion of K®.
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These fields depend on the choice of a lift of a p-basis of k in O. Let kP denote
the perfect residue field of KPf and put Kgf = Frac(W (kP!)). Define Ky to be Ko =
Kn Kgf. Then, K, has the residue field k and the extension K/Kj is finite. If k is
perfect (that is e = 0), the field Ky coincides with K} f. Furthermore, since K is a
complete p-ring, it is isomorphic to the field Frac(W(k)) and thus is endowed with
an action of Frobenius o. Since K (»f) is a Henselian discrete valuation field, we have
an isomorphism G gor = Gal(KPf/KPf) ~ G pn = Gal(K/K®Y) (C Gk) where we
choose an algebraic closure KPf of KPf containing K. With this isomorphism, we
identify G gpr with a subgroup of Gx. We have a bijective map from the set of finite
extensions of KPP contained in K to the set of finite extensions of KP! contained in
Kt defined by L — LKPf. Furthermore, LKP' is the p-adic completion of L. Hence,
we have an isomorphism of rings

O%/pP" O = O¢/p" O

where O and O denote the rings of integers of K and KPf. Thus, the p-adic

ot
completion of K is isomorphic to the p-adic completion of KPf which we will write
C,. As in Subsection 2.1, construct the rings E* and A™ = W(E™T) from this C,. Put

Ok, =0knN W(lcpf). Let a: O R0k, At 0% /pO7 be the natural surjection and
define A?‘K) to be A?’K) = l(iLnnzo(Of @05, AT)/(Ker (a))™. Let Ok : AE”K) ®z, Qp —
C, be the natural extension of 6 : A*[1/p] - C,. Define BZ{R’K to be the Ker (fx)-
adic completion of &TK) ®z, Qp

Bk = limnzo(Af) @z, @)/ (Ker (0k)").

This is a K-algebra equipped with an action of the Galois group Gk . Let b: denote
(bz(-n)) € ET such that bgo) = b; and then the series which defines log([b;]/b;) converges
to an element t; in BQ'R’ x- Then, the ring Bji_R, i becomes a local ring with the
maximal ideal mgr = (t,t1,...,t.). Define a filtration on B;‘R’K by ﬁliB;'R’K =my.
Then, the homomorphism
f: B;R,Kpf[[tl, o te]] = Bip i

is an isomorphism of filtered algebras (see [Br2], Proposition 2.9). From this isomor-
phism, it follows that

+

L o RN .
i: B AR, FCPE

+ . pt
dR’KPf%BdR’K and p.BdR’K—»B

t;— 0

are G gpr-equivariant homomorphisms and the composition

+ .
dR,KPf

+ .
dR,Kpf

poi:B — B:{R x> B
is an identity. Put Bqr,x = B$R’K[1/t]. Then, K is canonically embedded in Bygr, i
and we have a canonical isomorphism (Bgg, K )¢5 = K. Thus, for a p-adic represen-
tation V' of Gk, Dar,x (V) = (Bar,x ®q, V)@« is naturally a K-vector space. We
say that a p-adic representation V of Gk is a de Rham representation of Gk if we

have

dimeV = dimKDdR,K(V) (We always have dimeV Z dimKDdR,K(V)).
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Let Ok, : Ok, ®z At = Oc, denote the natural extension of 6 : At — Oc, where
Ok, (resp. Ocp) denotes the ring of integers of Ky (resp. C,). Define Agis,x to be
the p-adic completion of the PD-envelope of Ker (6x,) compatible with the canonical
PD-envelope over the ideal generated by p. Put B:;is’K = Acris,x [1/p] and Beyis xk =
B(j;is x[1/t]. The ring Beys i is the Ky-algebra endowed with an action of Gk and
an action of Frobenius ¢ which commutes with the action of Gg. Furthermore, since
we have the inclusion K ® g, Beris, k <> Bar,kx (see [Br2, Proposition 2.47.]), the ring
K ®K, Beris, i is endowed with the filtration induced by that of Byr, k. For 1 <i <e,
put r; = [E] —b; € Ok, ®z AT Then, we have r; € Ker (Ag,) for 1 < i < e and an
isomorphism

[ : p-adic completion of Agis goe(re, ..., 7e) = Acris, K

where (x) denotes PD-polynomial (see [Br2, Proposition 2.39.]). From this isomor-
phism, it follows that

i Bcris,I(Pf — Bcris,K and p: Bcris,K - -Bclris,Kpf DT = 0
are G gpe-equivariant homomorphisms and the composition
p 01 Bcris,KPf — Bcris,K - Bcris,KPf

is identity. By [Br2, Proposition 2.50.], we have a canonical isomorphism (Beyis, x)CK
= Ky. Thus, for a p-adic representation V' of Gk, Deris,k (V) = (Beris,xk ®q, V)Gr
is naturally a Kjy-vector space endowed with a Frobenius operator and a filtration
after extending the scalars to K. We say that a p-adic representation V of Gk is a
crystalline representation of G if we have

dimg, V = dimg, Deris,x (V).

Note that, for a p-adic representation V of Gk, we always have dimg,V >
dim g, Deris, (V') by [Br2, Proposition 3.22.]. Furthermore, we say that a p-adic rep-
resentation V of G is a potentially crystalline representation of G if there exists a
finite field extension L/K in K such that V is a crystalline representation of G',.

Fix a prime element o of Ox and an element s = (™)) € E* such that s(©) = 0.
Then, the series log(sp~!) converges to an element us in B;rR x and the subring
Beris, i [us] of Bar, i depends only on the choice of p. We denote this ring by Bg k-
We can prove that the element u, is transcendental over Be,is, i (see [F1, 4.3.]). Since
we have the inclusion K ®g, Bs,xk — Bar,k, the ring K ®g, Bg, x is endowed
with the action of Gk and the filtration induced by that of Byr x. We extend the
Frobenius ¢ on Beis, ik t0 By, x by putting ¢(us) = pus. Furthermore, define the
Beris, k-derivation N : By g — By x by N(us) = —1. It is easy to verify Ny = poN.
As in the case of Agis k', we have an isomorphism

[ : (p-adic completion of Ayis got(r1,- .., 7e))[1/pyus, 1/t] = By i
where (%) denotes PD-polynomial. From this isomorphism, it follows that
i1 By ot = Bse,x and  p: By g — By gee 0 730
are G gpe-equivariant homomorphisms and the composition

poi: Bst,KPf — Bst,K - Bst,KPf
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is identity. By imitating the result [Br2, Proposition 2.50.], we can show that we have
a canonical isomorphism (Bg, k)% = K as follows.

LEMMA 2.1. We have (Frac By )% = K.

Proof. From the map K ®g, Bst, k — Bdr,k, We obtain a G g-equivariant injec-
tion K ®g, Frac Bg, xk — Frac Bygr, i by localization. It follows that we have an injec-
tion K ®f, (Frac By i )95 < (Frac Bar i )“%. Since we have (Frac Byr )°% = K,
we get dimg, (Frac By, x )¢x < 1 and thus (Frac BSt’K)GK = Kq. O

PROPOSITION 2.2. We have (Bg k)% = K.
Proof. We have Ko C (B i)9% C (Frac By, k)% = K. O

Thus, for a p-adic representation V' of Gk, Ds; x(V) = (Bst,x ®q, V)Gr s
naturally a Ky-vector space endowed with a Frobenius operator and a filtration after
extending the scalars to K. We say that a p-adic representation V of G is a semi-
stable representation of G g if we have

dimg, V' = dimg, Dyt i (V).

Since (B, i )¥ is the field Ko (Proposition 2.2.) and we have (Frac By )95 = Ko
(Lemma 2.1.), it follows from [Br2, Proposition 3.3.] that we always have dimg,V >
dimg, Dst, (V). Furthermore, we say that a p-adic representation V' of Gk is a
potentially semi-stable representation of G if there exists a finite field extension
L/K in K such that V is a semi-stable representation of G7,.

3. The theory of p-adic differential modules. In this section, we shall re-
view the theory of p-adic differential modules which plays an important role in this
article. First, let us fix the notations. Let K be a complete discrete valuation field of
characteristic 0 with residue field & of characteristic p > 0 such that [k : k] = p® < 00
and V be a p-adic representation of G . Define K®9) and KPf as in Introduction and
Subsection 2.2. Put K& = U5 K®9 (¢,m) (resp. KB = Uy,50KP ((ym)) where Cym

denotes a primitive p™-th root of unity in K (resp. KPf) such that ({ym+1)P = (pm.

Let f{gg denote the p-adic completion of K2f. These fields Kf,gf), KPf and f{gg depend
on the choice of a lift of a p-basis of k£ in O . Then, we have the following inclusions

K®Y ¢ KPf c kP

Let H denote the kernel of the cyclotomic character x : Ggpr — Zy. Then, the Galois
group H is isomorphic to the subgroup Gal(f/Kégf)) of Gk. Define 'y = Gx/H.
Let I'y denote the subgroup Gal(Kégf)/K(Pf)) (2 Ggoi/H) of . Let I'; (1 <i<e)
be the subgroup of Ik such that actions of 3; € I'; (1 < i < e) satisfy 8;((om) = (pm
and 51-(b;/p”) = b;/p” (¢ # j) and define the homomorphism ¢; : I'; — Z, such that
we have ﬁz(bl1 /p m) = b; /p mQ ci(Bi) Then, the homomorphism ¢; defines an isomorphism
I'; >~ Z,, of profinite groups. With this, we can see that there exist isomorphisms of
profinite groups

FK ~ FO X (@leI‘i) ~ FO X Zgae.
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3.1. Review of the classical theory. In this subsection, we will give the defi-
nitions of p-adic differential modules Dsen(V), Dpyi(V), D1(V) and D7 (V) which
are obtained by Sen, Brinon, Fontaine and Andreatta-Brinon ([S], [Brl], [F2], [A-B]).
The modules Dgen(V) and D (V) are obtained when V is a p-adic representation
of Gal(L/L) where L is a complete discrete valuation field of characteristic 0 with
perfect residue field of characteristic p > 0 and we choose an algebraic closure L of L.
However, for simplicity, we will state the results in the case L = KPf.

3.1.1. The module Dgc, (V). In the article [S], Sen shows that, for a p-adic
representation V' of Ggopt, the f(gg—vector space (C, ®q, V)H has dimension d =
dimg, V' and the union of the finite dimensional K¥-subspaces of (C, ®g, V) stable
under Ty (~ Ggor/H) is a K2f-vector space of dimension d stable under I'y (called
Dgen(V)). We have C, ® got Dsen(V) = C, ®q, V' and the natural map f(gg ® gor
Dsen(V) = (C, ®g, V)# is an isomorphism. Furthermore, if v € T'g is close enough
to 1, then the series of operators on Dgepn (V)

log(x(7y))  log(x(v k>1

log(7) 1 (1—)*
»22

converges to a KP!-linear operator VO . Dgen(V) = Dgen(V) and does not depend
on the choice of ~.

3.1.2. The module Dg,;(V). In the article [Brl], Brinon generalizes Sen’s work
above. For a p-adic representation V' of G, he shows that the union of the finite
dimensional Kéopf)—subspaces of (C, ®q, V)H stable under 'k is a Kégf)—vector space

of dimension d stable under I' (we call it Dp,;(V)). We have C, e Dpn(V) =
C,®q, V and the natural map K&f ® o0 Deii(V) = (Cp®q, V)H is an isomorphism.
As in the case of Dgen(V), the Kégf)—vector space Dp,i(V) is endowed with the action
of the K2V linear operator V(©) = 80 if ~ T is close enough to 1. In addition

— log(x(v)
to this operator V(9 if B; € T; is close enough to 1, then the series of operators on

Dg,i(V)

log(B8i) 1 (1—p8)F
ci(Bi) ci(Bi) kZZI k

converges to a Kégf)—linear operator V@ : Dg,i(V) = Dgyi(V) and does not depend
on the choice of 3;.

3.1.3. The module DL (V). In the article [F2], by using Sen’s theory, Fontaine
shows that, for a p-adic representation V' of G gyr, the union of K2[[¢]]-submodules of
finite type of (B;{R,Kpf ®q, V) stable under I'g (~ G ot /H) is a free KE![[t]]-module
of rank d stable under Ty (called D (V)). We have BIR,Kpf ® gewt[14] D(V) =
B;‘Rprf ®q, V and the natural map (B;RﬁKpf)H i) DI(V) — (B;’PMKpf ®q, V)#
is an isomorphism. Furthermore, if v € I'y is close enough to 1, then the series of
operators on DT.(V)

log(x(7))  log(x(v k>1

log(7) 1 (1—y)*
))Z
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converges to a K2-linear derivation V(¥ : DL.(V) — DZL.(V) and does not depend
on the choice of . Note that this Dj;.(V) is a little different from one which the
author used by the same symbol in the article [M].

3.1.4. The module D/ (V). In the article [A-B], Andreatta and Brinon gen-
eralize Fontaine’s work above. For a p-adic representation V' of G, they show that

the union of Kégf)[[t,tl, ..., te]]-submodules of finite type of (BdR x ®q, V)H stable
under T'k is a free Kégf)[[uth ..., te]]-module of rank d stable under T'y (we call it

D;ﬁdif(V)). We have BQ'RK ®K<pf>[[ ]l D:dlf(V) = BQ'RK ®q, V and the natural
map (B$R7K)H D@11t De- dlf( ) — (B3, iR ©Q, V)H is an isomorphism. As
in the case of D}(V), the KD [[t,t1,. .., te]]-module DI ,.,(V) is endowed with the
K$Y Jinear derivation V(@ = —260)_ if o ¢ Ty is close enough to 1. In addition

log(x(7))
to this operator V(9 if 8; € T; is close enough to 1, then the series of operators on

D(idif(v)

log(B) 1 3 (1-B)*
ci(Bi) albi) &=k
converges to a K Jinear derivation V(@ : DF (V) — DI (V) and does not
depend on the choice of ;.

3.1.5. Some properties of differential operators. We shall describe the ac-
tions of operators {VW}¢_ on Dg,i(V) and D (V). First, by a standard argument,
we can show that, if z € Dg,i(V) (resp. D ;(V)), we have

v (z) = lim yw) —= and VO () = limg. W
( ) y—1 X(’Y) 1 ( ) Bi—1 Ci(ﬁi)
With this, we can describe the actions of KE"-linear derivations {V®3}_, on the

ring KPP ([t t1,. .. te]] = D:_dif((@p) (here Q,, is equipped with the structure of p-adic
representations of Gk induced by the trivial action of Gk) as

d d
0) =% (1) — ¢+ = <i<
\Y% t 7 and V t ‘ (1<i<e).

We extend naturally actions of Kégf)—linear derivations {V(i)}fzo on Kggf)[[t,tl,
ote]] to KEV[[t,ty,. . t]][t™Y] (C Barx) by putting VO(t~1) = —t~1 and

V@@ =0 (1 < i < e). Furthermore, the bracket [ , | of operators {V()
on Dg,i(V) (vesp. DI ,.(V)) satisfies (see [M, Proposition 3.3.])

VO, vO)=vD (i £0) and [V, VD] =0 (] #0).

3.2. Construction of special elements. In this subsection, we shall intro-
duce some special elements which behave well under the action of p-adic differential
operators.

3.2.1. A special basis of D! (V). We shall construct a special basis
of DI ./(V) over Kégf)[[t,tl,...,te]] which bridges the gap between DZ.(V) and
DT (V) and behaves well under the action of V(?). Note that there is no G-

equivariant injection K < BT AR, fots W€ will sometimes write le'if instead of the

misleading KER[[¢]]. First, let us recall the following result.
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PROPOSITION 3.1. [M, Proposition 4.8.]1 LetV be a p-adic representation of Gk .
IfV is a de Rham representation of G goet, there exists a VO -equivariant isomorphism

of Kégf)[[t, t1,...,t]]-modules

D (V) g @9 KBt t1,.. . t]](ny)  (d = dimg,V, n; € Z).

Next, let us define the K[t t1,...,t]]-submodule X of (B x ®q, V)" by
X =KXttt @ peon ey oy D:_dif(V) If we put D20 (V) = DF L (V)/(t,

t1, ... te)" DY 4i;(V), we have the inclusion KB ® o0 D:d(I?(V) — LElt1, ... te]]/
(t, b1, te)” ®pt D1.:(V) by the theory of Sen. Since both sides have the same

dimension over K. gg the inclusion above actually gives an isomorphism. By taking
the projective limit with respect to r, we obtain a I'g-equivariant isomorphism X =~
Llltr, - tell @+ Dgie(V).

PROPOSITION 3.2. Let V' be a p-adic Tepresentatzon of Gx. If V is a de Rham
representation of G v, there exists a basis {f] j=1 of Ddlf(V) over LL such that

1. {1® f;34 =1 forms a basis of DT ;((V) (C X = Ll[t1, ..., tc]] ®pt Dt:(V))
over K& )[[t,tl, oo tells
2. the action of V(© on {1 ®fj}?:1 is given by VO (1 ® fi) =n;(1® f;) where
the integers n; are those of Proposition 3.1.
Proof. Let {G; }j 1 denote a basis of DJ.(V) over KEI[[t]]. Since DI (V) is
a submodule of X = L1 [[t1,...,t.]] ®p+ D1:(V), any element of DY ,..(V) can be
written as linear combinations of {1®Gj} _, over L1 [[t1,...,t.]]. On the other hand,

fix a basis {F) }] 1 of DF (V) over K& )[[t7t1, ..., tc]] that gives the isomorphism
of Proposition 3.1, that is, V(©) (F;) = n;F; with nj € Z. Then, we can write

d
(31) 1®F]: Z tTlnl"'t;nE(X) Z (m1, ,me)G)

(ma,...,me)ENE k=

(ml 7mP)

where the aj """ are elements of LY. Put f; = Zk 1 ]k %G, € DL (V).
Then, it follows that we have V() (f;) = n;f;. On the other hand, we have {f; =
E};l:l in Dgen(V) where — denotes the reduction modulo (¢,t1,...,t.)X. Since
{E}?Zl forms a basis of Dgen (V') over K}j(f, the lift {1® f; };-l:l of {fj— = E}?:l inX

forms a basis of X over Kpf[[t t1,...,tc]]. Furthermore, since {f; };-1:1 are elements of
DE(V), it follows that {f;}4 . 1 also forms a basis of D1..(V)) over KE![[t]]. Thus, it
remains to show that {1 ® f;}% =1 forms a basis of DT (V) over K& ([t t1, ..., el
Put X, = X/(t,t1,...,t.)"X. Let Y, denote the Kggf)[[t, t1,...,tc]]-submodule of X,
generated by the finite set {3 ¢_, a (ml’ ) G} j oy <r C (B;{PMKpf ®q, V)H.
Then, it follows that this finitely generated K pf)[[t t1,...,tc]]-module Y, is stable

under the action of I'x by (3.1) and thus is contalned in D:d(I?( V) by definition. On
the other hand, Y, contains the elements {1 ® fj j=1 which are linearly independent

over KPH[[t, t1,...,t.]]/(t, t1,...,t.)". Thus, both of Y, and D:d(i?(V) have the same

f) +(r)

dimension over k&Y and we get the equality Y, = D/ (V). Therefore, by taking
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the projective limit with respect to r, we conclude that {1® f; };-l:l (C @T Y,.) forms
a basis of D (V) over Kégf)[[t, t1,...,t]]. O
~LEMMA 3.3. By restricting V@ D (V) = DF (V) (0 < i <e), we obtain
V& DE (V)N (B;“prf ®g, V)" = D 4(V) N (B$R7Kpf ®q, V) in (Big k ®q,
V),
Proof. For simplicity, put Li; = (B;R o) Lig (V) = (B Kpf ®q, V)H and

Z = (Big.x ®q, V). Let mar denote the maximal ideal (t,11,...,t.) of (Byg ;)"

Then, we have

Z=1lim,Z/mgrZ O Lip(V)=1lm,Lig(V)/(mgrZ N Lix(V))
U

D} gV =lim., D 45s(V)/(mgrZ 0 DL gi¢(V)).

Define W as the L1 N Kégf)[[t,tl, ..., te]]-submodule of Z generated by L (V)N
D (V). If we put W = Jm W, where W, denotes W/(mirZ N W), we have
LIx(V) D W and D (V) D W. Thus, we obtain W = W by deﬁnltlon. Therefore,
it suffices to show that W, is stable under the actions of {V"}{_,. Fix a basis
{gj}h 1 of DY (V) /(m5rZ 0 DE (V) over K&, Then, there exists a finite field
extension L/K in Kégf) such that 69;-‘:1L -g; is stable by the action of 'y = G /H =
Gal(Kégf) /K). Thus, there exists an open subgroup I'; of T'; such that, for all v € T’y
(resp. B; € T'), the action of v (resp. ;) on @?:1]4 - g; is L-linear. Then, the series

log(~ i ’Yi (resp. log(B;) = i 71
k=1

k=1

converges to an endomorphism of @9?:1[4 - g;. These actions on @;-L:lL - g; can be
extended to those on DF ..(V)/(m4zZ N DY (V) by K89 Jinearity. Since W, is
contained in D} .(V)/(mirZ N DI ,(V)) and stable under the action of I'f, it
follows that W, is equipped with actions of V(®) = % and V() = % ]

3.2.2. Ecri&Kpf(V) and ﬁst’Kpf(V). In this subsection, for simplicity, we shall
denote Ecris7Kpf = (BcriS7Kpf)H and Ecri&Kpf(V) = (Beris, k7t ®Q, V) (resp. ESmKPf —
(Bst,KPf)H and 5st,KPf(V) = (Bg, kot ®q, V).

PROPOSITION 3.4. (¢f. Proposition 3.2.) Let V be a p-adic representation of
Gi. If V is a crystalline (resp. semi-stable) representation of Ggwr, there exists a
basis {gj};l 1 of INDCUS st (V) over ECHSprf (resp. ﬁst)Kpf(V) over Est’Kpf) such that

1. {g;}¢ =1 forms a basis of D} 4, (V )[l/t] over K(pf)[[t t1, ..., te)][1/1],
2. {gj} _, is contained in Ker (V(©) (C DI . .(V)[1/1]).
Proof. Since the semi-stable representation case is similar, we shall consider only

the crystalline representation case. Since V' i 1s also a de Rham representation of G gpt,
by Proposmon 3.2, there exists a basis {f;}4 =1 of DZL:(V) over KEI[[t]] such that (1)

{1 f;} G-, forms a basis of D (V) over K®f )[[t,tl, ~t]land (2) VO (1 ® f) =
n;(1® f;) with n; € Z. Then, since the action of V() on {f;t~" }‘jzl is trivial and
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{ft=m };.l:l is contained in D;(V)[1/t] C (Bgr ot ® V), there exists a finite field
extension LP'/KPf in KPf such that {f;¢~" }?:1 forms a basis of Dyg_ret(V) over LP'.
If K = Ko(a) and LPf = KPY(B) for some B = (,n € K&, there exists an element
a € K& such that Ko(a, 8) = Ko(a). Then, we have LPf = KM (a, B) = Kb'(a) =
Lgf(a). Since V' is also a crystalline representation of G'rer, we have Dgg rer(V) =
Lgf(a) ® ppr D, yis, et (V). Thus, we can write

6—1
(3.2) fit7m =" a"@ gk (gjk € Devisroe(V), 6 = [LE'(a) : LY).
k=0

We can extract a basis of D, r0t(V) over Lgf from the family {g;r};,: denote it by
{g; };-l:l. Since we have Biyig kot @ ot Deyis, 1ot (V) o Beyis, ot ®q, V, by taking the in-
’ 0 ) ) P

variant part by H, it follows that {g; }?:1 forms a basis of De,is gt (V) over Beyig got-
Furthermore, by (3.2), the action of V() on {gj}‘j:1 is trivial. Thus, it remains
to show that {gj}?:1 forms a basis of DI ..(V)[1/t] over Kégf)[[t,tl,...,te]][l/t].
First, let Z, denote the union of Kc(,gf)[[t,tl,...,te]}—subrnodules of finite type of
(Bir x ®a, V) /(t,t1, ... te)"(Big x ®q, V) that are stable under the action of
an open subgroup I' of I'x. Since we have the inclusion D:_(’i(irf)(V) — Z, by defini-
tion and both sides have the same dimension over Kégf)7 we have Di;j(i?(V) = Z,.
Thus, by taking the projective limit with respect to r, we obtain Df (V) = fm 7.
Choose integers {mr}1<j<d, 0<k<s—1 C Z such that we have

"% a* @ gjphi<j<d, o<k<s—1 C (Bip x ©g, V)T

Let Z denote the K& [[t,t1,- ., te]]-submodule of (BIR,K ®q, V) generated by the
finite set {t"*a* ® gikti<j<d, o<k<s—1. Take an open subgroup I' of I' such that
the action of I on the finite set {a*}_} is trivial. Then it follows from (3.2) that this
finitely generated K% [[t,t1,...,te]]-module Z is stable under the action of I" and thus
is contained in D ;;(V) by the preceding argument. In particular, it follows that the
elements {gj}}i:l are contained in D ..(V)[1/t]. Furthermore, since {gj}?zl forms a
basis of Byr, i ®q, V over Byr,k, it is, in particular, linearly independent over Bygr, i
in Bar, ik ®q, V. Take m; € Z such that we have

{g; = tmjgj}?zl C DF yie(V).

Let L(V) be the submodule of B;R’K ®q, V generated by {g}}?zl over BIR’K and

let D(V) denote the union of Kégf)[[t, t1,...,te|]-submodules of finite type of L(V)#
stable under I'g. Since {g/ };l:l(c D(V)) forms a basis of L(V) over B(J{R,K, it follows

that {g;}?:l also forms a basis of D(V') over Kégf)[[t,th ..., te]] (see [A-B, Lemma
5.10]). For any element x € D .((V)[1/], one can see that there exists an integer m €
Z such that we have ™z € D(V'). Thus, t™ 2 can be written as linear combinations of

{gé}?zl over K2 ([t t1, ..., te]]- It follows that {gj}?:1 forms a basis of D ..(V)[1/]

over KEV ([t t1,... t])[1/¢]. O

From now on, we shall keep the notation and assumptions of Proposition 3.4. The
following result is proved in Proposition 3.5 and Corollary 3.6 of [M].
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ProposITION 3.5. The action of {V(i)}jz1 on the basis {gj};-lzl is given by
(Ve o (W(eD)ke (g)) = ghitthe Zld:l kg1 where the ¢jpi (k= (k1,...,ke))
are elements of Kégf)[[t,tl, <y te]] such that VO (c; 1) = 0.

PROPOSITION 3.6. Let V' be a p-adic representation of Gx. If V is a crystalline
(resp. semi-stable) representation of G gvt, we have

(v(l))kl e (V(E))kc (gj) € Bcris,KPf(V) (T‘&Sp. € Bst,KPf(V))

for all (k;)1<i<e € N® and 1 < j <d.

Proof. Since the semi-stable representation case is similar, we shall consider only
the crystalline representation case. It is enough to prove that if g € DT .(V)[1/t]

is such that g € DcriS}Kpf(V) and VO (g) = 0, then (V))k1...(V()ke(g) €
Deyis kee(V) for all (k;)i1<i<e € N Since the proof of the general case is exactly
the same (only with heavier notations), we just show that V(*(g) € ﬁcri&]{pf(V) for

1 <i <e. First, for r € Nyg and h € D:ﬁdif(V)7 there exists an open subgroup FZ}-L’T
of I'; such that we have 3;(h) = exp(c;(8;) VW) (h) mod (t,t1,...,t.)" DI (V) for
all B; € T™" (see [A-B] and [F2]). Thus, if we take M € N such that tMg € DF (W),

we obtain

63) Ay =g+ GO gy o GO gy o

mod (t,t1,...,t.)" D} 4;(V) for all ; € I’EMQ’T. Note that this series is a finite sum
mod (t,t1,...,t.)" D} (V) by Proposition 3.5. Thus, there exists L € N such that
we have (V@)L (tMg) # 0 and (VO)EF(tMg) = 0 mod (t,t1,...,te)" DF (V).
On the other hand, since we have (V)i (g) € (Byg x»t ®g, V) by Lemma 3.3
and VO (L(V®)J(g)) = 0 by Proposition 3.5, there exists a finite field extension
MP/KPY in KPP such that {t—lj(V(i))j(g)}]LZO is contained in Dgg pree(V). Write
MPE = Mp f(b). Then, since V is also a crystalline representation of G pt, we have
the equality Dgg aet(V) = M(]))f(b) @ et D.yis,pret (V). Thus, we can write

+
e-
+
E

(34) (V( )J Z b ® Aj5mndn (aijmn € Ecris,KPf)'

m,n

By (3.3) and (3.4), we obtain

= (ci(B)

(35)  BitMg) =t 30" @ (3 amat g (mod (1t te)),
.l

m,n j=

On the other hand, since ﬁcris’ ot (V) is stable under the action of FZMQ " and {6,
(6 = [MPf: Mpf]) is linearly independent over Bg;s kvt, the terms of the RHS of (3.5)

have to be 0 for m # 0. Then, for m # 0, we have Z j, @ijmnt’ = 0 for A in an
open subgroup of Z,: this implies that a;jm, = 0 for m # 0. In particular, we obtain

vi(g) e f?cris,Kpf(V) (i £ 0) by (3.4). O



CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS 155

4. Proof of the main theorem. In this section, we will give proofs only in the
crystalline representation case since the semi-stable representation case is similar.

PROPOSITION 4.1. We have the following implications.
1. If V is a crystalline representation of Gk, then it is a crystalline represen-
tation of Ggpt.
2. If V is a semi-stable representation of G, then it is a semi-stable represen-
tation of G gpt.

Proof. Since V is a crystalline representation of G, there exists a G g-equivariant
isomorphism of Beyis, x-modules

(4.1) Beris,k ®g, V 2 (Baris,x)*  (d = dimg, V).

By tensoring (4.1) by Beyis gt over Beis, ik (which is induced by the G gpe-equivariant
surjection p : Beris, ik = Beyis, kot @ 73 ++ 0), we obtain a G gpe-equivariant isomorphism
of By,is, grt-modules

d
Bcris,Kpf ®Qp V (Bcris7KPf) .

This means that V is a crystalline representation of Gps. O

Proof of Theorem 1.1. It remains to show that, if V' is a p-adic representation
of Gk whose restriction to Gpr is crystalline, then V' is a potentially crystalline
representation of Gx. Since V' is a crystalline representation of G g, there exists a

basis {g; };-l:l of 5cr157 xot(V) over Ecri& ot Which satisfies the properties in Proposition

3.4. From this {gj};-izl, for all finite extension L/K in K, we shall construct Lgf-
linearly independent elements {fj}?:1 in Beis,x ®g, V such that V(i)(fj) =0(0<

Vi <eand 1 <Vj <d).

(A) Construction of {fj};l:l in Beis x ®q, V. By Propositions 3.5 and 3.6, we
have (V(D)kL ... (V(e))ke (g.) = ghitthe Zle cjrig where the ¢ (k= (k1, ..., ke))
are elements of BX._ .. such that V(®)(c;5) = 0. On the other hand, for N € N, we
obtain, 7

d

(4.2) V(YO (V)R (gy)) = (pr)frrt e Y T pN It RN (60 g)
=1

where the N1 (c;) are elements of BY. ¢ such that V() (oN*+1(c;p)) = 0. Let

is,
U; denote the matrix which represents the action of V(¥ /¢ (1 < i < e) with respect to
the basis {gj}?:1 and take N large enough such that we have p™VU; € Ma(Acyis, kot)

for all 1 < i < e. On the other hand, by applying the same method as in Propo-

sition 3.6 to the entries of U;, we have y(pNUi) € Md(écris’Kpf). Since we have

V(O)(y(pNUi)) = 0, this means that we obtain #(pNUi) € My(LB") for a finite

extension L/K in K and, in particular, @(pNUi) € Md(BCti&Kpf) (1 <i,j<e.

Furthermore, since V9 is the form ¢-2- on Kégf)[[t, t1,...,t.]] and viﬂ = - does not
J J
decrease the p-adic valuation of an element of K" [[t,t1,- - te]]NAcis, kot (C Bar,x)s

we obtain @(pNUi) € Mg(Aeis,get) (1 < 4,5 < e). Thus, it follows that we
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have pNittke)e, e A gor and pNEHtke) Nt (e ) € Ay gor. Define
{fj};‘lzl C Bcris,K ®Qp v by

tkl .. .tlge
fi= 3t e T (V) (VO ()
0<k1,....ke €

where t; = log([b;]/b;) denotes the element of Ker (ff,) (C Acris.ic). Note that this
series converges in Beis, k ®q, V' for the p-adic topology by (4.2) and thus f; actually
defines an element of Beyis, x ®g, V. Then, it is easy to verify that we have V() (f;) = 0
for all 1 < i <eand 1 < j < d by using the Leibniz rule. Furthermore, by using
(4.2) and the fact V(© (N +1(g;)) = 0, we can deduce that we have V() (f;) = 0 for
all 1 <j <d.

B) { -}C-i: C Beuis.xk ®p. V is linearly independent over LPf. The homo-
jfi=1 , Qp y P 0
morphism p : Beris,k — Beyis kot induces

Bcris,K ®q, V — Bcris7Kpf ®q, V. fj > (pNJrl(gj).

Since {gj}?:1 forms a basis of Ecris7Kpf(V) over Ecris7Kpf and satisfies V(0 (g;) =
0, there exists a finite field extension M/K in K such that {gj};’-l:1 forms a basis
of Deyis arot (V) over MP". Furthermore, since ¢ : Do yis ot (V) = Deyig pet (V) s
bijective, {@N“(gj)}?:l also forms a basis of D5 pret (V) over Mé’f. Thus, it follows

that { fj};l:l is linearly independent over Lgf in Beris,x ®q, V for all finite extension
L/K in K.

(C) Conclusion. The maps log(y) and log(8;) (1 < i < e) act trivially on the
Ky-vector space generated by {fj}‘;:1 (because VO (f;) = 0 and V@ (f;) = 0 for all
1<i<eand1l<j<d). This means that I'x acts on this Ky-vector space via finite
quotient and there exists a finite field extension L/K in K such that {f; }?:1 forms a

basis of Deyis 1,(V) over Ly (C LSf)~ a

REMARK 4.2. Since the proof is carried out by using the differential operators,
it is not obvious whether we can get rid of the potentiality from the statement of the
main theorem.

5. The p-adic monodromy theorem of Fontaine in the imperfect residue
field case. In this section, we generalize the p-adic monodromy theorem of Fontaine
to the imperfect residue field case. Now, we recall the results of [Be] and [M].

THEOREM 5.1. [Be, Corollary 5.22.]1 Let L be a complete discrete valuation field
of characteristic 0 with perfect residue field of characteristic p > 0 and V be a p-adic
representation of Gr. Then, V is a de Rham representation of G, if and only if V
is a potentially semi-stable representation of Gy, .

THEOREM 5.2. [M, Theorem 4.10.]1 Let K be a complete discrete valuation field
of characteristic 0 with residue field k of characteristic p > 0 such that [k : kP] =
p¢ < 0o and V be a p-adic representation of Gr. Let KPf be the field extension of K
defined as before. Then, V is a de Rham representation of G if and only if V is a
de Rham representation of G got.
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Since KPf has perfect residue field, we can apply Theorem 5.1 to the restriction
of V to G-

Proof of Corollary 1.2.. V is a de Rham representation of Gk if and only if
V is a de Rham representation of G gt by Theorem 5.2. Next, V' is a de Rham
representation of Gt if and only if V' is a potentially semi-stable representation of
G v by Theorem 5.1. Finally, V is a potentially semi-stable representation of G gopr
if and only if V' is a potentially semi-stable representation of Gx by Theorem 1.1. 0
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