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CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS IN THE
IMPERFECT RESIDUE FIELD CASE∗

KAZUMA MORITA†

Abstract. Let K be a p-adic local field with residue field k such that [k : kp] = pe < ∞
and V be a p-adic representation of Gal(K/K). Then, by using the theory of p-adic differential
modules, we show that V is a potentially crystalline (resp. potentially semi-stable) representation of
Gal(K/K) if and only if V is a potentially crystalline (resp. potentially semi-stable) representation of

Gal(Kpf/Kpf) where Kpf/K is a certain p-adic local field whose residue field is the smallest perfect
field kpf containing k. As an application, we prove the p-adic monodromy theorem of Fontaine in
the imperfect residue field case.
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1. Introduction. Let K be a complete discrete valuation field of characteristic
0 with residue field k of characteristic p > 0 such that [k : kp] = pe <∞. Choose an
algebraic closure K of K and put GK = Gal(K/K). By a p-adic representation of
GK , we mean a finite dimensional vector space V over Qp endowed with a continuous
action of GK . As in the perfect residue field case, we can define the imperfect residue
field versions of Bcris and Bst and, by using these rings, crystalline and semi-stable
representations of GK .

Now, we shall state the main results of this article. Let us fix some notations.
Fix a lift (bi)1≤i≤e of a p-basis of k in OK (the ring of integers of K) and for each

m ≥ 1, fix a pm-th root b
1/pm

i of bi in K satisfying (b
1/pm+1

i )p = b
1/pm

i . Put K(pf) =

∪m≥0K(b
1/pm

i , 1 ≤ i ≤ e) and let Kpf be the p-adic completion of K(pf). These

fields depend on the choice of the sequences (b
1/pm

i )m∈N. Note that, if V is a p-
adic representation of GK , it can be restricted to a p-adic representation of GKpf =
Gal(Kpf/Kpf) where we choose an algebraic closure Kpf of Kpf containing K. Since
Kpf is a complete discrete valuation field with perfect residue field, we can apply
the classical theory (i.e. in the perfect residue field case) to p-adic representations of
GKpf . Our main results are the following.

Theorem 1.1. With notation as above, we have the following equivalences.
1. V is a potentially crystalline representation of GK if and only if V is a po-

tentially crystalline representation of GKpf ,
2. V is a potentially semi-stable representation of GK if and only if V is a

potentially semi-stable representation of GKpf .

Corollary 1.2. Keep the notation as in Theorem 1.1. Then, V is a de Rham
representation of GK if and only if V is a potentially semi-stable representation of
GK .

This paper is organized as follows. In Section 2, we shall review the definitions and
basic known facts on crystalline and semi-stable representations, first in the perfect
residue field case and then in the imperfect residue field case. In Section 3, first we
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shall review the theory of p-adic differential modules and then shall introduce some
special elements which behave well under the action of p-adic differential operators.
In Section 4, by using these elements, we shall prove the main theorem. In Section
5, as an application, we deduce the p-adic monodromy theorem of Fontaine in the
imperfect residue field case (Corollary 1.2) by using results of Berger [Be] and author
[M].
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2. Review of crystalline and semi-stable representations.

2.1. Crystalline and semi-stable representations in the perfect residue
field case. (See [F1] for details.) Let K be a complete discrete valuation field of char-
acteristic 0 with perfect residue field k of characteristic p > 0. Put K0 = Frac(W (k))
where W denotes the ring of Witt vectors with coefficients in k. Choose an algebraic
closure K of K and consider its p-adic completion Cp. Put

Ẽ = lim←−x7→xpCp = {(x(0), x(1), ...) | (x(i+1))p = x(i), x(i) ∈ Cp}.

For two elements x = (x(i)) and y = (y(i)) of Ẽ, define their sum and product by

(x + y)(i) = limj→∞(x(i+j) + y(i+j))p
j

and (xy)(i) = x(i)y(i). Let ϵ = (ϵ(n)) denote

an element of Ẽ such that ϵ(0) = 1 and ϵ(1) ̸= 1. Then, Ẽ is a perfect field of
characteristic p > 0 and is the completion of an algebraic closure of k((ϵ − 1)) for
the valuation defined by vE(x) = vp(x

(0)) where vp denotes the p-adic valuation of

Cp normalized by vp(p) = 1. The field Ẽ is equipped with an action of a Frobenius
σ and a continuous action of the Galois group GK = Gal(K/K) with respect to the

topology defined by the valuation vE. Define Ẽ+ to be the ring of integers for this
valuation. Put Ã+ = W (Ẽ+) and B̃+ = Ã+[1/p] = {

∑
k≫−∞ pk[xk] | xk ∈ Ẽ+}

where [∗] denotes the Teichmüller lift of ∗ ∈ Ẽ+. This ring B̃+ is equipped with a
surjective homomorphism

θ : B̃+ � Cp :
∑

pk[xk] 7→
∑

pkx
(0)
k .

Let p̃ denote (p(n)) ∈ Ẽ+ such that p(0) = p. Then, Ker (θ) is the principal ideal
generated by ω = [p̃]−p . The ring B+

dR,K is defined to be the Ker (θ)-adic completion

of B̃+

B+
dR,K = lim←−n≥0B̃+/(Ker (θ)n).

This is a discrete valuation ring and t = log([ϵ]) which converges in B+
dR,K is a

generator of the maximal ideal. Put BdR,K = B+
dR,K [1/t]. The ring BdR,K becomes a
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field and is equipped with an action of the Galois group GK and a filtration defined
by FiliBdR,K = tiB+

dR,K (i ∈ Z). Then, (BdR,K)GK is canonically isomorphic to

K. Thus, for a p-adic representation V of GK , DdR,K(V ) = (BdR,K ⊗Qp V )GK is
naturally a K-vector space. We say that a p-adic representation V of GK is a de
Rham representation of GK if we have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).

Let θ : Ã+ → OCp be the natural homomorphism where OCp denotes the ring of
integers of Cp. Define the ring Acris,K to be the p-adic completion of the PD-envelope
of Ker (θ) compatible with the canonical PD-envelope over the ideal generated by p.
Put B+

cris,K = Acris,K [1/p] and Bcris,K = B+
cris,K [1/t]. These rings are K0-algebras

endowed with an action of GK and an action of Frobenius φ which commutes with
the action of GK . Furthermore, since we have the inclusion K ⊗K0 Bcris,K ↪→ BdR,K ,
the ring K⊗K0

Bcris,K is endowed with the filtration induced by that of BdR,K . Then,
(Bcris,K)GK is canonically isomorphic to K0. Thus, for a p-adic representation V of
GK , Dcris,K(V ) = (Bcris,K ⊗Qp V )GK is naturally a K0-vector space endowed with a
Frobenius operator and a filtration after extending the scalars to K. We say that a
p-adic representation V of GK is a crystalline representation of GK if we have

dimQpV = dimK0Dcris,K(V ) (we always have dimQpV ≥ dimK0Dcris,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially crystalline
representation of GK if there exists a finite field extension L/K in K such that V is
a crystalline representation of GL.

Fix a prime element ℘ of OK (the ring of integers of K) and an element s =

(s(n)) ∈ Ẽ+ such that s(0) = ℘. Then, the series log(s℘−1) converges to an element
us in B+

dR,K and the subring Bcris,K [us] of BdR,K depends only on the choice of ℘.
We denote this ring by Bst,K . Since we have the inclusion K ⊗K0 Bst,K ↪→ BdR,K ,
the ring K ⊗K0 Bst,K is endowed with the action of GK and the filtration induced
by that of BdR,K . The element us is transcendental over Bcris,K and we extend the
Frobenius φ on Bcris,K to Bst,K by putting φ(us) = pus. Furthermore, define the
Bcris,K-derivation N : Bst,K → Bst,K by N(us) = −1. It is easy to verify Nφ = pφN .
As in the case of Bcris,K , we have (Bst,K)GK = K0. Thus, for a p-adic representation
V of GK , Dst,K(V ) = (Bst,K ⊗Qp V )GK is naturally a K0-vector space endowed with
a Frobenius operator and a filtration after extending the scalars to K. We say that a
p-adic representation V of GK is a semi-stable representation of GK if we have

dimQpV = dimK0Dst,K(V ) (we always have dimQpV ≥ dimK0Dst,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially semi-stable
representation of GK if there exists a finite field extension L/K in K such that V is
a semi-stable representation of GL.

2.2. Crystalline and semi-stable representations in the imperfect
residue field case. Let K be a complete discrete valuation field of characteristic
0 with residue field k of characteristic p > 0 such that [k : kp] = pe < ∞. Here, we
do not assume that the residue field k is perfect. Choose an algebraic closure K of K
and put GK = Gal(K/K). As in Introduction, fix a lift (bi)1≤i≤e of a p-basis of k in

OK (the ring of integers of K) and for each m ≥ 1, fix a pm-th root b
1/pm

i of bi in K

satisfying (b
1/pm+1

i )p = b
1/pm

i . Put

K(pf) = ∪m≥0K(b
1/pm

i , 1 ≤ i ≤ e) and Kpf = p-adic completion of K(pf).
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These fields depend on the choice of a lift of a p-basis of k in OK . Let kpf denote
the perfect residue field of Kpf and put Kpf

0 = Frac(W (kpf)). Define K0 to be K0 =

K ∩Kpf
0 . Then, K0 has the residue field k and the extension K/K0 is finite. If k is

perfect (that is e = 0), the field K0 coincides with Kpf
0 . Furthermore, since K0 is a

complete p-ring, it is isomorphic to the field Frac(W (k)) and thus is endowed with
an action of Frobenius σ. Since K(pf) is a Henselian discrete valuation field, we have
an isomorphism GKpf = Gal(Kpf/Kpf) ≃ GK(pf) = Gal(K/K(pf)) (⊂ GK) where we

choose an algebraic closure Kpf of Kpf containing K. With this isomorphism, we
identify GKpf with a subgroup of GK . We have a bijective map from the set of finite
extensions of K(pf) contained in K to the set of finite extensions of Kpf contained in
Kpf defined by L→ LKpf. Furthermore, LKpf is the p-adic completion of L. Hence,
we have an isomorphism of rings

OK/pnOK ≃ O
Kpf/p

nO
Kpf

where OK and O
Kpf denote the rings of integers of K and Kpf. Thus, the p-adic

completion of K is isomorphic to the p-adic completion of Kpf, which we will write
Cp. As in Subsection 2.1, construct the rings Ẽ+ and Ã+ = W (Ẽ+) from this Cp. Put

OK0 = OK ∩W (kpf). Let α : OK ⊗OK0
Ã+ � OK/pOK be the natural surjection and

define Ã+
(K) to be Ã+

(K) = lim←−n≥0(OK ⊗OK0
Ã+)/(Ker (α))n. Let θK : Ã+

(K) ⊗Zp Qp �
Cp be the natural extension of θ : Ã+[1/p] � Cp. Define B+

dR,K to be the Ker (θK)-

adic completion of Ã+
(K) ⊗Zp Qp

B+
dR,K = lim←−n≥0(Ã+

(K) ⊗Zp Qp)/(Ker (θK)n).

This is a K-algebra equipped with an action of the Galois group GK . Let b̃i denote

(b
(n)
i ) ∈ Ẽ+ such that b

(0)
i = bi and then the series which defines log([b̃i]/bi) converges

to an element ti in B+
dR,K . Then, the ring B+

dR,K becomes a local ring with the

maximal ideal mdR = (t, t1, . . . , te). Define a filtration on B+
dR,K by filiB+

dR,K = mi
dR.

Then, the homomorphism

f : B+
dR,Kpf [[t1, . . . , te]]→ B+

dR,K

is an isomorphism of filtered algebras (see [Br2], Proposition 2.9). From this isomor-
phism, it follows that

i : B+
dR,Kpf ↪→ B+

dR,K and p : B+
dR,K � B+

dR,Kpf : ti 7→ 0

are GKpf-equivariant homomorphisms and the composition

p ◦ i : B+
dR,Kpf ↪→ B+

dR,K � B+
dR,Kpf

is an identity. Put BdR,K = B+
dR,K [1/t]. Then, K is canonically embedded in BdR,K

and we have a canonical isomorphism (BdR,K)GK = K. Thus, for a p-adic represen-
tation V of GK , DdR,K(V ) = (BdR,K ⊗Qp V )GK is naturally a K-vector space. We
say that a p-adic representation V of GK is a de Rham representation of GK if we
have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).
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Let θK0 : OK0 ⊗Z Ã+ → OCp denote the natural extension of θ : Ã+ → OCp where
OK0 (resp. OCp) denotes the ring of integers of K0 (resp. Cp). Define Acris,K to be
the p-adic completion of the PD-envelope of Ker (θK0) compatible with the canonical
PD-envelope over the ideal generated by p. Put B+

cris,K = Acris,K [1/p] and Bcris,K =

B+
cris,K [1/t]. The ring Bcris,K is the K0-algebra endowed with an action of GK and

an action of Frobenius φ which commutes with the action of GK . Furthermore, since
we have the inclusion K ⊗K0 Bcris,K ↪→ BdR,K (see [Br2, Proposition 2.47.]), the ring
K⊗K0 Bcris,K is endowed with the filtration induced by that of BdR,K . For 1 ≤ i ≤ e,

put ri = [̃bi] − bi ∈ OK0 ⊗Z Ã+. Then, we have ri ∈ Ker (θK0) for 1 ≤ i ≤ e and an
isomorphism

f : p-adic completion of Acris,Kpf⟨r1, . . . , re⟩ → Acris,K

where ⟨∗⟩ denotes PD-polynomial (see [Br2, Proposition 2.39.]). From this isomor-
phism, it follows that

i : Bcris,Kpf ↪→ Bcris,K and p : Bcris,K � Bcris,Kpf : ri 7→ 0

are GKpf-equivariant homomorphisms and the composition

p ◦ i : Bcris,Kpf ↪→ Bcris,K � Bcris,Kpf

is identity. By [Br2, Proposition 2.50.], we have a canonical isomorphism (Bcris,K)GK

= K0. Thus, for a p-adic representation V of GK , Dcris,K(V ) = (Bcris,K ⊗Qp V )GK

is naturally a K0-vector space endowed with a Frobenius operator and a filtration
after extending the scalars to K. We say that a p-adic representation V of GK is a
crystalline representation of GK if we have

dimQpV = dimK0Dcris,K(V ).

Note that, for a p-adic representation V of GK , we always have dimQpV ≥
dimK0Dcris,K(V ) by [Br2, Proposition 3.22.]. Furthermore, we say that a p-adic rep-
resentation V of GK is a potentially crystalline representation of GK if there exists a
finite field extension L/K in K such that V is a crystalline representation of GL.

Fix a prime element ℘ of OK and an element s = (s(n)) ∈ Ẽ+ such that s(0) = ℘.
Then, the series log(s℘−1) converges to an element us in B+

dR,K and the subring
Bcris,K [us] of BdR,K depends only on the choice of ℘. We denote this ring by Bst,K .
We can prove that the element us is transcendental over Bcris,K (see [F1, 4.3.]). Since
we have the inclusion K ⊗K0 Bst,K ↪→ BdR,K , the ring K ⊗K0 Bst,K is endowed
with the action of GK and the filtration induced by that of BdR,K . We extend the
Frobenius φ on Bcris,K to Bst,K by putting φ(us) = pus. Furthermore, define the
Bcris,K-derivation N : Bst,K → Bst,K by N(us) = −1. It is easy to verify Nφ = pφN .
As in the case of Acris,K , we have an isomorphism

f : (p-adic completion of Acris,Kpf⟨r1, . . . , re⟩)[1/p, us, 1/t]→ Bst,K

where ⟨∗⟩ denotes PD-polynomial. From this isomorphism, it follows that

i : Bst,Kpf ↪→ Bst,K and p : Bst,K � Bst,Kpf : ri 7→ 0

are GKpf-equivariant homomorphisms and the composition

p ◦ i : Bst,Kpf ↪→ Bst,K � Bst,Kpf
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is identity. By imitating the result [Br2, Proposition 2.50.], we can show that we have
a canonical isomorphism (Bst,K)GK = K0 as follows.

Lemma 2.1. We have (FracBst,K)GK = K0.

Proof. From the map K ⊗K0 Bst,K ↪→ BdR,K , we obtain a GK-equivariant injec-
tion K⊗K0 FracBst,K ↪→ FracBdR,K by localization. It follows that we have an injec-
tion K ⊗K0 (FracBst,K)GK ↪→ (FracBdR,K)GK . Since we have (FracBdR,K)GK = K,
we get dimK0(FracBst,K )GK ≤ 1 and thus (FracBst,K)GK = K0.

Proposition 2.2. We have (Bst,K)GK = K0.

Proof. We have K0 ⊂ (Bst,K)GK ⊂ (FracBst,K)GK = K0.

Thus, for a p-adic representation V of GK , Dst,K(V ) = (Bst,K ⊗Qp V )GK is
naturally a K0-vector space endowed with a Frobenius operator and a filtration after
extending the scalars to K. We say that a p-adic representation V of GK is a semi-
stable representation of GK if we have

dimQpV = dimK0Dst,K(V ).

Since (Bst,K)GK is the field K0 (Proposition 2.2.) and we have (FracBst,K)GK = K0

(Lemma 2.1.), it follows from [Br2, Proposition 3.3.] that we always have dimQpV ≥
dimK0Dst,K(V ). Furthermore, we say that a p-adic representation V of GK is a
potentially semi-stable representation of GK if there exists a finite field extension
L/K in K such that V is a semi-stable representation of GL.

3. The theory of p-adic differential modules. In this section, we shall re-
view the theory of p-adic differential modules which plays an important role in this
article. First, let us fix the notations. Let K be a complete discrete valuation field of
characteristic 0 with residue field k of characteristic p > 0 such that [k : kp] = pe <∞
and V be a p-adic representation of GK . Define K(pf) and Kpf as in Introduction and

Subsection 2.2. PutK
(pf)
∞ = ∪m≥0K

(pf)(ζpm) (resp. Kpf
∞ = ∪m≥0K

pf(ζpm)) where ζpm

denotes a primitive pm-th root of unity in K (resp. Kpf) such that (ζpm+1)p = ζpm .

Let K̂pf
∞ denote the p-adic completion of Kpf

∞. These fields K
(pf)
∞ , Kpf

∞ and K̂pf
∞ depend

on the choice of a lift of a p-basis of k in OK . Then, we have the following inclusions

K(pf)
∞ ⊂ Kpf

∞ ⊂ K̂pf
∞.

Let H denote the kernel of the cyclotomic character χ : GKpf → Z∗
p. Then, the Galois

group H is isomorphic to the subgroup Gal(K/K
(pf)
∞ ) of GK . Define ΓK = GK/H.

Let Γ0 denote the subgroup Gal(K
(pf)
∞ /K(pf)) (≃ GKpf/H) of ΓK . Let Γi (1 ≤ i ≤ e)

be the subgroup of ΓK such that actions of βi ∈ Γi (1 ≤ i ≤ e) satisfy βi(ζpm) = ζpm

and βi(b
1/pm

j ) = b
1/pm

j (i ̸= j) and define the homomorphism ci : Γi → Zp such that

we have βi(b
1/pm

i ) = b
1/pm

i ζ
ci(βi)
pm . Then, the homomorphism ci defines an isomorphism

Γi ≃ Zp of profinite groups. With this, we can see that there exist isomorphisms of
profinite groups

ΓK ≃ Γ0 n (⊕e
i=1Γi) ≃ Γ0 n Z⊕e

p .
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3.1. Review of the classical theory. In this subsection, we will give the defi-
nitions of p-adic differential modules DSen(V ), DBri(V ), D+

dif(V ) and D+
e-dif(V ) which

are obtained by Sen, Brinon, Fontaine and Andreatta-Brinon ([S], [Br1], [F2], [A-B]).
The modules DSen(V ) and D+

dif(V ) are obtained when V is a p-adic representation
of Gal(L/L) where L is a complete discrete valuation field of characteristic 0 with
perfect residue field of characteristic p > 0 and we choose an algebraic closure L of L.
However, for simplicity, we will state the results in the case L = Kpf.

3.1.1. The module DSen(V ). In the article [S], Sen shows that, for a p-adic
representation V of GKpf , the K̂pf

∞-vector space (Cp ⊗Qp V )H has dimension d =
dimQp

V and the union of the finite dimensional Kpf
∞-subspaces of (Cp⊗Qp

V )H stable
under Γ0 (≃ GKpf/H) is a Kpf

∞-vector space of dimension d stable under Γ0 (called
DSen(V )). We have Cp ⊗Kpf

∞
DSen(V ) = Cp ⊗Qp V and the natural map K̂pf

∞ ⊗Kpf
∞

DSen(V ) → (Cp ⊗Qp V )H is an isomorphism. Furthermore, if γ ∈ Γ0 is close enough
to 1, then the series of operators on DSen(V )

log(γ)

log(χ(γ))
= − 1

log(χ(γ))

∑
k≥1

(1− γ)k

k

converges to a Kpf
∞-linear operator ∇(0) : DSen(V ) → DSen(V ) and does not depend

on the choice of γ.

3.1.2. The module DBri(V ). In the article [Br1], Brinon generalizes Sen’s work
above. For a p-adic representation V of GK , he shows that the union of the finite

dimensional K
(pf)
∞ -subspaces of (Cp ⊗Qp V )H stable under ΓK is a K

(pf)
∞ -vector space

of dimension d stable under ΓK (we call it DBri(V )). We have Cp ⊗K
(pf)
∞

DBri(V ) =

Cp⊗Qp V and the natural map K̂pf
∞⊗K

(pf)
∞

DBri(V )→ (Cp⊗Qp V )H is an isomorphism.

As in the case of DSen(V ), the K
(pf)
∞ -vector space DBri(V ) is endowed with the action

of the K
(pf)
∞ -linear operator ∇(0) = log(γ)

log(χ(γ)) if γ ∈ Γ0 is close enough to 1. In addition

to this operator ∇(0), if βi ∈ Γi is close enough to 1, then the series of operators on
DBri(V )

log(βi)

ci(βi)
= − 1

ci(βi)

∑
k≥1

(1− βi)
k

k

converges to a K
(pf)
∞ -linear operator ∇(i) : DBri(V ) → DBri(V ) and does not depend

on the choice of βi.

3.1.3. The module D+
dif(V ). In the article [F2], by using Sen’s theory, Fontaine

shows that, for a p-adic representation V of GKpf , the union of Kpf
∞[[t]]-submodules of

finite type of (B+
dR,Kpf ⊗Qp V )H stable under Γ0 (≃ GKpf/H) is a free Kpf

∞[[t]]-module

of rank d stable under Γ0 (called D+
dif(V )). We have B+

dR,Kpf ⊗Kpf
∞[[t]] D

+
dif(V ) =

B+
dR,Kpf⊗Qp V and the natural map (B+

dR,Kpf)
H⊗Kpf

∞[[t]]D
+
dif(V )→ (B+

dR,Kpf⊗Qp V )H

is an isomorphism. Furthermore, if γ ∈ Γ0 is close enough to 1, then the series of
operators on D+

dif(V )

log(γ)

log(χ(γ))
= − 1

log(χ(γ))

∑
k≥1

(1− γ)k

k
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converges to a Kpf
∞-linear derivation ∇(0) : D+

dif(V ) → D+
dif(V ) and does not depend

on the choice of γ. Note that this D+
dif(V ) is a little different from one which the

author used by the same symbol in the article [M].

3.1.4. The module D+
e-dif(V ). In the article [A-B], Andreatta and Brinon gen-

eralize Fontaine’s work above. For a p-adic representation V of GK , they show that

the union of K
(pf)
∞ [[t, t1, . . . , te]]-submodules of finite type of (B+

dR,K ⊗Qp V )H stable

under ΓK is a free K
(pf)
∞ [[t, t1, . . . , te]]-module of rank d stable under ΓK (we call it

D+
e-dif(V )). We have B+

dR,K ⊗K
(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ) = B+

dR,K ⊗Qp V and the natural

map (B+
dR,K)H ⊗

K
(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ) → (B+

dR,K ⊗Qp V )H is an isomorphism. As

in the case of D+
dif(V ), the K

(pf)
∞ [[t, t1, . . . , te]]-module D+

e-dif(V ) is endowed with the

K
(pf)
∞ -linear derivation ∇(0) = log(γ)

log(χ(γ)) if γ ∈ Γ0 is close enough to 1. In addition

to this operator ∇(0), if βi ∈ Γi is close enough to 1, then the series of operators on
D+

e-dif(V )

log(βi)

ci(βi)
= − 1

ci(βi)

∑
k≥1

(1− βi)
k

k

converges to a K
(pf)
∞ -linear derivation ∇(i) : D+

e-dif(V ) → D+
e-dif(V ) and does not

depend on the choice of βi.

3.1.5. Some properties of differential operators. We shall describe the ac-
tions of operators {∇(i)}ei=0 onDBri(V ) andD+

e-dif(V ). First, by a standard argument,
we can show that, if x ∈ DBri(V ) (resp. D+

e-dif(V )), we have

∇(0)(x) = limγ→1
γ(x)− x

χ(γ)− 1
and ∇(i)(x) = limβi→1

βi(x)− x

ci(βi)
.

With this, we can describe the actions of K
(pf)
∞ -linear derivations {∇(i)}ei=0 on the

ring K
(pf)
∞ [[t, t1, . . . , te]] = D+

e-dif(Qp) (here Qp is equipped with the structure of p-adic
representations of GK induced by the trivial action of GK) as

∇(0) = t
d

dt
and ∇(i) = t

d

dti
(1 ≤ i ≤ e).

We extend naturally actions of K
(pf)
∞ -linear derivations {∇(i)}ei=0 on K

(pf)
∞ [[t, t1,

. . . , te]] to K
(pf)
∞ [[t, t1, . . . , te]][t

−1] (⊂ BdR,K) by putting ∇(0)(t−1) = −t−1 and
∇(i)(t−1) = 0 (1 ≤ i ≤ e). Furthermore, the bracket [ , ] of operators {∇(i)}ei=0

on DBri(V ) (resp. D+
e-dif(V )) satisfies (see [M, Proposition 3.3.])

[∇(0),∇(i)] = ∇(i) (i ̸= 0) and [∇(i),∇(j)] = 0 (i, j ̸= 0).

3.2. Construction of special elements. In this subsection, we shall intro-
duce some special elements which behave well under the action of p-adic differential
operators.

3.2.1. A special basis of D+
e-dif(V ). We shall construct a special basis

of D+
e-dif(V ) over K

(pf)
∞ [[t, t1, . . . , te]] which bridges the gap between D+

dif(V ) and
D+

e-dif(V ) and behaves well under the action of ∇(0). Note that there is no GK-
equivariant injection K ↪→ B+

dR,Kpf : we will sometimes write L+
dif instead of the

misleading Kpf
∞[[t]]. First, let us recall the following result.
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Proposition 3.1. [M, Proposition 4.8.] Let V be a p-adic representation of GK .
If V is a de Rham representation of GKpf , there exists a ∇(0)-equivariant isomorphism

of K
(pf)
∞ [[t, t1, . . . , te]]-modules

D+
e-dif(V ) ≃∇(0) ⊕d

j=1K
(pf)
∞ [[t, t1, . . . , te]](nj) (d = dimQp

V, nj ∈ Z).

Next, let us define the Kpf
∞[[t, t1, . . . , te]]-submodule X of (B+

dR,K ⊗Qp V )H by

X = Kpf
∞[[t, t1, . . . , te]]⊗K

(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ). If we put D

+,(r)
e-dif (V ) = D+

e-dif(V )/(t,

t1, . . . , te)
rD+

e-dif(V ), we have the inclusion Kpf
∞ ⊗K

(pf)
∞

D
+,(r)
e-dif (V ) ↪→ L+

dif[[t1, . . . , te]]/

(t, t1, . . . , te)
r ⊗L+

dif
D+

dif(V ) by the theory of Sen. Since both sides have the same

dimension over Kpf
∞, the inclusion above actually gives an isomorphism. By taking

the projective limit with respect to r, we obtain a Γ0-equivariant isomorphism X ≃
L+
dif[[t1, . . . , te]]⊗L+

dif
D+

dif(V ).

Proposition 3.2. Let V be a p-adic representation of GK . If V is a de Rham
representation of GKpf , there exists a basis {fj}

d
j=1 of D+

dif(V ) over L+
dif such that

1. {1⊗ fj}
d
j=1 forms a basis of D+

e-dif(V ) (⊂ X = L+
dif[[t1, . . . , te]]⊗L+

dif
D+

dif(V ))

over K
(pf)
∞ [[t, t1, . . . , te]],

2. the action of ∇(0) on {1⊗ fj}
d
j=1 is given by ∇(0)(1⊗ fj) = nj(1⊗ fj) where

the integers nj are those of Proposition 3.1.

Proof. Let {Gj}
d
j=1 denote a basis of D+

dif(V ) over Kpf
∞[[t]]. Since D+

e-dif(V ) is

a submodule of X = L+
dif[[t1, . . . , te]] ⊗L+

dif
D+

dif(V ), any element of D+
e-dif(V ) can be

written as linear combinations of {1⊗Gj}
d
j=1 over L

+
dif[[t1, . . . , te]]. On the other hand,

fix a basis {Fj}
d
j=1 of D+

e-dif(V ) over K
(pf)
∞ [[t, t1, . . . , te]] that gives the isomorphism

of Proposition 3.1, that is, ∇(0)(Fj) = njFj with nj ∈ Z. Then, we can write

1⊗ Fj =
∑

(m1,...,me)∈Ne

tm1
1 · · · tme

e ⊗ (

d∑
k=1

a
(m1,...,me)
jk Gk)(3.1)

where the a
(m1,...,me)
jk are elements of L+

dif. Put fj =
∑d

k=1 a
(0,...,0)
jk Gk ∈ D+

dif(V ).

Then, it follows that we have ∇(0)(fj) = njfj . On the other hand, we have {fj =

Fj}
d
j=1 in DSen(V ) where − denotes the reduction modulo (t, t1, . . . , te)X. Since

{Fj}
d
j=1 forms a basis of DSen(V ) over Kpf

∞, the lift {1⊗ fj}
d
j=1 of {fj = Fj}

d
j=1 in X

forms a basis of X over Kpf
∞[[t, t1, . . . , te]]. Furthermore, since {fj}

d
j=1 are elements of

D+
dif(V ), it follows that {fj}

d
j=1 also forms a basis of D+

dif(V ) over Kpf
∞[[t]]. Thus, it

remains to show that {1⊗ fj}
d
j=1 forms a basis of D+

e-dif(V ) over K
(pf)
∞ [[t, t1, . . . , te]].

Put Xr = X/(t, t1, . . . , te)
rX. Let Yr denote the K

(pf)
∞ [[t, t1, . . . , te]]-submodule of Xr

generated by the finite set {
∑d

k=1 a
(m1,...,me)
jk Gk}j,m1+···+me<r ⊂ (B+

dR,Kpf ⊗Qp V )H .

Then, it follows that this finitely generated K
(pf)
∞ [[t, t1, . . . , te]]-module Yr is stable

under the action of ΓK by (3.1) and thus is contained in D
+,(r)
e-dif (V ) by definition. On

the other hand, Yr contains the elements {1⊗ fj}
d
j=1 which are linearly independent

over Kpf
∞[[t, t1, . . . , te]]/(t, t1, . . . , te)

r. Thus, both of Yr and D
+,(r)
e-dif (V ) have the same

dimension over K
(pf)
∞ and we get the equality Yr = D

+,(r)
e-dif (V ). Therefore, by taking
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the projective limit with respect to r, we conclude that {1⊗ fj}
d
j=1 (⊂ lim←−r

Yr) forms

a basis of D+
e-dif(V ) over K

(pf)
∞ [[t, t1, . . . , te]].

Lemma 3.3. By restricting ∇(i) : D+
e-dif(V ) → D+

e-dif(V ) (0 ≤ i ≤ e), we obtain
∇(i) : D+

e-dif(V )∩ (B+
dR,Kpf ⊗Qp V )H → D+

e-dif(V )∩ (B+
dR,Kpf ⊗Qp V )H in (B+

dR,K ⊗Qp

V )H .

Proof. For simplicity, put L+
dR = (B+

dR,Kpf)
H , L+

dR(V ) = (B+
dR,Kpf ⊗Qp V )H and

Z = (B+
dR,K ⊗Qp V )H . Let mdR denote the maximal ideal (t, t1, . . . , te) of (B

+
dR,K)H .

Then, we have

Z = lim←− rZ/m
r
dRZ ⊃ L+

dR(V ) = lim←− rL
+
dR(V )/(mr

dRZ ∩ L+
dR(V ))

∪
D+

e-dif(V ) = lim←− rD
+
e-dif(V )/(mr

dRZ ∩D+
e-dif(V )).

Define W as the L+
dR ∩ K

(pf)
∞ [[t, t1, . . . , te]]-submodule of Z generated by L+

dR(V ) ∩
D+

e-dif(V ). If we put Ŵ = lim←−r
Wr where Wr denotes W/(mr

dRZ ∩ W ), we have

L+
dR(V ) ⊃ Ŵ and D+

e-dif(V ) ⊃ Ŵ . Thus, we obtain Ŵ = W by definition. Therefore,
it suffices to show that Wr is stable under the actions of {∇(i)}ei=0. Fix a basis

{gj}
h
j=1 of D+

e-dif(V )/(mr
dRZ ∩D+

e-dif(V )) over K
(pf)
∞ . Then, there exists a finite field

extension L/K in K
(pf)
∞ such that ⊕h

j=1L ·gj is stable by the action of ΓK = GK/H =

Gal(K
(pf)
∞ /K). Thus, there exists an open subgroup Γ′

i of Γi such that, for all γ ∈ Γ′
0

(resp. βi ∈ Γ′
i), the action of γ (resp. βi) on ⊕h

j=1L · gj is L-linear. Then, the series

log(γ) = −
∞∑
k=1

(γ − 1)k

k
(resp. log(βi) = −

∞∑
k=1

(βi − 1)k

k
)

converges to an endomorphism of ⊕h
j=1L · gj . These actions on ⊕h

j=1L · gj can be

extended to those on D+
e-dif(V )/(mr

dRZ ∩ D+
e-dif(V )) by K

(pf)
∞ -linearity. Since Wr is

contained in D+
e-dif(V )/(mr

dRZ ∩ D+
e-dif(V )) and stable under the action of ΓK , it

follows that Wr is equipped with actions of ∇(0) = log(γ)
log(χ(γ)) and ∇(i) = log(βi)

ci(βi)
.

3.2.2. D̃cris,Kpf(V ) and D̃st,Kpf(V ). In this subsection, for simplicity, we shall

denote B̃cris,Kpf = (Bcris,Kpf)H and D̃cris,Kpf(V ) = (Bcris,Kpf⊗QpV )H (resp. B̃st,Kpf =

(Bst,Kpf)H and D̃st,Kpf(V ) = (Bst,Kpf ⊗Qp V )H).

Proposition 3.4. (cf. Proposition 3.2.) Let V be a p-adic representation of
GK . If V is a crystalline (resp. semi-stable) representation of GKpf , there exists a

basis {gj}
d
j=1 of D̃cris,Kpf(V ) over B̃cris,Kpf (resp. D̃st,Kpf(V ) over B̃st,Kpf) such that

1. {gj}
d
j=1 forms a basis of D+

e-dif(V )[1/t] over K
(pf)
∞ [[t, t1, . . . , te]][1/t],

2. {gj}
d
j=1 is contained in Ker (∇(0)) (⊂ D+

e-dif(V )[1/t]).

Proof. Since the semi-stable representation case is similar, we shall consider only
the crystalline representation case. Since V is also a de Rham representation of GKpf ,
by Proposition 3.2, there exists a basis {fj}

d
j=1 of D+

dif(V ) over Kpf
∞[[t]] such that (1)

{1⊗ fj}
d
j=1 forms a basis of D+

e-dif(V ) over K
(pf)
∞ [[t, t1, . . . , te]] and (2) ∇(0)(1⊗ fj) =

nj(1⊗ fj) with nj ∈ Z. Then, since the action of ∇(0) on {fjt
−nj}dj=1 is trivial and
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{fjt
−nj}dj=1 is contained in D+

dif(V )[1/t] ⊂ (BdR,Kpf ⊗ V )H , there exists a finite field

extension Lpf/Kpf in Kpf
∞ such that {fjt

−nj}dj=1 forms a basis of DdR,Lpf(V ) over Lpf.

If K = K0(α) and Lpf = Kpf(β) for some β = ζpn ∈ Kpf
∞, there exists an element

a ∈ K
(pf)
∞ such that K0(α, β) = K0(a). Then, we have Lpf = Kpf

0 (α, β) = Kpf
0 (a) =

Lpf
0 (a). Since V is also a crystalline representation of GLpf , we have DdR,Lpf(V ) =

Lpf
0 (a)⊗Lpf

0
Dcris,Lpf(V ). Thus, we can write

fjt
−nj =

δ−1∑
k=0

ak ⊗ gjk (gjk ∈ Dcris,Lpf(V ), δ = [Lpf
0 (a) : Lpf

0 ]).(3.2)

We can extract a basis of Dcris,Lpf(V ) over Lpf
0 from the family {gjk}j,k: denote it by

{gj}
d
j=1. Since we have Bcris,Kpf ⊗Lpf

0
Dcris,Lpf(V ) ≃ Bcris,Kpf ⊗Qp V , by taking the in-

variant part by H, it follows that {gj}
d
j=1 forms a basis of D̃cris,Kpf(V ) over B̃cris,Kpf .

Furthermore, by (3.2), the action of ∇(0) on {gj}
d
j=1 is trivial. Thus, it remains

to show that {gj}
d
j=1 forms a basis of D+

e-dif(V )[1/t] over K
(pf)
∞ [[t, t1, . . . , te]][1/t].

First, let Zr denote the union of K
(pf)
∞ [[t, t1, . . . , te]]-submodules of finite type of

(B+
dR,K ⊗Qp

V )H/(t, t1, . . . , te)
r(B+

dR,K ⊗Qp
V )H that are stable under the action of

an open subgroup Γ of ΓK . Since we have the inclusion D
+,(r)
e-dif (V ) ↪→ Zr by defini-

tion and both sides have the same dimension over K
(pf)
∞ , we have D

+,(r)
e-dif (V ) = Zr.

Thus, by taking the projective limit with respect to r, we obtain D+
e-dif(V ) = lim←−r

Zr.
Choose integers {mjk}1≤j≤d, 0≤k≤δ−1 ⊂ Z such that we have

{tmjkak ⊗ gjk}1≤j≤d, 0≤k≤δ−1 ⊂ (B+
dR,K ⊗Qp V )H .

Let Z denote the K
(pf)
∞ [[t, t1, . . . , te]]-submodule of (B+

dR,K ⊗Qp V )H generated by the

finite set {tmjkak ⊗ gjk}1≤j≤d, 0≤k≤δ−1. Take an open subgroup Γ of ΓK such that

the action of Γ on the finite set {ak}δ−1
k=0 is trivial. Then it follows from (3.2) that this

finitely generatedK
(pf)
∞ [[t, t1, . . . , te]]-module Z is stable under the action of Γ and thus

is contained in D+
e-dif(V ) by the preceding argument. In particular, it follows that the

elements {gj}
d
j=1 are contained in D+

e-dif(V )[1/t]. Furthermore, since {gj}
d
j=1 forms a

basis of BdR,K⊗Qp V over BdR,K , it is, in particular, linearly independent over BdR,K

in BdR,K ⊗Qp V . Take mj ∈ Z such that we have

{g′j = tmjgj}
d
j=1 ⊂ D+

e-dif(V ).

Let L(V ) be the submodule of B+
dR,K ⊗Qp V generated by {g′j}

d
j=1 over B+

dR,K and

let D(V ) denote the union of K
(pf)
∞ [[t, t1, . . . , te]]-submodules of finite type of L(V )H

stable under ΓK . Since {g′j}
d
j=1(⊂ D(V )) forms a basis of L(V ) over B+

dR,K , it follows

that {g′j}
d
j=1 also forms a basis of D(V ) over K

(pf)
∞ [[t, t1, . . . , te]] (see [A-B, Lemma

5.10]). For any element x ∈ D+
e-dif(V )[1/t], one can see that there exists an integerm ∈

Z such that we have tmx ∈ D(V ). Thus, tmx can be written as linear combinations of

{g′j}
d
j=1 overK

(pf)
∞ [[t, t1, . . . , te]]. It follows that {gj}

d
j=1 forms a basis ofD+

e-dif(V )[1/t]

over K
(pf)
∞ [[t, t1, . . . , te]][1/t].

From now on, we shall keep the notation and assumptions of Proposition 3.4. The
following result is proved in Proposition 3.5 and Corollary 3.6 of [M].
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Proposition 3.5. The action of {∇(i)}ei=1 on the basis {gj}
d
j=1 is given by

(∇(1))k1 · · · (∇(e))ke(gj) = tk1+···+ke
∑d

l=1 cj,k,lgl where the cj,k,l (k = (k1, . . . , ke))

are elements of K
(pf)
∞ [[t, t1, . . . , te]] such that ∇(0)(cj,k,l) = 0.

Proposition 3.6. Let V be a p-adic representation of GK . If V is a crystalline
(resp. semi-stable) representation of GKpf , we have

(∇(1))k1 · · · (∇(e))ke(gj) ∈ D̃cris,Kpf(V ) (resp. ∈ D̃st,Kpf(V ))

for all (ki)1≤i≤e ∈ Ne and 1 ≤ j ≤ d.

Proof. Since the semi-stable representation case is similar, we shall consider only
the crystalline representation case. It is enough to prove that if g ∈ D+

e-dif(V )[1/t]

is such that g ∈ D̃cris,Kpf(V ) and ∇(0)(g) = 0, then (∇(1))k1 · · · (∇(e))ke(g) ∈
D̃cris,Kpf(V ) for all (ki)1≤i≤e ∈ Ne. Since the proof of the general case is exactly

the same (only with heavier notations), we just show that ∇(i)(g) ∈ D̃cris,Kpf(V ) for

1 ≤ i ≤ e. First, for r ∈ N>0 and h ∈ D+
e-dif(V ), there exists an open subgroup Γh,r

i

of Γi such that we have βi(h) = exp(ci(βi)∇(i))(h) mod (t, t1, . . . , te)
r D+

e-dif(V ) for

all βi ∈ Γh,r
i (see [A-B] and [F2]). Thus, if we take M ∈ N such that tMg ∈ D+

e-dif(V ),
we obtain

βi(t
Mg) = tMg +

(ci(βi))
1

1!
(∇(i))1(tMg) +

(ci(βi))
2

2!
(∇(i))2(tMg) + · · ·(3.3)

mod (t, t1, . . . , te)
rD+

e-dif(V ) for all βi ∈ ΓtMg,r
i . Note that this series is a finite sum

mod (t, t1, . . . , te)
rD+

e-dif(V ) by Proposition 3.5. Thus, there exists L ∈ N such that
we have (∇(i))L(tMg) ̸= 0 and (∇(i))L+1(tMg) = 0 mod (t, t1, . . . , te)

rD+
e-dif(V ).

On the other hand, since we have (∇(i))j(g) ∈ (BdR,Kpf ⊗Qp V )H by Lemma 3.3

and ∇(0)( 1
tj (∇

(i))j(g)) = 0 by Proposition 3.5, there exists a finite field extension

Mpf/Kpf in Kpf
∞ such that { 1

tj (∇
(i))j(g)}Lj=0 is contained in DdR,Mpf(V ). Write

Mpf = Mpf
0 (b). Then, since V is also a crystalline representation of GMpf , we have

the equality DdR,Mpf(V ) = Mpf
0 (b)⊗Mpf

0
Dcris,Mpf(V ). Thus, we can write

1

tj
(∇(i))j(g) =

∑
m,n

bm ⊗ aijmngn (aijmn ∈ B̃cris,Kpf).(3.4)

By (3.3) and (3.4), we obtain

βi(t
Mg) = tM

∑
m,n

bm ⊗ (

L∑
j=0

(ci(βi))
j

j!
aijmnt

j)gn
(
mod (t, t1, . . . , te)

r
)
.(3.5)

On the other hand, since D̃cris,Kpf(V ) is stable under the action of ΓtMg,r
i and {bm}δ−1

m=0

(δ = [Mpf : Mpf
0 ]) is linearly independent over B̃cris,Kpf , the terms of the RHS of (3.5)

have to be 0 for m ̸= 0. Then, for m ̸= 0, we have
∑L

j=0
λj

j! aijmnt
j = 0 for λ in an

open subgroup of Zp: this implies that aijmn = 0 for m ̸= 0. In particular, we obtain

∇(i)(g) ∈ D̃cris,Kpf(V ) (i ̸= 0) by (3.4).
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4. Proof of the main theorem. In this section, we will give proofs only in the
crystalline representation case since the semi-stable representation case is similar.

Proposition 4.1. We have the following implications.

1. If V is a crystalline representation of GK , then it is a crystalline represen-
tation of GKpf .

2. If V is a semi-stable representation of GK , then it is a semi-stable represen-
tation of GKpf .

Proof. Since V is a crystalline representation of GK , there exists a GK-equivariant
isomorphism of Bcris,K-modules

Bcris,K ⊗Qp V ≃ (Bcris,K)d (d = dimQpV ).(4.1)

By tensoring (4.1) by Bcris,Kpf over Bcris,K (which is induced by the GKpf-equivariant
surjection p : Bcris,K � Bcris,Kpf : ri 7→ 0), we obtain a GKpf-equivariant isomorphism
of Bcris,Kpf-modules

Bcris,Kpf ⊗Qp V ≃ (Bcris,Kpf)d.

This means that V is a crystalline representation of GKpf .

Proof of Theorem 1.1. It remains to show that, if V is a p-adic representation
of GK whose restriction to GKpf is crystalline, then V is a potentially crystalline
representation of GK . Since V is a crystalline representation of GKpf , there exists a
basis {gj}

d
j=1 of D̃cris,Kpf(V ) over B̃cris,Kpf which satisfies the properties in Proposition

3.4. From this {gj}
d
j=1, for all finite extension L/K in K, we shall construct Lpf

0 -

linearly independent elements {fj}
d
j=1 in Bcris,K ⊗Qp

V such that ∇(i)(fj) = 0 (0 ≤
∀i ≤ e and 1 ≤ ∀j ≤ d).

(A) Construction of {fj}
d
j=1 in Bcris,K⊗Qp V . By Propositions 3.5 and 3.6, we

have (∇(1))k1 · · · (∇(e))ke(gj) = tk1+···+ke
∑d

l=1 cjklgl where the cjkl (k = (k1, . . . , ke))

are elements of B+
cris,Kpf such that ∇(0)(cjkl) = 0. On the other hand, for N ∈ N, we

obtain,

φN+1((∇(1))k1 · · · (∇(e))ke(gj)) = (pt)k1+···+ke

d∑
l=1

pN(k1+···+ke)φN+1(cjklgl)(4.2)

where the φN+1(cjkl) are elements of B+
cris,Kpf such that ∇(0)(φN+1(cjkl)) = 0. Let

Ui denote the matrix which represents the action of ∇(i)/t (1 ≤ i ≤ e) with respect to
the basis {gj}

d
j=1 and take N large enough such that we have pNUi ∈ Md(Acris,Kpf)

for all 1 ≤ i ≤ e. On the other hand, by applying the same method as in Propo-

sition 3.6 to the entries of Ui, we have ∇(j)

t (pNUi) ∈ Md(B̃cris,Kpf). Since we have

∇(0)(∇
(j)

t (pNUi)) = 0, this means that we obtain ∇(j)

t (pNUi) ∈ Md(L
pf
0 ) for a finite

extension L/K in K and, in particular, ∇(j)

t (pNUi) ∈ Md(B
+
cris,Kpf) (1 ≤ i, j ≤ e).

Furthermore, since∇(j) is the form t d
dtj

onK
(pf)
∞ [[t, t1, . . . , te]] and

∇(j)

t = d
dtj

does not

decrease the p-adic valuation of an element ofK
(pf)
∞ [[t, t1, . . . , te]]∩Acris,Kpf (⊂ BdR,K),

we obtain ∇(j)

t (pNUi) ∈ Md(Acris,Kpf) (1 ≤ i, j ≤ e). Thus, it follows that we
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have pN(k1+···+ke)cjkl ∈ Acris,Kpf and pN(k1+···+ke)φN+1(cjkl) ∈ Acris,Kpf . Define

{fj}
d
j=1 ⊂ Bcris,K ⊗Qp V by

fj =
∑

0≤k1,...,ke

(−1)k1+···+ke
tk1
1 · · · tke

e

k1! · · · ke!tk1+···+ke
φN+1((∇(1))k1 · · · (∇(e))ke(gj))

where ti = log([b̃i]/bi) denotes the element of Ker (θK0) (⊂ Acris,K). Note that this
series converges in Bcris,K ⊗Qp V for the p-adic topology by (4.2) and thus fj actually

defines an element of Bcris,K⊗QpV . Then, it is easy to verify that we have∇(i)(fj) = 0
for all 1 ≤ i ≤ e and 1 ≤ j ≤ d by using the Leibniz rule. Furthermore, by using
(4.2) and the fact ∇(0)(φN+1(gj)) = 0, we can deduce that we have ∇(0)(fj) = 0 for
all 1 ≤ j ≤ d.

(B) {fj}
d
j=1 ⊂ Bcris,K ⊗Qp V is linearly independent over Lpf

0 . The homo-
morphism p : Bcris,K � Bcris,Kpf induces

Bcris,K ⊗Qp V � Bcris,Kpf ⊗Qp V : fj 7→ φN+1(gj).

Since {gj}
d
j=1 forms a basis of D̃cris,Kpf(V ) over B̃cris,Kpf and satisfies ∇(0)(gj) =

0, there exists a finite field extension M/K in K such that {gj}
d
j=1 forms a basis

of Dcris,Mpf(V ) over Mpf
0 . Furthermore, since φ : Dcris,Mpf(V ) → Dcris,Mpf(V ) is

bijective, {φN+1(gj)}
d
j=1 also forms a basis of Dcris,Mpf(V ) over Mpf

0 . Thus, it follows

that {fj}
d
j=1 is linearly independent over Lpf

0 in Bcris,K ⊗Qp V for all finite extension

L/K in K.

(C) Conclusion. The maps log(γ) and log(βi) (1 ≤ i ≤ e) act trivially on the
K0-vector space generated by {fj}

d
j=1 (because ∇(0)(fj) = 0 and ∇(i)(fj) = 0 for all

1 ≤ i ≤ e and 1 ≤ j ≤ d). This means that ΓK acts on this K0-vector space via finite
quotient and there exists a finite field extension L/K in K such that {fj}

d
j=1 forms a

basis of Dcris,L(V ) over L0 (⊂ Lpf
0 ).

Remark 4.2. Since the proof is carried out by using the differential operators,
it is not obvious whether we can get rid of the potentiality from the statement of the
main theorem.

5. The p-adic monodromy theorem of Fontaine in the imperfect residue
field case. In this section, we generalize the p-adic monodromy theorem of Fontaine
to the imperfect residue field case. Now, we recall the results of [Be] and [M].

Theorem 5.1. [Be, Corollary 5.22.] Let L be a complete discrete valuation field
of characteristic 0 with perfect residue field of characteristic p > 0 and V be a p-adic
representation of GL. Then, V is a de Rham representation of GL if and only if V
is a potentially semi-stable representation of GL.

Theorem 5.2. [M, Theorem 4.10.] Let K be a complete discrete valuation field
of characteristic 0 with residue field k of characteristic p > 0 such that [k : kp] =
pe <∞ and V be a p-adic representation of GK . Let Kpf be the field extension of K
defined as before. Then, V is a de Rham representation of GK if and only if V is a
de Rham representation of GKpf .
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Since Kpf has perfect residue field, we can apply Theorem 5.1 to the restriction
of V to GKpf .

Proof of Corollary 1.2.. V is a de Rham representation of GK if and only if
V is a de Rham representation of GKpf by Theorem 5.2. Next, V is a de Rham
representation of GKpf if and only if V is a potentially semi-stable representation of
GKpf by Theorem 5.1. Finally, V is a potentially semi-stable representation of GKpf

if and only if V is a potentially semi-stable representation of GK by Theorem 1.1.
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