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FIRST ORDER DEFORMATIONS OF PAIRS OF A RATIONAL
CURVE AND A HYPERSURFACE∗

BIN WANG†

Abstract. Let X0 be a smooth hypersurface (not assumed generic) in projective space Pn, n ≥
3 over the complex numbers, and C0 a smooth rational curve on X0. We are interested in the
deformations of the pair C0, X0. In this paper, we prove that if the first order deformations of the
pair exist along certain first order deformations of the hypersurface X0, then the twisted normal
bundle

NC0/X0
(1) = NC0/X0

⊗OPn (1)|C0

is generated by global sections.

Key words. Rational curve, hypersurface, twisted normal bundle.

AMS subject classifications. 14J70.

1. Introduction. Let X0 be a smooth hypersurface in Pn over C, and C0 be a
smooth rational curve on X0. The main focus of this paper is on how the existence
of the first order deformation of the pair C0 ⊂ X0 affects the twisted normal bundle
NC0/X0

(1) of the rational curve. Previously, there are many works on pairs C0, X0 by
Albano and Katz ([1]), Clemens ([3], [4]), Katz ([7]), Pacienza ([8]), Voisin ([9], [10]),
etc.(there are many important papers missing from this list). In this paper, we add
more results to this list. But one of main differences of this paper from others, which
also turns out to be the main difficulty, is our weaker first order assumption (1.3) in
theorem 1.2 below. Such an assumption is useful in understanding the deformations of
the pair. Deformations of pairs in more general setting were formulated and studied by
Clemens ([5], [6]). Our results are not consequences of this study. To state the theorem
in a precise way, let’s give a formal description of the assumption. Throughout the
paper varieties are over complex numbers. Let H0(OPn(h)) denote the vector space
of homogeneous polynomials of degree h = deg(X0) in n+ 1 variables for n ≥ 3. Let
f0 ∈ H0(OPn(h)) such that

X0 = div(f0)

is a smooth hypersurface. Let

[f0] ∈ P(H0(OPn(h)))

denote the corresponding point of f0 in the projectivization. Let

c0 : P1 → X0 ⊂ Pn

be an embedding of P1, whose image is C0. Let

H1(TX0 → NC0/X0
)

be the hypercohomology of the complex, that is isomorphic to the tangent space of
the deformation space of the pair C0 ⊂ X0. Let H1(TX0) be cohomology group that
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is isomorphic to the tangent space of the deformation space of hypersurfaces at the
point X0. There is a known diagram ([1]):

(1.1)

H1(TX0 → NC0/X0
)

↓ϕ
T[f0]P(H0(OPn(h)))

ψ→ H1(TX0)

where the map ψ is the differential at [f0] from P(H0(OPn(h)) to the deformation
space of complex structures of the differential manifold of X0. This diagram gives a
relation between the first order deformations of the pair and the first order deformation
of hypersurfaces at the level of moduli spaces (i.e. factoring out isomorphism). There
is another version of ϕ without factoring out isomorphism (see (2.3) section 2).

Next we define a specific family of hypersurfaces.

Definition 1.1. Let Li ∈ H0(OPn(1)), i = 0, · · · , h = deg(X0) be some non-zero
sections (not assumed generic) that satisfy

(1.2) {Li = 0} ∩ {Lj = 0} ∩ C0 = ∅, i ̸= j.

We consider the family of sections in H0(OPn(h)),

F (a1, · · · , ah, x) = f0(x) +
h∑
i=0

aiL0(x) · · · L̂i(x) · · ·Lh(x), (omit Li),

parametrized by the coefficients ai, i = 0, · · · , h. Since the degree h hypersurfaces

L0(x) · · · L̂i(x) · · ·Lh(x), i = 0, · · · , h

are linearly independent over C, Ch+1 = {(a0, · · · , ah)} is the parameter space of this
family. We define A to be the open set of Ch+1 = {(a0, · · · , ah)} that parametrizes
the smooth hypersurfaces

{x ∈ Pn : F (a0, · · · , ah, x) = 0}.

Theorem 1.2. If in the diagram (1.1)

(1.3) ϕ is onto ψ(T[f0]A),

for a specific set of sections Li above, i.e. C0 deforms with the hypersurface X0 in all
directions of T[f0]A to the first order, then the twisted normal bundle

(1.4) NC0/X0
(1),

is generated by global sections. In particular, if X0 is a generic hypersurface and
contains a smooth rational curve C0,

NC0/X0
(1)

is generated by global sections.

In applying the theorem, we should note assumption (1.3) only requires ONE
specific family A. An immediate corollary is
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Corollary 1.3. Assume X0 is a smooth quintic threefold in P4, and as-
sumption (1.3) in theorem 1.2 holds for some A defined in definition 1.1. Let
d = deg(OPn(1)|C0). Then the splitting of the normal bundle NC0/X0

must be

(1.5) NC0/X0
≃ OP1(k)⊕OP1(−2− k)

such that

(1.6) −1 ≤ k ≤ d− 2.

In particular, (1.5) and (1.6) hold for a quintic 3-fold X0 that is generic and
contains a smooth rational curve C0.

Proof. It is well-known that vector bundles over P1 can be decomposed as a direct
sum of line bundles. Thus NC0/X0

must be

(1.7) NC0/X0
≃ OP1(k)⊕OP1(−2− k)

where k ≥ −1. Apply theorem 1.2 to obtain that

(1.8) NC0/X0
(1) ≃ OP1(d+ k)⊕OP1(d− 2− k)

is generated by global sections. Thus

d− 2− k ≥ 0.

This is the inequality in the corollary. In particular if X0 is a quintic 3-fold that
is generic and contains a smooth rational curve C0, assumption (1.3) follows from
lemma 2.2 below.

Remark. Assumption (1.3) stresses the importance of the first order of defor-
mations of the pair. Most of previous results, such as those listed above, have the
different assumption: X0 is generic, which is strictly stronger than assumption (1.3).
This classical genericity assumption can be explained in the following. Let Md be the
parameter space of embeddings P1 → Pn, whose image has degree d. So Md is an
open set of

P(⊕n+1OPn(d)).

The map c0 represents a point in Md which is still denoted by c0. Let

(1.9)
Γ ⊂Md ×P(H0(OPn(h)))
Γ = {([c], [f ]) : c∗(f) = 0}.

Then the assumption: X0 is generic is equivalent to the assumption that there is an
irreducible component of Γ containing (c0, [f0]), which dominates

P(H0(OPn(h))).

Our assumption (1.3) in this setting is equivalent to say that the Zariski tangent space
T(c0,[f0])Γ is projected onto T[f0]A. It is not difficult to see the former assumption
implies the latter one. We’ll prove this assertion in section 2.

Example 5.2 in section 5 indicates assumption (1.3) is strictly weaker than the
assumption: X0 is generic.
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The rest of the paper is organized as follows. In section 2, we give another
description of first order deformation condition (1.3), that shows that it is weaker
than the assumption: X0 is generic. In section 3, we study a family of smooth
hypersurfaces. This is the main technique for the paper. In section 4, we show that
the first order assumption (1.3) leads to the positivity of the twisted normal bundle
NC0/X0

(1). This proves theorem 1.2. In section 5, we apply the result of theorem
1.2 to recover a classical result by Clemens, and give examples concerning our weaker
assumption (1.3).

Acknowledgments. We would like to thank H. Clemens for the help and guid-
ance, especially for his enlightening communication on theorems in sections 3, 4 ([2]).

2. First order deformations of the pair. In this section, we give another
description of assumption (1.3), which will be used throughout. This is the description
of the same map ϕ without factoring out isomorphism.

Let

S ⊂ P(H0(OPn(h)))

be an irreducible subvariety that contains [f0] and is smooth at [f0]. Let

XS ⊂ Pn × S,(2.1)

XS = {(x, [f ]) : [f ] ∈ S, f(x) = 0}.(2.2)

be the universal hypersurface for S ⊂ P(H0(OPn(h))).
Let

c̄0 :P1 → C0 × {[f0]} ⊂ XS
t→ (c0(t), [f0])

be the embedding determined by above embedding c0. The projection

PS : XS → S

has a differential map

T(q,[f0])XS → T[f0]S, q ∈ C0

which can be extended to a bundle map

(PS)∗ : c̄∗0(TXS ) → T[f0]S ⊗OP1 .

At last we obtain a morphism on the vector spaces

(2.3) P sS : H0(c̄∗0(TXS
))→ T[f0]S,

where T[f0]S ≃ H0(T[f0]S ⊗OP1) is the space of global sections of the trivial bundle
whose each fibre is T[f0]S.

Lemma 2.1.

ψ(T[f0]S) ⊂ image(ϕ)

if and only if P sS is surjective.
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Proof. Recall that Md is the parameter space of embeddings P1 → Pn, whose
image has degree d. Let Xn be the universal hypersurface for S = P(H0(OPn(h)))
(defined in formula (2.2)). Recall

Γ ⊂Md ×P(H0(OPn(h)))

Γ = {(c, [f ]) : c∗(f) = 0}.(2.4)

be the incidence scheme containing the point (c0, [f0]). Let T(c0,[f0])Γ be the Zariski
tangent space of Γ. Let e be the evaluation map

e : Γ×P1 → Xn
(c, [f ], t)→ (c(t), [f ]).

Its differential map induces a bundle map

e∗ : T(c0,[f0])Γ⊗OP1 → c∗0(TXn).

It further induces a homomorphism on the cohomology groups:

es : T(c0,[f0])Γ→ H0(c∗0(TXn)),

where T(c0,[f0])Γ = H0(T(c0,[f0])Γ⊗OP1). Also there is a surjective map η:

T(C0,[f0])Γ � H1(TX0 → NC0/X0
),

such that the following diagram commutes

(2.5)

T(C0,[f0])Γ = T(C0,[f0])Γ
η
� H1(TX0 → NC0/X0

)
↓es ↓ ↓ϕ

H0(c̄∗0(TXn))
P s

n→ T[f0]P(H0(OPn(h)))
ψ→ H1(TX0),

where P sn is the corresponding map in formula (2.3). Because

Tc0Md → H0(c∗0(TPn))

is surjective (it is an isomorphism), es has to be surjective. Then the lemma is true
for S = P(H0(OPn(h))). Now we consider the subvariety S ⊂ P(H0(OPn(h))) in the
lemma. If ψ(T[f0]S) ⊂ image(ϕ), for any α ∈ T[f0]S, we apply the diagram to find a
section σ ∈ H0(c̄∗0(TXn)) such that P sn(σ) = α. Because P sn(σ) = α ∈ T[f0]S, σ must
be in the subspace H0(c̄∗0(TXS )) of H0(c̄∗0(TXn)). Thus P sS is surjective. Conversely
we suppose P sS is surjective. For any α ∈ T[f0]S, using the commutative diagram, we
obtain

ψ(α) ∈ ϕ ◦ η ◦ (es)−1 ◦ (P sS)−1(α).

We complete the proof.

Lemma 2.2. If X0 is generic and contains a smooth rational curve C0, or equiv-
alently there is an irreducible component Γ0 of the incidence scheme

{(c, [f ]) ∈Md ×P(H0(OPn(h))) : c∗(f) = 0},

such that Γ0 dominates P(H0(OPn(h))) and (c0, [f0]) ∈ Γ0 is generic, then ϕ is
surjective.
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Proof. In this proof, we consider the entire space of hypersurfaces, i.e.

S = P(H0(OPn(h))).

As before Xn denotes the universal hypersurface corresponding to P(H0(OPn(h))).
Let c0 be as above and

c̄0 : P1 → X0 × {[f0]} ⊂ Xn

be the morphism that lifts the image C0 to Xn. The projection

P : Xn → S

induces a map on the sections of bundles over P1,

(2.6) P s : H0(c̄∗0(TXn))→ T[f0]S,

where T[f0]S ≃ H0(T[f0]S ⊗OP1) is the space of global sections of the trivial bundle
whose each fibre is T[f0]S. Observe the commutative diagram

T(c0,[f0])Γ
(eΓ)∗→ H0(c̄∗0(TXn))

↓(πΓ)∗ ↓P s
n

T[f0]S = T[f0]S.

(see (2.5) for P sn) where (eΓ)∗ is induced from the differential of the evaluation eΓ:

eΓ : Γ×P1 → Xn
(c, [f ], t) → c(t)× {[f ]}.

Since f0 is generic and πΓ is dominant (by the assumption of the lemma), then
(c0, [f0]) ∈ Γ is a generic point in Γ0. Then the dominance of πΓ implies the sur-
jectivity of (πΓ)∗. Thus P

s
n is surjective. By lemma 2.1, we proved lemma 2.2.

3. Deformation of hypersurfaces. In this section we do not assume that there
is a rational curve C0 as in section 1. So we continue with the notations in the section
1, however we do not assume the condition (1.2) because there is no rational curve
C0 in this section. Instead we assume

div(Li) ̸= div(Lj), i ̸= j.

Recall that

F (a1, · · · , ah, x) = f0(x) +

h∑
i=0

aiL0(x) · · · L̂i(x) · · ·Lh(x), (omit Li)

is the universal polynomial. Thus

{F = 0} = XA ⊂ Pn ×A.

is the universal hypersurface, which is smooth. Let W ⊂ Pn denote the complement
of the proper subvariety

∪h≥j>i≥0{Li = Lj = 0}.
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Let

XW = XA ∩ (W ×A).(3.1)

Let

(3.2) ui = L0
∂

∂a0
− Li

∂

∂ai
, i = 1, · · · , h

be sections of OPn(1)⊗ TA. Since ui annihilate F , they are tangent to XW . So let

(3.3) G(1) ⊂ TXW
(1)

be the vector bundle of rank h over XW that is generated by the sections ui.

We then have

Theorem 3.1.

(3.4)
TXW

(1)

G(1)
≃ T(W×A)/A(1)|XW

,

where T(W×A)/A(1) = (TW (1) ⊕ {0}) is the twisted relative tangent bundle of the
projection W ×A→ A.

Remark. This theorem does not require additional assumptions. This is a fact
about this special type of family of hypersurfaces.

Proof. Consider the exact sequence

(3.5) 0 → TXW
(1)

G(1) → T(W×A)(1)

G(1) → D → 0.

of bundles over XW , where D is some quotient bundle over XW . It is easy to see that

(3.6) c1(D) = c1(OPn(h+ 1))|XW .

Let s be a generic section of OPn(1). Let σ be the reduction of s ∂
∂a0

in
T(W×A)(1)

G(1) .

Notice that the zero-locus of σ is given by

(3.7) div(σ) = div(sL1 · · ·Lh).

Since sL1 · · ·Lh ∈ H0(OPn(h + 1)), σ splits the sequence (3.5). If Ls ⊂
T(W×A)(1)

G(1) is

the line bundle generated by σ,

(3.8) Ls ⊕
TXW (1)

G(1)
=
T(W×A)(1)

G(1)
,

as bundles over XW . Secondly, we have another exact sequence

(3.9) 0 → T(W×A)/A(1) → T(W×A)(1)

G(1) → D′ → 0.

of bundles over XW , where D′ is some quotient bundle over XW . By direct computa-
tion (note G(1) is a trivial bundle), we obtain:

c1(D′) = c1(TW×A/W (1)) = (h+ 1)(c1(OPn(1)))|XW
.
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As above, σ splits this sequence (3.9). Hence

(3.10) Ls ⊕ T(W×A)/A(1) =
T(W×A)(1)

G(1)
.

Comparing (3.8), (3.10), we obtain

(3.11)
TXW (1)

G(1)
≃ T(W×A)/A(1),

over XW .

4. Positivity of the twisted normal bundle. In this section we prove theorem
1.2. We continue with the notations in section 1. In particular C0 is a smooth rational
curve in X0.

Proof of Theorem 1.2. Denote C0 × {[f0]} by C̄0. Because of our assumption
(1.2), C0 completely lies in W . Thus we have the exact sequence of bundles

(4.1) 0 → c̄∗0(TC̄0
(1)) → c̄∗0(

TXA
(1)

G(1) ) → c̄∗0(
TXA

(1))

G(1)+TC̄0
(1) ) → 0.

By theorem 3.1, we have two exact sequences,

(4.2)
0 → c̄∗0(TC̄0

(1)) → c̄∗0(
TXA

(1)

G(1) ) → c̄∗0(
TXA

(1))

G(1)+TC̄0
(1) ) → 0

∥ ↓I
0 → c̄∗0(TC̄0

(1)) → c̄∗0(T(Pn×A)/A(1)) → c∗0(NC0/Pn(1)) → 0.

where I is the isomorphism in theorem 3.1. Notice in theorem 3.1, the isomorphism
I is restricted to the identity map on c̄∗0(TC̄0

(1)). Notice that the first half of the
diagram (4.2),

(4.3)
0 → c̄∗0(TC̄0

(1)) → c̄∗0(
TXA

(1)

G(1) )

∥ ↓I
0 → c̄∗0(TC̄0

(1)) → c̄∗0(T(Pn×A)/A(1)).

is commutative. So we obtain

(4.4) c∗0(NC0/Pn(1)) ≃ c̄∗0(
TXA(1))

G(1) + TC̄0
(1)

).

This isomorphism gives us another exact sequence

(4.5) 0 → c̄∗0(G(1)) → c̄∗0(
TXA

(1)

TC̄0
(1) ) → c∗0(NC0/Pn(1)) → 0.

To see the positivity of bundles, we observe that since H1(c∗0G(1)) = 0 ( c∗0G(1)
is a trivial bundle over P1), sections of c∗0(NC0/Pn(1)) can be lifted to sections of

c̄∗0(
TXA

(1)

TC̄0
(1)

).

Then c̄∗0(
TXA

(1)

TC̄0
(1) ) must be generated by global sections because c∗0(NC0/Pn(1)) and

c∗0G(1) are. The proof is now completed with the last observation that c̄∗0(
TXA

(1)

TC̄0
(1) ) is
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mapped onto NC0/X0
(1). This is the only place where assumption (1.3) is used. The

following is the argument for this surjection.
Because ϕ is onto ψ(A), P sA is onto Tf0A. This gives us a natural bundle

decomposition of c̄∗0(TXA(1)) in the following way: Note c̄∗0(TXA(1)) has sections
(P sA)

−1( ∂
∂aj

), j = 0, · · · , h. Let σi ∈ (P sA)
−1( ∂

∂aj
), i = 0, · · · , h be a vector in each

inverse (P sA)
−1( ∂

∂aj
). Then all sections {σj}j generate a trivial subbundle E

E = ⊕h+1OP1 .

This subbundle gives a decomposition

(4.6) c̄∗0(TXA) ≃ E ⊕ c̄∗0(TXA/A),

Tensoring it with c̄∗0(OPn(1)), we obtain

(4.7) c̄∗0(TXA(1)) ≃ E(1)⊕ c̄∗0(TXA/A(1)).

Notice

c̄∗0(TXA(1))

E(1)⊕ c̄∗0(TC̄0
(1))

≃ c∗0(NC0/X0
(1)).

Thus there is an exact sequence

(4.8) c̄∗0(
TXA

(1)

TC̄0
(1) ) → c∗0(NC0/X0

(1)) → 0.

Because c̄∗0(
TXA

(1)

TC̄0
(1) ) is generated by global sections, then so is c∗0(NC0/X0

(1)). This

completes the proof.

5. Application.

Corollary 5.1. Assume X0 is a smooth hypersurface in Pn of degree h. Also
assume assumption (1.3) in theorem 1.2 holds.

Then

h ≤ 2n− 2.

Proof. By the isomorphism in theorem 3.1, we have the exact sequence

(5.1) 0 → c̄∗0(G(1)) → c̄∗0(TXA
(1)) → c∗0(TPn(1)) → 0.

As before

(5.2) H1(c̄∗0G(1)) = 0.

Hence

0 → H0(c̄∗0G(1)) → H0(c̄∗0(TXA
(1))) → H0(c∗0(TPn(1))) → 0.

Therefore

(5.3) h0(c̄∗0(TXA
(1))) = h0(c∗0(TPn(1))) + h.
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To calculate H0(c∗0(TPn(1))), we consider the twisted Euler sequence

(5.4) 0 → c∗0(OPn(1)) → c∗0(⊕n+1OPn(2)) → c∗0(TPn(1)) → 0.

Because H1(c∗0(OPn(1))) = H0(OP1(−d− 2)) = 0, we obtain

0 → H0(c∗0(OPn(1))) → H0(c∗0(⊕n+1OPn(2))) → H0(c∗0(TPn(1))) → 0.

Hence we find

h0(c∗0(TPn(1)))= h0(c∗0(⊕n+1OPn(2)))− h0(c∗0(OPn(1)))

= (2d+ 1)(n+ 1)− (d+ 1).(5.5)

To calculate H0(c̄∗0(TXA(1))), we note that ϕ is onto ψ(T[f0]A). Then we obtain
the decomposition (4.6):

(5.6) c̄∗0(TXA
(1)) = E(1)⊕ c∗0(TX0(1)).

where

E(1) ≃ ⊕h+1c
∗
0(OPn(1)) ≃ ⊕h+1OP1(d).

Hence

(5.7) h0(c̄∗0(TXA
(1))) = (h+ 1)(d+ 1) + h0(c∗0(TX0(1))).

Combining formulas (5.3), (5.5) and (5.7), we obtain that

(5.8) h0(c∗0(TX0(1))) + (h− 2n)d− (n− 1) = 0.

Since

h0(c∗0(TX0(1))) = h0(NC0/X0
(1)) + h0

(
TP1 ⊗ c∗0(OPn(1))

)
(5.9)

= h0(NC0/X0
(1)) + d+ 3,

formula (5.8) becomes

(5.10) (h− 2n+ 1)d+ h0(NC0/X0
(1))− (n− 4) = 0.

To show h ≤ 2n− 2, it suffices to prove that

h0(NC0/X0
(1))− (n− 4) > 0.

Applying theorem 1.2, we obtain that

h0(NC0/X0
(1)) ≥ Rank(NC0/X0

(1)) = n− 2.

This completes the proof.

Remark. There are two previously well-known results that are related to corol-
lary 5.1:

(1). H. Clemens proved a theorem in [3], that implies if X0 is a generic hypersur-
face containing an immersed rational curve C0, then

deg(X0) ≤ 2n− 2.
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The result later was improved by C. Voisin [9], [10]:
(2) If X0 is a generic hypersurface containing C0 which is any rational curve, then

deg(X0) ≤ 2n− 3, for n ≥ 4

and the equality holds for a line in a generic hypersurface of degree 2n− 3.

Both authors in their papers addressed more general situations.

Our theorem 1.2 is valid for immersed rational curves on hypersurfaces. Then
using lemma 2.2 and corollary 5.1, we recover H. Clemens’ result mentioned in (1).
So corollary 5.1 implies Clemens’ result (1), but they are not equivalent. Even though
Clemens’ bound in corollary 5.1 is worse than Voisin’s, it is still sharp under our weaker
assumption. Please see the following example 5.2 for this.

Example 5.2 is in the case where assumption (1.3) holds for a specific family
A, but it does not hold for all such families A. Example 5.3 is in the case where
assumption (1.3) does not hold for any family A1.

Example 5.2. This example constructs X0, C0, A of theorem 1.2 satisfying as-
sumption (1.3), and they further satisfy

(1) deg(X0) = 2n− 2 ( This is the minimum degree of X0 by corollary 5.1).
(2) C0 does not deform to all hypersurfaces to the first order.
( assertion (2) will be proved elsewhere).

Let x0, · · · , xn be homogeneous coordinates for Pn. The construction is based on
the break-down of Pn to smaller subspaces. Let

P1
sub ⊂ P2

sub ⊂ Pn

be subspaces defined as follows:

(5.11) P2
sub = {x0 = · · · = xn−3 = 0},P1

sub = P2
sub ∩Pn−1

sub ,

where

(5.12) Pn−1
sub = {xn = 0}.

In the following, we always regard homogeneous polynomials on subspaces

Pi
sub, i = 1, 2, n− 1

as polynomials of the same degree on Pn, i.e. we use the natural inclusion

H0(OPi
sub

(r)) ⊂ H0(OPn(r)), for i = 1, 2, n− 1.

Next we construct three varieties: X0, C0, A in theorem 1.2.

(1) X0:
Let g0, · · · , gn−3 be generic sections in H0(OPn−1

sub
(2n− 3)).

Let

(5.13) q1 =

2∑
i=0

x2n−i ∈ H0(OP2
sub

(2)).

1It turns out that these two examples cover all situations regarding assumption (1.3), but ex-
cluding the assumption: X0 is generic.
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Let q2 ∈ H0(OPn(2n− 4)) be a section

(5.14) q2 = x2(n−2)
n + p,

where p ∈ H0(OPn−1
sub

(2n− 4)) is generic.

Now we construct the smooth hypersurface X0 = div(f0) of degree 2n− 2:
Let

(5.15) f0 = q1q2 +
n−3∑
k=0

xkgk.

Such X0 = div(f0) is smooth (see Appendix).

(2) C0:
Let the rational curve C0 be

(5.16) C0 = {x0 = · · · = xn−3 = q1 = 0}.

Since C0 is a smooth plane conic in X0, it is a smooth rational curve. Let

c0 : P1 → C0 ⊂ X0

be an isomorphism.

(3) A:
Let L0, · · · , Lh be generic h+ 1 sections in the pencil

span(xn−2, xn−1) = H0(OP1
sub

(1)) ⊂ H0(OPn(1)),

where h = 2n− 2. Then the condition (1.2) is satisfied, i.e.,

{Li = 0} ∩ {Lj = 0} ∩ C0 = ∅, i ̸= j.

Let A ⊂ H0(OPn(h)) be constructed with Lj , j = 0, · · · , h as in definition 1.1.

For fixed generic q2, q3, gk, corresponding maps ψ and ϕ in theorem 1.2 satisfy

(5.17) ψ(A) ⊂ image(ϕ).

See Appendix for the proof of it. The example shows our bound 2n− 2 is the sharp
bound under assumption (1.3). Together with Voisin’s result (2), this indicates as-
sumption (1.3) is strictly weaker than the classical assumption: X0 is generic.

Example 5.3. Let’s consider the lines in the Fermat quintic threefold. Let
x0, · · · , x4 be the homogeneous coordinates for P4. We consider f0 to be the Fermat
quintic

x50 + x51 + · · ·+ x54.

Let C0 be the line in P4 connecting two points

[1,−1, 0, 0, 0], [0, 0, a1, a2, a3]
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with a51 + a52 + a53 = 0. Then C0 ⊂ X0 = div(f0). We can find

NC0X0 ≃ OP1(−1)⊕OP1(3).

Corollary 1.3 says that if assumption (1.3) holds, then

NC0X0 ≃ OP1(−1)⊕OP1(−1).

(because d = 1). This contradiction says (C0, f0) does not deform to all hypersurfaces
in A to the first order, i.e. assumption (1.3) does not hold. This result is stronger
than Albano and Katz’s result, Prop. 2.1, in [1], which says (C0, f0) does not globally
deform to all hypersurfaces.

Appendix. (1) X0 is smooth. To see that, we specialize it at

gk = x2n−3
k , g0 = q3 + x2n−3

0 , q2 = x2n−4
n

where

q3 ∈ H0(OP1(2n− 3))

is generic. Then if z ∈ X0 is a singular point, it must satisfy
x1 = · · · = xn−3 = 0, ( ∂f0∂xk

|z = 0, k = 1, · · · , n− 3))
∂(q1q2+x0(x

2n−3
0 +q3))

∂α |z = 0, (α ∈ TqC4, C4 = (x0, xn, xn−1, xn−2))
(q1q2 + x0(x

2n−3
0 + q3))|z = 0, (f0(z) = 0).

It is easy to see such point z must be a zero of

q1 = xn = x0 = q3 = 0, and x0 = · · · = xn−3 = 0

which does not exist for generic q3. Hence X0 is smooth in this case. Now moving
q2, gk to generic sections, we obtain that if all

q2, gk, k = 0, · · · , n− 3

are generic, X0 is a smooth hypersurface.

(2) Proof of (5.17). The general idea follows from the direct calculation. We
compute image(ϕ) to be the set

(
2n−2∑
i=0

zix
i
n−1x

2n−2−i
n−2 )|C0 , for all complex numbers zi

and image(νs) is the set

(
n∑
i=0

ai(x0, · · · , xn)
∂f0
∂xi

)|C0 , for all linear forms ai(x0, · · · , xn).

Assumption (1.3) says the former set is contained in the latter. We would like to
show the former set of polynomials in xn−1, xn−2 (not evaluated at C0) is already
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contained in the latter set of polynomials (before evaluated at C0). The following is
the detailed computation.

First we’ll build a diagram (5.21) below by the following maps: Let νs:

(5.18)
H0(c∗0(TPn))

νs

→ H0(OP1(2h))

[α0, · · · , αn] →
∑n
i=0 αic

∗
0(
∂f0
∂xi

).

where αi ∈ H0(OP1(2)) and [α0, · · · , αn] represents a vector in

H0(c∗0(TPn)) ≃M2.

Let µs:

(5.19) T[f0]A
µs

→ H0(OP1(2h))
∂
∂a → −c∗0(∂F∂a ),

where F is the universal polynomial of the family of hypersurfaces determined by A
(defined at the beginning of section 3). Let P s1 be the obvious projection map

(5.20) H0(c̄∗0(TXA))
P s

1→ H0(c∗0(TPn)).

Then all these maps fit into the commutative diagram

(5.21)
H0(c̄∗0(TXA

))
P s

A→ T[f0]A
↓P s

1 ↓µs

H0(c∗0(TPn))
νs

→ H0(OP1(2h)).

By theorem 2.1, we need to show the surjectivity of P sA. This commutative diagram
(5.21) shows that it suffices to show

(5.22) image(µs) ⊂ image(νs).

Note

A = H0(OP1
sub

(h)) ⊂ H0(OPn(h)),

where the inclusion is obtained by the natural extension of the sections of OP1
sub

(h)

to OPn(h) (as indicated before). By the definition of µs,

(5.23) µs(T[f0]A) = c∗0(H
0(OP1

sub
(h))).

Next we would like to see that the image of νs contains all polynomials in

c∗0(H
0(OP1

sub
(h))).

To see this, we’ll build another diagram (5.27) below in the following way. First
observe the natural inclusion:

H0(OP1
sub

(1)) ⊂ H0(OPn(1)).
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Then notice

H0(OP1
sub

(1))
∂

∂xj
, j = 0, · · · , n− 1

are 2 dimensional sub-spaces of global sections of the bundle TPn . Let

(5.24) H = ⊕n−1
j=0H

0(OP1
sub

(1))
∂

∂xj
⊂ H0(TPn).

Then dim(H) = 2n.
There is a homomorphism

(5.25)
H ξ→ H0(OPn(h))∑n−1

j=0 lj(xn−1, xn−2)
∂
∂xj

→
∑n−1
j=0 lj(xn−1, xn−2)

∂f0
∂xj

.

Let Pr be the morphism of linear spaces

(5.26) ⊕∞
r=0H

0(OPn(r))→ ⊕∞
r=0H

0(OP1
sub

(r)).

(Pr will not be the natural pullback map). To describe Pr, it suffices to define it on a
basis. Let (xn)

mG be the monomials in x0, · · · , xn that form a basis for H0(OPn(r))
under the x0, · · · , xn coordinates, where G ∈ H0(OPn−1

sub
(r −m)). Define

Pr((xn)
mG) = 0, if m is odd,

Pr((xn)
mG) =

(
−(x2n−1 + x2n−2)

)m/2
G̃, if m is even,

where G̃ = G|x0=···=xn−3=0. These maps form a diagram

(5.27)

H ξ→ H0(OPn(h)) = H0(OPn(h))
↓c∗0 ↓Pr

H0(c∗0(TPn))
νs

→ H0(OP1(2h))
c∗0← H0(OP1

sub
(h)).

that is commutative because of the choices of q2 and gk( No monomials of xn-factor
in gk and only a monomial of xevenn -factor in q2).

2

Our observation is that Pr ◦ ξ is surjective, because the image of the composition
map Pr ◦ ξ is just

2∑
i=1

ln−i(xn−1, xn−2)Pr(
∂q1
∂xn−i

q2) +
n−3∑
k=0

lk(xn−1, xn−2)Pr(gk),

(a polynomial in xn−1, xn−2 only), where

n−1∑
j=0

li
∂

∂xj
∈ H.

2Notice in the diagram (5.27), the vertical c∗0 is different from the horizontal c∗0 because they are
the pull-backs of different vector bundles over Pn. Sorry for the abusing of notations.
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Because all q2, gk are generic,

Pr(q2), P r(gk)

are generic sections of OP1
sub

(2n− 4) and OP1
sub

(2n− 3) respectively.
Hence for the fixed q2, gk, the equation

2∑
i=1

ln−i(xn−1, xn−2)Pr(
∂q1
∂xn−i

q2) +
n−3∑
k=0

lk(xn−1, xn−2)Pr(gk) = 0,

implies

2∑
i=1

ln−i(xn−1, xn−2)
∂q1
∂xn−i

= 0

and lk = 0, k = 0, · · · , n− 3. Thus the kernel of Pr ◦ ξ is

{(l0, · · · , ln−1) :

2∑
i=1

ln−i(xn−1, xn−2)
∂q1
∂xn−i

= 0, l0 = · · · = ln−3 = 0}

which clearly has dimension 1. Thus dim(image(Pr ◦ ξ)) = 2n − 1, which is the
dimension of H0(OP1(h)). Hence Pr ◦ ξ is surjective (onto H0(OP1

sub
(h))). Thus

image(νs) ⊃ image(νs ◦ c∗0) = c∗0(H
0(OP1

sub
(h))).

By formula (5.23), we proved (5.17)
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