
ASIAN J. MATH. c© 2013 International Press
Vol. 17, No. 3, pp. 443–456, September 2013 003

VOLUME GROWTH, EIGENVALUE AND COMPACTNESS FOR

SELF-SHRINKERS∗

QI DING† AND Y. L. XIN†

Abstract. In this paper, we show an optimal volume growth for self-shrinkers, and estimate a
lower bound of the first eigenvalue of L operator on self-shrinkers, inspired by the first eigenvalue
conjecture on minimal hypersurfaces in the unit sphere by Yau [14]. By the eigenvalue estimates, we
can prove a compactness theorem on a class of compact self-shrinkers in R3 obtained by Colding-
Minicozzi under weaker conditions.
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1. Introduction. Let X : Mn → R
n+m be an isometric immersion from an

n-dimensional manifold Mn to Euclidean space R
n+m(m ≥ 1) with the tangent bun-

dle TM and the normal bundle NM along M . Let ∇ and ∇ be the Levi-Civita
connections on M and R

n+m, respectively. Then we define the second fundamental
form B by B(V,W ) = (∇V W )N = ∇V W − ∇V W for any V,W ∈ Γ(TM), where
(· · · )N stands for the orthogonal projection into the normal bundle NM . The mean
curvature vector H of M is given by H = trace(B) =

∑n
i=1 B(ei, ei), where {ei} is a

local orthonormal frame field of M .

Mn is said to be a self-shrinker in R
n+m if it satisfies

(1.1) H = −XN

2
.

Here, the factor − 1
2 (when the codimension m = 1, the definition here is as the

same as [4]) could be replaced by other negative number, while Ecker-Huisken defines
H = −XN [8]. Self-shrinkers play an important role in the study of mean curvature
flow. They are not only special solutions to the mean curvature flow equations (those
where later time slices are rescalings of earlier), but they also describe all possible
blow ups at a given type I singularity of a mean curvature flow (abbreviated by MCF
in what follows).

After the pioneer work on self-shrinking hypersurfaces of G. Huisken [11][12],
T. H. Colding and W. P. Minicozzi II gave a comprehensive study for self-shrinking
hypersurfaces [4]. Their papers reveal the importance of the subject. For higher
codimension, there is a few study, see [15] for example.

There are several other ways to characterize self-shrinkers (see [5] for hypersur-
faces, and high codimensional situation is similar):
(1) The one-parameter family of submanifolds

√
−tM ⊂ R

n+m satisfies MCF equa-
tions.
(2) M is a minimal submanifold in R

n+m endowed with the conformally flat metric

of the conformal factor e−
|X|2
2n .
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(3) M is a critical point for the functional F defined on immersed submanifolds in
R

n+m by

(1.2) F (M) = (4π)−n/2

∫

M

e−
|X|2

4 dµ.

Self-shrinkers satisfy elliptic equations(systems) of the second order, see (1.1).
It is an important class of submanifolds, which is closely related to minimal surface
theory. We expect certain technique in minimal surface theory (see [17]) could be
modified to study self-shrinkers.

For a complete non-compact manifold the volume growth is important. By easy
arguments we can show that any complete non-compact self-shrinker properly im-
mersed in Euclidean space with arbitrary codimension has Euclidean volume growth,
just like the trivial self-shrinker: planes. It is in a sharp contrast to the complete
minimal submanifolds in Euclidean space. Even for complete stable minimal hyper-
surfaces, it is still unclear whether they have Euclidean volume growth.

Theorem 1.1. Any complete non-compact properly immersed self-shrinker Mn

in R
n+m has Euclidean volume growth at most.

It is natural to raise a counterpart of the Calabi-Chern problem on minimal
surfaces in R

3. Is there a complete non-compact self-shrinker in Euclidean space,
which is contained in a Euclidean ball?

Remark 1.2. It is worthy to compare the above Theorem with the interesting
result of Cao-Zhou on the volume growth of complete gradient shrinking Ricci soliton
[3].

Let Σn be a compact embedded minimal hypersurface in (n + 1)-dimensional
sphere S

n+1. It is well known that the coordinate functions are eigenfunctions of
Laplacian operator on Σ with eigenvalue n. In [14], S. T. Yau conjectured that the
first eigenvalue of Σ would be n. Choi-Wang, [2], proved that the first eigenvalue of
Σ is bounded below by n/2.

In [1], H. I. Choi and R. Schoen gave the compactness theorem for minimal
surfaces using the first eigenvalue estimates for Laplacian operator on Σ. Precisely,
let N be a compact 3-dimensional manifold with positive Ricci curvature, then the
space of compact embedded minimal surfaces of fixed topological type in N is compact
in the Ck topology for any k ≥ 2.

In [5], Colding-Minicozzi proved a compactness theorem for complete embedded
self shrinkers in R

3. Such compactness theorem acts a key role for proving a long-
standing conjecture (of Huisken) classifying the singularities of mean curvature flow
starting from a generic closed embedded surface (see [4]).

Let ∆, div and dµ be Laplacian, divergence and volume element on M , respec-
tively. There is a linear operator

L = ∆− 1

2
〈X,∇(·)〉 = e

|X|2
4 div(e−

|X|2
4 ∇·).

On Euclidean space, this operator is so-called Ornstein-Uhlenbeck operator in stochas-
tic analysis. So it can be seen as a generalization of Ornstein-Uhlenbeck operator. The
L operator was introduced and studied firstly on self-shrinkers by Colding-Minicozzi
in [4], where the authors also showed that L is self-adjoint respect to the measure

e−
|X|2

4 dµ. It is a weighted Laplacian and closely related to the self-shrinkers.
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In Euclidean space the eigenvalues of the Ornstein-Uhlenbeck are well-known. On
self-shrinkers it is interesting to study the eigenvalues of L operator. Now, we estimate
its first eigenvalue (please see Chapter 3 for the definition) in a manner analogous to
the arguments in [2]. For compact self-shrinkers the estimates are rather neat. It is
also enough for the compactness applications.

Theorem 1.3. Let Mn be a compact embedded self-shrinker in R
n+1, then the

first eigenvalue λ1 for the operator L on M satisfies λ1 ∈ [ 14 ,
1
2 ].

With the help of Theorem 1.3, uniform volume growth for compact embedded
self-shrinkers could be estimated by genus and this will yield a compactness theorem.
Give a non-negative integer g and a constant D > 0, and let Sg,D denote the space
of all compact embedded self-shrinkers in R

3 with genus at most g, and diameter at
most D. We have a compactness theorem as follows.

Theorem 1.4. For each fixed g and D, the space Sg,D is compact. Namely, any
sequence in Sg,D has a subsequence that converges uniformly in the Ck topology (for
any k ≥ 0) to a surface in Sg,D.

Colding-Minicozzi gave in [5] a compactness theorem for a class of self-shrinkers
with bounded entropy in R

3. The assumption of bounded entropy is natural since
Colding-Minicozzi proved the conjecture of Huisken in [4] and these automatically
satisfy such a bound. However, Theorem 1.4 shows the compactness theorem holds
without the assumption of bounded entropy for compact case (please see Corollary
8.2 of [4]).

In this paper, we always suppose thatM is an n−dimensional smooth submanifold

in R
n+m with n ≥ 2, the function ρ = e−

|X|2
4 with X = (x1, · · · , xn+m) ∈ R

n+m.
Let 〈·, ·〉 be standard inner product of Rn+m, and Br be a standard ball in R

n+m

with radius r and centered at the origin, and Dr = M ∩ Br for r > 0. When m = 1
(codimension is 1), let ν be unit outward normal field of M , and 〈H, ν〉 be mean
curvature of M . We also write H = 〈H, ν〉 if there is no ambiguity in the context.
We agree with the following range of indices

1 ≤ i, j, k, · · · ≤ n+m, 1 ≤ α, β, γ, · · · ≤ n.

2. Volume growth of self shrinkers. Let M be an n-dimensional com-
plete self shrinkers in R

n+m. By (1.1) we have ∆X = H = − 1
2X

N for any
X = (x1, · · · , xn+m) ∈ R

n+m, then(see also [4])

(2.1) Lxi = ∆xi −
1

2
〈X,∇xi〉 = −1

2
〈XN , Ei〉 −

1

2
〈X, (Ei)

T 〉 = −1

2
xi,

where {Ei}n+m
i=1 is a standard basis of Rn+m and (· · · )T denotes the orthogonal pro-

jection into the tangent bundle TM . Moreover,

(2.2) L|X |2 = 2xiLxi + 2|∇X |2 = 2n− |X |2,

and

(2.3) ∆|X |2 = 2〈X,∆X〉+ 2|∇X |2 = 2〈X,H〉+ 2n = 2n− 4|H |2.

Now, we give an analytic lemma which will be used in proving volume growth.

Lemma 2.1. If f(r) is a monotonic increasing nonnegative function on [0,+∞)
with f(r) ≤ C1r

nf( r2 ) on [C2,+∞) for some positive constant n,C1, C2, here C2 > 1,
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then f(r) ≤ C3e
2n(log r)2 on [C2,+∞) for some positive constant C3 depending only

on n,C1, C2, f(C2).

Proof. If f(C2

2 ) = 0, then f(r) = 0 for r ≥ C2

2 and this Lemma holds obviously.

Hence we could assume f(C2

2 ) > 0, then the function g(r) = log f(r) on [C2,∞) is
well defined. By the assumption, one has

g(r) ≤ g(
r

2
) + logC1 + n log r, on [C2,+∞).

Let k = [
log r

C2

log 2 ] + 1, then C2

2 ≤ r
2k < C2, which implies r

2k−1 ≥ C2 > 1. By
iteration,

g(r) ≤g(
r

22
) + 2 logC1 + n(log r + log

r

2
) ≤ · · ·

≤g(
r

2k
) + k logC1 + n

k−1∑

j=0

log
r

2j
.

Then we have

(2.4)

g(r) ≤g(C2) + k(logC1 + n log r)

≤g(C2) + (
log r

C2

log 2
+ 1)(logC1 + n log r)

≤ logC3 + 2n(log r)2,

where C3 is a positive constant depending only on n,C1, C2, f(C2). By the definition
of g, (2.4) implies

f(r) ≤ C3e
2n(log r)2

on [C2,+∞).

For a complete non-compact n−submanifold M in R
n+m, we say that M has

Euclidean volume growth at most if there is a constant C so that for all r ≥ 1,

∫

Dr

1dµ ≤ Crn.

For a complete self-shrinker Mn in R
n+m, we define a functional Ft on any set Ω ⊂ M

(see also [4] for the definition of Ft) by

Ft(Ω) =
1

(4πt)n/2

∫

Ω

e−
|X|2
4t dµ, for t > 0.

Theorem 2.2. Any complete non-compact properly immersed self-shrinker Mn

in R
n+m has Euclidean volume growth at most. Precisely,

∫
Dr

1dµ ≤ Crn for r ≥ 1,
where C is a constant depending only on n and the volume of D8n.

Proof. We differential Ft(Dr) with respect to t,

F ′
t (Dr) = (4π)−

n
2 t−(n

2 +1)

∫

Dr

(−n

2
+

|X |2
4t

)e−
|X|2
4t dµ.
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A straightforward calculation shows

(2.5)

−e
|X|2
4t div(e−

|X|2
4t ∇|X |2) = −∆|X |2 + 1

4t
∇|X |2 · ∇|X |2

= −2〈H,X〉 − 2n+
1

4t
4|XT |2

= |XN |2 + |XT |2
t

− 2n

≥ |X |2
t

− 2n ( when t ≥ 1 ),

where the third equality above uses the self-shrinker’s equation (1.1). Since

∇|X |2 = 2XT

and the unit normal vector to ∂Dr is XT

|XT | , then for t ≥ 1 one gets

(2.6)

F ′
t (Dr) ≤π− n

2 (4t)−(n
2 +1)

∫

Dr

−div(e−
|X|2
4t ∇|X |2)dµ

=π− n
2 (4t)−(n

2 +1)

∫

∂Dr

−2|XT |e−
|X|2
4t ≤ 0.

We now integrate F ′
t (Dr) over t from 1 to r2 ≥ 1 and get Fr2(Dr) ≤ F1(Dr), namely,

(4πr2)−
n
2

∫

Dr

e−
|X|2
4r2 dµ ≤ (4π)−

n
2

∫

Dr

e−
|X|2

4 dµ.

Then

(2.7)

1

rn
e−

1
4

∫

Dr

1dµ ≤ 1

rn

∫

Dr

e−
|X|2
4r2 dµ ≤

∫

Dr

e−
|X|2

4 dµ =

∫

(Dr\D r
2
)∪D r

2

e−
|X|2

4 dµ

≤e−
r2

16

∫

Dr

1dµ+

∫

D r
2

1dµ.

Let f(r) =
∫
Dr

1dµ, then (2.7) implies

f(r) ≤ 2e
1
4 rnf(

r

2
) for r ≥ 8n.

With the help of Lemma 2.1, we obtain

f(r) ≤ C4e
2n(log r)2 for r ≥ 8n,

where C4 is a constant depending only on n, f(8n). Hence

∫

M

e−
|X|2

4 dµ =
∞∑

j=0

∫

D8n(j+1)\D8nj

e−
|X|2

4 dµ ≤
∞∑

j=0

e−
(8nj)2

4 f(8n(j + 1))

≤C4

∞∑

j=0

e−
(8nj)2

4 e2n(log(8n)+log(j+1))2 ≤ C5,

where C5 is a constant depending only on n, f(8n). Observe (2.7), we finish the
proof.
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If M is an entire graphic self shrinking hypersurface in R
n+1, then M has Eu-

clidean volume growth. Then by [8], we know that M is a hyperplane, which is also
obtained in [16].

Remark 2.3. Let Mn be a complete properly immersed self-shrinker in R
n+m,

then (2.2) yields(see also [4])

(2.8)

∫

M

|X |2ρ = 2n

∫

M

ρ.

For any 0 < ǫ <
√
2n we obtain

2
√
2nǫ

∫

M\D√
2n+ǫ

ρ ≤
∫

M\D√
2n+ǫ

(|X |2 − 2n)ρ =

∫

D√
2n+ǫ

(2n− |X |2)ρ ≤ 2n

∫

D√
2n

ρ.

Let η be a cut-off function satisfying η |B√
2n−ǫ

≡ 1, η |Rn+m\B√
2n
≡ 0 and |∇̄η| ≤ 1

ǫ ,
then

√
2nǫ

∫

D√
2n−ǫ

ρ ≤
∫

D√
2n

(2n− |X |2)ηρ = 2

∫

D√
2n

∇η · X
T

|X |ρ ≤ 2

ǫ

∫

D√
2n\D√

2n−ǫ

ρ.

Hence, we conclude that there is a constant C6, C7 depending only on n and ǫ, such
that

(2.9)

∫

M

ρdµ ≤ C6

∫

M∩(B√
2n+ǫ

\B√
2n−ǫ

)

ρdµ.

Combining (2.7) and (2.9), we have
∫

Dr

1dµ ≤ C7r
n

∫

M∩(B√
2n+ǫ

\B√
2n−ǫ

)

1dµ.

Corollary 2.4. Let Mn be a complete non-compact properly immersed self-
shrinker in R

n+m, then Ft(M) ≤ F1(M) for any t > 0.

Proof. Let ζ is a cut-off function such that

ζ(|X |) =





1 if X ∈ Br

linear if X ∈ B2r \Br

0 if X ∈ R
n+m \B2r,

Combining (2.5), for any t > 0 one gets
∣∣∣∣
∫

Dr

−div(e−
|X|2
4t ∇|X |2)dµ

∣∣∣∣

≤
∣∣∣∣
∫

M

−div(e−
|X|2
4t ∇|X |2)ζdµ

∣∣∣∣ +
∣∣∣∣∣

∫

M\Dr

−div(e−
|X|2
4t ∇|X |2)ζdµ

∣∣∣∣∣

≤
∣∣∣∣
∫

M

(∇|X |2 · ∇ζ)e−
|X|2
4t dµ

∣∣∣∣+
∫

M\Dr

∣∣∣∣|X
N |2 + |XT |2

t
− 2n

∣∣∣∣ e
− |X|2

4t dµ

≤2

r

∫

M

|X |e−
|X|2
4t dµ+

∫

M\Dr

(
(1 +

1

t
)|X |2 + 2n

)
e−

|X|2
4t dµ,
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which implies

(2.10) lim
r→∞

∫

Dr

−div(e−
|X|2
4t ∇|X |2)dµ = 0.

When 0 < t ≤ 1, from (2.5), we have

−e
|X|2
4t div(e−

|X|2
4t ∇M |X |2) ≤ |X |2

t
− 2n,

then

(2.11) F ′
t (Dr) ≥ π− n

2 (4t)−(n
2 +1)

∫

Dr

−div(e−
|X|2
4t ∇|X |2)dµ.

Combining (2.10) and (2.11), we know

F ′
t (M) = lim

r→∞
F ′
t (Dr) ≥ 0,

which implies

Ft(M) ≤ F1(M), for 0 < t ≤ 1.

On the other hand, by (2.6), we have

(4πR2)−n/2

∫

Dr

e−
|X|2
4R2 dµ ≤ (4π)−n/2

∫

Dr

e−
|X|2

4 dµ for any R ≥ 1.

Let r go to infinity, thus we finish the proof.

In hypersurface case, Colding and Minicozzi II (Lemma 7.10 in [4]) has proved a
more general result than Corollary 2.4.

3. The first eigenvalue of self-shrinkers and compactness theorem. Let
R

n+1 be Euclidean space with the canonical metric, with Levi-Civita connection ∇,
Laplacian operator ∆, and divergence div. Let L = ∆ − 1

2 〈X,∇·〉. Reilly derived
a useful integral formula for Laplacian operator [13](see also [2]). Now, we derive a
Reilly type formula for the operator L.

Theorem 3.1. Let Ω be a bounded domain in R
n+1 with smooth boundary.

Suppose that f satisfies

{ Lf = g in Ω

f = u on ∂Ω,

where g is a smooth function on Ω and u is a smooth function on ∂Ω, then
∫

Ω

g
2
ρ =

∫

Ω

|∇
2
f |2ρ+

1

2

∫

Ω

|∇f |2ρ+2

∫

∂Ω

fνLuρ−

∫

∂Ω

h(∇u,∇u)ρ−

∫

∂Ω

f
2
ν

(

〈X, ν〉

2
+H

)

ρ,

where h(·, ·) = 〈B(·, ·), ν〉, B is the second fundamental form on ∂Ω, ν is the outward
unit normal vector field on ∂Ω and mean curvature H = trace(h).

Proof. Let { ∂
∂xi

}n+1
i=1 be a canonical basis of Rn+1, fi = ∂f

∂xi
, and so on. Since

Lf = g, then we have

Lfi =
∑

j

(fijj −
1

2
xjfij) =

∂

∂xi
(g +

1

2

∑

j

xjfj)−
1

2

∑

j

xjfij = gi +
fi
2
,
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and

(3.1)
1

2
L|∇f |2 =

∑

i,j

f2
ij + fiLfi = |∇2

f |2 + 〈∇f,∇g〉+ 1

2
|∇f |2.

Integrating the equality (3.1) by parts we get

(3.2)

1

2

∫

Ω

L|∇f |2ρ =

∫

Ω

|∇2
f |2ρ+

∫

Ω

〈∇f,∇g〉ρ+ 1

2

∫

Ω

|∇f |2ρ

=

∫

Ω

|∇2
f |2ρ+ 1

2

∫

Ω

|∇f |2ρ+
∫

Ω

(div(ρg∇f)− gdiv(ρ∇f))

=

∫

Ω

|∇2
f |2ρ+ 1

2

∫

Ω

|∇f |2ρ+
∫

∂Ω

fνgρ−
∫

Ω

g2ρ.

On the other hand, we select an orthonormal frame field {e1, · · · , en+1} near the
boundary of Ω such that {e1, · · · , en} are tangential to ∂Ω, and ∇eαeβ = ∇en+1ei = 0
at a considered point in ∂Ω and ν = en+1 is the outward unit normal vector. Let
hαβ = 〈∇eαeβ, ν〉 = 〈B(eα, eβ), ν〉, then integrating by parts gives

(3.3)

1

2

∫

Ω

L|∇f |2ρ =
1

2

∫

Ω

div(ρ∇|∇f |2) =

∫

∂Ω

n+1
∑

i=1

(eif)(en+1eif)ρ

=

∫

∂Ω

fν(en+1en+1f)ρ+
n
∑

α=1

∫

∂Ω

(eαf)(eαen+1f)ρ+
n
∑

α=1

∫

∂Ω

[en+1, eα](f)(eαf)ρ

=

∫

∂Ω

fν(en+1en+1f)ρ−

∫

∂Ω

fν(Lu)ρ+
n
∑

α,β=1

∫

∂Ω

hαβeβ(f)eα(f)ρ.

Moreover,

(3.4)

en+1en+1f =

n+1∑

i=1

(
eieif −

(
∇eiei

)
f
)
−

n∑

α=1

(eαeαf) +

n∑

α=1

(
∇eαeα

)
f

= ∆f −∆f +

n∑

α=1

hααfν = Lf − Lu+
〈X, ν〉

2
fν +Hfν .

Combining (3.2)-(3.4), we complete the proof.

We would use the above Reilly type formula to estimate the first eigenvalue of L
operator on a self-shrinker in Euclidean space. Now the ambient space is not compact.
We need the following boundary gradient estimate for L.

Lemma 3.2. Let Σ be a compact embedded hypersurface in R
n+1, Ω be a bounded

domain in R
n+1 with ∂Ω = Σ∪SR. Here SR is an n-sphere with radius R and centered

at the origin for any R ≥
√
2(n+ 1) + diam(Σ). We consider Dirichlet problem

{ Lf = 0 in Ω

f |Σ= u , f |SR
= 0 ,

where u is a smooth function on Σ, then |∇f(X0)| ≤ 3maxX∈Σ |u(X)|R for any
X0 ∈ SR.
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Proof. For any X0 ∈ SR, there is a unique Y0 ∈ R
n+1 such that

BR(0) ∩ BR(Y0) = X0. Let u0 = maxX∈Σ |u(X)| and define two barrier func-

tions w±(d) = ±3u0

(
1− exp

(
− d2−R2

2

))
, d(X) = |X − Y0| on the ball B√

R2+1(Y0).

Now, we prove that the two functions w± satisfy
(i) ±Lw± < 0 in B√

R2+1(Y0) ∩ Ω,
(ii) w±(X0) = f(X0) = 0,
(iii) w−(X) ≤ f(X) ≤ w+(X), X ∈ ∂B√

R2+1(Y0) ∩ Ω.

Let Y = X − Y0, then d = |Y |, ∇d = Y
|Y | and ∆d = n

|Y | , hence

Lw+ = (w+)′Ld+ (w+)′′|∇d|2 = (w+)′′ + (w+)′
(

n

|Y | −
1

2

X · Y
|Y |

)
.

Since (w+)′ = 3u0de
− d2−R2

2 and (w+)′′ = 3u0(1 − d2)e−
d2−R2

2 , then for any X ∈
B√

R2+1(Y0) ∩ Ω, we have |X | ≤ R, d = |Y | ≥ R and

Lw+ ≤ 3u0(1− d2)e−
d2−R2

2 + 3u0de
− d2−R2

2

(
n

d
+

R

2

)

= 3u0e
− d2−R2

2

(
1− d2 + n+

R

2
d

)
≤ 0 (since R ≥

√
2(n+ 1) ).

Thus, (i) is proved. (ii) is obvious. By maximum principle, one can obtain

|f(X)| ≤ u0, for any X ∈ Ω.

When X ∈ ∂B√
R2+1(Y0) ∩ Ω, w+(X) = 3u0(1 − e−1/2) ≥ f(X) and w−(X) =

−3u0(1− e−1/2) ≤ f(X). Thus, (iii) is proved.
Comparison principle of elliptic equations gives

w−(X) ≤ f(X) ≤ w+(X), X ∈ B√
R2+1(Y0) ∩ Ω.

Therefore, the normal derivatives of w± and f satisfy

∂w−

∂ν
(X0) ≤

∂f

∂ν
(X0) ≤

∂w+

∂ν
(X0),

which completes the proof.

We define the first (Neumann) eigenvalue λ1 of the self-adjoint operator L in
complete self-shrinkers Mn in R

n+1 by

λ1 = inf
f∈C∞(M)

{∫

M

|∇f |2ρ;
∫

M

f2ρ = 1,

∫

M

fρ = 0

}
.

By (2.1), one has λ1 ≤ 1
2 . From the following lemma, λ1 can be arrived by the first

eigenfunction u and λ1 > 0 for any complete properly immersed self-shrinker.

Lemma 3.3. Let Mn be a complete properly immersed self-shrinker in R
n+1, then

there exists a smooth function u with
∫
M u2ρ = 1,

∫
M uρ = 0 such that Lu + λ1u = 0

and
∫
M

|∇u|2ρ = λ1.

Proof. By the definition of λ1, there exists a sequence {fi} satisfying

(3.5)

∫

M

f2
i ρ = 1,

∫

M

fiρ = 0 and lim
i→∞

∫

M

|∇fi|2ρ = λ1.
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Since λ1 ≤ 1/2, then there exists a N0 such that, for any i ≥ N0,
∫
M

|∇fi|2ρ ≤ 1.
Define two Sobolev spaces L2(Ω, ρ), H1(Ω, ρ) for any set Ω ⊂ M by

L2(Ω, ρ) = {f ;

∫

Ω

f2ρ < ∞ },

H1(Ω, ρ) = {f ;

∫

Ω

f2ρ < ∞ and

∫

Ω

|∇f |2ρ < ∞},

respectively. Since H1(Dr, ρ) is a Hilbert space, then there is a subsequence {fni
} of

{fi} converging to some ur ∈ H1(Dr, ρ) weakly, and there is a subsequence {fnki
}

of {fni
} converging to some ur+1 ∈ H1(Dr+1, ρ) weakly and so on. Hence we could

choose a diagonal sequence, denoted by fk for simplicity, such that fk converges to
some uK ∈ H1(K, ρ) weakly for any compact set K ⊂ M , i.e., we can define u on M
such that u |K= uK . By compact embedding theorem, sequence fk converges to u in
the space L2(K, ρ) strongly for any compact set K, then

∫

K

u2ρ = lim
k→∞

∫

K

f2
kρ ≤ 1.

By weak convergence in H1(Dr, ρ), one has

∫

K

(∇u · ∇fk)ρ = lim
j→∞

∫

K

(∇fj · ∇fk)ρ

≤1

2
lim
j→∞

∫

K

(|∇fj |2 + |∇fk|2)ρ ≤ λ1

2
+

1

2

∫

K

|∇fk|2ρ.

Hence

(3.6)

∫

M

u2ρ ≤ 1,

∫

M

|∇u|2ρ ≤ λ1.

For any sufficiently small ǫ > 0 and compact set K ⊂ M , there exists a k such that∫
K
|u− fk|2ρ ≤ ǫ. Combining (3.5) and (3.6) and Cauchy inequality, we get

(3.7)

∣∣∣∣
∫

K

uρ

∣∣∣∣ ≤
∫

K

|u− fk|ρ+
∣∣∣∣
∫

K

fkρ

∣∣∣∣ ≤
∫

K

|u− fk|ρ+
∫

M\K
|fk|ρ

≤
√∫

K

ρ

∫

K

|u− fk|2ρ+
√∫

M\K
ρ

∫

M\K
|fk|2ρ

≤
√
ǫ

∫

K

ρ+

√∫

M\K
ρ.

Since M has Euclidean volume growth, then (3.7) implies

∫

M

uρ = 0.

Now let us prove
∫
M u2ρ = 1. By Logarithmic type Sobolev inequalities on self-

shrinkers one has [7]

(3.8)

∫

M

|X |2f2
kρ ≤ 16

∫

M

|∇fk|2ρ+ 4n

∫

M

f2
kρ.
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In fact, multiplying a smooth function g with compact support on the both sides of
(2.2), then integrating by parts yield

∫

M

(|X |2 − 2n)g2ρ =

∫

M

(∇|X |2 · ∇g2)ρ ≤ 1

2

∫

M

|X |2g2ρ+ 8

∫

M

|∇g|2ρ.

Using such function g to approach fk, we can also get (3.8).
For any r > 0 (3.8) implies

r2
∫

M\Dr

f2
kρ ≤ 16

∫

M

|∇fk|2ρ+ 4n

∫

M

f2
kρ ≤ 16 + 4n,

then

(3.9)

∫

Dr

u2ρ = lim
k→∞

∫

Dr

f2
kρ = 1− lim

k→∞

∫

M\Dr

f2
kρ ≥ 1− 16 + 4n

r2
.

Combining (3.6) one arrives at
∫
M u2ρ = 1. By the definition of λ1, we get∫

M
|∇u|2ρ = λ1. Let us define a functional

I(f) =

∫

M

|∇f |2ρ− 2λ1

∫

M

fuρ

and

f =

∫
M

fρ∫
M ρ

,

then

I(f) =

∫

M

|∇f |2ρ− 2λ1

∫

M

(f − f)uρ ≥
∫

M

|∇f |2ρ− λ1

∫

M

(
(f − f)2 + u2

)
ρ

=− λ1 +

∫

M

|∇f |2ρ− λ1

∫

M

(f − f)2ρ ≥ −λ1.

Since I(u) = −λ1, then the function u arrives at the minimum of the functional I(·).
Hence ∂

∂ǫ |ǫ=0 I(u + ǫϕ) = 0 for any ϕ ∈ C∞
c (M). By a simple calculation, we have

∫

M

(Lu + λ1u)ϕρ = 0.

By the regularity theory of elliptic equations u is a smooth function (see [9] for ex-
ample). We finish the proof.

Now, we give a uniformly positive lower bound of λ1 for compact embedded self
shrinkers in R

n+1.

Proof of Theorem 1.3. We have known 0 < λ1 ≤ 1
2 in the previous discussion.

Let BR be an n-ball with radius R and centered at the origin, then there is a R0 such
that M ⊂⊂ BR0 . Set ΩR be a bounded domain in R

n+1 with ∂ΩR = M ∪ ∂BR for
R ≥ R0. We consider the following Dirichlet problem

{ Lf = 0 in ΩR

f |M= u , f |∂BR
= 0 ,
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where u is the first eigenfunction of the self-adjoint operator L in M , i.e., Lu+λ1u = 0
and

∫
M u2ρ = 1. By Lemma 3.2, we get |∇f(Y )| ≤ 3maxX∈M |u(X)|R for any

Y ∈ ∂BR. Integrating by parts gives

(3.10)

∫

M

fνLuρ = −λ1

∫

M

fνuρ = −λ1

∫

ΩR

div(ρf∇f) = −λ1

∫

ΩR

|∇f |2ρ,

Combining (1.1), (3.10) and Theorem 3.1, we have
(3.11)

0 ≥

∫

ΩR

|∇
2
f |2ρ+

1

2

∫

ΩR

|∇f |2ρ− 2λ1

∫

ΩR

|∇f |2ρ−

∫

M

h(∇u,∇u)ρ−

∫

∂BR

f
2
ν

R

2
ρ

≥

∫

ΩR

|∇
2
f |2ρ+ (

1

2
− 2λ1)

∫

ΩR

|∇f |2ρ−

∫

M

h(∇u,∇u)ρ−
9

2
max
X∈M

|u(X)|2R3

∫

∂BR

ρ.

We may assume
∫
M h(∇u,∇u)ρ ≤ 0, or else we consider the bounded domain U with

∂U = M instead of ΩR. By trace theorems in Sobolev spaces (see [10] for example),
there is a positive constant C depending only on n,R0 and M such that

∫

ΩR0

|∇2
f |2 +

∫

ΩR0

|∇f |2 ≥ C

∫

M

|∇f |2.

Then for R > R0 one has

(3.12)

∫

ΩR

|∇2
f |2ρ+

∫

ΩR

|∇f |2ρ

≥
∫

ΩR0

|∇2
f |2ρ+

∫

ΩR0

|∇f |2ρ

≥ e−
R2

0
4

(∫

ΩR0

|∇2
f |2 +

∫

ΩR0

|∇f |2
)

≥ e−
R2

0
4 C

∫

M

|∇f |2

≥ e−
R2

0
4 C

∫

M

|∇u|2ρ = e−
R2

0
4 Cλ1 > 0.

If λ1 < 1
4 , then let R go to infinite in (3.11), which deduces a contradiction by (3.12).

Hence we get λ1 ≥ 1
4 .

Corollary 3.4. Let Mn be a compact embedded self-shrinker in R
n+1, then for

any f ∈ C1(M) there is a Poincaré inequality
∫

M

(f − f)2ρ ≤ 4

∫

M

|∇f |2ρ,

where f =
∫
M

fρ∫
M

ρ
.

Proof. If f is not a constant, let g = (
∫
M

f2ρ − f
2 ·
∫
M

ρ)−1/2(f − f), then∫
M

gρ = 0 and
∫
M

g2ρ = 1. Since λ1 is the first eigenvalue of self-adjoint operator L,
then combining Theorem 1.3 we complete the proof.

Now, let us recall a classical result of P. Yang and S. T. Yau [18].

Theorem 3.5. (Yang-Yau) Let (Σ2
g, ds

2) be an orientable Riemann surface of
genus g with area Area(Σg). Then we have

λ1(Σg) ≤
8π(1 + g)

Area(Σg)
,
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where λ1(Σg) is the first eigenvalue of ∆ on Σg.

Let N3 = (R3, (ρδij)) and M2 be a compact embedded self-shrinker in R
3. Let

g̃ = g̃ijdθidθj , ∇̃ and ∆̃ be the metric, the Levi-Civita connection and the Laplacian
operator of M induced from N3, respectively. Denote the self-shrinker M with metric
g̃ by M̃ . Let gijdθidθj and dµ be the metric and the volume element of M induced

from R
3, then g̃ij = ρgij . Denote the first eigenvalue of M̃ by λ1(M̃), then

(3.13)

λ1(M̃) = inf∫
M

fρ=0

∫
M |∇̃f |2ρdµ∫
M

f2ρdµ
= inf∫

M
fρ=0

∫
M g̃ijfifjρdµ∫

M
f2ρdµ

≥ inf∫
M

fρ=0

∫
M

gijfifjρdµ∫
M f2ρdµ

= λ1 ≥ 1

4
,

where we have used Theorem 1.3 in the last inequality in (3.13).

Corollary 3.6. Let M be a compact embedded self-shrinker in R
3 with genus

g, then

∫

M

ρ ≤ 32π(1 + g),

moreover,

∫

Dr

1dµ ≤ 32e
1
4π(1 + g)r2 for r ≥ 1.

Proof. Combining (3.13) and Theorem 3.5, we get

(3.14)

∫

M

ρ ≤ 32π(1 + g).

Combining (2.7) and (3.14) for r ≥ 1 gives

(3.15)
1

r2
e−

1
4

∫

Dr

1dµ ≤ 1

r2

∫

Dr

e−
|X|2
4r2 dµ ≤

∫

Dr

e−
|X|2

4 dµ ≤ 32π(1 + g),

which yields

(3.16)

∫

Dr

1dµ ≤ 32e
1
4 π(1 + g)r2, for r ≥ 1.

For a non-negative integer g and a constant D > 0, let Sg,D denote the space
of all compact embedded self-shrinkers in R

3 with genus at most g, and diameter at
most D. Now, we are in a position to prove a compactness theorem.

Proof of Theorem 1.4. For any compact surface Σ in R
3, using Gauss-Bonnet

formula one has

(3.17)

∫

Σ

|B|2 =

∫

Σ

H2 − 2

∫

Σ

K =

∫

Σ

H2 − 4πχ(Σ),
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where χ(Σ) is the Euler number of surface Σ. If Σ ∈ Sg,D, then (2.8) implies there is
a X ∈ Σ with |X | =

√
2n and Σ ⊂ BD+

√
2n. Combining (2.3) and (3.16) gives

(3.18)

∫

Σ

H2 =

∫

Σ

1dµ ≤ 32e
1
4π(1 + g)(D +

√
2n)2.

Then (3.17) and (3.18) implies

(3.19)

∫

Σ

|B|2 =

∫

Σ

H2 − 4π(2− 2g) ≤ 32e
1
4π(1 + g)(D +

√
2n)2 + 8π(g − 1).

According to Proposition 5.10 of [6](see also [1] and [5]), we complete the proof.
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