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HARMONIC FORMS ON PRINCIPAL BUNDLES∗

CORBETT REDDEN†

Abstract. We show a relationship between Chern–Simons 1- and 3-forms and harmonic forms
on a principal bundle. Doing so requires one to consider an adiabatic limit. For the 3-form case,
assume that G is simple and the corresponding Chern–Weil 4-form is exact. Then, the Chern–Simons
3-form on the princpal bundle G-bundle, minus a canonical term from the base, is harmonic in the
adiabatic limit.
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1. Introduction. In general, explicitly computing the harmonic forms on a Rie-
mannian manifold is a difficult problem. However, if one has some symmetries or some
extra information, the problem becomes more manageable. We notice a few interest-
ing things in this paper. First, if one places a very natural metric on a principal
bundle, the harmonic forms have a nice characterization in an adiabatic scaling limit.
In fact, the Chern–Simons 1-form and 3-form naturally arise in this context. Second,
to show that a form is harmonic in the adiabatic limit, one only needs to show that
the Laplacian of it tends towards 0 at a fast enough rate in the scaling limit. One does
not need to characterize the harmonic forms on the nose for any particular scaling.

We now proceed to say this more concretely. All manifolds in this paper are con-
nected, compact, oriented, and without boundary. Fix a connected compact semisim-
ple Lie group G. Let P

π
→ M be a principal G-bundle with connection Θ over the

Riemannian manifold (M, gM ). Choosing some bi-invariant metric gG on G, we use
the connection Θ and base metric gM to construct a local product metric gP on P :

gP := π∗gM ⊕ gG.

The closed manifold P now has a Riemannian metric, and it is natural to investigate
the harmonic forms with respect to this metric.

In concrete calculations, however, one observes that this space has no obvious
characterization. In fact, it depends on the choice of bi-invariant metric gG. Equiva-
lently, the finite-dimensional space of harmonic forms varies as one globally rescales
the base metric gM . For this reason, we introduce a scaling factor in one direction
and take a limit. For any δ > 0, define the metric on P

gδ := δ−2π∗gM ⊕ gG.

The limit δ → 0, where the volume of the base is very large with respect to the
volume of the fiber, is known as the adiabatic limit and appears in a number of
constructions. Of particular relevance to our situation is the work of Mazzeo–Melrose
[MM], Dai [Dai], and Forman [For], which considers the Hodge Laplacian on forms
in an adiabatic limit. While the metric gδ and corresponding Laplacian ∆gδ become
singular at δ = 0, the space of harmonic k-forms Ker∆k

gδ
smoothly extends to δ = 0,
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as proven in all three of the above papers. We therefore define

Hk(P ) := lim
δ→0

Ker∆k
gδ
⊂ Ωk(P ),

and note that Hk(P ) ∼= Hk(P ;R) canonically.
To calculate this, we use an interpretation of Hk(P ) in terms of the Leray–Serre

spectral sequence for the fiber bundle G →֒ P → M . While this relationship was
obtained in [MM], [Dai], [For], it is rather subtle and not commonly known, so we
give a brief recount of [For] in Section 2. The key idea is that we do not have to
construct a δ-family of gδ-harmonic forms; instead, we only need to show that a given
form is harmonic up to a low-order power of δ. The required power of δ is related
to when the spectral sequence collapses. For example, if an SU(n)-bundle satisfies
c2(P ) = 0 ∈ H4(M ;R), then the spectral sequence calculating H3(P ;R) collapses at
N = 2. That N = 2, and not higher, makes our calculations possible.

By definition, a principal G-bundle has a free right G-action, and the metrics
gδ are all invariant under this action. This implies that the harmonic forms on P
will be contained in the subspace Ω∗(P )G of right-invariant forms. In Section 3,
we give an explicit description of this as a bigraded cochain complex in accordance
with the discussion from Section 2. We see that it has a very natural description
as Ωi,j(P )G ∼= Ωi(M ; Λj

g
∗
P ), where gP is the Adjoint bundle associated to P . The

exterior derivative decomposes into a Lie algebra derivative dg, a covariant connection
d∇, and a curvature term ιΩ.

In Section 4, we perform the actual calculations. The notation is that Θ is a
connection with curvature Ω, and the harmonic forms on M are Hi(M). To begin,
in Theorem 4.2 we calculate the harmonic 1-forms on a G-bundle for any connected
compact G. For G = U(n), this is shown in Corollary 4.4 to be

H1(P ) =

{
π∗H1(M) if c1(P ) 6= 0 ∈ H2(M ;R)

π∗H1(M)⊕ R[ i
2π Tr(Θ)− π∗h] if c1(P ) = 0 ∈ H2(M ;R)

where h ∈ Ω1(M) is the unique form such that dh = i
2π Tr(Ω) = c1(P,Θ) is the first

Chern form and h ∈ d∗Ω2(M). The cohomology class c1(P ) is the first Chern class
and i

2π Tr(Θ) is the Chern–Simons 1-form. We then see in Proposition 4.5 that when
G is semisimple, the adiabatic-harmonic 1 and 2-forms are

H1(P ) = π∗H1(M), H2(P ) = π∗H2(M).

Finally, Theorem 4.6 calculates the adiabatic-harmonic 3-forms when G is simple. We
denote the Chern–Simons 3-form by α(Θ) ∈ Ω3(P ), and the Chern–Weil 4-form by
〈Ω ∧ Ω〉 ∈ Ω4(M). For G = SU(n) with n ≥ 2, the harmonic forms in the adiabatic
limit are

H3(P ) =

{
π∗H3(M) c2(P ) 6= 0 ∈ H4(M ;R)

π∗H3(M)⊕ R[α(Θ)− π∗h] c2(P ) = 0 ∈ H4(M ;R)

where h ∈ Ω3(M) is the unique form such that dh = 〈Ω ∧ Ω〉 = c2(P,Θ) and h ∈
d∗Ω4(M). In particular, the Chern–Simons form α(Θ) is in H3(P ) precisely when
the second Chern form 〈Ω ∧ Ω〉 is identically 0. When n = 3 or n ≥ 5, the above
statement also holds with SU(n) replaced by Spin(n) and c2 replaced by p1

2 .
We briefly discuss one use for these results which appears in [Red2]. First consider

the subset of forms with integral periods and define H3
Z
(P ) ⊂ H3(P ) as the image
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of H3(P ;Z) → H3(P ;R)
∼=
→ H3(P ). In the situation where G = Spin(n) with

n ≥ 5, there is standard way to choose 〈·, ·〉 so that α(Θ) restricts to the generator of
H3

Z
(Spin(n)) ∼= Z. It follows from Theorem 4.6 that if p1

2 (P ) = 0 ∈ H4(M ;Z), then

H3
Z
(P ) = π∗H3

Z
(M)⊕ Z[α(Θ) − π∗H ],

where H is unique up to the addition of an element from H3
Z
(M). The form H ∈

Ω3(M) satisfies dH = 〈Ω ∧ Ω〉 and d∗H = 0, but in general it has a non-trivial
harmonic component due to the fact that α(Θ) − π∗h will not have integral periods.
The non-integrality of α(Θ) − π∗h is precisely because, modulo Z, this integrates to
give Chern–Simons numbers on 3-cycles, which are often non-zero [CS].

In [Red2], we discuss the notion of “string structures” on a principal bundle and
see that a string structure picks out a canonical cohomology class S ∈ H3(P ;Z) that
restricts fiberwise to the standard generator of H3(Spin(n);Z). By the results of this
paper, the canonical differential form [S] ∈ H3

Z
(P ) representing S will be

[S] = α(Θ)− π∗H ∈ Ω3(P ),

thus specifying a canonical H = HgM ,Θ,S . Choosing a string structure can be thought
of as choosing an H such that α(Θ) − π∗H ∈ H3

Z
(P ). An important consequence is

that the form H lifts the values of the associated differential character from R/Z to
R.

Finally, the author would like to thank Stephan Stolz for all of his encouragement
and insight. He is also grateful to Brian Hall, Liviu Nicolaescu, and Bruce Williams
for numerous helpful comments and discussions.

2. Hodge theory and spectral sequences. The idea that the harmonic forms
on a fiber bundle are related to a spectral sequence was developed in [MM] and [Dai]
and expanded on in [For]. In particular, the spectral sequence structure was described
in [Dai] and made even more explicit in [For]. In the following, we summarize Forman’s
treatment to make this paper self-contained. However, the reader should be warned
that we use the bigrading notation (horizontal, vertical), which is opposite that of
Forman. Before getting to the adiabatic spectral sequence, we quickly review Hodge
cohomology and spectral sequences.

2.1. Hodge theory. Consider a Riemannian manifold (M, gM ) that is compact
with no boundary. The operator d on differential forms naturally gives rise to de Rham
cohomology. However, a de Rham cohomology class only determines an equivalence
class of forms representing the cohomology class. Choosing a Riemannian metric and
orientation produces the Hodge star ∗ : ΛkTM∗ → Λn−kTM∗, the adjoint operator
d∗ = (−1)n(k+1)+1 ∗ d∗, and the Hodge Laplacian

∆k := (d+ d∗)2 = dd∗ + d∗d : Ωk(M)→ Ωk(M).

Forms in the kernel of ∆ are called harmonic, and we use the notation

Hk(M) := Ker∆k = Ker d ∩Ker d∗ ⊂ Ωk(M).

Elements in Hk(M) are called harmonic, and we refer to Hk(M) as the Hodge co-
homology of the complex (Ω∗(M), d, d∗). The main theorem of Hodge theory is the
orthogonal decomposition of forms

(2.1) Ωk(M) = dΩk−1 ⊕ d∗Ωk+1 ⊕Hk(M).
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In particular, the finite-dimensional vector space Hk(M) of harmonic forms is canon-
ically isomorphic to the de Rham cohomology Hk(M ;R). Furthermore, there are
natural isomorphisms between exact and coexact forms

(2.2) d∗Ωk+1

d

11 dΩ
k(M).

d∗

qq

For generic Riemannian manifolds, explicitly describing harmonic forms is ex-
tremely difficult. However, on a compact connected Lie group with bi-invariant met-
ric, the situation is much easier. The group acts on itself by isometries, and it follows
that any harmonic form must be invariant under the left and right group actions. In
fact, it can be shown that any bi-invariant form must be closed, leading to Proposi-
tion 2.1. Restricting to the subcomplex of left-invariant forms, we obtain the standard
complex used in Lie algebra cohomology. The adjoint d∗ maps left-invariant forms to
left-invariant forms, and so descends to an adjoint at the Lie algebra level:

(2.3) 0 // R
0 //

~~
g
∗

dg //

0
||

Λ2
g
∗

dg //

d∗

g

zz
· · ·

dg //

d∗

g

yy
Λn−1

g
∗ 0 //

d∗

g

zz
Λn

g
∗ //

0
ww

0.
zz

The harmonic forms Hk(g) = Ker(dgd
∗
g
+ d∗

g
dg) are naturally isomorphic to Hk(G)

and are described by the following standard result (see, for instance, 7.4 of [Nic]).

Proposition 2.1. For connected compact Lie groups with bi-invariant metric,
the harmonic forms are exactly the bi-invariant forms. Equivalently, for Lie algebras
with Ad-invariant metric, the harmonic forms in (2.3) are exactly the Ad-invariant
forms.

2.2. Leray–Serre spectral sequence. The Leray–Serre cohomology spectral
sequence for a fibration F →֒ P →M consists of:

• a sequence of “pages” or cochain complexes Ep
0 , E

p
1 , E

p
2 , · · · , E

p
∞, equipped

with a bigrading Ep
K =

⊕

i+j=p

Ei,j
K ,

• differentials dK : Ep
K → Ep+1

K such that Hp(E∗
K , dK) = Ep

K+1. With respect

to the bigrading, dK : Ei,j
K → Ei+K,j−K+1

K ,

• Ei,j
2
∼= Hi(M ;Hj(F ;H)), whereH is an abelian group (if π1(M) acts trivially

on P ),
• Ep

∞ gives Hp(M ;H) in the sense that En,p−n
∞ is isomorphic to the quotient

F p
n/F

p
n+1 of a filtration 0 ⊂ F p

p ⊂ · · · ⊂ F
p
0 = Hp(P ;H).

In other words, it relates the cohomology of the total space of a fibration with the
cohomology of its base and fiber. This allows for powerful calculations using formal
methods. The primary example we deal with is the case where P is a principal bundle
over a manifold M . We note that if G is connected, then π1(BG) = 0. Since any
G-bundle is isomorphic to a pullback of the universal bundle EG→ BG, π1(M) acts
trivially on the fibers of P . For examples of spectral sequence calculations, see Section
4.

2.3. Adiabatic spectral sequence. While the results of [For] apply to more
general situations, we restrict to a specific geometric hypothesis to simplify matters.
Suppose that F →֒ P

π
→ M is a fiber bundle of compact manifolds such that π
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is a Riemannian submersion; i.e. (P, gP ) and (M, gM ) are Riemannian manifolds,
the map π is a Riemannian submersion, and the fibers π−1(x) ⊂ P are Riemannian
submanifolds isometric to a fixed Riemannian manifold (F, gF ). Thinking of the fibers
F as the vertical direction and the base M as the horizontal direction, the tangent
bundle TP decomposes as

TP = THP ⊕ T VP.

Here,

T VP := Kerπ∗ ⊂ TP, and T
HP := TP ⊖ T VP ⊂ TP

are distributions of vertical and horizontal vectors respectively (THP is defined by
taking the orthogonal complement of T VP using the metric gP ). The metric on P is
then the direct sum of metrics on the horizontal and vertical distributions:

gP = gM ⊕ gF .

Define the 1-parameter family of metrics gδ, where δ > 0, by

(2.4) gδ := δ−2gM ⊕ gF .

The limit δ → 0 is called the adiabatic limit and can be thought of as making the
base very large relative to the fibers.

The orthogonal decomposition of TP induces a bigrading on the differential forms

Ωp(P ) =
⊕

i+j=p

Ωi,j(P ), Ωi,j(P ) = C∞(P,ΛiTHP ∗ ⊗ ΛjT VP ∗).

The exterior derivative d and its adjoint d∗, under the fixed metric gP , decompose as

d = d0,1 + d1,0 + d2,−1, da,b : Ωi,j(P )→ Ωi+a,j+b(P ),

d∗ = d0,1∗ + d1,0∗ + d2,−1∗, da,b∗ : Ωi,j(P )→ Ωi−a,j−b(P ).

The component d−1,2 = 0 due to the integrability of T VP . To effectively deal with
gδ, introduce the isometry for any δ > 0

ρδ : (Ω
i,j(P ), gδ)→ (Ωi,j(P ), gP )

φ 7→ δiφ.

Conjugating by ρδ gives rise to a 1-parameter family of operators dδ, d
∗
δ , and Lgδ on

the fixed inner product space (Ω∗(P ), gP ). These evidently take the form

dδ := ρδdρ
−1
δ = d0,1 + δd1,0 + δ2d2,−1,

d∗δ := ρδd
∗gδ ρ−1

δ = d0,1∗ + δd1,0∗ + δ2d2,−1∗,

Lgδ := ρδ∆gδρ
−1
δ = dδd

∗
δ + d∗δdδ.

(2.5)

In addition to fixing the inner product, the isometry ρδ produces the above factors
of δ which naturally give the spectral sequence structure. We first define the terms
Ei,j

K , and then we define the differentials and explain why this is a spectral sequence.
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Definition 2.2.

Ei,j
K := {ω ∈ Ωi,j(P ) | ∃ ω1, . . . , ωl ∈ Ωi+j(P ) with

dδ(ω + δω1 + · · ·+ δlωl) ∈ δ
KΩi+j+1(P )[δ]

d∗δ(ω + δω1 + · · ·+ δlωl) ∈ δ
KΩi+j−1(P )[δ]}

Ei,j
∞ :=

⋂

K

Ei,j
K .

While the above definition seems formal, there is a nice geometric interpretation.
The polynomial ω+δω1+ · · ·+δ

lωl should be thought of as the Taylor approximation
at δ = 0 of a function

ω̃ ∈ C∞([0, 1],Ωi+j(P )),

and elements ω ∈ Ei,j
K as boundary values of sections ω̃ such that as δ → 0,

dδω̃ = 0 +O(δK); d∗δ ω̃ = 0+O(δK).

By definition, Ωi,j(P ) = Ei,j
0 · · · ⊇ Ei,j

K ⊇ Ei,j
K+1 ⊇ · · · ⊇ Ei,j

∞ . To define the
differentials, first let

πK : Ω∗(P )→ EK ⊂ Ω∗(P )

denote the orthogonal projection using the metric gP . To any ω ∈ EK , there exists a
non-unique polynomial ωδ = ω + δω1 + · · ·+ δlωl satisfying Definition 2.2. Define

dKωδ := lim
δ→0

δ−Kdδωδ = lim
δ→0

δ−Kdδ(ω + δω1 + δ2ω2 + · · · ) ∈ Ω∗(P ).

Though this depends on the choice of polynomial ωδ,

πKdK : EK → EK

is well-defined. The same procedure defines

πKd
∗
K : EK → EK

and the second order operator

△K := (πKdK) (πKd
∗
K) + (πKd

∗
K) (πKdK) .

Theorem 2.3 (Theorem 2.5 [For]).
1. (πKdK)2 = (πKd

∗
K)2 = 0.

2. Ker △K= Ker(πKdk) ∩Ker(πKd
∗
K) = EK+1.

3. πKdK : Ei,j
K → Ei+K,j−K+1

K .

Therefore, the complex {Ei,j
K , πKdK} is a bi-graded spectral sequence. However,

instead of taking the ordinary cohomology and dealing with equivalences classes of
cocycles, E•

K+1 is obtained as the Hodge cohomology of the complexE•
K . The cochains

of each subsequent page in the spectral sequence are still represented by differential
forms. By Corollary 4.4 in [For], the spectral sequence is isomorphic to the standard

Leray–Serre spectral sequence associated to the fibration F →֒ P
π
→ M . Let N =
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N(p) denote the page where the portion of the spectral sequence calculating Hp(P ;R)
collapses; i.e. N is such that

Ep

N(p)−1 6= Ep

N(p) = · · · = Ep
∞.

Proposition 2.4. For ω ∈ Ep
∞, there exists a unique formal power series

ωδ = ω + δω1 + δ2ω2 + · · · ∈ Ωp(P )JδK

such that ωi ∈ E
⊥
∞ for all i ≥ 1 and formally dδωδ = d∗δωδ = 0.

Furthermore, for any ωδ ∈ Ωp(P )[δ] satisfying

ωl ∈ E
⊥
∞ (1 ≤ l ≤ L) and dδωδ, d

∗
δωδ ∈ δ

N+LΩ∗(P )[δ],

the terms ωl for l ≤ L are the terms in the unique power series above.

Proof. The first part of the proposition follows from the second by considering
arbitrarily large L. To prove the second part, suppose ω+ δω1+ · · · and ω+ δφ1+ · · ·
satisfy the assumptions above. Then, we have that

dδ(ω + δω1 + δ2ω2 + · · · )− dδ(ω + δφ1 + δ2φ2 + · · · )

= dδ(δ(ω1 − φ1) + δ2(ω2 − φ2) + · · · ) ∈ δ
N+LΩp+1(P )[δ],

d∗δ(ω + δω1 + δ2ω2 + · · · )− d
∗
δ(ω + δφ1 + δ2φ2 + · · · )

= d∗δ(δ(ω1 − φ1) + δ2(ω2 − φ2) + · · · ) ∈ δ
N+LΩp−1(P )[δ].

Hence, ω1 − φ1 ∈ E
p
N+L−1 = Ep

∞, but we know that ω1 − φ1 ∈ (Ep
∞)⊥. Therefore,

ω1 = φ1, and we continue inductively to show uniqueness of the higher order terms
for l ≤ L.

2.4. Relation to harmonic forms. We now wish to discuss the convergence
of the spectral sequence in relation to the adiabatic limit of harmonic forms. As
a reminder, the Laplacians ∆p

gδ
and Lp

gδ
are defined for all δ > 0 and have finite-

dimensional kernels naturally isomorphic to Hp(P ;R). Define the spaces Ker∆p
0 and

KerLp
0 by

(2.6)
Ker∆p

0 := lim
δ→0

Ker∆p
gδ

= {ω ∈ Ωp(P ) | ∃ ω̃ ∈ C∞([0, 1],Ωp(P ));

ω̃(0) = ω, ∆p
gδ
ω̃(δ) = 0 ∀δ > 0}

and

(2.7)
KerLp

0 := lim
δ→0

KerLp
gδ

= {ω ∈ Ωp(P ) | ∃ ω̃ ∈ C∞([0, 1],Ωp(P ));

ω̃(0) = ω, Lp
gδ
ω̃(δ) = 0 ∀δ > 0}.

In other words, an element ω ∈ KerLp
0 if and only if it is the limit of a 1-parameter

family of Lgδ -harmonic forms. Suppose ω̃(δ) is such a smooth function on [0, 1] with
values in KerLgδ for all δ > 0. It follows that the Taylor series at δ = 0, denoted
ωδ ∈ Ωp(P )JδK, is formally Lp

δ harmonic. In other words,

ω̃(δ) ∼
δ=0

ωδ = ω + δω1 + δ2ω2 + · · ·
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and

Lδ(ω + δω + δ2ω2 + · · · ) = 0.

This gives a map of finite-dimensional vector spaces KerLp
0 → Ep

∞. In fact, this is
an equality. Forman proves this by a careful analysis of the eigenvalues of Lgδ . If
the eigenvalues of Lp

gδ
are ordered, then the number of eigenvalues λi(δ) (counted

with multiplicity) such that λi(δ) = 0 + O(δ2K) is equal to the dimension of Ep
K

(Cor. 5.14 [For]). This, combined with the knowledge of Ep
K as a spectral sequence,

implies that if λi(δ) = 0 + O(δ2N ), then λi(δ) = 0 + O(δK) for all K, and therefore
corresponds to an element of E∞. The spectral sequence interpretation of Ep

∞ implies
that dimEp

∞ = dimHp(P ;R), and standard Hodge theory implies that the number
of 0-eigenvalues for all δ > 0 is the dimension of Hp(P ;R). Therefore,

dimHp(P ;R) = dimEp
∞ = #{λi(δ) | λi(δ) = 0 +O(δ∞)}

≥ #{λi(δ) | λi(δ) = 0 ∀ δ > 0} = dimHp(P ;R).

If λi(δ) is an eigenvalue such that λi(δ) = 0 +O(δN ), then λi is identically 0.
Let ΠKerLgδ

denote the orthogonal projection onto KerLgδ . Suppose that ω ∈

Ek
∞, and ωδ = ω + δω1 + . . .+ δlωl with ωi ∈ E

⊥
∞ for i ≥ 1 is such that both

dδωδ = 0 +O(δN+M ), and d∗δωδ = 0 +O(δN+M ).

Then, Theorem 5.21 in [For] implies

(2.8)
(
ΠKerLgδ

− 11
)
ωδ = 0 +O(δM ).

Therefore, given any ω ∈ E∞, there exists

ω̃(δ) := ΠKerLgδ
ωδ ∈ C

M ([0, 1],Ker∆gδ )

such that the firstM -terms in the Taylor expansion at the boundary coincide with the
polynomial ωδ. Considering arbitrarily large polynomials of the form in Proposition
2.4 implies the following theorem.

Theorem 2.5 (Cor 5.18 [For]). The space of Lgδ-harmonic forms extends
smoothly to δ = 0, and

lim
δ→0

KerLp
gδ

= Ep
∞ ⊂ Ωp(P ).

From here, it easily follows that the finite-dimensional spaces Hp
gδ
(P ) of ∆gδ -

harmonic forms extends smoothly to δ = 0. To see this explicitly, we know that the
spaces of formally harmonic ∆δ and Lδ power series are isomorphic over the ring of
formal Laurent series in δ. To a given ω ∈ Ep

∞, we can associate the unique power
series ωδ ∈ Ωp(P )JδK as described in Proposition 2.4. Then, for some finite i,

ρ−1
δ ωδ = δ−iψδ ∈ δ

−iΩp(P )JδK,

where ψδ = ψ0 + δψ1 + · · · is formally harmonic. The projection operators ΠKerLgδ

and ΠKer∆gδ
are related by

ΠKer∆gδ
= ρ−1

δ ΠKerLgδ
ρδ.
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Consider the polynomial ψ0 + . . . δlψl obtained from truncating ψδ at some l such
that

d(ψ0 + δψ1 + · · ·+ δlψl) = 0 +O(δN+k+i+1),

d∗gδ (ψ0 + δψ1 + · · ·+ δlψl) = 0 +O(δN+k+i+1).

It will then satisfy

(ΠKer∆gδ
− 11)(ψ0 + . . . δlψl) = ρ−1

δ (ΠKerLgδ
− 11)δi(ω + δω1 + . . .)

= δiρ−1
δ (0 +O(δk+1)) = 0 +O(δ).

The equalities above are obtained from (2.8), the characterization of ωδ, and the fact
that ρ−1

δ divides by powers of δ at most k.
Therefore, ψ0 is the limit of a continuous 1-parameter family of ∆gδ -harmonic

forms. In fact, the argument can be repeated using higher-order polynomial approxi-
mations of ψδ to show the following.

Theorem 2.6 (Cor 5.22 [For], Cor 18 [MM]). The space Hp
gδ
(P ) of ∆gδ -harmonic

forms extends smoothly to Hp(P ) at δ = 0.

Proposition 2.7. Suppose ω0 + δω1 + · · · + δkωk + O(δk+1) ∈ Ωk(P )JδK is
a formally Lδ-harmonic power series that is in the image of ρδ; i.e. applying ρ−1

δ

produces no negative powers of δ. Then, applying ρ−1
δ and taking the constant term

gives an element of Ker∆k
0 :

(
ρ−1
δ (ω0 + δω1 + · · ·+ δkωk)

)
δ=0

=

= ω0,k
0 + ω1,k−1

1 + ω2,k−2
2 + · · ·+ ωk,0

k ∈ Hk(P ) ⊂ Ωk(P ).

Proof. Due to Theorem 2.5, there exists a family of Lgδ -harmonic forms

ω̃ ∈ C∞([0, 1],KerLgδ )

such that, close to δ = 0,

ω̃(δ) ∼
δ=0

ω0 + δω1 + · · ·+ δkωk +O(δk+1).

Under the isometry ρ−1
δ ,

ρ−1
δ ω̃ ∈ C∞([0, 1],Ker∆k

gδ
),

and

ρ−1
δ ω̃ ∼

δ=0
ρ−1
δ

(
ω0 + δω1 + · · ·+ δkωk +O(δk+1)

)
.

The isometry ρ−1
δ divides at most by δk. Therefore,

ρ−1
δ

(
ω0 + δω1 + · · ·+ δkωk +O(δk+1)

)
=

(
ω0,k
0 + ω1,k−1

1 + ω2,k−2
2 + · · ·+ ωk,0

k

)
+O(δ).
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Consequently,

(
ρ−1
δ ω̃

)
(0) =

(
ρ−1
δ (ω + δω1 + · · ·+ δkωk)

)
δ=0

= ω0,k + ω1,k−1
1 + ω2,k−2

2 + · · ·+ ωk,0
k ∈ Ker∆k

0 .

Corollary 2.8. There is an inclusion of vector spaces (as subspaces of Ω∗(P ))

Ei,0
∞ ⊂ H

i(P ) ⊂ Ωi(P ).

Proof. Let ω ∈ Ei,0
∞ . By definition, there exists a power series of the form

ω +O(δ) ∈ KerLδ,

and consequently

δkω +O(δk+1) ∈ KerLδ.

Applying Proposition 2.7, we see that

(
ρ−1
δ (δkω)

)
δ=0

= ω ∈ Ker∆k
0 .

3. Right-invariant forms on a principal bundle. We want to use the adi-
abatic spectral sequence to analyze harmonic forms on a principal bundle. If the
metric on P is invariant under the free right G-action, then the harmonic forms will
be contained in the subcomplex of right-invariant forms. We proceed to characterize
these and relate them to the bigraded complex considered in Section 2. Once this
characterization is complete, the calculations in Section 4 follow with relative ease. In
particular, a number of maps in the bigraded complexes (3.11) and (3.12) are 0, which
leads to a great deal of simplification. Much of the following language of principal
bundles, as well as the later description of the Chern–Simons 3-form, models that
used in [Fre]. More explicit details and proofs for the following statements are given
in [Red1].

3.1. Vertical distribution. Let G be a compact Lie group, and define g to be
the associated Lie algebra of left-invariant vector fields on G. A principal G-bundle
P

π
→ M is a manifold P with a free right G-action such that P

π
→ P/G = M is the

natural quotient. This implies that each fiber

Px := π−1(x) ⊂ P

is a right G-torsor (Px has a free and transitive right G-action). The manifold Px is
diffeomorphic to G, but only after choosing an initial point p ∈ Px. A choice of point
p ∈ Px, gives the (right) G-equivariant map

τp : Px → G

p · g 7→ g.

If we choose a different p′ ∈ Px, we see that p = p′ · h for a unique h ∈ G, and that

τ ′p = Lh ◦ τp,
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where Lh : G→ G is left multiplication by G.
Therefore, any left-invariant structure on G can naturally be placed on a right

G-torsor. For example, let θ ∈ Ω1(G; g) be the Maurer-Cartan 1-form, defined by
associating to any vector its left-invariant extension. Then,

L∗
gθ = θ,

R∗
gθ = Adg−1θ,

so θ pulls back to a well-defined g-valued 1-form on Px, which we also denote as θ,
and satisfies R∗

gθ = Adg−1θ. This gives a natural isomorphism

TPx
θ
→ Px × g

that is equivariant with respect to the right G-action on TPx, Px, and g (G acts on g

from the right by the inverse Adjoint representation). Consequently, a right-invariant

vector field on Px is equivalent to a function P
v
→ g such that v(pg) = Adg−1v(p) for

all g ∈ G. More concisely, it is an element of the vector space

(3.1) gPx
:= Px ×Ad g = Px × g/

(
(p, v) ∼ (pg,Adg−1v)

)
.

The Lie bracket [·, ·] : g × g → g is Ad-equivariant because Adg : g → g is a Lie
algebra automorphism. Therefore, the product bracket on (Px×g)×(Px×g)→ Px×g
descends to a Lie bracket

(3.2) gPx
× gPx

[·,·]
−→ gPx

.

Unpackaging these isomorphisms shows that the bracket (3.2) is the natural Lie
bracket of right-invariant vector fields on Px. We can then consider the cochain
complex of right-invariant forms {Λ•

g
∗
Px
, dg}, where

(3.3) dgψ(X0, . . . , Xk) =
∑

i<j

(−1)i+jψ([Xi, Xj], . . . , X̂i, . . . , X̂j, . . . , Xk),

for ψ ∈ Λk
g
∗
Px
, Xi ∈ gPx

. A classical theorem of Chevalley and Eilenberg [CE] shows
that the inclusion of cochain complexes

{Λ•
g
∗
Px
, dg} ∼= {Ω

•(Px)
G, d} →֒ {Ω•(Px), d}

induces an isomorphism on the cohomology of the chain complexes.
This discussion of right G-torsors carries over immediately to principal G-bundles.

The projection π defines the vertical distribution T VP ⊂ TP of vectors along the fibers
of P by

T VP := Kerπ∗ ⊂ TP, T VP|π−1x
∼= TPx.

Translating (3.1) into families of G-torsors, we obtain the natural G-equivariant iso-
morphisms

(3.4) T VP ∼= P × g ∼= π∗
gP ,

where gP
π
→M is the Adjoint bundle P ×Ad g. The bracket in (3.2) gives us the Lie

bracket of right-invariant vertical vector fields on P

gP × gP
[·,·]
−→ gP .
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This induces a map of vector bundles

dg : Λi
g
∗
P → Λi+1

g
∗
P

as defined in (3.3).

3.2. Horizontal distribution. While the vertical distribution T VP requires no
extra choices, there is no natural horizontal distribution THP . Instead, a choice of
connection Θ on P is equivalent to the equivariant choice of a horizontal distribution
THP ⊂ TP such that

THP ⊕ T VP = TP.

In particular, if Θ ∈ Ω1(P ; g) is the connection 1-form, then

THP := KerΘ.

This induces the G-equivariant isomorphism

(3.5) THP ∼= π∗TM.

A connection Θ on P gives a covariant derivative ∇ on sections of any associated
bundle. Suppose v ∈ Γ(M,Λk

g
∗
P ). One can take the derivative of a function whose

values live in a fixed vector space, and ṽ := π∗v ∈ Γ(P,Λk
g
∗)G. Given a vector

X ∈ TxM , the isomorphisms π∗ : TxM → THPp (defined by the connection) give a

G-equivariant family of vectors X̃ in TP|π−1(x). The derivative of ṽ in the direction of

X̃ is well-defined, resulting in the equivariant X̃ṽ ∈ Γ(P,Λk
g
∗)G. The isomorphism

(3.4) then defines

(3.6) ∇̃Xv := X̃ṽ ∈ Γ(P,Λk
g
∗)G ∼= Γ(M,Λk

g
∗
P ).

The operator ∇ : Γ(M,Λk
g
∗
P )→ Γ(M,T ∗M ⊗ Λk

g
∗
P ) is called the connection on the

associated vector bundle and extends uniquely to a first order differential operator d∇
on the complex

(3.7) Γ(M ; Λk
g
∗
P )

∇
−→ Ω1(M ; Λk

g
∗
P )

d∇−→ Ω2(M ; Λk
g
∗
P )

d∇−→ Ω3(M ; Λk
g
∗
P )

d∇−→ · · ·

by requiring that d∇ satisfy the Leibniz rule

d∇(ω ⊗ v) = (dω)⊗ v + (−1)iω ⊗ (∇v)

for all ω ∈ Ωi(M) and v ∈ Γ(M,Λk
g
∗
P ).

The possibility that THP is not an integrable distribution leads to the notion of
curvature, and the curvature 2-form Ω ∈ Ω2(P ; g) is defined by the equation

Ω := dΘ+
1

2
[Θ ∧Θ].

The form Ω is only non-zero when evaluated on horizontal vectors. If XH , YH ∈ T
HPp,

then

(3.8) Ω(XH , YH) = dΘ(XH , YH) = −Θ([XH , YH ]).

Therefore, Ω ∈ Ω2(M, gP ), and we can form the contraction ιΩ

(3.9) Ωi(M ; Λj
g
∗
P )

ιΩ−→ Ωi+2(M ; Λj−1
g
∗
P ).
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3.3. Bi-graded complex. The decomposition TP = THP ⊕ T VP induces a
bigrading on forms

Ωi,j(P ) := Γ(P,ΛiTHP ⊗ ΛjT VP ).

The G-equivariant descriptions of T VP and THP in (3.4) and (3.5), respectively, imply
that G-invariant forms on P decompose as

Ωk(P )G =
⊕

i+j=k

Ωi,j(P )G

∼=
⊕

i+j=k

Γ(M,ΛiTM∗ ⊗ Λj
g
∗
P )

=
⊕

i+j=k

Ωi(M ; Λj
g
∗
P ).

Thus, an invariant (i, j)-form is naturally an i-form on M with values in the bundle
Λk

g
∗
P , where gP →M is the Adjoint bundle of P .
The exterior derivative d decomposes with respect to the distributions T VP and

THP . In general,

d = d−1,2 + d0,1 + d1,0 + d2,−1,

where da,b : Ωi,j(P ) → Ωi+a,j+b(P ), giving a bigraded cochain complex
{Ωi,j(P ), da,b}. When restricted to right-invariant forms, the complex {Ωi,j(P ), da,b}
has an explicit description using (3.3), (3.7), and (3.9).

Proposition 3.1. Under the isomorphism {Ωi,j(P )G}
π∗

← {Ωi(M,Λj
g
∗
P )}, the

components of the exterior derivative d are related by
• d−2,1 = 0
• d0,1 ↔ (−1)idg
• d1,0 ↔ d∇
• d2,−1 ↔ (−1)iιΩ.

We draw the bigraded complex isomorphic to {Ωi,j(P )G, d} below:

.

.

.
.
.
.

.

.

.
.
.
.

Ω0(M ; Λ2
g
∗

P )

dg

OO

∇ //

ιΩ ++

Ω1(M ; Λ2
g
∗

P )

−dg

OO

d∇ //

−ιΩ ++

Ω2(M ; Λ2
g
∗

P )

dg

OO

d∇ //

ιΩ
++

Ω3(M ; Λ2
g
∗

P )

−dg

OO

d∇ // · · ·

Ω0(M ; g∗

P )

dg

OO

∇ //

ιΩ ++

Ω1(M ; g∗

P )

−dg

OO

d∇ //

−ιΩ ++

Ω2(M ; g∗

P )

dg

OO

d∇ //

ιΩ
++

Ω3(M ; g∗

P )

−dg

OO

d∇ // · · ·

Ω0(M ;R)

0

OO

dM // Ω1(M ;R)

0

OO

dM // Ω2(M ;R)

0

OO

dM // Ω3(M ;R)

0

OO

dM // · · ·

Note that above is not a commutative diagram, but summing over all possible paths
between two points in the complex gives zero. These relationships are explicitly given
by (d0,1 + d1,0 + d2,−1)2 = 0.
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Proof of Proposition 3.1. We will denote the pushforward of the standard exterior
derivative by π∗d and note that for any ω ⊗ ψ ∈ Ωi(M ; Λj

g
∗
P ),

(π∗d)(ω ⊗ ψ) := (π∗)−1d(π∗ω ⊗ π∗ψ).

The d−2,1 = 0 because the distribution T VP is integral. Each component of d
satisfies the Leibniz rule, so to describe d on Ωi(M ; Λj

g
∗
P ), it suffices to say how each

component acts on Ωi(M) and Γ(M ; Λj
g
∗
P ).

For (π∗d) : Ω
i(M ;R)→ Ωi+1(M ;R)⊕Ωi(M ; g∗P ), π∗d = π∗d

1,0 and is the exterior
derivative on M , denoted dM . This follows from the naturality of d,

dπ∗Ωi(M) = π∗dMΩi(M).

Let ψ ∈ Γ(M,Λk
g
∗
P ). To calculate π∗d

0,1, let X0, . . . , Xk ∈ Γ(M, gP ). Tracing
through definitions and (3.3) gives

d0,1π∗ψ(π∗X0, . . . , π
∗Xk) =

∑

i<j

π∗ψ([π∗Xi, π
∗Xk], . . . , π̂∗Xi, . . . , π̂∗Xj , . . .)

= π∗dgψ(X0, . . . , Xk).

The Leibniz rule then implies that for ω ∈ Ωi(M), ψ ∈ Γ(M,Λj
g
∗
P ),

d0,1π∗(ω ⊗ ψ) = (d0,1π∗ω) ∧ π∗ψ + (−1)i(π∗ω) ∧ (d0,1π∗ψ)

= (−1)iπ∗(ω ⊗ dgψ).

Therefore, π∗d
0,1 = (−1)idg. To calculate π∗d

1,0, let X ∈ Γ(M,TM) and use (3.6):

(d1,0π∗ψ)(X) = (dπ∗ψ)(X) = X̃ψ̃ = π∗∇Xψ.

The Leibniz rule implies

d1,0π∗(ω ⊗ ψ) = (d1,0π∗ω) ∧ (π∗ψ) + (−1)i(π∗ω) ∧ (d1,0π∗ψ)

= π∗(dMω ⊗ ψ) + (−1)iπ∗(ω ⊗∇ψ)

= π∗d∇(ω ⊗ ψ).

A similar use of (3.8) shows that

d2,−1(π∗ψ) = π∗(ιΩψ),

and hence π∗d
2,−1 is given by contracting along the gP -valued 2-form Ω.

3.4. Riemannian metric and the adjoint d∗. We now construct a right-
invariant Riemannian metric on P . Let gM be a Riemannian metric on M , which in
turn induces a metric on the distribution THP = π∗TM . Let gG be a bi-invariant
metric on the Lie group G. Such metrics gG exist due to the compactness of G and
are equivalent to Ad-invariant metrics on g. Since gG is an Ad-invariant metric on
g, it induces a right-invariant metric on T VP = π∗

gP . We also let Λig∗M and Λjg∗g
denote the induced metrics on ΛiTM∗ and Λj

g
∗
P , respectively. Using the connection

Θ to give an orthogonal splitting TP = π∗(TM ⊕ gP ), we obtain a canonical metric
gP on P by

gP := π∗(gM ⊕ gG).
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More explicitly,

gP (X1, X2) := gM (π∗X1, π∗X2) + gG(ΘX1,ΘX2).

The metric gP is evidently right-invariant, and we have the following isomorphism of
cochain complexes with metric:

{Ωi,j(P ), π∗(Λig∗M ⊗ Λjg∗G)}
G

∼=
←− {Ωi(M,Λj

g
∗
P ),Λ

ig∗M ⊗ Λjg∗G}.

The adjoint d∗ : Ωk(P ) → Ωk−1(P ) (with respect to gP ) commutes with isome-
tries, and therefore, d∗ restricts to the right-invariant complex

(3.10)
(
Ωi(M ; Λj

g
∗
P ), π∗d

∗
)
∼=

(
Ωi,j(P )G, d∗gP

)
→֒

(
Ωi,j(P ), d∗gP

)
.

The adjoint d∗ decomposes under the bigrading,

d∗ = d0,1∗ + d1,0∗ + d2,−1∗,

where da,b∗ : Ωi,j(P ) → Ωi−a,j−b(P ). Using our description of the differentials da,b

in Proposition 3.1, along with the right-invariance of gP and the compatibility of the
metric with the bigrading, we see that on right-invariant forms

d0,1∗ = (−1)iπ∗(d∗
g
), d1,0∗ = π∗(d∗∇), d2,−1∗ = (−1)iπ∗(ι∗Ω),

where the adjoints are induced by the metrics g and gG on TM and gP , respectively

Therefore, the dual complex of right-invariant forms on P is naturally isomorphic
to the dual of the bigraded complex in Proposition 3.1. In particular, the adjoint
d∗M : Ωi(M ;R)→ Ωi−1(M ;R) is the usual adjoint with respect to the metric gM , and
the adjoint d∗

g
is induced from the usual adjoint (2.3) to the Lie algebra derivative

with respect to the metric gG.

Finally, we note that the complexes ultimately relevant are {Ω∗(P ), dδ} and
{Ω∗(P ), d∗δ}. As noted in the definition (2.5),

dδ = d0,1 + δd1,0 + δ2d2,−1, d∗δ = d0,1∗ + δd1,0∗ + δ2d2,−1.

Therefore, the rescaled complexes of right-invariant forms are isomorphic to the fol-
lowing two complexes. These two pictures will be very helpful when following the
proofs in the next section.

(3.11) .
.
.

.

.

.
.
.
.

.

.

.

Ω0(M ; Λ2
g
∗

P )

dg

OO

δ∇ //

δ2ιΩ++

Ω1(M ; Λ2
g
∗

P )

−dg

OO

δd∇ //

−δ2ιΩ++

Ω2(M ; Λ2
g
∗

P )

dg

OO

δd∇ //

δ2ιΩ
++

Ω3(M ; Λ2
g
∗

P )

−dg

OO

δd∇ // · · ·

Ω0(M ; g∗

P )

dg

OO

δ∇ //

δ2ιΩ++

Ω1(M ; g∗

P )

−dg

OO

δd∇ //

−δ2ιΩ++

Ω2(M ; g∗

P )

dg

OO

δd∇ //

δ2ιΩ
++

Ω3(M ; g∗

P )

−dg

OO

δd∇ // · · ·

Ω0(M ;R)

0

OO

δdM // Ω1(M ;R)

0

OO

δdM // Ω2(M ;R)

0

OO

δdM // Ω3(M ;R)

0

OO

δdM // · · ·
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(3.12) .
.
.

d∗
g

��

.

.

.

−d∗
g

��

.

.

.

d∗
g

��

.

.

.

−d∗
g

��
Ω0(M ; Λ2

g
∗

P )

d∗
g

��

Ω1(M ; Λ2
g
∗

P )
δd∗

∇oo

−d∗
g

��

Ω2(M ; Λ2
g
∗

P )
δd∗

∇oo

d∗
g

��

δ2ι∗
Ω

kk

Ω3(M ; Λ2
g
∗

P )
δd∗

∇oo

−d∗
g

��

−δ2ι∗
Ω

kk

· · ·
δd∗

∇oo

Ω0(M ; g∗

P )

0

��

Ω1(M ; g∗

P )
δd∗

∇oo

0

��

Ω2(M ; g∗

P )
δd∗

∇oo

0

��

δ2ι∗
Ω

kk

Ω3(M ; g∗

P )
δd∗

∇oo

0

��

−δ2ι∗
Ω

kk

· · ·
δd∗

∇oo

δ2ι∗
Ω

kk

Ω0(M ;R) Ω1(M ;R)
δd∗

Moo Ω2(M ;R)
δd∗

Moo

δ2ι∗
Ω

kk

Ω3(M ;R)
δd∗

Moo

−δ2ι∗
Ω

kk

· · ·
δd∗

Moo

δ2ι∗
Ω

kk

4. Calculation of the harmonic forms. Using the machinery and terminology
described in Sections 2 and 3, we proceed with the calculations. To review notation,
G is a connected compact Lie group, and P → M is a principal G-bundle with
connection Θ over the closed, oriented Riemannian manifold (M, gM ). We denote
this information by (M,P, gM ,Θ). It useful to remember that any bundle P is a
pullback of the universal bundle

P

π

��

f∗

// EG

π

��
M

f // BG.

The harmonic i-forms on M , with respect to gM , are denoted Hi(M), and Hj(G)
denotes harmonic j-forms on G with respect to a bi-invariant metric. As defined
earlier, and whose existence is made clear by Theorem 2.6,

Hi(P ) := lim
δ→0

Ker∆i
gδ

= lim
δ→0
Hi

gδ
(P ) ⊂ Ωi(P )

is the finite-dimensional space of harmonic forms on P in the adiabatic limit, and
Hi(P ) ∼= Hi(P ;R) canonically.

Proposition 3.1 gives the natural isomorphism of bigraded cochain complexes

π∗ : {Ωi(M ; Λj
g
∗
P )}

∼=
−→ {Ωi,j(P )}G ⊂ {Ωi,j(P )}.

In the following, we perform all calculations in terms of the left-hand complex (avoid-
ing unnecessary use of π∗), but we state all major theorems in terms of Ω∗(P ). Fi-
nally, {Ei,j

K } denotes the Leray–Serre spectral sequence, with R-coefficients, for the
fiber bundle G →֒ P →M .

Proposition 4.1. Given (M,P, gM ,Θ), assume that Ei,0
2 = Ei,0

∞ . Then,

π∗Hi(M) ⊂ Hi(P ).

Proof. Let ω ∈ Hi(M); i.e. dMω = d∗Mω = 0. For dimensional reasons, the
operators dδ and d∗δ take a slightly simpler form, and we calculate

dδω = δdMω = 0,

d∗δω = δd∗M ± δ
2ιΩω = ±δ2ιΩω.

Therefore, ω ∈ Ei,0
2 = Ei,0

∞ . By Corollary 2.8, ω ∈ Hi(P ).
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4.1. 1-forms. We realize that this calculation of H1(P ) is more complicated
than it needs to be. However, it provides a similar but simpler calculation than that
of H3(P ) and helps clarify the logical structure. In examining the cohomology of the
bundle P , we use the standard isomorphism

Hi(M ;Hj(G;R)) ∼= Hi(M ;RdimHj(G;R)) ∼= Hi(M ;R)⊗Hj(G;R).

(The action of π1(M) on H∗(G;R) is trivial.) The connectedness of M and G imply
that H0(M ;R) ∼= H0(G;R) ∼= R. Furthermore, the classifying map gives a morphism
between the spectral sequences for the universal bundle EG→ BG and P →M . The
relevant portion of the E2 page is:

R 0 H2(BG)

H1(G)

O

O

O

O

O

O

O

O

O

O

O

O

O

O

''

d2 f∗

=⇒

R H1(M) H2(M)

H1(G)

O

O

O

O

O

O

O

O

O

O

O

O

O

O

''

d2

(4.1)

Examining the universal example, we know EG is contractible, so Ei,j
∞ = 0 for

(i, j) 6= (0, 0). This implies d2 is an isomorphism between H1(G;R) and the uni-
versal characteristic classes H2(BG;R). If φ ∈ H1(G;R), then let

φ(EG) := d2φ ∈ H
2(BG;R) and φ(P ) := f∗(φ(EG)) ∈ H2(M ;R).

By naturality of the spectral sequence, the class f∗φ = φ ∈ H1(G;R), and

d2φ = d2f
∗φ = f∗d2φ = φ(P ) ∈ H2(M ;R).

Therefore, the transgression d2 sends an element in H1(G) to the corresponding char-
acteristic class of the bundle P . The only non-trivial differential in spectral sequence
for H1(P ;R) is d2, so we see that

E1
∞ = E1,0

2 ⊕Ker d2(E
0,1
2 ).

Therefore, H1(P ;R) sits in a short exact sequence

(4.2) 0→ H1(M ;R)→ H1(P ;R)→ Kerd2 → 0.

Chern–Simons/Chern–Weil theory gives a more explicit geometric interpretation
of this. In a slight abuse of notation, let φ ∈ g

∗ be Ad-invariant, so φ is equivalent to
an element ofH1(G) ∼= H1(G;R). Via d2, φ also determines an element inH2(BG;R).
The choice of a connection Θ ∈ Ω1(P ; g) constructs the Chern–Simons 1-form φ(Θ) ∈
Ω1(P ) and Chern–Weil 2-form φ(Ω) ∈ Ω2(M), which satisfy the properties

• i∗xφ(Θ) = φ(θ) ∈ H1(G),
• R∗

gφ(Θ) = φ(Θ) ∈ Ω1(P ),

• dφ(Θ) = φ(Ω− 1
2 [Θ ∧Θ]) = φ(Ω) ∈ π∗Ω2(M).

In other words, φ(Θ) is right-invariant, restricts to a canonical element in H1(G) on
the fibers, and its derivative is the Chern–Weil form φ(Ω). Furthermore, φ(Ω) is
closed and its de Rham cohomology class is independent of the chosen connection Θ.
Doing this carefully in the universal case implies that

[φ(Ω)] = φ(P ) ∈ H2(M ;R).
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To make this more concrete, consider the case of G = U(n). At the level of
cohomology, H1(U(n);R) ∼= H1(U(1);R) ∼= H1(S1;R) is 1-dimensional and has a
canonical generator. The image, under d2, of this canonical generator is denoted
c1 ∈ H

2(BU(n);R), and f∗c1 is the usual first Chern class c1(P ) ∈ H
2(M ;R). At

the level of forms, let

φ(•) =
i

2π
Tr(•) ∈ u(n)∗.

This gives the Chern–Simons 1-form i
2π Tr(Θ) ∈ Ω1(P ) and the first Chern form

i
2π Tr(Ω) ∈ π∗Ω2(M). It is important to note that if c1(P ) = 0 ∈ H2(M ;R), the form
i
2π Tr(Ω) is exact but not necessarily zero.

Theorem 4.2. Consider (M,P, gM ,Θ) where G is a connected compact Lie
group, and φ ∈ (g∗)Ad. If φ(P ) = 0 ∈ H2(M,R), then

φ(Θ)− π∗h ∈ H1(P ),

where h ∈ Ω1(M) is the unique form such that dh = φ(Ω) and h ∈ d∗Ω2(M). In fact,
the form φ(Θ)− π∗h is harmonic with respect to the metric gδ for any δ > 0.

Proof. First, note that the vanishing of φ(P ) ∈ H2(M ;R) implies that the form
φ(Ω) ∈ Ω2(M) is exact. The Hodge decomposition (2.1) implies there exists a unique h
satisfying our assumptions. We now proceed by explicit calculation using the bigraded
complexes (3.11) and (3.12).

dδ(φ(Θ) − δh) = ρδd(φ(Θ) − h) = ρδ(φ(Ω) − φ(Ω)) = 0.

For dimensional reasons, several terms in the d∗δ calculation are automatically 0,
leaving only:

d∗δφ(Θ) = δd∗
g
φ(Θ) = 0,

d∗δh = δd∗Mh = 0.

The top equation holds because φ(Θ) restricts to a harmonic form on the fibers, and
the bottom equation holds by the assumption h ∈ d∗Ω2(M). Therefore, d∗δ(α(Θ) −
h) = 0. This calculation can be visualized by using the complexes (3.11) and (3.12).
Let dotted lines denote maps which send a element to zero, and let ± show when the
images of two elements cancel. This looks like:

φ(Θ)

δh

��������
�

�

�

OO

��������
__ //

±
O

O

O

O

O

O

O

O

O

O

''

�

�

�

OO

//

φ(Θ)

δh��������

�

�

�

��
_ _ _oo

We have shown φ(Θ)− δh ∈ KerLδ. Proposition 4.1 implies that E1,0
∞ = H1(M),

and we have assumed that h ∈ d∗Ω2(M), which is orthogonal to H1(M). We can now
use Proposition 2.7, and

ρ−1
δ (φ(Θ)− δh) = φ(Θ)− h ∈ H1(P ).
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Finally, we notice that we do not have to consider the adiabatic limit in order for
φ(Θ)− π∗h to be harmonic. Since d = ρ−1

δ dδρδ, our calculation above shows that

d(φ(Θ)− h) = ρ−1
δ dδ(α(Θ)− δh) = 0,

d∗(φ(Θ)− h) = ρ−1
δ d∗δ(α(Θ) − δh) = 0

Remark 4.3. The fact that φ(Θ) − π∗h is harmonic for any δ > 0 is special to
1-forms. In particular, explicit calculations of harmonic 3-forms on a bundle show
that one must take an adiabatic limit for Theorem 4.6 to hold.

Proposition 4.1 and Theorem 4.2 allow us to calculate H1(P ) for any principal G-
bundle P when G is compact connected. Proposition 4.1 gives representatives for the
classes corresponding to H1(M ;R). If we choose a basis for Ker d2, we use Theorem
4.2 to obtain representatives of these classes. Therefore, by the short exact sequence
(4.2), these forms will together provide a basis for H1(P ).

Corollary 4.4. Consider (M,P, gM ,Θ) where G = U(n). Then,

H1(P ) =

{
π∗H1(M) if c1(P ) 6= 0 ∈ H2(M ;R)

π∗H1(M)⊕ R[ i
2π Tr(Θ)− π∗h] if c1(P ) = 0 ∈ H2(M ;R).

Proof. The term E1,0
2 = E1,0

∞
∼= H1(M ;R), so Proposition 4.1 implies that

π∗H1(M) ⊂ H1(P ). If c1(P ) 6= 0, then dimH1(P ;R) = dimH1(M ;R), so we are
done.

If c1(P ) = 0 ∈ H2(M ;R), Theorem 4.2 implies that i
2π Tr(Θ)−π∗h ∈ H1(P ). The

vector space spanned by it and π∗H1(M) has dimension equal to that of H1(P ;R),
so we are done.

4.2. 1-forms and 2-forms for G semisimple. Now, consider the case where G
is a compact, connected, semisimple Lie group. The semisimplicity of G implies that
the decomposition of g has no abelian factors, and hence H1(G;R) = H2(G;R) = 0
[CE]. The Leray–Serre spectral sequence then takes the form

R 0 0 0 H4(BG)

0 0 0 0 0

0 0 0 0 0

H3(G)

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

##

d4
f∗

=⇒

R H1(M) H2(M) H3(M) H4(M)

0 0 0 0 0

0 0 0 0 0

H3(G)

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

##

d4
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Proposition 4.5. Consider (M,P, gM ,Θ) where G is a compact, connected,
semisimple Lie group. Then,

π∗Hi(M) = Hi(P ) for i = 1, 2.

π∗H3(M) ⊂ H3(P ).

Proof. For i = 1, 2, 3, Ei,0
2
∼= Hi(M ;R) is not in the image of any non-trivial

differential, implying that Hi(M) = Ei,0
2 = Ei,0

∞ . Proposition 4.1 then implies
π∗Hi(M) ⊂ Hi(P ) for i = 1, 2, 3. The spectral sequence also implies that for i = 1, 2,
Hi(P ;R) ∼= Hi(M ;R), so the inclusion of π∗Hi(M) spans Hi(P ).

4.3. 3-forms for G simple. Analyzing the above spectral sequence for G
semisimple, we see that the contractibility of EG implies

d4 : H3(G;R)
∼=
−→ H4(BG;R).

Therefore, choosing generators of H3(G;R) determines universal characteristic classes
in H4(BG;R), and d4 maps H3(G;R) to the pullback of these classes in any manifold
M . As d4 : H3(G;R)→ H4(M ;R) is the only non-trivial differential in the sequence
calculating H3(P ;R), we have the short exact sequence

(4.3) 0→ H3(M ;R)→ H3(P ;R)→ Kerd4 → 0.

Just as in the discussion for H1(P ;R), this has a natural geometric interpretation
from Chern–Simons and Chern–Weil theory. If 〈·, ·〉 is an Ad-invariant, symmetric,
bilinear form on g, then 〈θ ∧ [θ ∧ θ]〉 ∈ Ω3(G) is a bi-invariant 3-form and hence
an element of H3(G). Also, 〈·, ·〉 naturally gives the Chern–Weil 4-form 〈Ω ∧ Ω〉 ∈
Ω4(M) whose de Rham class is the pullback of the universal class in H4(BG;R). The
corresponding Chern–Simons 3-form for 〈Ω ∧ Ω〉 is

(4.4) α(Θ) = 〈Ω ∧Θ〉 −
1

6
〈Θ ∧ [Θ ∧Θ]〉 = α2,1 + α0,3 ∈ Ω3(P ).

The notation α2,1 + α0,3 denotes the decomposition of α(Θ) with respect to the
bigrading on P . The Chern–Simons 3-form also satisfies [Fre]

• i∗xα(Θ) = − 1
6 〈θ ∧ [θ ∧ θ]〉 ∈ H3(G),

• R∗
gα(Θ) = α(Θ) ∈ Ω3(P ),

• dα(Θ) = 〈Ω ∧ Ω〉+ 1
2 〈Ω ∧ [Θ ∧Θ]〉 − 1

2 〈Ω ∧ [Θ ∧Θ]〉 = 〈Ω ∧ Ω〉 ∈ π∗Ω4(M).
In other words, α(Θ) is a right-invariant form that restricts to a canonical element in
H3(G) on the fibers, and its derivative is 〈Ω ∧Ω〉.

To make this more concrete, consider the case of G = SU(n) for n ≥ 2. Then,
H3(SU(n);R) ∼= H3(SU(2);R) ∼= H3(S3;R) ∼= R, and there is a standard generator.
The image of this generator under d2 : H3(SU(n);R) → H4(BSU(n);R) is the uni-
versal second Chern class c2. The inner product 〈·, ·〉 is a constant multiple of the
matrix trace, giving

c2(P,Ω) =
1

8π2
Tr(Ω ∧ Ω).

Similarly, when G = Spin(n) for n = 3 or n ≥ 5, H3(Spin(n);R) ∼= R and there is
a standard generator whose image is sent to the characteristic class p1

2 (which, when
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multiplied by 2, is the ordinary first Pontryagin class p1.) The inner product is again
a constant multiple of the matrix trace.

While the above discussion holds for semisimple Lie groups, we now assume that G
is simple. This implies that H3(G;R) ∼= R. This is important, because it implies that
if 〈Ω ∧ Ω〉 is exact, then E0,3

2 = E0,3
∞ . The following theorem uses that the sequence

collapses at N = 2. If H3(G;R) were 2-dimensional, and Ker d4 was 1-dimensional,
the following proof would not suffice.

Theorem 4.6. Consider (M,P, gM ,Θ) where G is a simple Lie group. Suppose
〈Ω ∧Ω〉 is exact, so that the de Rham class is 0 ∈ H4(M ;R). Then

α(Θ)− π∗h ∈ H3(P ),

where h ∈ Ω3(M) is the unique form such that dh = 〈Ω ∧Ω〉 and h ∈ d∗Ω4(M).

Proof. Supposing 〈Ω ∧ Ω〉 is exact implies, by Hodge decomposition (2.1), the
existence of such a form h. This also implies that E3

2 = E3
∞. In the calculations, we

deal with

ρδ(α
0,3 + α2,1 − h3,0) = α0,3 + δ2α2,1 − δ3h3,0.

To use Proposition 2.7, we will show that α0,3 + δ2α2,1 − δ3h extends formally to an
element of KerLδ. To do this, we first show that α0,3 + δ2α2,1 extends formally to
KerLδ by proving that for some ψ,

dδ(α
0,3 + δ2α2,1 + δ3ψ) ∈ δ4Ω4(P )[δ],

d∗δ(α
0,3 + δ2α2,1 + δ3ψ) ∈ δ4Ω2(P )[δ],

and then applying Proposition 2.4. Then, we show the term ψ0,3 must be h and apply
Proposition 2.7.

First, we see that

dδ
(
α0,3 + δ2α2,1 − δ3h3,0

)
= ρδd (α(Θ)− h)

= ρδ (〈Ω ∧ Ω〉 − 〈Ω ∧ Ω〉) = 0,

but there is a non-trivial term of order δ3 in

d∗(α0,3 + δ2α2,1 − δ3h3,0) = d∗
g
α0,3 + δ3d∗∇α

2,1 − δ3d∗Mh
3,0 +O(δ4)

= δ3d∗∇α
2,1 +O(δ4).

We listed all pertinent non-trivial components in the d∗δ calculation above. All oth-
ers are either trivially zero (for dimensional reasons) or have order greater than δ3.
Because α0,3 is harmonic on fibers, d∗

g
α0,3 = 0. Likewise, we assume h coexact as a

form in M , which implies d∗Mh = 0.
We now must cancel the term

d∗∇α
2,1 ∈ Ω1(M ; g∗P ).

Fortunately, H1(g) = 0, so the Hodge decomposition implies g∗P = coexact(g∗P ). Thus,
d∗
g
: exact(Λ2

g
∗
P )→ g

∗
P is an isomorphism, and we define

(4.5) β1,2 := (d∗
g
)−1

(
d∗∇α

2,1
)
.
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The details of this are discussed in the following Lemma 4.8. The important properties
of β1,2 are that

d∗
g
β1,2 = d∗∇α

2,1, dgβ
1,2 = 0.

We now calculate that

dδ
(
α0,3 + δ2α2,1 − δ3h− δ3β1,2

)
= −δ3dδβ

1,2

= −δ3dgβ
1,2 +O(δ4) = 0 +O(δ4)

d∗δ
(
α0,3 + δ2α2,1 − δ3h3,0 − δ3β1,2

)
= δ3

(
d∗∇α

2,1 − d∗
g
β1,2

)
+O(δ4)

= 0 +O(δ4).

The structure of the two above calculations can be visualized by using the complexes
(3.11) and (3.12). This is shown below by letting dotted lines denote maps which
send an element to zero, and letting ± show when the images of two elements cancel.
All elements of order greater than δ3 are ignored.

α0,3

δ3β1,2

δ2α2,1

−δ3h3,0

��������
�

�

�

OO

��������__ //

±
O

O

O

O

O

O

O

O

O

O

O

'' OO

��������__ //

±
O

O

O

O

O

O

O

O

O

O

O

''

�

�

�

OO

//

�

�

�

OO α0,3

δ3β1,2

δ2α2,1

−δ3h3,0

��������

�

�

�

��

±
��

��������

�

�

�

��

oo

We note that α2,1 ∈ E⊥
∞ for bi-grading reasons, since the spectral sequence satis-

fies

E3
∞ = E3,0

∞ ⊕ E0,3
∞ .

Proposition 2.4 therefore implies the existence of a power series

ωδ = α0,3 + δ2α2,1 + δ3ω3 + · · · ∈ Ω3(P )

for some ω3, ω4, . . . ∈ E
⊥
∞, such that formally dδωδ = d∗δωδ = 0.

Now, investigate the term ω3,0
3 in ωδ. The equation

0 = dδωδ = δ4
(
〈Ω ∧Ω〉+ dMω

3,0
3

)
+O(δ5)
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implies that dMω
3,0
3 = −〈Ω∧Ω〉. The equation d∗δωδ = 0, when restricted to the (2, 0)

component, shows that

d∗Mω
3,0
3 = 0.

For ω3 to be an element of E⊥
∞, ω3 must be orthogonal to E3,0

∞ = H3(M) (calculated
in Proposition 4.5). Therefore, ω3,0

3 = −h, where h ∈ Ω3(M) is the unique form such
that

dh = 〈Ω ∧Ω〉, d∗h = 0, h ⊥ H3(M).

Therefore, there exists a formal Lδ-harmonic power series ωδ is of the form

ωδ = α0,3 + δ2α2,1 − δ3h3,0 + δ3(ω3 − h
3,0) + δ4ω4 + · · · .

Finally,

ρ−1
δ

(
α0,3 + δ2α2,1 + δ3h3,0 + δ3(ω3 − h

3,0) +O(δ4)
)

= α0,3 + α2,1 − h3,0 +O(δ).

The polynomial satisfies the conditions of Proposition 2.7, so the constant term in
ρ−1
δ (α0,3 + δ2α2,1 − δ3h+ · · · ) is the adiabatic limit of a harmonic form on P :

α0,3 + α2,1 − h3,0 ∈ H3(P ).

Corollary 4.7. Consider (M,P, gM ,Θ) where G = SU(n) for n ≥ 2. Then,
letting c2 be the standard generator of the 1-dimensional space H4(BSU(n);R),

H3(P ) =

{
π∗H3(M) if c2(P ) 6= 0 ∈ H4(M ;R)

π∗H3(M)⊕ R[α(Θ)− π∗h] if c2(P ) = 0 ∈ H4(M ;R)

where h ∈ Ω3(M) is the unique form such that dh = 〈Ω ∧Ω〉 and h ∈ d∗Ω4(M).
When G = Spin(n) for n = 3 or n ≥ 5, the above statement holds with c2 replaced

by p1

2 .

Proof. The proof is exactly the same as Corollary 4.4. We combine Proposition
4.5 with Theorem 4.6 and the exact sequence

0→ H3(M ;R)→ H3(P ;R)→ H3(G;R)
d4→ H4(M ;R),

noting that Ker d4 is either 0 or 1-dimensional, depending solely on whether the form
〈Ω ∧Ω〉 is exact.

Lemma 4.8. For any ψ ∈ Ωi(M ; g∗P ) there exists β ∈ Ωi(M ; Λ2
g
∗
P ) such that

dgβ = 0, d∗
g
β = ψ.

Proof. This lemma is just the Green’s function for the Laplacian on G. As noted
earlier, a semisimple G has H1(g) = 0. Therefore, Harm(g∗) = 0, and the Hodge
decomposition of

0 // R
0 //

~~
g
∗

dg //

0
||

Λ2
g
∗

dg //

d∗

g

zz
· · · ,

d∗

g

xx
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gives

g
∗ = Harm(g∗)⊕ exact(g∗)⊕ coexact(g∗) = coexact(g∗).

The map

d∗
g
: exact(Λ2

g
∗)→ g

∗

is an isomorphism. Hence, we have a bundle morphism

(d∗
g
)−1 : g∗P → Λ2

g
∗
P .

The image of (d∗
g
)−1 is exact(Λ2

g
∗
P ), so dg ◦ (d

∗
g
)−1 = 0. Applying (d∗

g
)−1 to any

ψ ∈ Ωi(M ; g∗P ) gives the desired form.
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