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ON THE NORMAL BUNDLES OF RATIONAL CURVES

ON FANO 3-FOLDS∗

MINGMIN SHEN†

Abstract. A component of very free rational curves on a variety is called unbalanced if the
normal bundle of a general member is unbalanced. In this paper we show that all components
of very free rational curves on a Fano threefold of Picard number one are balanced with the only
exception being the space of conics on P3.
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1. Introduction. In this paper, we work over the field C of complex numbers.
A variety X is Fano if it is smooth projective with the anticanonical class, −KX ,
being ample. It is known that Fano varieties are rationally connected and hence
contain a lot of rational curves, see [4] and [24]. The geometry of the space of rational
curves carries a lot of information of the variety itself. Unfortunately, some basic
questions concerning moduli space of rational curves on a Fano variety are still open.
For example, let X be a smooth Fano variety of Picard number one. LetMe =Me(X)
be the space of degree e rational curves on X . One can ask the following

Question 1.1. Is Me irreducible, at least for e sufficiently large?

We see that the answer is “yes” for X = Pn. A positive answer for X being a
quadric hypersurface follows from [22] or [35]. The case of cubic threefolds is treated
in [33] and cubic hypersurfaces of higher dimensions are treated in [6]. In [15], the
authors give a positive answer to the above question for a general hypersurfaceX ⊂ Pn

C

with degree d < n−1
2 .

In this paper, we consider a variation of the above question. Let X be a smooth
projective variety. Assume that dimX ≥ 3. Let M ⊂ M0,0(X, β) be a component
of the Kontsevich moduli space of genus 0 curves on X. Assume that for a general
member [C] ∈ M , the corresponding rational curve φ : P1 ∼= C → X is birational
onto image and very free. Recall that φ being very free means that φ∗TX is ample,
see [23]. We call M a component of very free rational curves on X . Then it follows
that φ : C → X is a closed immersion for general [C] ∈ M . The normal bundle of a
general such curve C in X has splitting type

NC/X
∼= O(a1)⊕O(a2)⊕ · · · ⊕ O(an−1), n = dimX,

with 1 ≤ a1 ≤ a2 ≤ · · · ≤ an−1. The sequence (a1, . . . , an−1) is an invariant of the
component M .

Definition 1.2. We say that M (and also NC/X) is balanced if an−1 − a1 ≤ 1
and that M (and also NC/X) is unbalanced if an−1 − a1 ≥ 2.

Question 1.3. For a Fano variety X of Picard number one, is Me balanced (for
sufficiently large e)?
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The deformation of a curve on X is controlled by its normal bundle and Question
1.3 is essentially asking for the normal bundle of a general rational curve on X . If
the normal bundle is balanced, then its splitting type is completely determined by its
degree. Without the restriction on Picard number, there could be a lot of unbalanced
rational curves, for example when X = P1×Pn. But when X has Picard number one,
we do not expect a general rational curve to move much more freely in some direction
than in others. In this paper, we carry out this idea in the three dimensional case.

Assume that a smooth projective threefold X/C has an unbalanced component
M of very free rational curves. Then a general member of M has unbalanced normal
bundle, so it moves more freely in some direction. By deforming the curve in this
direction, we get a surface Σ (the construction is given in section 2 in a more general
setting). Actually we also show that the unbalancedness gives a canonical foliation on
M which is algebraically integrable with a leaf being all curves lying on a fixed Σ. In
section 3, we study those surfaces Σ. There are two different types of surface Σ that
we can get. Accordingly, M is either of conic type or fibration type, see Definition
3.16. If M is of conic type, then C ⊂ X is étale locally equivalent to a conic in
P3; If M is of fibration type and −KX is nef, then there is a rational component S
of rational curves on X with trivial normal bundle, see Theorem 3.15. After that,
we focus on the case when X is Fano of Picard number one. In section 5, we show
that the Abel-Jacobi mapping defined by S is never trivial as long as X has nonzero
intermediate jacobian; this shows that S can not be rational. The main theorem of
this paper is the following

Theorem 1.4. Let X be a Fano threefold of Picard number one. If X has an
unbalanced component M of very free rational curves, then X = P3 and M is the
space of conics on X.

The intermediate jacobian of X is zero only if X = X5 or X = X22. The cases
X = X5 and X = X22 are ruled out by a ramification argument. The case X5 follows
from the paper [11]. The author carries out the construction of the space of conics
on X22 in the appendix. After this was done, Prof. J. Kollár informed the author of
the paper [25], where a similar construction is carried out using a different model of
X22. We note that the above theorem gives a new characterization of P3. Namely,
P3 would be the only Fano threefold of Picard number one which has an unbalanced
component of very free rational curves.

Acknowledgement. This work is the main part of my PhD thesis. I would like
to thank my advisor, Aise Johan de Jong, for his careful and patient instructions.
Several discussions with Jason Starr and Matt DeLand were also very helpful and
Professor Friedman assured me of some results about intermediate jacobians. I would
like to thank them all for their help.

2. Basic constructions. Notations and assumptions: Let X be a smooth
projective variety over the field C of complex numbers. Assume that dimX = n. Let
M ⊂ M0,0(X, β) be an unbalanced component of very free rational curves on X . For
a general member [C] ∈ M , we assume that the splitting type of the normal bundle
to be

(1) NC/X
∼= O(a)⊕(n−r−1) ⊕O(b1)⊕ · · · ⊕ O(br),
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where 3 ≤ a+ 2 ≤ b1 ≤ · · · ≤ br. Let M
0 ⊂M be the open subscheme parametrizing

smooth rational curves C ∼= P1 ⊂ X with normal bundle (1). Let

U

��

u // X

M

be the universal family over M . For any [C] ∈ M , let u[C] : C → X denote the
corresponding morphism. We say that C passes through a point P ∈ X or that P is
on C if P is on the image of u[C]. Let Pi ∈ X , i = 1, 2, . . . , k, be distinct points on
X . We define

M0(P1, . . . , Pk) ⊂M0

to be the subscheme that consists of [C] ∈ M0 such that C passes through all
the points Pi. We use U0(P1, . . . , Pk) → X to denote the universal family over
M0(P1, . . . , Pk). Let [C] ∈ M0(P1, . . . , Pk). The obstruction of deforming C in X
passing through {P1, . . . , Pk} is in H1(C,NC/X(−P1−· · ·−Pk)). Since NC/X has split-
ting type (1) for [C] ∈M0, we know that M0(P1, . . . , Pk) is smooth when k ≤ a+ 1.

Definition 2.1. Notations and assumptions as above, we use

DefX(C;P1, . . . , Pk) ⊂M0(P1, . . . , Pk)

to denote the union of the irreducible components of M0(P1, . . . , Pk) containing [C].
And we get the corresponding universal family.

U(C;P1, . . . , Pk)

π

��

v=v(C;P1,...,Pk) // X

DefX(C;P1, . . . , Pk)

Let

σi : DefX(C;P1, . . . , Pk) → U(C;P1, . . . , Pk)

be the section that gets contracted by v to the point Pi ∈ X , where i = 1, . . . , k.
We use the notation Σ(C;P1, . . . , Pk) ⊂ X to denote the closure of the image of
v(C;P1, . . . , Pk).

Remark 2.2. If [C] is a smooth point of M0(P1, . . . , Pk), for example when
k ≤ a+ 1, then DefX(C;P1, . . . , Pk) is irreducible. Actually, it is smooth everywhere
if k ≤ a+ 1.

In our situation, let [C] ∈ M0 and we take k = a + 1 and pick {P1, . . . , Pa+1}
to be distinct points on C, hence DefX(C;P1, . . . , Pa+1) is smooth. Note that the
Zariski tangent space Tp of U(C;P1, . . . , Pk) at p ∈ π−1([C′]) fits into the following
short exact sequence naturally

0 // TC′,p // Tp
dπ // H0(C′,N ′(−a− 1)) // 0



240 M. SHEN

for any point [C′] ∈ DefX(C;P1, . . . , Pa+1), where N ′ = NC′/X . Consider the differ-
ential of v at p, we have the following

(2) 0 // TC′,p

id

��

// Tp

dv

��

dπ // H0(C′,N ′(−a− 1))

��

// 0

0 // TC′,p // TX,p // TX,p/TC′,p = N ′
p

// 0

Here the last column is the evaluation of a section at the point p. It is easy to see that
dv has rank r+1 if p /∈ σi for all i = 1, . . . , a+1. Let Σ = Σ(C;P1, . . . , Pa+1) ⊂ X and
we have dimΣ = r+1 since everything is over C. Let φ : Σ′ → Σ be the normalization
of Σ and φ̃ : Σ̃ → Σ′ be a resolution of Σ′. To make further constructions, we need
the following

Lemma 2.3. Let f : U → V be a morphism between smooth algebraic varieties
over an algebraically closed field k of characteristic 0. Assume that df is generically
of rank r. Let Σ ⊂ V be the closure of f(U) and Σ′ be the normalization of Σ. Then
f naturally lifts to f ′ : U → Σ′

U
f //

f ′

  @
@@

@@
@@

@ Σ
i // V

Σ′

ρ

OO

and for any closed point x ∈ U with df(x) having rank r, Σ′ is smooth at f ′(x) and
df ′ has rank r at x.

Proof. The existence of f ′ is easy since U is smooth and hence normal. We only
need to prove the remaining part. Let y = f(x) ∈ Σ ⊂ V and y′ = f ′(x). The
problem is local, so we can choose an r dimensional closed subvariety Z ⊂ U which
is smooth at x and df(x) is injective on TZ,x ⊗ k(x). We can replace U by Z. So we
assume that U has dimension r. We have the following local homomorphisms between
local rings.

OV,y
i∗ // // OΣ,y

f∗

//

ρ∗

��

OU,x

OΣ′,y′

f ′∗

;;wwwwwwwww

Choose a set of local parameters {t1, . . . , tn} of V at y such that {t1, . . . , tr} pull back
to local parameters of U at x. So we get the following diagram

k[t1, . . . , tr] →֒ OΣ′,y′ →֒ OU,x

with OΣ′,y′ being an intermediate normal domain of an étale ring extension. After
taking the completions, we get a splitting

k[[t1, . . . , tr]] →֒ ÔΣ′,y′ → k[[t1, . . . , tr]]

with the composition being identity. So ÔΣ′,y′ = k[[t1, . . . , tr]] ⊕ I, where I is an

ideal of ÔΣ′,y′ and a module over k[[t1, . . . , tr]]. By the analytical irreducibility and
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analytical normality of normal varieties, (see [38]), we know that ÔΣ′,y′ is an integrally
closed integral domain of dimension r. This forces I to be zero. Indeed for any a ∈ I,
by dimension reason, a should be algebraic over k[[t1, . . . , tr]]. Let

fna
n + fn−1a

n−1 · · ·+ f0 = 0, with fi ∈ k[[t1, . . . , tr]]

be an equation for a with minimal degree. Then f0 is also in I and hence has to be
0. This means a = 0.

Apply the above lemma to v : U ′ → X and we get

Σ̃
φ̃ // Σ′

φ // Σ

U ′

v′

OO

v

??��������

where U ′ = U(C;P1, . . . , Pa+1). Let U ′
0 := U ′ − ∪a+1

i=1 σi, where σi is the sec-
tion that gets contracted to Pi. Then we also know that the image v′(U ′

0) is in
the smooth locus of Σ′ and v′|U ′

0
is a smooth morphism. Pick an arbitrary point

[C′] ∈ DefX(C;P1, . . . , Pk). If we restrict the above maps to [C′], we get

Σ̃ // Σ′ // Σ

C′

ṽ[C′]

ffMMMMMMMMMMMMM

v′
[C′]

OO

v[C′]=u[C′]

88qqqqqqqqqqqqq

Note that DefX(C;P1, . . . , Pa+1) remains the same if we replace C by C′. From now
on, by abuse of notation, we will use C in stead of C′ to denote an arbitrary curve
from the family U(C;P1, . . . , Pa+1).

Lemma 2.4. For all points Q ∈ C − {P1, . . . , Pa+1}, Σ′ is smooth at v′[C](Q).

The morphism Σ̃ → Σ′ is an isomorphism along C − {P1, . . . , Pa+1}.

Proof. Indeed, we already see that v′(U ′
0) is in the smooth locus of Σ′.

Proposition 2.5. For any [C] ∈ M0, the variety Σ = Σ(C;P1, . . . , Pa+1) is
independent of the choice of {P1, . . . , Pa+1}.

Proof. Consider the morphism v′ : U ′ = U(C;P1, . . . , Pa+1) → Σ′. Let Q be
a point of C that is different from the Pi’s. Since Σ′ is smooth at Q′ = v′[C](Q)

and v′ is smooth above the point Q′, we get Z = v′−1(Q′) is smooth. Let Z0 be
the component of Z that contains the point Q above [C]. Note that U ′ is a smooth
irreducible component of U0(P1, . . . , Pa+1). Hence π(Z0) becomes a component of
M0(P1, . . . , Pa+1, Q) on which [C] is a smooth point. By definition we have Z0

∼=
π(Z0) ∼= DefX(C;P1, . . . , Pa+1, Q). Consider the universal family

w : U ′′ = U(C;P1, . . . , Pa+1, Q) → X

Since U ′′ ⊂ U ′ and w = v|U ′′ , we see that the image of w is contained in Σ. Hence we
get w : U ′′ → Σ. Note that Z0 is smooth and hence U ′′ is smooth. So we can lift w
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to get w′ : U ′′ → Σ′. By dimension count, we have

dimZ0 = dimU ′ − dimΣ′

= dimH0(C,NC/X(−a− 1)) + 1− (r + 1)

= Σri=1(bi − a)− r

= dimH0(C,NC/X(−a− 2))

This means that the deformation of C in X with the points {P1, . . . , Pa+1, Q} fixed
is actually unobstructed. Then we can use a same argument to show that the rank of
dw′ is generically r as we did for dv′. This implies Σ = Σ(C;P1, . . . , Pa+1, Q). Then
we have

Σ(C;P1, . . . , Pa+1) = Σ(C;P1, . . . , Pa, Pa+1, P
′
a+1) = Σ(C;P1, . . . , Pa, P

′
a+1)

and hence by induction we can replace {Pi}
a+1
i=1 by another set of a+ 1 points. Thus

Σ is independent of the choice of {Pi}
a+1
i=1 .

Definition 2.6. Let ϕ : U → V be a morphism between smooth varieties, we
define the normal sheaf of the morphism to be

NU/V = Nϕ = coker(dϕ : TU → ϕ∗TV ).

We say that ϕ has injective tangent map at a closed point x ∈ U if dϕ(x) is injective.
Note that Nϕ is locally free at points where ϕ has injective tangent map.

Corollary 2.7. Assume that [C] ∈ M0. Then the variety Σ′ is smooth along
v′[C](C)

∼= C and NC/Σ′
∼= O(b1) ⊕ · · · ⊕ O(br). The normal bundle NΣ̃/X is locally

free along the curve ṽ[C](C) ∼= C and NΣ̃/X |C ∼= O(a)⊕(n−r−1).

Proof. Let Q ∈ C be an arbitrary point. Pick a set of a + 1 distinct
points {P1, . . . , Pa+1} that are different from Q. Then by Proposition 2.5, we have
Σ = Σ(C;P1, . . . , Pa+1). By Lemma 2.4, we know that Σ′ is smooth at v′[C](Q). Con-

sider the deformation of v[C] : C → Σ′ with the points {P1, . . . , Pa+1} fixed. Such
deformations still form a covering family. This means that NC/Σ′(−a− 1) is globally
generated. Assume that

NC/Σ′
∼= O(b′1)⊕ · · · ⊕ O(b′r)

then we get b′i ≥ a + 1 for all i = 1, . . . , r. We first show that NΣ̃/X is locally free

along C. For any point x ∈ C, pick a set {P1, . . . , Pa+1} of a+1 distinct points on C
that are different from the given point x. Then we get the morphism

v : U ′ = U(C;P1, . . . , Pa+1) → X

which factors through v′ : U ′ → Σ′. Correspondingly we have the induced maps
between Zariski tangent spaces at x,

TU ′,x
dv′(x) // TΣ′,v′(x)

dφ(v′(x)) // TX,v(x)

and the composition is exactly dv(x). We already know that dv(x) and dv′(x) have
rank r + 1. Together with the fact that dimTΣ′,x = r + 1, we know that dφ(v′(x)) is
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injective. So φ has injective tangent map along C. Note that Σ̃ → Σ′ is isomorphism
along C. Hence NΣ̃/X is locally free of rank n− r− 1 along C. Now we consider the
following short exact sequence

0 // NC/Σ̃
η // NC/X

θ // NΣ̃/X |C // 0

Since b′i ≥ a + 1, the image of η lies in the summand
∑r

i=1 O(bi). Then we get the
following diagram

O(a)⊕(n−r−1)
∼= // O(a)⊕(n−r−1)

0 // NC/Σ̃
η // NC/X

OO

θ // NΣ̃/X |C

θ′

OO

// 0

0 // NC/Σ̃
η′ // ∑r

i=1 O(bi)

OO

// Q

OO

// 0

where the second and third columns are also short exact sequences and Q is a torsion
sheaf. We have already shown that NΣ̃/X |C is locally free of rank n − r − 1. This

forces Q to be 0. Hence η′ and θ′ are isomorphisms.

Definition 2.8. Given [C] ∈ M0, let Σ, Σ′ and Σ̃ be as above. Since the
morphism v[C] : C → X lifts to ṽ[C] : C → Σ̃, we can define β′ to be the homology

class of C on Σ̃. Let DefΣ̃ ⊂ M0,0(Σ̃, β
′) be the space of curves C ∼= P1 → Σ̃ such

that the composition C → Σ̃ → X is a point on M0. Hence we can view ṽ[C] as
a point on DefΣ̃. By abuse of notation, we still use [C] to denote this point. Let
DefΣ̃(C) ⊂ DefΣ̃ be the irreducible component that contains the point [C]. From
the corollary above, we know that DefΣ̃(C) is actually a smooth open subscheme of

M0,0(Σ̃, β
′). By composing C → Σ̃ with Σ̃ → X , we have a morphism between

smooth varieties α : DefΣ̃(C) →M0.

Proposition 2.9. The morphism α is a closed immersion. Furthermore, there
is a nonempty open subscheme U ⊂ M0 and a smooth morphism ψ : U → B such
that for any [C] ∈ U we have ψ−1(ψ([C])) = DefΣ̃(C) ∩U . The quotient B is smooth
of dimension (a+ 1)(n− r − 1).

Proof. For simplicity, we set D(C) = DefΣ̃(C). First, we show that α separates

points. If C1 and C2 on Σ̃ map to the same C on X , then Σ has two branches
along the curve C. But this is impossible since in the definition of Σ, the nearby
deformation of C should swipe out a unique branch of Σ. Now we prove that the
differential dα(t) = dα⊗k(t) is injective for all closed points t ∈ D(C) and that D(C)
is closed in M0. Consider the universal family π0 : U0 →M0. Let N be the cokernel
of TU0/M0 → (u0)∗TX where u0 : U0 → X is the universal morphism. Then by the
definition of M0, the sheaf N is locally free and splits uniformly along the closed
fibers of π0. Let Vη ⊂ Nη be the part of Harder-Narasimhan filtration on the generic
fiber that corresponds to ⊕ri=1O(bi) on the geometric generic fiber, c.f. [16]. Since the
splitting of N is uniform, Vη extends to a subbundle V of N . Actually, we can write
down V explicitly as in [3]. Let D = (π0)∗V ⊂ TM0 = (π0)∗N be the corresponding
subbundle. If we write down the the differential dα([C]) explicitly, we have

dα([C]) : TD(C),[C] = H0(C,NC/Σ̃) → TM0,[C] = H0(C,NC/X).
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Since we already see that NC/Σ̃ maps isomorphically onto V |C inside NC/X = N |C .

This implies that TD(C),[C] = D ⊗ k([C]) and in particular, the differential dα(t)
is injective for all closed point t ∈ D(C). Thus D defines a foliation on M0 and
D(C) = DefΣ̃(C) defines a leaf of D , c.f. [9]. Let D̄(C) be the Zariski closure of
D(C) in M0. Since D is a subbundle of TM0 , we conclude that D̄(C) is smooth and
still a leaf, c.f. [9] (Lemma 2.3 there). Now we claim that D(C) = D̄(C). Otherwise,
let [C′] ∈ D̄(C) be a point that is not contained in D(C). Then both D(C′) and
D̄(C) are leaves through [C′]; they have to agree on an open part. Thus D(C′) and
D(C) meet each other. This can happen only when D(C) = D(C′). This means that
[C′] ∈ D(C), which is a contradiction. Hence we proved that α is a closed immersion.
Since all the leaves of the foliation D are algebraic, hence D is algebraically integrable.
This means that there is a nonempty open U ⊂M0 and a morphism ψ : U → B such
that TU/B = D |U , c.f. [9] (Proposition 2.1 there). The smoothness results are from
direct local computations.

3. Three dimensional case. Situation 3.1. In this whole section, we fix the
following assumptions and notations:

• X/C is a smooth projective algebraic variety with dimX = 3.
• M ⊂ M0,0(X, β) is an unbalanced component of very free rational curves on
X . Let M0 ⊂M be as in the previous section. We always use C to denote a
curve on X such that [C] ∈M0.

• NC/X
∼= O(a)⊕O(b) with 1 ≤ a ≤ b− 2.

• Let ΣC = Σ(C;P1, . . . , Pa+1) be the surface as is constructed in the previous
section; Let Σ′

C be the normalization of ΣC and Σ̃C be a resolution of Σ′
C .

We frequently drop the subscript C when there is no confusion.

Definition 3.2. ([14]) Let Ci ⊂ Xi be a curve on a variety Xi, i = 1, 2. We
say that C1 ⊂ X1 is equivalent to C2 ⊂ X2 and write (C1 ⊂ X1) ∼= (C2 ⊂ X2) if
there is an open neighborhood Vi of Ci in Xi and an isomorphism f : V1 → V2 with
f |C1 : C1 → C2 being also an isomorphism.

Proposition 3.3. The pair C ⊂ Σ′ = Σ′
C is equivalent to one of the following

(i) σ ⊂ Fn, where Fn = P(O(−n) ⊕O) → P1 is the Hirzebruch surface and σ is
a section;

(ii) a smooth conic on P2.

Proof. Since we only care about a neighborhood of C ⊂ Σ′, we may replace Σ′

by Σ̃, see Lemma 2.4. Consider the complete linear system |C|. Since C is a very
free rational curve on Σ̃, we know that Σ̃ is a smooth rational surface and hence
hi(Σ̃,OΣ̃) = 0 for i = 1, 2. From the long exact sequence associated to the following
short exact sequence

0 // OΣ̃
// OΣ̃(C)

// OP1(b) // 0

we get dim |C| = b + 1. Since h1(Σ̃,OΣ̃) = 0, any nearby deformation of C in Σ̃ is
in |C|. Then the fact that C being very free implies that |C| separates points and
tangent vectors along C. Hence |C| defines an immersion φ = φ|C| on a neighborhood

of C. Let Σ̄ ⊂ Pb+1 be the closure of the image of φ. Then deg Σ̄ = C2 = b, this
means that Σ̄ is a surface of minimal degree. The proposition is a direct application
of a theorem of Del Pezzo and Bertini (c.f.[8]).
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3.1. Case I: Smooth conic on P2.

Situation 3.4. In this subsection, we make the following further assumptions in
addition to Situation 3.1.

• C ⊂ Σ′
C is equivalent to a smooth conic on P2.

• Let U ′ = U ′
C ⊂ Σ′ = Σ′

C be the largest open neighborhood of C such that
C ⊂ U ′ is isomorphic to an open neighborhood of a smooth conic on P2 and
NU ′/X is locally free.

• A curve on U ′ is called a line/conic if it is so when we identify U ′ with an
open subset of P2.

Lemma 3.5. With the above assumptions, we have a = 2 and b = 4.

Proof. Since C ⊂ Σ′ is equivalent to a smooth conic on P2, by Lemma 2.7, we have
O(b) ∼= NC/Σ′ = O(4). Hence we have b = 4. Then a is equal to either 1 or 2. Let
L′ ⊂ U ′ be a line and assume that NU ′/X |L ∼= O(c). Then O(a) ∼= NU ′/X |C ∼= O(2c).
This implies that a = 2c = 2 is the only possibility.

Definition 3.6. Let L ∼= P1 ⊂ X be a smooth rational curve. We say that L is
a pseudo-line on X if there exists some [C] ∈ M0 such that L is the image of a line
L′ ⊂ U ′

C ⊂ P2. Let

F (X) = {[L] ∈ Hilb(X) |L ∼= P1 ⊂ X is a pseudo-line} ⊂ Hilb(X)

be the moduli space of pseudo-lines on X . Given point x ∈ X , let

Fx(X) = {[L] ∈ F (X) |x ∈ L} ⊂ F (X)

be the space of pseudo-lines on X that pass through the point x. We use P (X)
and Px(X) to denote the universal family of pseudo-lines over F (X) and Fx(X)
respectively.

Remark 3.7. We will see from the next proposition that F (X) is actually an
irreducible smooth open subscheme of Hilb(X).

Proposition 3.8. Let L be a pseudo-line on X. Then the following are true
(i) The normal bundle NL/X

∼= O(1)⊕O(1);
(ii) The definition of a pseudo-line is independent of the choice of L′ ⊂ Σ′ in the

following sense: If there is another [C1] ∈M0 and L′
1
∼= P1 ⊂ U ′

C1
is a rational curve

whose image is a curve L1
∼= P1 ⊂ X with NL1/X

∼= O(1) ⊕ O(1), then L′
1 is a line

and hence L1 is a pseudo-line;
(iii) Any nearby deformation of L in X is still a pseudo-line on X. Namely, if

Y → T is a family of rational curves on X and Yt0 is a pseudo-line, then there is a
nonempty open T 0 ⊂ T such that Yt is a pseudo-line for all t ∈ T 0;

(iv) The space F (X) is smooth and irreducible;
(v) Let L1 and L2 be two intersecting pseudo-lines on X, then they are lying on

a unique Σ;
(vi) The space Fx(X) is smooth and irreducible;
(vii) Through a general pair of points on X, there are only finitely many pseudo-

lines.
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Proof. (i) Let L′ ⊂ U ′ be the line that maps to L. Since NU ′/X |C ∼= O(a) = O(2),
we get NU ′/X |L′

∼= O(1). Since NL′/U ′ = O(1), part (i) of the proposition follows
from the following short exact sequence

0 // NL′/U ′
// NL/X // NU ′/X |L′

// 0 .

(ii) Let L′
1 ⊂ U ′

C1
⊂ Σ′

C1
be a rational curve that maps to L1. Then we still

have the corresponding short exact sequence as above. Since the left term NL′

1/U
′

C1

is ample (note that L′
1 can be viewed as a curve on P2) and the middle term is still

O(1)⊕O(1), we get NL′

1/U
′

C1

∼= O(1). Hence L′
1 is a line.

To prove (iii), let Y → T be a family of smooth curves on X such that Yt0 is a
pseudo-line, where T is a smooth curve. We want to show that Yt is a pseudo-line on
X for general t ∈ T . We may assume that the normal bundle of Yt in X is isomorphic
to O(1) ⊕O(1). After shrinking T and replacing T by a finite cover if necessary, we
can find a family, Z → T , of pseudo-lines on X such that Zt and Yt meet at a single
point and both Zt0 and Yt0 lie on the same Σ′ associated to some [C] ∈ M0. Then
Yt0 ∨ Zt0 is a degeneration of C and hence [Yt0 ∨ Zt0 ] ∈M . Deformation theory tells
us that the obstruction of deforming Yt ∨ Zt is in the second hyper-extension group
of the cotangent complex, of the morphism φ : C′

t = Yt ∨ Zt → X , by the structure
sheaf of C′

t. Namely, the obstruction is in Ext2OC′

t

(L∗
φ,OC′

t
), where L∗

φ is the cotangent

complex of φ, see [26]. A long exact sequence associated to the spectral sequence is

· · · // Ext1OC′

t

(φ∗Ω1
X/k,OC′

t
) // Ext2OC′

t

(L∗
φ,OC′

t
) // Ext2OC′

t

(ΩC′

t/k
,OC′

t
)

This shows that Yt ∨Zt is unobstructed in X , see [32]. Hence {Yt ∨ Zt : t ∈ T } corre-
sponds to a curve inside the smooth locus of M . To show that Yt is a pseudo-line, we
pick points P1, P2 ∈ Yt and Q ∈ Zt which are different from the node. The deforma-
tion of Yt ∨Zt in X passing through P1, P2 and Q is still unobstructed and a general
deformation gives a smooth rational curve C1 ⊂ X . This can be seen from the same
long exact sequence as above with all the sheaves twisted by OC′

t
(−P1 − P2 − Q).

Hence Yt is on the surface Σ1 that is associated to C1. Since Yt is a component of the
degeneration of C1 on Σ1, we get that Yt is a pseudo-line on X .

(iv) Now we know that F (X) is an open subscheme of the Hilbert scheme of X .
The smoothness follows directly from the unobstructedness of pseudo-lines on X . To
show that F (X) is irreducible, one only needs to show that it is connected. Accord-
ing to Proposition 2.9, there is an open subscheme U ⊂ M0 with a quotient map
ψ : U → B. Let U0|U → X be the universal family over U . Consider the following
diagram.

(3) U0|U //

π0|U

�� !!C
CC

CC
CC

C
X × U

1×ψ

��
U

ψ ""D
DD

DD
DD

DD
V //

��

X ×B

{{ww
ww

ww
ww

w

B

Here V is the closure of the image of U0|U in X×B. Let V ′ → V be the normalization
and Ṽ → V be a resolution of singularity. For each b ∈ B, there is a canonically
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associated Σb. Then for general b ∈ B, Ṽb = Σ̃b and V ′
b = Σ′

b. Let L1 ⊂ Σb1 and

L2 ⊂ Σb2 be two general pseudo-lines on X . By deforming L1 in Ṽ , we can connect L1

with a pseudo-line L3 ⊂ Σb2 by a one dimensional family of pseudo-lines. Note that
here we use the fact that B is irreducible which is a consequence of the irreducibility
of M . By deforming L2 inside Σ′

b2
, we can connect L2 with L3 by another one

dimensional family of pseudo-lines. This shows that F (X) is connected.
To prove (v), let L1 and L2 be two intersecting pseudo-lines with intersection

point x ∈ X . We only need to show that [L1 ∨ L2] ∈ M . By deforming L1 ∨ L2,
we may assume that x is a general point. Fix another pair of general intersecting
pseudo-lines [L3 ∨L4] ∈M with intersection point y. The next step is to construct a
one dimensional family of pairs of intersecting pseudo-lines with L1 ∨L2 and L3 ∨L4

being two special fibers. Consider the universal family of pseudo-lines on X .

(4) P (X)
f //

p

��

X

F (X)

By Bertini theorem, we can find a smooth irreducible curve Γ ⊂ X that passes through
x and y such that f−1(Γ) is smooth irreducible. Note that the morphism f−1(Γ) → Γ
is smooth. Let Γ′ be the normalization of Γ inside f−1(Γ), then f−1(Γ) → Γ′ has
connected fibers. The pseudo-lines Li determine points Qi ∈ f−1(Γ). After taking
some finite covering Γ̃ of Γ′ we may assume that there are sections σ1, σ2 of C =
f−1(Γ)×Γ′ Γ̃ → Γ̃ such that Q1, Q3 ∈ σ1(Γ̃) and Q2, Q4 ∈ σ2(Γ̃). By composing with
the morphism p in (4), each of the σ1 and σ2 defines a family of pseudo-lines. The
two families of pseudo-lines defined by σi give a family of intersecting pseudo-lines
Y → Γ̃ such that L1 ∨ L2 and L3 ∨ L4 are two fibers. Since [L3 ∨ L4] ∈ M , we get
[L1 ∨L2] ∈M . The existence and uniqueness of Σ containing L1 and L2 follows from
deforming L1 ∨ L2 with three points fixed as before.

(vi) By deformation theory, we see that Fx(X) is smooth, so we only need to show
that it is connected. Let L1 and L2 be two pseudo-lines passing through x, by (v) we
get a unique Σ. By deformation inside Σ, we see that there is a curve connecting [L1]
and [L2] in Fx(X).

(vii) Given two general points on X , all pseudo-lines passing through the two
points form a zero dimensional subvariety of F (X) and hence finite.

Lemma 3.9. Assume that there is a unique pseudo-line through a general pair of
points on X, then C ⊂ X is equivalent to a conic in P3 for [C] ∈M0 and pseudo-lines
on X correspond to lines on P3.

Proof. Let UC ⊂ ΣC be the image of U ′
C ⊂ Σ′

C . First we claim that under the
assumption of the lemma, the surface UC is smooth. In fact, if U is not smooth then
there are two points P1, P2 ∈ U ′

C ⊂ Σ′
C that map to the same point P ∈ U . Pick

a general point Q′ ∈ U ′ which maps to Q ∈ U . The two lines connecting Q′ with
P1, P2 will give two pseudo-lines on X connecting P and Q, which is a contradiction.
Then we claim that the complete linear system |Σ| is three dimensional. Since X is
rationally connected, hi(X,OX) = 0 for i ≥ 1. Hence rational equivalence is the same
as algebraic equivalence for divisors on X . Let Z → T be a flat family of divisors
on X over a one dimensional smooth base T . Assume that Zt0 = Σ0 and let C0 be
a curve that defines Σ0. Consider the deformation of C0 in Z. By the first claim we
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know that C0 is in the smooth locus of Z. Hence C0 moves to nearby divisors. Hence
Zt = Σt is swept out by some Ct for general t ∈ T . This shows that B ⊂ |Σ| ∼= P3 is an
open subset, where B is the quotient as in Proposition 2.9 which is three dimensional.
Let ϕ = ϕ|Σ| : X 99K P3 be the map defined by the linear system |Σ|. Next we show
that ϕ defines an isomorphism on a neighborhood of C in X and maps C to a smooth
conic. But this is clear. Since C is very free on X , one sees that |Σ| separates points
and also separates tangent vectors in a neighborhood of C. The splitting of NC/X

shows that C maps to a conic on P3.
Now we return to the general case. Consider the universal family of pseudo-lines

passing through a general point x ∈ X . We write Px := Px(X) and Fx := Fx(X).
Then we have the following diagram

Px
fx //

πx

��

X

Fx

where πx has a section sx : Fx → Px, which is contracted by fx to the point x. Let
P 0
x = Px − sx(Fx), then fx is étale on P 0

x . Let Y be the normalization of X inside
the function field of Px via fx. Then we have the following diagram.

(5) Px
p2 //

φ

��

X

P 0
x

i′ //

i

>>}}}}}}}
Y

π

??~~~~~~~~
Σoo

OO

Σ′

σ

`` OO

In the above diagram i and i′ are open immersions; Σ is one of the surfaces that pass
through x and Σ′ its normalization. The existence of σ is due to the fact that for a
general point y ∈ Σ′, there is a unique line L ⊂ Σ′ connecting x and y. Since σ is
defined on an open set whose complement has at least codimension 2, we may assume
that σ is defined on a neighborhood of C ⊂ Σ′ and by choosing Σ general, we may
also assume that σ(C) is in the smooth locus of Y .

Proposition 3.10. Under the assumptions of Situation 3.4, there exists a normal
variety Y and a finite morphism π : Y → X with the following properties
(i) There is an open subset V ⊂ X such that π|π−1(V ) : π−1(V ) → V is étale and
C ⊂ V for general [C] ∈M . There is an open immersion ρ : π−1(V ) → P3 such that
for general [C] ∈ M with C ⊂ V , any lifting C ⊂ π−1(V ) is equivalent to a conic on
P3 under ρ.
(ii) A general line L′ ⊂ π−1(V ) maps to a pseudo-line L ⊂ X.
(iii) The degree d = deg(π) of the morphism π is equal to the number of pseudo-lines
connecting a general pair of points on X. The inverse image π−1(L) of a general
pseudo-line L ⊂ X is a disjoint union of d lines in π−1(V ).

Proof. Pick a general point x ∈ X and let Y be the normalization of X in the
function field of Px as in (5). The proof of the proposition will be divided into several
steps.
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Step 1. For general [C] ∈ M0, the curve C ⊂ X can always be lifted to a curve
on Y such that π is étale along the lifting.

Proof of step 1. Pick a surface Σ′ = Σ′
C as in (5) with x ∈ ΣC . Then σ gives

a lifting of C to Y . Fix such a curve, we show that π is étale along σ(C). Pick
an arbitrary point x′ ∈ C. We can always find a conic C1 on U ′

C ⊂ Σ′
C such that

x, x′ ∈ C1 and [C1] ∈ M0. Hence we also get that Σ1 := ΣC1 is the same as Σ
and σ1 : Σ′

1 99K Y is the same as σ. It is easy to see that the image of dπ(σ(x′)) :
TY ⊗ k(σ(x′)) → TX ⊗ k(x′) contains Im(TΣ′

1
⊗ k(x′) → TX ⊗ k(x′)). This is true as

long as C1 passes through both x and x′. By deforming C1 in X passing through the
fixed points x and x′, we get a family T of Σ1’s passing through x and x′. The Zariski
tangent space TX ⊗ k(x′) is generated by the images Im(TΣ′

1
⊗ k(x′) → TX ⊗ k(x′))

as Σ1 runs through the family T . So dπ(σ(x′)) is surjective and hence π is étale at
σ(x′). Since x′ ∈ C is arbitrary, we know that π is étale along σ(C). As a result we
have Nσ(C)/Y

∼= NC/X . It follows that the deformation of σ(C) in Y covers an open
neighborhood of [C] in M0. Hence for a general [C] ∈M0 there is always a lifting of
C to Y and π is étale along the lifting (note that we don’t require x ∈ ΣC anymore).
Notations. By lifting C ⊂ X to Y , we might get many unbalanced unbalanced
components of very free rational curves on Y of the same generic splitting type of
the normal bundle. Let M ′ be one of these components such that π is étale along C′

for any [C′] ∈ M ′. With respect to this M ′, we can do the same constructions on Y
as in the previous section. We use the notation ΠC′ instead of ΣC′ for the surface
constructed from a general point [C′] ∈ M ′. Similarly we will use Π′ and Π̃ instead
of Σ′ and Σ̃.

Step 2. For a general [C′] ∈ M ′, the pair C′ ⊂ Π′
C′ is also equivalent to a conic

on P2. Hence we also have the concept of pseudo-lines on Y .
Proof of step 2. Let C ⊂ X be the image of C′ via π. We know that π is étale

along C′. The nearby deformations of C′ in Y with three points fixed induce the
nearby deformations of C in X with the three image points fixed. Hence π induces a
morphism πC′ : ΠC′ → ΣC and π′

C′ : Π′
C′ → Σ′

C . For any point y0 ∈ C′ ⊂ Π′
C′ , let

x0 = π′
C′(y0) ∈ C ⊂ Σ′

C be the image. Consider the following diagram

Π′ = Π′
C′

//

π′

C′

��

Y

π

��
Σ′ = Σ′

C
// X

Since both TΠ′,y0 ⊗ k(y0) → TY,y0 ⊗ k(y0) and TΣ′,x0 ⊗ k(x0) → TX,x0 ⊗ k(x0) are
injective. Together with the fact that π is étale at y0, we know dπ′

C′ : TΠ′,y0 ⊗k(y0) →
TΣ′,x0 ⊗ k(x0) is an isomorphism. Hence π′

C′ is étale along C′. Hence (π′
C′)−1(C) is

a disjoint union of C′ with some other divisor D′ ⊂ Π′. We already know that as a
divisor, C is nef and big on Σ′. This implies that (π′

C′)−1(C) is also nef and big and
hence connected. Thus we get D′ = ∅. Hence π′

C′ is finite of degree 1, which means
that it is isomorphism since Σ′ is normal.

Step 3. The morphism π maps a general pseudo-line on Y to a pseudo-line on X .
Proof of step 3. Let L′ ⊂ Y be a general pseudo-line on Y . Then by definition,

there is some general point [C′] ∈ M ′ such that L′ is the image of a line L′
1 ⊂ Π′

C′ .
Since π′

C′ is an isomorphism, L1 := π′
C′(L′

1) is a line on Σ′
C , where C ⊂ X is the

image of C′. Then L = π(L′), as the image of L1 ⊂ Σ′
C , is a pseudo-line by definition.

Step 4. For a general pseudo-line L ⊂ X , π−1(L) is a disjoint union of d pseudo-
lines on Y . On Y , there is a unique pseudo-line connecting a general pair of points.
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Proof of step 4. It is easy to see from the definition of Y that the degree d = deg(π)
is the number of pseudo-lines connecting a general pair of points on X . Let d′ be the
number of pseudo-lines on Y connecting a general pair of points. Let (x, y) ∈ X ×X
be a general pair of points on X and L1, . . . , Ld be the pseudo-lines connecting them.
Let π−1(x) = {x1, . . . , xd} and π−1(y) = {y1, . . . , yd}. There are d′d2 pseudo-lines
L′
ijk connecting xi and yj , where i, j = 1, . . . , d and k = 1, . . . , d′. Their images

under π are exactly the pseudo-lines {Li} connecting x and y. On the other hand,
the inverse image π−1(Li) can contain at most d pseudo-lines for the degree reason.
It follows that d′ = 1 and π−1(Li) consists of d pseudo-lines. These pseudo-lines are
disjoint since π is étale along any of them.

Proof of Proposition. From Step 4 and Lemma 3.9, we know that C′ ⊂ Y is
equivalent to a conic on P3 for general [C′] ∈ M ′. Let U ⊂ Y be the maximal open
subset with an open immersion ρ̃ : U → P3 that realizes the above equivalence. Then
a pseudo-line L′ ⊂ U corresponds to a line on P3 and hence we will call L′ a line
instead of a pseudo-line. We already see that for a general pseudo-line L ⊂ X , π
is étale along π−1(L) ⊂ U . Hence there is an open subscheme V ⊂ X such that
π|π−1(V ) : π−1(V ) → V is étale and π−1(V ) ⊂ U . Define ρ = ρ̃|π−1(V ) then the
proposition follows.

3.2. Case II: Section of Hirzebruch surface.

Situation 3.11. In this whole subsection we will assume Situation 3.1 with one
further assumption that C ⊂ Σ′

C is equivalent to a positive section of a Hirzebruch
surface Fn for general [C] ∈M .

Recall that by definition, there is a natural fibration πn : Fn = P(O⊕O(−n)) →
P1. By blowing up at smooth points, we may assume that the above equivalence is
given by a morphism σ : Σ̃ = Σ̃C → Fn, which is an isomorphism on a neighborhood
of C and the image of C is a positive section of πn. On Σ̃, there is a distinguished
divisor D that corresponds to the negative section of Fn with D2 = −n. Note that
D need not be irreducible but there is a unique component Dh which is a horizontal
section. It is easy to see that C can only meet D at points of Dh since Σ̃ → Fn is
blowing up centered away from C. Let F ⊂ Σ̃ be a general fiber of πn ◦ σ : Σ̃ → P1.
Then F is a smooth rational curve on Σ̃.

Definition 3.12. Let Γ = ∪Γi be a nodal curve, and Y be a smooth projective
variety. Let ϕ : Γ → Y be a morphism such that ϕ is an immersion on a neighborhood
of each node and dϕ(x) : TΓ ⊗ k(x) → TY ⊗ k(ϕ(x)) is injective for all smooth point
x of Γ. We define the normal bundle of ϕ to be

NΓ/Y = Nϕ = [ker(ϕ∗Ω1
Y → Ω1

Γ)]
∨

Note that the above definition agrees with Definition 2.6 when Γ is smooth. Since
a nodal curve is always a local complete intersection, we know that NΓ/Y is locally
free. To better understand the normal bundle at the nodal points, let’s assume that
Γ = Γ1∪Γ2 be a union to two smooth curves and let p be the nodal point. We always
have the following exact sequence, [12] and [34],

0 // NΓ1/Y
// NΓ/Y |Γ1

// k(p) // 0
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This realizes NΓ/Y |Γ1 as the sheaf of sections of NΓ1/Y that are either regular or have
a simple pole at p in the direction of TΓ1,p. A similar interpretation holds on Γ2. The
sheaf T := Ext1OΓ

(ΩΓ,OΓ) is a torsion sheaf supported at p whose fiber is canonically
isomorphic to T |p = TΓ1,p ⊗ TΓ2,p. The natural quotient map NΓ/Y ։ T induce an
isomorphism (NΓ/Y |Γ1)/NΓ1/Y

∼= T . With the above preparation, we are ready to
prove the following

Lemma 3.13. Under Situation 3.11, the following does not happen: on Σ̃, the
curve C meets D at least once and for a general fiber F we have NF/X

∼= O ⊕O(1).

Proof. We prove the lemma by contradiction. So we assume the above situation
happens. Since C ·D ≥ 1, the curve C degenerates to a general fiber F and another
positive section C′. We have the following picture.

Σ̃
D

r

P1
r

Pa
· · ·

F

rQ

C′p

Since (C′)2 = (C − F )2 = C2 − 2(C · F ) = b − 2, we have NC′/Σ̃
∼= O(b − 2). Since

C ·D ≥ 1 and the tangent map dφ̃ of φ̃ : Σ̃ → X is injective along C, we know that
dφ̃ is also injective along a general fiber F . Hence we have the following short exact
sequence

0 // NF/Σ̃
// NF/X

// NΣ̃/X |F // 0.

It follows, from the above sequence and the assumption, that NΣ̃/X |F ∼= O(1). Since

NΣ̃/X |C ∼= O(a), see Corollary 2.7, we get that NΣ̃/X |C′
∼= O(a − 1). Consider the

following short exact sequence

0 // NC′/Σ̃
// NC′/X // NΣ̃/X |C′ // 0

and we get NC′/X
∼= O(b− 2)⊕O(a− 1). Let Γ = F ∪C′ ⊂ Σ̃ and let p be the nodal

point. Consider the natural morphism ϕ : Γ → X . The deformation problem of ϕ
with only the target X being fixed is controlled by the cotangent complex of ϕ,

L∗
ϕ := {0 → ϕ∗Ω1

X → Ω1
Γ → 0}.

Namely, the first order deformation is given by Ext1Γ(L
∗
ϕ,OΓ) and the obstruction

space is in Ext2Γ(L
∗
ϕ,OΓ), see [26]. If we choose F and C′ general, then dϕ is injective

at all smooth points of Γ and ϕ is an immersion on an open neighborhood of the node
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p. Hence we know that L∗
ϕ is quasi-isomorphic to N ∨

ϕ centered at degree −1. Hence
we have the following isomorphisms

Ext1Γ(L
∗
ϕ,OΓ) ∼= H0(Γ,Nϕ), Ext1Γ(L

∗
ϕ,OΓ) ∼= H1(Γ,Nϕ).

We pick Q ∈ F and P1, . . . , Pa ∈ C′ to be general points. Consider the same de-
formation problem while we require the deformations to pass through the points
{Q,P1, . . . , Pa}. Then the first order deformations and obstructions are given by
H0(Γ, E ) and H1(Γ, E ) respectively, where E = Nϕ(−Q −

∑a
i=1 Pi). Since F has

trivial normal bundle in Σ̃, the O(1) direction in NF/X is pointing outside Σ̃. Recall
that E |F is the sheaf of sections of NF/X(−Q) that are either regular or have a simple
pole at p along the direction of TC′,p. This shows that the restriction morphism

H0(F, E |F ) −→ E ⊗ k(p) = Nϕ ⊗ k(p)

is surjective. In fact we have NF/X(−Q) ∼= O(−1)⊕O. The global section from the
O factor and the rational section pointing to TC′,p with a simple pole at p form a
basis for H0(F, E |F ). They restrict to two linearly independent vectors in N ⊗ k(p).
To compute the cohomology groups of E , we consider the following exact sequence.

(6) 0 // E // E |F ⊕ E |C′
// E ⊗ k(p) // 0

It follows easily from the interpretation of E |F and E |C′ that

H1(F, E |F ) = 0, H1(C′, E |C′) = 0

and

dimH0(F, E |F ) = 2 dimH0(C′, E |C′) = b− a.

Hence the long exact sequence associated to (6) becomes

0 // H1(Γ, E ) // H0(F, E |F )⊕H0(C′, E |C′)
α // E ⊗ k(p)

// H1(Γ, E ) // 0

We already know that α is surjective. Hence we have

dimH0(Γ, E ) = b− a, dimH1(Γ, E ) = 0

So the deformation problem above is unobstructed. Note that the deformation
that keeps the configuration F ∪ C′ is (b − a − 1)-dimensional and hence a gen-
eral deformation smooth out the node and gives a curve [C1] ∈ M0 passing through
{Q,P1, . . . , Pa}. Now we deform F → X a little bit to get F ′ ∼= P1 → X where the
image of F ′ still passes through p and TF ′,p is not contained in TΣ′,p. Then we get a
morphism ϕ′ : Γ′ = F ′ ∪p′ C′ → X . Pick Q′ ∈ F ′ we do the same deformation with
respect to {Q′, P1, . . . , Pa}. Since the vanishing of obstruction is an open condition,
we know that this new deformation problem is still unobstructed which gives a dif-
ferent curve [C2] ∈ M0. From C1 we get the surface Σ1 = Σ and from C2 we get a
different surface Σ2. Now since C′ is component of the degeneration of both C1 and
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C2 with a+ 1 points fixed, C′ lies on both of Σ1 and Σ2. Consider the deformation
of C′ in X passing through {P1, . . . , Pa}. If we consider C′ as a curve on Σ′

1, and we
can do the deformation of C′ in Σ′

1; Similarly we can also do the same deformation on
Σ′

2. As a result, the curve C′ can move along both of the directions TF,p and TF ′,p at
the point p. But this is impossible since NC′/X(−

∑a
i=1 Pi)

∼= O(−1)⊕O(b − a− 2)
is not globally generated.

The main result of this subsection is the following

Proposition 3.14. Assume that the anti-canonical divisor −KX is nef together
with Situation 3.11, then for a general fiber F ⊂ Σ̃, the morphism F → X has at
worst nodal image and NF/X = O ⊕O.

Proof. On Σ̃ we have the divisor class C = D + cF for some integer c. We have
the following basic relations

(7) C2 = D2 + 2c(D · F ) = −n+ 2c = b ⇒ c =
b+ n

2

(8) C ·D = D2 + c = −n+ c ≥ 0 ⇒ c ≥ n

The above relations imply that b ≥ n. We still use KX to denote the pullback of KX

to Σ̃. From the following

a+ b+ 2 = C · (−KX) = D · (−KX) + cF · (−KX)

and the assumption that −KX is nef, we get

(9) F · (−KX) ≤
a+ b+ 2

c
=

2(a+ b+ 2)

b+ n
≤

4b

b
= 4.

By construction, a general F passes through a general point of X and hence F is free.
As a result, the intersection number F · (−KX) can only be 2, 3 or 4. To prove the
proposition, we only need to rule out the cases F · (−KX) being 3 or 4.

If F · (−KX) = 4 then n = 0, b = a + 2 and D · (−KX) = 0. In this case, the
divisor D is just the other ruling of P1 × P1 and hence a general member of the class
of D is a rational curve that passes through a general point of X and hence is free.
This implies that D · (−KX) ≥ 2, which is a contradiction.

If F · (−KX) = 3 then we first show that C · D ≥ 1. In fact, if C · D = 0, i.e.
D2 + cF ·D = 0, then c = n. From (7), we get b = n. Then in (9), we get

3 = F · (−KX) ≤
2(a+ b+ 2)

b+ n
=

2(a+ b+ 2)

2b
=
a+ b+ 2

b
≤ 2.

Hence we get contradiction again. Recall that there is an open neighborhood Ũ of C
inside Σ̃ such that the morphism Ũ → X has injective tangent map at each point. The
fact that C ·D ≥ 1 implies that F ⊂ Ũ for general F . This implies that F → X has
injective tangent map at all points and hence NF/X

∼= O⊕O(1), which is impossible
by Lemma 3.13.

3.3. Conclusion. Here we summarize the previous two subsections in the fol-
lowing theorem.

Theorem 3.15. Let X/C be a smooth projective variety with dimX = 3. Let M
be an unbalanced component of very free rational curves such that for general [C] ∈M ,
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C is a smooth rational curve on X with normal bundle NC/X
∼= O(a)⊕O(b), where

b− 2 ≥ a ≥ 1. Let Σ be the surface swept out by deforming C with a+ 1 points fixed
as before. Let Σ′ be its normalization. Then we have one of the following to cases.

Case I: The pair C ⊂ Σ′ is equivalent to a conic in P2. In this case, there is a
finite morphism π : Y → X and there is an open neighborhood V ⊂ X of C such that
π−1(V ) → V is étale. Furthermore, there is an open immersion ρ : π−1(V ) → P3

such that any lift C → π−1(V ) is a conic on P3.
Case II: The pair C ⊂ Σ′ is equivalent to a positive section of a Hirzebruch

surface Fn. In this case, if we further assume that −KX is nef then a general fiber F
of Σ̃ gives a free rational curve on X with trivial normal bundle, i.e. NF/X

∼= O⊕O.

Let S be the component of the M0,0(X, β) that parameterizes such curves F . Then
the natural morphism ϕ : C → S is a rational curve on S that connects a general pair
of points on S. In particular, S is rationally connected and hence rational.

Proof. The theorem is pretty much the combination of Proposition 3.3, Proposi-
tion 3.10 and Proposition 3.14. We only need to show that S is rationally connected
in case II. Fix a general point [F ] ∈ S, then there is some C ⊂ Σ and F ⊂ Σ. Let
x be the point that C meets F . By deforming C passing through the fixed point x,
we get a family of Σ’s. The fiber of any such Σ at the point x is always the fixed
F . Hence we get a covering family of rational curves on S passing through the fixed
point [F ]. This means that S is rationally connected.

Definition 3.16. Let X and M be as in the theorem. When Case I happens,
we say that M is an unbalanced component of conic type; when Case II happens,
we say that M is of fibration type.

Corollary 3.17. Let X be a smooth projective threefold of Picard number 1.
If X has an unbalanced component M of very free rational curves of conic type, then
X ∼= P3 and M is the space of conics on X.

Proof. Let π : Y → X be the finite morphism we get from the theorem. Then π
is étale above V ⊂ X . Since V contains a general curve C and X has Picard number
1, the complement of V in X has dimension less than or equal to 1. Since X is simply
connected (this follows from the fact that it is rationally connected), we get that V is
also simply connected. This implies that deg(π) = 1 and hence V = π−1(V ) ⊂ P3. We
have the identification of the Picard groups Pic(X) = Pic(V ) = ZH . From the fact
that OX(−KX)|V ∼= Ω3

V = OV (−4H), we get −KX
∼= 4H . So X is Fano threefold of

index 4, which implies that X ∼= P3.

4. Non-triviality of the Abel-Jacobi mapping. In this section, we use the
technique of intermediate Jacobian and the Abel-Jacobi mapping to prove Theorem
1.4.

4.1. Intermediate Jacobian and Abel-Jacobi mapping. The main refer-
ence to this section are [5], [36], [1], [2], [10] and [21].

Let X be a smooth projective variety over C, dimX = 3. We use H∗(X) to
denote H∗(X,Z)/torsion. We have the following Hodge decomposition.

H3(X)⊗ C = H3,0(X)⊕H2,1(X)⊕H1,2(X)⊕H0,3(X)

Let W (X) := H1,2(X)⊕H0,3(X) and let U(X) ⊂W (X) be the lattice defined by the
image of H3(X) under the projection. We define a Hermitian form on W (X) by

(α, β) = h(α, β) := 2i

∫

X

α ∧ β̄
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Then the imaginary part of h restricts to an integral, unimodular, alternating form
on U(X).

Definition 4.1. Let X be as above, the triple (W (X), U(X), h) is called the
intermediate Jacobian of X and denoted by J(X).

Proposition 4.2. ([5]) If H1(X) = 0 and H0,3(X) = 0 then J(X) is a principally
polarized abelian variety. In particular, if X is Fano then J(X) is a principally
polarized abelian variety.

From now on, we always keep the assumption of the proposition above. The
following proposition is well known, see [5] and [36].

Proposition 4.3. Let X be a smooth projective threefold with H1(X) = 0 and
H0,3(X) = 0, and C ⊂ X be a smooth curve on X. Let X̃ be the blow-up of X along
the curve C, then we have canonical isomorphism

J(X̃) ∼= J(X)⊕ J(C)

as principally polarized abelian varieties, where J(C) is the jacobian of the curve.

We also need the following basic property on the behavior of the intermediate
Jacobian under the operation of a flop.

Proposition 4.4. Let X be a smooth projective threefold and let χ : X 99K X+

be a flop of (−2)-curves. Then J(X+) ∼= J(X) canonically.

Proof. By the definition of a flop, we have a diagram

X
χ //

f ��@
@@

@@
@@

@ X+

f+
}}||

||
||

||

Y

where both f and f+ are small proper birational morphism. By a result of [30], χ is a
composition of sequence of blow-ups and blow-downs centered along smooth rational
curves. The proposition follows from the previous one.

Let

C
f //

π

��

X

S

be a family of curves on X , i.e. Cs is a curve on X for all s ∈ S. After fixing a general
point s0 ∈ S, we get a map

Φ = ΦS : S → J(X).

This is actually a morphism which induces

Ψ = ΨS : Alb(S) → J(X).

We refer to [5] and [36] for more details.
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Definition 4.5. Both Φ and Ψ are called the Abel-Jacobi mapping associate to
the family C → S.

Now let’s consider the infinitesimal version of the Abel-Jacobi mapping. Fix a
smooth curve C ⊂ X , then we have the following exact sequence

0 // N ∨
C/X

// Ω1
X |C // Ω1

C
// 0 .

This induces an exact sequence as the following

0 // ∧2(N ∨
C/X) // Ω2

X |C // Ω1
C ⊗ N ∨

C/X
// 0 .

By taking the associated long exact sequence, we get an natural surjection

α : H1(C,Ω2
X |C) −→ H1(C,Ω1

C ⊗ N
∨
C/X) ∼= H0(C,NC/X)∨,

where the isomorphism is Serre duality. Note that if H1(C,∧2N ∨
C/X) = 0 then α is

an isomorphism. Let

r : H1(X,Ω2
X) −→ H1(C,Ω2

X |C)

be the natural restriction map. Then the composition φ = α ◦ r is the dual of d(ΦS)
and the point [C] when C → S is the universal family. We call φ the infinitesimal
Abel-Jacobi mapping.

Proposition 4.6. ([37] Lemma 2.8) Suppose X can be embedded in a smooth 4
dimensional variety W . Then there is a commutative diagram as following

H0(X,NX/W ⊗ Ω3
X) //

rC

��

H1(X,Ω2
X)

φ

��
H0(C,NX/W ⊗ Ω3

X ⊗OC)
βC // H0(C,NC/X)∨

Here the map βC fits into the following long exact sequence

H0(C,NX/W ⊗ Ω3
X ⊗OC)

βC // H0(C,NC/X)∨

→ H1(C,NC/W ⊗ Ω3
X) // H1(C,NX/W ⊗ Ω3

X ⊗OC) // 0

Corollary 4.7. Notations and assumptions as above, if NC/X
∼= O ⊕ O and

the following two conditions hold, then the infinitesimal Abel-Jacobi mapping φ is
nontrivial.
(1) The restriction map rC : H0(X,NX/W ⊗ Ω3

X) → H0(C,NX/W ⊗ Ω3
X ⊗ OC) is

surjective;
(2) h1(C,NC/W ⊗ Ω3

X)− h1(C,NX/W ⊗ Ω3
X ⊗OC) ≤ 1.
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4.2. Nontriviality of Abel-Jacobi mapping. To prove the main result of this
section, we need a description of double covers. Let π : X → V be a double cover
between smooth algebraic varieties, R ⊂ X be the ramification locus and B ⊂ V be
the image of R. Then R ∼= B are smooth and there is a line bundle L on V such
that L ⊗2 ∼= OV (B). There is a section σ ∈ Γ(V,L ⊗2) such that B = div(σ). We
have the following diagram

(10) X
i //

π
  @

@@
@@

@@
@ U

p

��
V

where U = SpecV (Sym
∗(L −1)) is the space of L . On U , there is a canonical section

y ∈ Γ(U, p∗L ) and X = div(y2 − p∗σ). It is easy to see that TU/V = p∗L and hence
we have the following exact sequence

(11) 0 // p∗L // TU // p∗TV // 0 .

Then it is easy to see that NX/U
∼= p∗L ⊗2 and ωX ∼= π∗(ωV ⊗ L ).

Lemma 4.8. Assume that Q ⊂ Pn, n ≥ 4, is a quadric hypersurface. Let C ⊂ Q
be a smooth conic rational curve in the smooth locus of Q. Let Π = Π(C) be the plane
spanned by C. Then NC/Q has a direct summand of OP1(4) if and only if Q contains
Π.

Proof. Consider the following short exact sequence

0 // NC/Q // NC/Pn // NQ/Pn |C // 0

It is easy to see that NC/Pn
∼= O(4)⊕O(2)⊕(n−2) and the O(4) summand is canonically

isomorphic to NC/Π. If NC/Q contains an O(4) summand, then this summand has
to map isomorphically onto the NC/Π summand of NC/Pn . This means that Π is
tangent to Q along C. This can happen only if Π ⊂ Q. The other direction is easy.

With the above preparations, we are ready to prove the following

Theorem 4.9. Let X be a Fano threefold of index 1 or 2 and of Picard number
1. Assume that the intermediate Jacobian J(X) is not zero. Let S be a component of
rational curves on X with trivial normal bundle. Then the Abel-Jacobi mapping

Φ : S → J(X)

is nontrivial. In particular, S is not rational.

Remark. The intermediate Jacobian J(X) is trivial only when X = X5 is of
index 2 and degree 5 or when X = X22 is of index 1 and genus 12.

Proof. We prove the theorem case by case. We use C to denote a general member
of the family S.

First we consider the case when the index of X is 1 and in this case the rational
curves with trivial normal bundle are conics on X . Recall that for those of high genus,
we use the method of “double projection from a line” and get the following diagram,
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see [20], [18], [19] and [7].

(12) X̃
χ //

σ

��

ϕ′

��?
??

??
??

X̃+

ϕ

��

ϕ+
~~||

||
||

||

X̄

X Y

Recall that σ is blow-up along a line, χ is a flop of (−2)-curves and ϕ is an extremal
contraction. Let Z ⊂ S be the curve that parameterizes a component of the conics
which meet l where l is a line on X and the center of the blow-up σ. Such Z always
exists since we can pick l general. Let CZ → Z be the family over Z. After blowing up
and the flop, this gives a family C

+
Z → Z of rational curves on X̃+. Since χ is a flop

of (−2)-curves, by Proposition 4.1, we know that there is a canonical isomorphism
J(X) ∼= J(X̃+) and we get the following commutative diagram

(13) Z
ΦZ //

��

J(X̃+)

∼=

��
S

ΦS // J(X)

Note that all curve in the family C
+
Z → Z are contracted by ϕ and if we can show

that ΦZ is nontrivial then ΦS is also nontrivial.

g=10: In this case, ϕ : X̃+ → Y blows down a divisor onto a smooth curve of
genus 2 on Y ∼= Q ⊂ P4. This implies that Z is of genus 2 and J(X̃+) ∼= J(Z) and
hence ΦZ is nontrivial.

g=9: In this case, ϕ : X̃+ → Y blows down a divisor onto a smooth curve of
genus 3 on Y ∼= P3. This implies that Z is of genus 3 and J(X̃+) ∼= J(Z) and hence
ΦZ is nontrivial.

g=8: In this case ϕ : X̃+ → Y is a standard conic bundle over Y ∼= P2 with
discriminant ∆ ⊂ P2 being of degree 5. In this case J(X̃+) is the prim variety
Pr(∆̃/∆) of the double cover ∆̃ → ∆, see [10] and [1]. Then Z → ∆0 is a double
cover of a component ∆0 of ∆. If deg∆0 = 1 then Z is an elliptic curve; If deg(∆0) = 2
then Z has genus 2; If deg(∆0) = 3 then Z has genus 2 or 3, depending on whether
∆0 has a node or not; If deg(∆0) = 4, then Z has genus 7, 6, 5 or 4, depending on
the number of nodes of ∆0; If ∆0 = ∆ then Z ∼= ∆̃. In any of the above cases, it is
easy to check that the morphism ΦZ is nontrivial. For example, if deg(∆0) = 1 then
the double cover Z → ∆0 ramifies at 4 points and Pr(Z/∆0) = J(Z) gives a factor
of the J(X) ∼= Pr(∆̃/∆). The Abel-Jacobi mapping ΦZ maps Z nontrivially to the
factor Pr(Z/∆0). The other cases are similar.

g=7: In [17] (Proposition 2.2), it is proved that S ∼= Γ(2) the symmetric product
to a smooth curve Γ of genus 7. It is also known that the intermediate Jacobian of X
is isomorphic to the Jacobian of Γ. Hence ΦS is nontrivial.

For the remaining cases, we will use Corollary 4.7 to show the nontriviality of
Abel-Jacobi mapping. We refer to the conditions in Corollary 4.7 as condition (1)
and condition (2).
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g=6: In this case, X is either (i)a section of the GrassmannianGr(2, 5) embedded
by Plücker into P9 by a linear P7 and a quadric or (ii)the section by a quadric of a
cone Ṽ5 ⊂ P7 over V5 ⊂ P6 where V5 is a Fano threefold of Picard number 1, index 2
and degree 5, see [20] §5.1.

In case (i), we take

C ⊂ X ⊂W = G(2, 5) ∩ P7 = G(2, 5) ∩H1 ∩H2

Then we have NX/W
∼= OX(2H) and Ω3

X
∼= O(−H). Consider the following natural

commutative diagram.

H0(X,OX(H))
rC // H0(C,O(2))

H0(P9,OP9(H))

OO

r′C

66nnnnnnnnnnnn

where r′C is surjective. This implies that

rC : H0(X,NX/W ⊗ Ω3
X) → H0(C,NX/W ⊗ Ω3

X ⊗OC) ∼= H0(C,O(2))

is surjective and hence condition (1) holds. SetG = G(2, 5), then we have the following

0 // NC/X
// NC/W

// NX/W |C // 0

Note that NX/W |C ∼= O(4) and NC/X
∼= O⊕O. Then it is easy to see that if NC/W

does not have a summand O(4) then condition (2) also holds and hence we know
that the Abel-Jacobi mapping is nontrivial. So we only need to prove that NC/W

can not have a summand of O(4). We prove this by contradiction. Assume that
NC/W

∼= O(4) ⊕ O(2)⊕2. It is well known that G = Gr(2, 5) ⊂ P2 is cut out by
quadrics, see [13]. Suppose Q is a quadric hypersurface of P9 that contains G. Since
NC/G injects into NC/Q, we know that if NC/G has an O(4) summand then so does
NC/Q. By Lemma 4.8, we have Π = Π(C) ⊂ Q, where Π(C) is the plane spanned by
C. Since Q is arbitrary, one sees that NC/G contains an O(4) summand if and only
if the plane Π(C) is contained in G. From the following exact sequence

0 // NC/W
// NC/G

// O(2)⊕2 // 0

one sees easily that if NC/W
∼= O⊕2 ⊕O(4), then NC/G will have an O(4) summand.

As a result, for a general conic C on X we have Π(C) ⊂ G and hence Π(C) ⊂ W .
This means that W has a 2-dimensional family of planes. However, it is known that
the planes on W form a 1-dimensional family, see [27] (3.2).

In case (ii), the projection from the node of Ṽ5 realizes X as a double cover of V5
that ramifies along a smooth divisor B ∈ |2H |. Use the notations above for double
covers, we take W = U and then we have NX/W

∼= OX(2H) and Ω3
X

∼= OX(−H).
This gives the surjection condition (1) as before. To verify the condition (2), consider
the following exact sequence.

0 // NC/X // NC/V5
// Q // 0

Note that NC/X
∼= O ⊕ O. The cokernel Q is a skyscraper sheaf of degree 2 since

C · R = 2, where R is the ramification divisor. Then we get NC/V5
∼= O ⊕ O(2) or
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O(1)⊕O(1). We also have the following short exact sequence

0 // TW/V5
|C // NC/W // NC/V5

// 0

Since TW/V5
∼= π∗OV5(1), we have TW/V5

|C ∼= O(2). Then the sequence shows that
NC/W

∼= O ⊕O(2)⊕2 or O(1)⊕2 ⊕O(2). Condition (2) holds in either case.

g=5: X = Q1 ∩ Q2 ∩ Q3 ⊂ P6 is a complete intersection of 3 quadrics. We
take W = Qi ∩ Qj where 1 ≤ i ≤ j ≤ 3. Then we have NX/W

∼= OX(2H) and
Ω3
X

∼= OX(−H). Condition (1) is readily verified. For condition (2), we consider

0 // NC/X
∼= O⊕2 // NC/W

// NX/W |C ∼= O(4) // 0

From this one sees that condition (2) holds if NC/W does not have a summand of
O(4). Now suppose that NC/W has an O(4) summand for all possible choice of W ,
then the sequence

0 // NC/W
// NC/Qi

// O(4) // 0

implies that NC/Qi
also has a summand of O(4). By Lemma 4.8, the plane Π(C) is

contained in Qi. This is true for all i = 1, 2, 3. Then X should contain a linear P2.
This is impossible because by adjunction formula, any smooth surface on X is either
K3 or of general type.

g=4: X = Q ∩ Y ⊂ P5 is a complete intersection of a quadric and a cubic. Let’s
take W = Q to be the quadric. We have NX/W

∼= OX(3H) and Ω3
X

∼= OX(−H). We
can verify condition (1) easily. Consider the exact sequence

0 // NC/X
∼= O⊕2 // NC/W

// O(6) // 0

We easily see that condition (2) holds as long as NC/W ≇ O⊕2 ⊕O(6). On the other
hand we have

0 // NC/W
// NC/P5

∼= O(2)⊕3 ⊕O(4) // O(4) // 0

and this implies that NC/W can not have a summand of degree greater than 4. Hence
condition (2) holds.

g=3: X = X4 ⊂ P4 and we take W = P4. We have NX/W = O(4H) and
Ω3
X

∼= OX(−H) and condition (1) follows easily. Condition (2) also easily follows
from the fact that NC/W

∼= O(2)⊕2 ⊕O(4).

g=3: X → Q ⊂ P4 is a double cover of a quadric threefold that ramifies along
a surface B of degree 8. With the notations for double covers, we take W = U
and here V = Q and L = OV (2H). The we easily get Ω3

X
∼= π∗OV (−H) and

NX/W
∼= π∗OV (4H). Condition (1) is again easy to verify. For condition (2), we

consider the following

0 // TW/V |C ∼= O(4) // NC/W
// NC/V

// 0

On the quadric threefold V we always have NC/V
∼= O(2)⊕O(2) and hence NC/W

∼=
O(4)⊕O(2)⊕O(2). Thus the condition (2) holds.
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g=2: X → P3 is double cover of P3 which ramifies along a smooth surface of
degree 6. Take W = U , V = P3 and we get Ω3

X
∼= π∗OV (−H) and NX/W

∼=
π∗OV (6H). Hence condition (1) holds. The exact sequence

0 // TW/V |C ∼= O(6) // NC/W
// NC/V

∼= O(2)⊕O(4) // 0

shows that NC/W
∼= O(6)⊕O(4)⊕O(2). Thus condition (2) also holds.

Now we consider the cases when the index of X is 2. We prove case by case
according to the d = H3. Note that in this case, the curve C is a line on X . We still
use Corollary 4.7 to show nontriviality of Abel-Jacobi mapping.

d=4: X = Q1 ∩ Q2 ⊂ P5 is a complete intersection of two quadrics in P5. Take
W = Q1 and we have NX/W

∼= OX(2H) and Ω3
X

∼= OX(−2H). It is still easy to
verify condition (1). We have the following two short exact sequences

0 // NC/X
∼= O ⊕O // NC/W // O(2) // 0

and

0 // NC/W
// NC/P5

∼= O(1)4 // O(2) // 0

It follows easily that NC/W
∼= O(1)2 ⊕O. Hence condition (2) holds.

d=3: X is a smooth cubic threefold. This case is well known, see [5].
d=2: X → P3 is a double cover of P3 that ramifies along a smooth surface of

degree 4. This case is studied in [37], Proposition (2.13).
d=1: X is a smooth hypersurface of degree 6 in the weighted projective space

P = P(3, 2, 1, 1, 1) with weighted homogeneous coordinates (x0, x1, x2, x3, x4). Since
X is smooth, it must be contained inside the smooth locus of P. Let pr : P 99K P2

be the projection to the last three coordinates. Let C ⊂ X be a general line on X .
Consider

(14) C //

��

X //

pr|X

��

P

pr
��

pr(C) // P2

This shows that the homomorphisms

H0(P,OP(n)) −→ H0(C,O(n))

is surjective for all n ≥ 0, if pr(C) is not a single point. But it is clear that pr(C) is
not a single point for general C. Otherwise, a general fiber of pr|X always contains a
line and hence reducible. But this is impossible by Bertini’s theorem. Now we take
W = P and we have NX/W

∼= OX(6) and Ω3
X

∼= OX(−2). Then the above surjection
implies condition (1). For condition (2), note that C is a line in the smooth locus of
P and pr(C) 6= pt, we know that NC/W is ample. Hence H1(C,NC/W ⊗ Ω3

X) = 0,
which implies condition (2).

4.3. Proof of main theorem. Now we are ready to prove the main theorem of
this article.

Theorem 4.10. Let X be a Fano threefold of Picard number 1. If X has an
unbalanced component M of very free rational curves, then X = P3 and M is the
space of conics on X.
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Proof. If M is of conic type, then by Corollary 3.17, we know that X is P3 and
M is the space of conics on X . If M is of fibration type, then by Theorem 3.15, a
component S of the space of rational curves with trivial normal bundle is rational.
For index 3 and 4 cases, there is no such rational curves on X . For index 1 and 2
cases, the non-triviality of the associated Abel-Jacobi mapping implies that S is not
rational unless X = X5 or X = X22.

When X = X5, let S be the space of lines on X . Then by [11], we know S = P2

with the universal family being a projective bundle P(E ) over S and the (−1, 1)-curves
corresponds to a conic curve ∆ ⊂ S. Consider the universal family

P(E )
f //

π

��

X

S

The morphism f ramifies along π−1(∆). Let B = f(π−1(∆)). Now let [C] ∈M be a
general point. Then by constructing the surface Σ associated to C, we get a family
of lines Σ′ → P1 with a section σ. This gives a morphism ϕ : P1 → S which has a lift
σ′ : P1 → P(E ).

Σ′ //

��

P(E )
f //

π

��

X

P1
ϕ //

σ′

==zzzzzzzz
S

Where f ◦ σ′ gives the curve C. Since σ′(P1) meets π−1(∆), the curve C is always
tangent to B. This is impossible since C is a general point in a component of very
free rational curves.

The case X = X22 can be ruled out similarly. In this case we also have S ∼= P2

and the only difference is that f ramifies along π−1(∆) where ∆ is a degree 4 divisor
on S. See the appendix for details.

Appendix A. Space of conics on X22.

A.1. We work over the field C of complex numbers. Let E be a vector bundle on
a variety Z, then we use G(k, E ) to denote the scheme that parameterizes k dimen-
sional fiberwise subspaces of E . Hence G(k, E ) is a Grassmannian bundle over Z.
When k=1, it can also be written as P(E ∗). We similarly define G(k1, k2, . . . , kr, E ),
0 < k1 < · · · < kr < rank(E ), to be the relative Flag variety over Z.

A.2. In the whole article, we fix X = X22 ⊂ P13 to be a prime Fano threefold
of genus 12. In particular, this means that X is a smooth projective variety whose
anti-canonical class −KX is very ample and generates Pic(X) ∼= Z. The embedding
X ⊂ P13 is given by the complete linear system | −KX | and the intersection of two
general hyperplane sections gives a canonical curve of genus 12. To better understand
the structure of X , we introduce several notations. Let V be a vector space. A
net of alternating forms on V is a surjective homomorphism η : ∧2V → N with
dimN = 3. We use G(k, V ; η) to denote

{

E ∈ G(k, V ) : η(∧2E) = 0
}

. We have the
following structure theorem.
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Theorem A.3. (Mukai [28]) Let X = X22 ⊂ P13 be a prime Fano threefold
of genus 12. Then there is a 7 dimensional vector space V and a net of alternating
forms, η : ∧2V → N , such that X = G(3, V ; η). Conversely, for a general such η, the
variety X = G(3, V ; η) is prime Fano threefold of genus 12.

A.4. From now on, we fix a 7 dimensional vector space V and a net of alternating
forms η as above such that X = G(3, V ; η) is a Fano threefold of genus 12. We use
E3 to denote the canonical rank 3 subbundle of the trivial bundle V ⊗ OX . Let
C ∼= P1 ⊂ X be a conic on X , then

E3|C ∼= O ⊕O(−1)⊕2, V/E3
∼= O⊕2 ⊕O(1)⊕2.

Associated to C, there are canonical subspaces V1 ⊂ V5 ⊂ V , such that V1 is the
intersection of E3(x) as x runs through all points on C and that V5 is generated by
E3(x) as x runs through all points on C. If we vary C ⊂ X , we get a line bundle E1

and a vector bundle E5 of rank 5 on S0, where S0 is space of smooth conics. Let

C 0
f0

//

π0

��

X

S0

be the universal family. Then we have

(π0)∗E1 ⊂ (f0)∗E3 ⊂ (π0)∗E5 ⊂ V

By abuse of notation, we omit the “pull-back” and write

E1 ⊂ E3 ⊂ E5 ⊂ V

Hence we have a canonical morphism

ϕ0 : S0 → G(1, 5, V ),

where G(1, 5, V ) is the flag variety. We still use E1 ⊂ E5 ⊂ V to denote the canonical
rank 1 and rank 5 subbundles of V on G(1, 5, V ). Note that η induces

η′ : E1 ⊗ (E5/E1) → N

Let S ⊂ G(1, 5, V ) be the closed subscheme defined by η′ = 0.

Lemma A.5. Notations and assumptions as above, the following are true:
(i) S ⊃ Im(ϕ0);
(ii) The morphism S0 → S induces inclusion S0(C) ⊂ S(C).

Proof. Given a smooth conic C ⊂ X , one easily checks that V1 ⊗ V5/V1 → N
vanishes. This proves (i). To prove (ii), let V1 ⊂ V5 ⊂ V be a pair with η(V1⊗V5/V1) =
0.

{x ∈ X : V1 ⊂ E3(x) ⊂ V5} =
{

V3/V1 ∈ G(2, V5/V1) : ∧
2(V3/V1) → N is 0

}

= G(2, V5/V1) ∩ P2 in P5

= conic on X
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The last equality is because otherwise X contains a P2 which is impossible. Hence C
is uniquely determined by the pair V1 ⊂ V5.

Proposition A.6. The following are true.
(i) The scheme S has pure dimension 2. In particular, S is local complete intersection
and hence reduced.
(ii) S0 → S is open immersion and S0 ⊂ S is dense.
(iii) Over S there is a canonical family C of conics on X which is constructed in the
following way:

X C //

π

��

foo G(2, E5/E1)

��

Plüker // P(∧2(E5/E1)
∗)

S // G(1, 5, V )

where

C = G(2, (E5/E1)|S) ∩ {λ = 0} in P(∧2(E5/E1)
∗|S)

with λ : Ltaut|S → ∧2(E5/E1)|S → N being the natural homomorphism. Furthermore,
we have C 0 = C |S0 .

Proof. The construction in (iii) is just the proof of the second part of Lemma
A.5 in a family. The expected dimension of S is 2, hence dimS ≥ 2. If S is not of
pure dimension 2, there would be a 3-dimensional family of broken conics on X which
is impossible. Hence we proved (i). The fact that the broken conics on X form a
1-dimensional family implies that S0 → S is open and dense. This proves (ii).

A.7. Consider the natural morphism

φ : S →֒ G(1, 5, V ) → G(1, V ) = P(V ∗) ∼= P6

where the second morphism is the natural projection.

Proposition A.8. We have the following.
(i)The image of φ can be characterized in the following way

Im(φ) = {x ∈ P(V ∗) : rankx(E1 ⊗ V/E1 → N) ≤ 2}

= {x ∈ P(V ∗) : rankx(E1 ⊗ V/E1 → N) = 2}

(ii) φ is a closed immersion.
(iii) On S, we have

E1 ⊗ (V/E5) ∼= N2 →֒ N

is a rank 2 subbundle of N . This gives

ρ : S → G(2, N) = P(N) ∼= P2.

Proof. If there is a 1-dimensional subspace V1 ⊂ V such that rank(V1 ⊗ V/V1 →
N) = 1, then there is a 6-dimensional subspace V6 ⊂ V such that

η(V1 ⊗ V6/V1) = 0
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Then G(2, V6/V1; η) ⊂ X where

G(2, V6/V1; η) =
{

E/V1 ⊂ V6/V1 : η(∧2E) = 0 and dimE = 3
}

= G(2, 5) ∩H1 ∩H2 ∩H3

This implies that X = G(2, 5) ∩ H1 ∩ H2 ∩ H3 and hence X is a Fano threefold of
index 2 and degree 5. This is a contradiction. Now suppose we are given V1 ⊂ V with
rank(V1⊗V/V1 → N) = 2. Then there is a unique V5 ⊂ V such that η(V1⊗V5/V1) = 0.
This proves (i). Let Z ⊂ P(V ∗) be the closed subscheme defined by the degeneration
of the homomorphism E1 ⊗ V/E1 → N . The above argument also shows that S → Z
is isomorphism hence we have (ii). The rank condition in (i) implies that N2 =
Im(E1 ⊗ V/E1 → N) is a rank 2 subbundle of N . Hence (iii) follows easily.

A.9. There is a natural linear map

Sym3(∧2V ∗) −→ ∧6V ∗ ∼= V

This induces

V ∗ τ // Sym3(∧2V )
Sym3(η) // Sym3(N)

which induces

φ′ : P(N) ∼= P2 −→ P(V ∗) = G(1, V )

Eventually, we want to show that S
ρ // P(N)

φ′

// P(V ∗) is the same as φ.

A.10. Let α = (α1, α2, . . . , α2n) be an ordered set of distinct symbols. A set Λ =
{Λ1,Λ2, . . . ,Λn} is called a 2-partition of α and we write Λ ≺2 α, if Λi = (λi,1, λi,2)
with λi,1 < λi,2 and

⋃n
i=1 Λi = α as sets. Then we define the sign of Λ to be

sign(Λ) = signα(Λ) = sign

(

α1 α2 α3 α4 · · · α2n

λ1,1 λ1,2 λ2,1 λ2,2 · · · λn,2

)

Then the natural linear map τ : V ∗ → Sym3(∧2V ) is given by

τ(e∗i ) = (−1)i−1
∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)eΛ1eΛ2eΛ3

where {e1, . . . , e7} is a basis of V and {e∗1, . . . , e
∗
7} is the dual basis of V ∗; eΛi

=
eλi,1 ∧ eλi,2 . So the morphism φ′∗ : V ∗ → Sym3(N) is given by

e∗i 7→ (−1)i−1
∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)η(eΛ1)η(eΛ2 )η(eΛ3)

Lemma A.11. For any linear functional l : N → C, i.e. a point [l] ∈ P(N), let
v ∈ V be given by

(15) v =
7

∑

i=1

(−1)i−1ei
∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)l ◦ η(eΛ1)l ◦ η(eΛ2)l ◦ η(eΛ3 )
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Then φ′([l]) = [Cv] and l ◦ η(v′ ∧ v) = 0 for all v′ ∈ V .

Proof. The fact that φ′([l]) = [Cv] follows directly from the above explicit com-
putations. To prove the second equation, we only need to do so for v′ = ej . By
symmetry, we only need to do the case j = 1. To make the computation easier to
understand, we use the symbol 1′ to replace j = 1.

l ◦ η(e1 ∧ v)

= l ◦ η(e1′ ∧ v)

=

7
∑

i=1

(−1)i−1l ◦ η(e1′ ∧ ei)
∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)l ◦ η(eΛ1)l ◦ η(eΛ2)l ◦ η(eΛ3)

=

7
∑

i=1

∑

Λ≺2(1,2,...,̂i,...,7)

(−1)i−1 sign

(

1′ i 1 · · · î · · · 7
1′ i λ1,1 · · · · · · · λ3,2

)

· l ◦ η(e1′ ∧ ei)

· l ◦ η(eΛ1) · l ◦ η(eΛ2) · l ◦ η(eΛ3)

=

7
∑

i=1

∑

Λ≺2(1,2,...,̂i,...,7)

sign

(

1′ 1 2 · · · i · · · 7
1′ i λ1,1 · · · λ3,2

)

l ◦ η(e1′ ∧ ei)

· l ◦ η(eΛ1) · l ◦ η(eΛ2) · l ◦ η(eΛ3)

=
∑

Λ′≺2(1′,1,...,7)

sign(Λ′)
4
∏

i=1

l ◦ η(eΛ′

i
)

= −
∑

Λ′≺2(1,1′,...,7)

sign(Λ′)

4
∏

i=1

l ◦ η(eΛ′

i
)

= −l ◦ η(e1 ∧ v)

This implies that l ◦ η(e1 ∧ v) = 0.

Proposition A.12. The following are true.

(i) The composition S
ρ // P(N)

φ′

// P(V ∗) is the same as φ : S → P(V ∗).

(ii) The morphism ρ : S → P(N) is isomorphism.

Proof. Let s = [V1 ⊂ V5] ∈ S be an arbitrary closed point, then we get N2 =
η(V1 ⊗V/V1) ⊂ N is a 2-dimensional subspace with N2

∼= V1 ⊗V/V5. Then ρ(s) = [l]
where l : N → N/N2

∼= C. We choose a basis of V such that V1 = Ce1 and {e1, . . . , e5}
form a basis of V5. Then by (15), we get

v =

7
∑

i=1

(−1)i−1ei
∑

Λ≺2(1,2,...,̂i,...,7)

sign(Λ)l ◦ η(eΛ1)l ◦ η(eΛ2)l ◦ η(eΛ3 )

= e1
∑

Λ≺2(2,3,...,7)

sign(Λ)l ◦ η(eΛ1)l ◦ η(eΛ2)l ◦ η(eΛ3)

the second equality holds since l ◦ η(e1 ∧ w) = 0 for all w ∈ V . It follows that
φ(s) = φ′ ◦ρ(s). Since S is reduced, we get φ = φ′ ◦ρ by Hilbert Nullstellensatz. This
proves (i). Then ρ : S → P(N) is bijective on points and has smooth image. Then ρ
has to be an isomorphism and hence (ii).
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A.13. We have already constructed the canonical family C of conics on X over
the base scheme S. Now we want to study more details about the conic bundle C → S.
On S, we have an induced homomorphism ∧2(E5/E1) → N . Let F be its kernel which
is a rank 3 vector bundle on S. Then we have the following short exact sequence,

(16) 0 // F // ∧2(E5/E1) // N // 0

By construction, C = G(2, E5/E1) ∩ G(1,F ) in P(∧2(E5/E1)
∗) = G(1,∧2(E5/E1)).

Then we have the following commutative diagram

C

π

��

�

� // P(F ∗)

||xx
xx

xx
xx

x

S

The divisor G(2, E5/E1) on G(1,∧2(E5/E1)) is given be vanishing of the section

σ : Sym2(L ) −→ Sym2(∧2(E5/E1)) −→ ∧4(E5/E1)

Here L → ∧2(E5/E1) is the tautological rank 1 subbundle on the scheme
G(1,∧2(E5/E1)). Then we have

σ|P(F∗) ∈ H0(P(F ∗),L −2 ⊗ ∧4(E5/E1))

= H0(S, π∗(L
−2)⊗ ∧4(E5/E1))

= H0(S, Sym2(F ∗)⊗ ∧4(E5/E1))

⊂ Hom(F ,F ∗ ⊗ ∧4(E5/E1))

It is a basic fact, see [29], that the degeneration divisor or discriminant ∆ ⊂ S is
given by the vanishing of

det(σ|P(F∗)) ∈ H0(S, det(F ∗)⊗2 ⊗ det(E5/E1)
⊗3)

Namely, ∆ = div(det(σ|P(F∗))). This implies that the divisor class of ∆ is −2c1(F )+
3c1(E5/E1). By (16), we know that c1(F ) = c1(∧2(E5/E1)) = 3c1(E5/E1). Hence we
eventually have

(17) ∆ ∼ −3c1(E5/E1).

Lemma A.14. On S ∼= P(N) ∼= P2 we have the following relations on divisor
classes:

c1(E1) = −3h, c1(E5) = −5h

where h is the class of a line on P2.

Proof. Since E1
∼= φ∗OP(V ∗)(−1) ∼= OP2(−3), we get c1(E1) = −3h. We also have

E1 ⊗ V/E5
∼= N2 ⊂ N , this implies that c1(E5) = −5h.

Proposition A.15. The degeneration divisor ∆ of the conic bundle π : C → S
is equivalent to 6 h, where h is the class of a line on S ∼= P2.
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A.16. In this section, we would like to study the ramification of the natural map
f : C → X . To do this, we consider the following diagram.

(18) C
j′′ //

iC
��

Y
p′2 //

iY
��

X

iX
��

G(2, E5/E1)
j′ //

p′13

��

G(1, 3, 5, V )
p2 //

p13

��

G(3, V )

S
j // G(1, 5, V )

where all squares are fiber-product squares. The closed immersion iX gives the fol-
lowing short exact sequence

(19) 0 // ∧2E3|X ⊗N∗ // Ω1
G(3,V )|X

i∗X // Ω1
X

// 0

The morphism p′2 realizes Y as a G(1, 3) × G(2, 4)-bundle over X and hence Y is
smooth. We have a similar sequence for iY .

(20) 0 // ∧2E3|Y ⊗N∗ // Ω1
G(1,3,5,V )

i∗Y // Ω1
Y

// 0

Note that j′′ : C → Y is given by the vanishing of E1 ⊗ (E5/E3) → N . This gives

(21) 0 // E1 ⊗ (E5/E3)|C ⊗N∗ // Ω1
Y |C

j′′∗ // Ω1
C

// 0 .

We put all the above sequences together and get the following commutative diagram.

0

��

0

��

0

��
0 // ∧2E3|C ⊗N∗ //

��

Ω1
G(3,V )

|C

��

// Ω1
X
|C //

f∗

��

0

0 // K //

��

Ω1
G(1,3,5,V )

|C //

��

Ω1
C

//

��

0

0 // E1 ⊗ (E5/E3)|C ⊗N∗
q //

��

E1 ⊗ (E3/E1)∗ ⊕ (E5/E3) ⊗ (V/E5)∗ //

��

coker f∗

��

// 0

0 0 0

It follows that the ramification divisor R of the morphism of f : C → X is given by
R = div(det(q)), where

det(q) ∈ H0 (C , det((E1 ⊗ E5/E3)
∗|C ⊗N)⊗ det(E1 ⊗ (E3/E1)

∗ ⊕ (E5/E3)⊗ (V/E5)
∗))

It follows easily that R ∼ π∗(−3c1(E1) + c1(E5)).

Proposition A.17. The ramification divisor R of the morphism f : C → X
can be written as R = π∗ div(s0) as divisors. Here we identify S with P2 and s0 ∈
H0(P2,OP2(4)).
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