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BIVARIANCE, GROTHENDIECK DUALITY AND HOCHSCHILD

HOMOLOGY I: CONSTRUCTION OF A BIVARIANT THEORY∗

LEOVIGILDO ALONSO TARRÍO† , ANA JEREMÍAS LÓPEZ‡ , AND JOSEPH LIPMAN§

To Heisuke Hironaka, on the occasion of his 80th birthday

Abstract. A procedure for constructing bivariant theories by means of Grothendieck duality is
developed. This produces, in particular, a bivariant theory of Hochschild (co)homology on the cate-
gory of schemes that are flat, separated and essentially of finite type over a noetherian scheme S. The
theory takes values in the category of symmetric graded modules over the graded-commutative ring
⊕iH

i(S,OS). In degree i, the cohomology and homology H0(S,OS)-modules thereby associated to
such an x : X → S, with Hochschild complex Hx, are ExtiOX

(Hx,Hx) and Ext−i
OX

(Hx, x
!OS) (i ∈ Z).

This lays the foundation for a sequel that will treat orientations in bivariant Hochschild theory
through canonical relative fundamental class maps, unifying and generalizing previously known man-
ifestations, via differential forms, of such maps.
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Introduction. Grothendieck duality is a cornerstone of cohomology theory for
quasi-coherent sheaves in Algebraic Geometry. It relates the classical theory of the
canonical linear system of a variety to an analogue of Poincaré duality. Indeed, one
of the outstanding features of Grothendieck duality is the interplay between concrete
and abstract aspects of the theory, the former being expressed in terms of differentials
and residues, while the latter are conveyed in terms of a formalism of certain func-
tors between derived categories—the Grothendieck operations, and a web of relations
among them (see, e.g., [L3]). These two aspects are linked by the fundamental class

of a scheme-map.
In its usual incarnation the fundamental class is, for a noetherian-scheme map

x : X → S that is separated, essentially finite type, perfect (i.e., of finite flat dimension
or finite tor-dimension), and equidimensional of relative dimension n, a canonical
derived-category map from suitably shifted top-degree relative differentials to the
relative dualizing complex:

CX|S : Ω
n
X|S [n]→ x!OS ,

where x! is the twisted inverse image functor which is the principal actor in
Grothendieck duality theory; or equivalently, a map of coherent sheaves

(0.0.1) cX|S : Ω
n
X|S → ωX|S := H−nx!OS ,

where ωX|S is the relative dualizing (or canonical) sheaf associated to x.
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In case x is a smooth map, cX|S is the isomorphism that is well-known from
Serre duality. More general situations have been studied in various contexts, local
and global, algebraic and analytic, e.g., [AnZ], [An], [AnL], [KW], [Kd]. In [L1], there
is a concrete treatment of the case when S = Spec(k) with k a perfect field and X

an integral algebraic scheme over k. The map cX|k is realized there as a globalization
of the local residue maps at the points of X, leading to explicit versions of local
and global duality and the relation between them. These results are generalized to
certain maps of noetherian schemes in [HS]. In all these approaches, an important
role is played—via factorizations of x as smooth◦finite—by the case n = 0, where the
notion of fundamental class is equivalent to that of traces of differential forms.

After [L2] it became clear that Hochschild homology and cohomology play a role
in this circle of ideas. The connection with differentials comes via canonical maps
from differential forms to sheafified Hochschild homology.

Over schemes, the theory of Hochschild homology and cohomology goes back to
work of Gerstenhaber and Schack [GhS] on deformation problems, see [BF1], [GeW],
[Ca2] and [CaW]. Recently, more refined versions of the theory have been developed,
in [BF1] and [LV].

Our first main task is to construct, over a fixed noetherian base scheme S, a
bivariant theory [FM], taking values in derived categories of complexes with quasi-
coherent homology, those categories being enriched by graded modules over the
graded-commutative ring H := ⊕i∈ZH

i(S,OS).
The construction makes use of properties of the Hochschild complex Hx of a sep-

arated, essentially finite-type, perfect map x : X → S—that is, the derived-category
object Lδ∗Rδ∗OX where δ : X → X ×S X is the diagonal map—and on basic facts
from Grothendieck duality theory. (Strictly speaking, this Hx should be called the
“Hochschild complex” only when x is flat.) The H-module thereby associated to a
morphism f : (X x−→ S)→ (Y

y
−→ S) of such S-schemes is

HH∗(f) := ⊕i∈Z ExtiOX
(Hx, f

!Hy) = ⊕i∈Z HomD(X)

(
Hx, f

!Hy[i]
)
,

so that the associated cohomology groups are

HHi(X |S) := HHi(idX) = ExtiOX
(Hx,Hx)

and the associated homology groups are

HHi(X |S) := HH−i(x) = Ext−i
OX

(Hx, x
!OS).

Over smooth C-schemes, these bivariant homology groups have been studied in [Ca1],
and in more sophisticated terms, in [CaW]. The bivariant cohomology groups form
a graded algebra, of which the cohomology algebra in [Ca1] is an algebra retract.
(These bivariant groups are not to be confused with the bivariant cohomology groups
in [Lo, §5.5.1].)

The data constituting the bivariant theory are specified in section 3, and satis-
faction of the bivariant axioms is verified in section 4. The construction is organized
around purely category-theoretic properties of the derived direct- and inverse-image
pseudofunctors, and of the twisted inverse image pseudofunctor (section 2), and of Hx

(section 3). This makes it applicable in other contexts where duality theory exists,
such as noetherian formal schemes or certain maps of nonnoetherian schemes. More-
over, the simple properties of Hx that are needed are shared, e.g., by the cotangent
complex of x, or by the “true” Hochschild complex in [BF1].
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Section 5 is devoted to showing that the formal properties in section 2 do come out
of Grothendieck duality for separated essentially-finite-type perfect maps of noeth-
erian schemes. It is only recently that duality theory has been made available for
essentially-finite-type, rather than just finite-type, maps (see [Nk2]), making possible
a unified treatment of local and global situations. That theory requires the tedious
verification of commutativity of a multitude of diagrams, and more of the same is
needed for our purposes. That accounts in part for the length of section 5; but there
is more to be checked, for example because of the upgrading of results about derived
categories to the H-graded context. Thus the bivariant Hochschild theory, though
quickly describable, as above, encompasses many relations.

To put the present results in context, let us discuss very briefly our second main
task, to be carried out in the sequel to this paper—namely, to develop the notion of
the fundamental class of an f as above. This is an element

̺(f) := cf (OY ) ∈ HH0(f).

In particular, when y = idS , one gets a map in HH0(x) = HH0(X |S),

̺(x) : Hx → x!OS ,

which together with a natural map Ωi
X|S → H−iHx gives a map

Ωi
X|S → H−ix!OS (i ≥ 0),

that generalizes (0.0.1) when x is flat, separated, and essentially finite type.
Two basic properties of the fundamental class are:
1) Transitivity vis-à-vis a composite map of S-schemes X

u
−→ Y

v
−→ Z, i.e.,

cvu = u!cv ◦ cuv
∗.

2) Compatibility with essentially étale base change.

Transitivity gives in particular that cvu(OZ) = u!cv(OZ) ◦ cu(OY ). In terms of

the bivariant product HH0(u)×HH0(v)→ HH0(vu), this says:

̺(vu) = ̺(u) · ̺(v).

Thus the family ̺(f) is a family of canonical orientations, compatible with essentially
étale base change, for the flat maps in our bivariant theory [FM, p. 28, 2.6.2].

With this in hand, one can apply the general considerations in [FM] to obtain,
for example, Gysin morphisms, that provide “wrong-way” functorialities for homology
and cohomology.

1. Review of graded categories and functors. Let there be given a graded-

commutative ring H = ⊕i∈ZH
i,

hh′ = (−1)mnh′h ∈ Hm+n (h ∈ Hn, h′ ∈ Hm).

We will use the language of H-graded categories. So let us recall some of the relevant
basic notions.

1.1. A category E is H-graded if
(i) for any objects A, B in E, the set E(A,B) of arrows from A to B is equipped

with a symmetric graded H-module structure: E(A,B) is a graded abelian group

E(A,B) = ⊕i∈Z E
i(A,B)
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with both left and right graded H-module structures such that

hα = (−1)mnαh
(
h ∈ Hn, α ∈ E

m(A,B)
)
,

(so each of these structures determines the other); and further,
(ii) for any C ∈ E, the composition map E(B,C)×E(A,B) ◦−→ E(A,C) is graded

H-bilinear : it is Z -bilinear, and such that for β ∈ E
m(B,C), α ∈ E

n(A,B), h ∈ H ,
it holds that β ◦α ∈ E

m+n(A,C) and

(hβ)◦α = h(β ◦α), β ◦(αh) = (β ◦α)h.

It follows that (βh)◦α = β ◦(hα), and then that composition factors uniquely
through a homomorphism of symmetric graded H-modules

E(B,C)⊗H E(A,B)→ E(A,C).

Any full subcategory of an H-graded category E is naturally H-graded.

1.1.1. For any object A in an H-graded category E, E(A,A) has a natural graded
H-algebra structure. Indeed, the identity idA, being idempotent, is in E

0(A,A), and
the map τA : H → E(A,A) such that for all n and h ∈ Hn,

τA(h) = h idA = idA h ∈ E
n(A,A)

is a graded-ring homomorphism—since

(h idA) ◦ (h′ idA) = h(idA ◦ (idA h
′)) = h((idA ◦ idA)h

′) = hh′ idA —

that maps H to the graded center of E(A,A)—that is, for α ∈ E
m(A,A),

(h idA) ◦α = h(idA ◦α) = hα = (−1)mn(αh) ◦ idA = (−1)mnα◦ (h idA).

1.1.2. A preadditive category is an H-graded category with H = ⊕i∈ZH
i, the

graded ring such that H0 = Z and Hi = (0) for all i 6= 0.

1.2. Let E1 and E2 be H-graded categories. A functor F : E1 → E2 is said to
be H-graded if the maps E1(A,B) → E2(FA,FB) (A,B ∈ E1) associated to F are
graded H-linear.

Another H-graded functor G being given, a functorial map ξ : F → G of degree n

is a family of arrows ξA ∈ E
n
2 (FA,GA) (A ∈ E1) such that for any α ∈ E

m
1 (A,B),

it holds that (Gα)◦ ξA = (−1)mnξB ◦(Fα); in other words, the following diagram
commutes up to the sign (−1)mn :

(1.2.1)

FA
ξA−−−−→ GA

Fα

y
yGα

FB −−−−→
ξB

GB

Composing a functorial map of degree n1 with one of degree n2 produces one of
degree n1 + n2.
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1.3. The graded center C = CE of an H-graded category E is, to begin with, the
graded abelian group whose n-th degree homogeneous component Cn consists of the
degree-n self-maps of the identity functor idE of E.

This CE does not change when H is replaced by the trivially graded ring Z.
Composition of functorial maps gives a product

Cm × Cn → Cm+n (m,n ∈ Z),

for which, evidently, if ξ ∈ Cm and ζ ∈ Cn then ξζ = (−1)mnζξ. Hence C can be
viewed, via the graded-ring homomorphism τ : H → C that takes h ∈ Hn to the
family τA(h) = h idA ∈ E

n(A,A) (A ∈ E), as a graded-commutative graded H-algebra.
For ξ ∈ Cn, composition with ξA (resp. ξB) maps Em(A,B) to E

m+n(A,B); this
produces a symmetric graded C-module structure on E(A,B). Hence the category
E is C-graded. The original H-grading is obtained from the C-grading by restricting
scalars via τ .

In the case H = C, the above map τA becomes the evaluation map

(1.3.1) evA : C → E(A,A)

taking ξ ∈ Cn to the map ξA .

1.4. The tensor product E1 ⊗H E2 of H-graded categories is the H-graded
category whose objects are pairs (A1, A2) (A1 ∈ E1, A2 ∈ E2), and such that

(E1 ⊗H E2)
(
(A1, A2), (B1, B2)

)
:= E1(A1, B1)⊗H E2(A2, B2)

with the obvious symmetric graded H-module structure, composition

(
E1(B1, C1)⊗H E2(B2, C2)

)
×
(
E1(A1, B1)⊗H E2(A2, B2)

)

−→ E1(A1, C1)⊗H E2(A2, C2)

being derived from the graded H-quadrilinear map

E1(B1,C1)× E2(B2,C2)× E1(A1, B1)× E2(A2, B2)→ E1(A1,C1)⊗H E2(A2,C2)

such that for all A1
α1−−→ B1

β1
−−→ C1 in E1 and A2

α2−−→ B2
β2
−−→ C2 in E2, with

α1 ∈ E
m1
1 (A1, B1) and β2 ∈ E

n2
2 (B2, C2), it holds that

(β1, β2, α1, α2) 7→ (−1)n2m1(β1 ◦α1)⊗ (β2 ◦α2).

In particular,

(β1 ⊗ β2) ◦ (α1 ⊗ α2) = (−1)n2m1(β1 ◦α1)⊗ (β2 ◦α2) : A1 ⊗ A2 → C1 ⊗ C2.

1.4.1. Notation. Given Ak, Bk ∈ Ek, αk ∈ Ek(Ak, Bk) (k = 1, 2), and a functor
⊗̄ : E1 ⊗H E2 → E, set

A1 ⊗̄A2 := ⊗̄(A1, A2),

α1 ⊗̄α2 := ⊗̄(α1 ⊗ α2) : A1 ⊗̄A2 → B1 ⊗̄B2 .
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1.4.2. A unital product on an H-graded category E is a quadruple ( ⊗̄,O,λ,ρ)
where:

(i) ⊗̄ : E⊗H E→ E is an H-graded functor,
(ii) O is an object in E (whence, by (i), there are H-graded endofunctors of E taking
A ∈ E to O ⊗̄A and to A ⊗̄O, respectively), and

(iii) λ : (O ⊗̄−) −→∼ idE and ρ : (−⊗̄O) −→∼ idE are degree-0 functorial isomor-
phisms such that λO = ρO : O ⊗̄O −→∼ O.

1.4.3. When such a unital product is given, one verifies that the map that takes
η ∈ E

n(O,O) to the family (ηA)A∈E
in Cn such that ηA is the composite map

A −→∼
λ−1
A

O ⊗̄A −−−−→
η ⊗̄ idA

O ⊗̄A −→∼
λA

A

is a homomorphism of graded H-algebras, right-inverse to evO : C → E(O,O)
(see (1.3.1)).

Thus E(O,O) is a graded-H-algebra retract of C, and so it is a graded-
commutative H-algebra; and the C-grading on E induces an E(O,O)-grading.

2. The underlying setup. We now describe the formalism from which a bi-
variant theory will emerge in sections 3 and 4. The formalism will be illustrated in
section 5 by several instances involving Grothendieck duality.

2.1. Fix a category S and a graded-commutative ring H .
An orientation of a relation f ◦ v = u ◦g among four S-maps is an ordered pair

(right arrow, bottom arrow) whose members are f and u. This can be represented
by one of two oriented commutative squares, namely d with bottom arrow u, and its
transpose d

′ with bottom arrow f .

• • • •

• • • •

d

v

u

g f d
′

g

f

v u

Assume that the category S is equipped with a class of maps, whose members are
called confined maps, and a class of oriented commutative squares, whose members
are called independent squares ; and that these classes satisfy (A1), (A2), (B1), (B2)
and (C) in [FM, §2.1]—identity maps and composites of confined maps are confined,
vertical and horizontal composites of independent squares are independent, any d in
which f = g and in which u and v are identity maps is independent, and if in the
independent square d the map f (resp. u) is confined then so is g (resp. v).

2.2. With terminology as in §1, assume given:

(i) for each object W ∈ S an H-graded category DW , and

(ii) contravariant H-graded pseudofunctors (−)∗ and (−)! over S, with values

in the categories DW—that is, to each f : X → Y in S there are assigned H-graded

functors f∗ and f ! from DY to DX ; and to each X
f
−→ Y

g
−→ Z in S there are assigned
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functorial isomorphisms of degree 0

ps∗ : f∗g∗ −→∼ (gf)∗, ps! : f !g! −→∼ (gf)!

such that for any X
f
−→ Y

g
−→ Z

h
−→W in S, the corresponding diagrams

(2.2.1)

f∗g∗h∗ f∗(hg)∗ f !g!h! f !(hg)!

(gf)∗h∗ (hgf)∗ (gf)!h! (hgf)!

commute.

Replacing (−)∗ and (−)! by isomorphic pseudofunctors, we may assume further
that if f is the identity map of X, then f∗ (resp. f !) is the identity functor of DX ,
and that ps∗ (resp. ps!) is the identity transformation of the functor g∗ (resp. g!); and
likewise if g is the identity map of Y .

Suggesting identification via ps∗ or ps!, the notations

f∗g∗ (gf)∗, f !g! (gf)!,
ps∗ ps!

will be used to represent these functorial isomorphisms or their inverses.

Henceforth, any pseudofunctor under consideration will be assumed to have been

modified so as to exhibit the above-described simple behavior with respect to identity

maps.

2.3. Assume that there is assigned to each independent square

•
v

−−−−→ •

g

y
yf

•

d

−−−−→
u

•

a degree-0 isomorphism of H-graded functors

Bd : v
∗f ! −→∼ g!u∗.

These Bd are to satisfy horizontal and vertical transitivity: if the composite square
d0 = d2 ◦d1 (with g resp. v deleted)

•
v1−−−−→ •

v2−−−−→ •

h

y g

y
yf

•

d1

−−−−→
u1

•

d2

−−−−→
u2

•

resp.

•
w

−−−−→ •

g1

y
yf1

•
v

−−−−→

d1

•

g2

y
yf2

•

d2

−−−−→
u

•
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has independent constituents d2 and d1 (so that d0 itself is independent), then the
corresponding natural diagram of functorial maps commutes:

(2.3.1)

(v2v1)
∗f !

Bd0−−−−−−−−−−−−−−−−−→ h!(u2u1)
∗

ps∗

∥∥∥
∥∥∥ h!ps∗

v∗
1
v∗
2
f ! −−−−→

v∗

1Bd2

v∗
1
g!u∗2 −−−−→

Bd1

h!u∗1u
∗
2

resp.

(2.3.2)

(g2g1)
!u∗

Bd0←−−−−−−−−−−−−−−−−− w∗(f2f1)
!

ps!

∥∥∥
∥∥∥ w∗ps!

g!1g
!
2u

∗ ←−−−−
g!
1Bd2

g!1v
∗f !

2 ←−−−−B
d1

w∗f !
1f

!
2

Assume further that if u and v are identity maps, or if f and g are identity maps,
then Bd is the identity transformation.

2.4. Assume given a covariant H-graded pseudofunctor (−)∗ (that is,
a contravariant H-graded pseudofunctor over the opposite category Sop), with
values in the categories DW . Thus there are degree-0 functorial isomorphisms
ps∗ : (gf)∗ −→

∼ g∗f∗ satisfying the appropriate analogs of (2.2.1) and the remarks
after it. This isomorphism or its inverse will be represented as

(gf)∗
ps∗== g∗f∗.

Assume further that this pseudofunctor is pseudofunctorially right-adjoint

to (−)∗: for any S-map f : X → Y , the functor f∗ : DX → DY is graded right-adjoint
to f∗ : DY → DX , that is, there are degree-0 functorial unit and counit maps

(2.4.1) η = ηf : id→ f∗f
∗ and ǫ = ǫf : f

∗f∗ → id

such that for A ∈ DY and C ∈ DX the corresponding compositions

f∗A
ηf

∗
A

−−−→ f∗f
∗f∗A

f
∗
ǫA−−−→ f∗A, f∗C

f∗ηC−−−→ f∗f∗f
∗C

ǫf∗C
−−−→ f∗C

are identity maps—or equivalently, the induced composite maps of symmetric graded
H-modules

DY (A, f∗C)→ DX(f∗A, f∗f∗C)→ DX(f∗A,C),

DX(f∗A,C)→ DY (f∗f
∗A, f∗C)→ DY (A, f∗C)

are inverse isomorphisms; and for any X
f
−→ Y

g
−→ Z in S, the following diagram

commutes:

(2.4.2)

id g∗g
∗ g∗(f∗f

∗g∗)

(gf)∗(gf)
∗ g∗f∗(gf)

∗ g∗f∗f
∗g∗

ηg via ηf

ps∗ via ps∗

ηgf



BIVARIANCE, GROTHENDIECK DUALITY, HOCHSCHILD HOMOLOGY, I 459

Assume also that to each confined map f : X → Y in S there is assigned a degree-0
functorial map

(2.4.3) ∫f : f∗f
! → id

satisfying transitivity: for any X
f
−→ Y

g
−→ Z in S with f and g confined, the following

diagram commutes

(2.4.4)

(gf)∗(gf)
! g∗f∗(gf)

! g∗f∗f
!g!

id g∗g
! ;

ps∗ via ps!

∫gf g∗∫f

∫g

and if f is the identity map of X then ∫f is the identity transformation.

2.5. Associated to any oriented commutative square in S

• •

• •v

u

g fd

is the degree-0 functorial map

θd : u∗f∗ → g∗v
∗

adjoint to

f∗
f
∗
ηv−−−→ f∗v∗v

∗ ps∗
=== u∗g∗v

∗,

i.e., θd is the composition of the following chain of functorial maps:

(2.5.1) u∗f∗
via ηv−−−→ u∗f∗v∗v

∗ via ps∗==== u∗u∗g∗v
∗ ǫu−→ g∗v

∗.

It is postulated that if d is independent then θd is an isomorphism.

2.6. Finally, it is postulated that if d in 2.5 is independent and f (hence g) is
confined, then the following diagram commutes

(2.6.1)

u∗f∗f
! θd−−−−→ g∗v

∗f !

u∗∫f

y
yg∗Bd

u∗ ←−−−−
∫g

g∗g
!u∗
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that is, the following diagram commutes

u∗f∗f
!

ηg
−−−−→ g∗g

∗u∗f∗f
! via ps∗

==== g∗v
∗f∗f∗f

!

u∗∫f

y
yvia ǫf

u∗ ←−−−−
∫g

g∗g
!u∗ ←−−−−

g∗Bd

g∗v
∗f ! ;

and if, in addition, u (hence v) is confined, then with φd the degree-0 functorial map
adjoint to the composite map

v∗f !u∗
Bd−−→ g!u∗u∗

g!ǫu−−−→ g!,

the following diagram commutes

(2.6.2)

f !u∗u
! φd

−−−−→ v∗g
!u!

f !∫u

y
∥∥∥ v∗ps

!

f ! ←−−−−
∫v

v∗v
!f !

that is, the following diagram commutes

f !u∗u
! ηv−−−−→ v∗v

∗f !u∗u
! via Bd−−−−→ v∗g

!u∗u∗u
!

f !∫u

y
yvia ǫu

f ! ←−−−−
∫v

v∗v
!f ! ====

v∗ps!
v∗g

!u!

This completes the description of the underlying setup.

Remark. The order of composition of the functors in the domain and target
of θd : u

∗f∗ → g∗v
∗ indicates that we are considering that orientation of the relation

f ◦ v = u ◦g for which u is the bottom arrow. So when such a relation is given, we
usually simplify notation by writing θ : u∗f∗ → g∗v

∗ instead of θd : u
∗f∗ → g∗v

∗; and
likewise for Bd and φd.

3. Defining a bivariant theory.

3.1. In this section, we define data that will be shown in the next section to
constitute a bivariant theory [FM]. The approach will be purely formal, but justified
by concrete examples (see 3.5 and §6).

3.1.1. Fix a setup, that is, a category S with confined maps and independent
squares, a graded-commutative ring H , a family (DW )W∈S of H-graded categories,

H-graded DW -valued pseudofunctors (−)∗, (−)! and (−)∗ over S (the first two con-
travariant and the last covariant), for each independent square d, degree-0 functorial
isomorphisms Bd and θd , for each S-map f , degree-0 functorial maps

η = ηf : id→ f∗f
∗ and ǫ = ǫf : f

∗f∗ → id,

and for each confined map, a degree-0 functorial map

∫f : f∗f
! → id,

all subject to the conditions specified in §2. Assume also that S has a final object S.
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3.1.2. One associates to the pseudofunctor (−)∗ the “fibered category” p : F→ S,
where the category F has as objects the pairs (W,C) such that W ∈ S and C ∈ DW ,
and as morphisms the pairs (f, ψ) : (X,A)→ (Y,B) such that f : X → Y is an S-map
and ψ : f∗B → A is a DX -map, the composition of such morphisms being defined in
the obvious way, and where the functor p is “projection to the first coordinate.” The
bivariant theory will be constructed from a section s—a right inverse—of p. Such an
s can be specified without reference to F or p, see §3.2.

For any W ∈ S, set (W,HW ) := s(W ). (This notation reflects our original moti-
vation, the case where HX is a Hochschild complex, see example 3.5(b) below.)

Assume throughout that if f : X → Y is the bottom or top arrow of an independent

square, then the s-induced map f∗HY → HX is an isomorphism.

We say that an S-map is co-confined if it is represented by the bottom arrow of
some independent square.

To each S-map f : X → Y is attached the symmetric graded H-module

HH∗(X
f
−→ Y ) := DX(HX , f

!HY ) = ⊕i∈Z D
i
X(HX , f

!HY ).

We will define graded homomorphisms between such modules—products, pushfor-
wards via confined maps, and pullbacks via independent squares—and then verify in
the next section that for these operations in the given setup, the axioms of a bivariant
theory hold.

3.1.3. There result homology groups, covariant for confined S-maps,

HHi(X) := D
−i
X (HX , x

!HS) (i ∈ Z)

where x : X → S is the unique S-map; and cohomology groups, contravariant for
co-confined S-maps,

HHi(X) := D
i
X(HX ,HX),

see [FM, §2.3]. As in §1.1.1,

HH∗(X) := ⊕i∈Z HHi(X) = DX(HX ,HX)

is a graded H-algebra. (We will actually focus on the opposite H-algebra.) Compo-
sition of DX -maps makes the symmetric graded H-module

HH∗(X) := ⊕i∈Z HH−i(X) = DX(HX , x
!HS)

into a graded right HH∗(X)-module (= graded left module over the opposite algebra).

By way of illustration, we will indicate in §6 the relation to the present formalism
of some previously defined Hochschild homology and cohomology functors on schemes.

3.2. We now begin the detailed description of a bivariant theory.
Fix a setup (S, H, . . . ) as in 3.1.1. Our construction assumes given:

(i) For each X ∈ S an object HX ∈ DX .
(ii) For each S-map f : X → Y a DX -morphism

f ♯ : f∗HY → HX ,
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such that
(iii) if f is an identity map then so is f ♯, and

(iv) (transitivity) for S-maps X
f
−→ Y

g
−→ Z the next diagram commutes:

(3.2.1)

(gf)∗HZ HX

f∗g∗HZ f∗HY

(gf)♯

ps∗ f ♯

f∗g♯

It is further assumed that if f : X → Y is the bottom or top arrow of an inde-

pendent square, then f ♯ is an isomorphism.

The adjoint of the map f ♯ will be denoted f♯ : HY → f∗HX .

Lemma 3.2.2.

Let X
f
−→ Y

g
−→ Z be S-maps. The next diagram commutes.

HZ

g∗HY

(gf)∗HX

g∗f∗HX

g♯

g∗f♯

(gf)♯

ps∗

Proof. The diagram expands as follows:

HZ (gf)∗(gf)
∗HZ (gf)∗HX

(gf)∗f
∗g∗HZ (gf)∗f

∗HY (gf)∗HX

g∗g
∗HZ g∗f∗f

∗g∗HZ

g∗HY g∗f∗f
∗HY g∗f∗HX

ηgf (gf)∗(gf)
♯

ηg

via ps∗

via g♯ (gf)∗f
♯

ps∗

ps∗ ps∗
g∗ηf

g∗g
♯

via g♯

g∗ηf g∗f∗f
♯

1©

2©
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Commutativity of subdiagram 1© is given by (2.4.2); of 2© by (3.2.1); and of the
remaining subdiagrams is obvious.

3.3. Associate to any S-map f : X → Y the symmetric graded H-module

(3.3.1) HH∗(X
f
−→ Y ) := DX(HX , f

!HY ) = ⊕i∈Z D
i
X(HX , f

!HY ).

There are three basic bivariant operations on these H-modules, as follows.

3.3.2. Product. Let f : X → Y and g : Y → Z be maps in S.

For i, j ∈ Z and α ∈ HHi(X
f
−→ Y ), β ∈ HHj(Y

g
−→ Z), let the product

α ·β ∈ HHi+j(X
gf
−→ Z)

be (−1)ij times the composite map

HX
α
−−→ f !HY

f !β
−−→ f !g!HZ

ps!

== (gf)!HZ .

Since composition S is H-bilinear, since f ! is a graded functor and since ps!(HZ) has
degree 0, therefore this product gives a graded H-bilinear map

HH∗(X
f
−→ Y )×HH∗(Y

g
−→ Z) −→ HH∗(X

gf
−→ Z).

For the case when X = Y and f = identity, the identity map of HX is a left unit
for the product. Similarly when Y = Z and g = identity, the identity map of HZ is a
right unit.

3.3.3. Pushforward. Let f : X → Y and g : Y → Z be maps in S, with
f confined. The pushforward by f

f⋆ : HH
∗(X

gf
−→ Z)→ HH∗(Y

g
−→ Z)

is the graded H-linear map such that for i ∈ Z and α ∈ HHi(X
gf
−→ Z), the image

f⋆α ∈ HHi(Y
g
−→ Z) is the natural composition

HY f∗HX f∗(gf)
!HZ f∗f

!g!HZ g!HZ .
f♯ f∗α f∗ps

! ∫f

In other words, f⋆α is the composition

HY f∗HX g!HZ

f♯ α̃

where α̃ : f∗HX → g!HZ is the map obtained by adjunction from

HX (gf)!HZ f !g!HZ .
α ps!
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3.3.4. Pullback. Let d be an independent square in S

Y ′ Y

X ′ X

d

g′

g

f ′ f

The maps g♯ : g∗HY → HY ′ and g′♯ : g′∗HX → HX′ are isomorphisms (§3.2).
The pullback by g, through d,

g⋆ : HH∗(X
f
−→ Y ) −→ HH∗(X ′ f ′

−→ Y ′)

is the graded H-linear map such that for i ∈ Z and α ∈ HHi(X
f
−→ Y ), the image

g⋆α ∈ HHi(X ′ f ′

−→ Y ′) is the natural composition

HX′ g′∗HX g′∗f !HY f ′!g∗HY f ′!HY ′ .
(g′♯)−1 g′∗α Bd

f ′!
(
g♯
)

For X = Y , X ′ = Y ′, f and f ′ identity maps, pullback takes the identity map of
HX to that of HX′ .

Thus identity maps are units in the sense of [FM, p. 22].

Theorem 3.4. The data in sections 3.2–3.3 constitute a bivariant theory, with

units, on S, taking values in symmetric graded H-modules.

The proof of Theorem 3.4—that is, the verification of the bivariance axioms—is
given in §4.

In the rest of this section, we discuss some examples, and their associated bivariant
homology-cohomology pairs.

Examples 3.5. In §5 we will show in detail that there is a setup in which S is
a category of essentially-finite-type perfect (i.e., finite tor-dimension) separated maps
of noetherian schemes, closed under fiber product and having a final object S, with
proper maps as confined maps, and oriented fiber squares with flat bottom arrow as
independent squares; and in which H := ⊕i≥0H

i(S,OS) with its natural commuta-
tive-graded ring structure. Moreover, for each X ∈ S, DX is the full subcategory
Dqc(X) of the derived category D(X)—enriched in the standard way with an H-
graded structure—such that an OX -complex C is an object of Dqc(X) if and only if
all the homology sheaves of C are quasi-coherent; and for any S-map f : X → Y , f∗ is
the graded enrichment of the derived inverse-image functor (usually denoted Lf∗).

The following examples refer to such a setup.

(a) Fix an object HS ∈ DS . For each X ∈ S, with its unique S-map x : X → S,

set HX := x∗HS. For an S-map f , let f ♯ be f∗x∗HS
ps∗

== (xf)∗HS .

(b) For each X ∈ S let HX be the Hochschild complex HX/S , and f
♯ as explained

in the proof of [BF1, Theorem 1.3].

(c) For each X ∈ S, let HX be the cotangent complex LX/S , and f ♯ the map
given by [Il, p. 132, (1.2.7.2)] (with Y = Y ′ := S).
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Examples (b) and (c) are not unrelated—see [BF2, Theorem 3.1.3].

(d) There are many ways to get new families satisfying 3.2(i)–(iv) from old ones.

For example, to two such families (HX,1 , f
♯
1 ) and (HX,2 , f

♯
2 ), apply the derived tensor

product functor, or the direct sum functor, or . . .

3.5.1. In examples 3.5(b) and (c), if an S-map f : X → Y is essentially étale (see
§5.7 below) then f∗HY → HX is an isomorphism. (The assertion for Example (b)
will be treated in a sequel to this paper. Example (c) is covered by [Il, p. 135, 2.1.2.1
and p. 203, 3.1.1].) So for these examples, one needs, according to §3.2, to restrict the
class of independent squares to those fiber squares whose bottom (hence top) arrow
is essentially étale.

No such restriction is needed in Example (a).

3.6. The bivariant theory provides symmetric graded H-modules

HH∗(X) := HH∗(X
id
−→ X) = DX(HX ,HX) = ⊕i∈ZD

i
X(HX ,HX)

(bivariant cohomology), and, with x : X → S the unique S-map,

HH∗(X) := HH∗(X
x
−→ S) = DX(HX , x

!HS) = ⊕i∈Z D
−i
X (HX , x

!HS)

(bivariant homology).
For instance, if, in 3.5(a), HS = OS , then bivariant cohomology is just

HHi(X) = Hi(X,OX);

and homology is the (hyper)cohomology of the relative dualizing complex:

HHi(X) = H−i(X, x!OS).

For the bivariant Hochschild theory of example 3.5(b), the corresponding
(co)homology is discussed—at least for flat maps—in §6.

Functoriality, basic properties of, and operations between, HH∗ and HH∗ result
from the structure of a bivariant theory, and correspond to the usual structure of a
theory of cohomology and homology, as follows.

The cup product

⌣ : HHi(X)⊗HHj(X) −→ HHi+j(X)

is the product 3.3.2 associated to the composition X
id
−→ X

id
−→ X : for each

α ∈ D
i
X(HX ,HX) and β ∈ D

j
X(HX ,HX),

α⌣β := (−1)ijβ ◦α ∈ D
i+j
X (HX ,HX).

Cup product makes HH∗(X) into a graded ring—opposite to DX(HX ,HX) with its
composition product. Both rings have the same graded center, and so HH∗(X) is a
graded H-algebra.

As in §1.3, both HH∗(X) and HH∗(X) are actually symmetric graded modules over
the graded center CX of DX . In fact, since CX is graded-commutative, the evaluation
map (1.3.1) with A = HX sends CX to the graded center of HH∗(X), so that HH∗(X)
is a graded CX-algebra.
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Recall that an S-map is co-confined if it is represented by the bottom arrow of
some independent square.

It results from Proposition 4.5 below (with X = Y = Z and f = g = 1) that for
every co-confined map f : X ′ → X , the graded H-linear pullback

f⋆ : HH∗(X) −→ HH∗(X ′)

of 3.3.4 is a ring homomorphism.
Thus:

Proposition 3.6.1. With Sco the subcategory of all co-confined maps in S,

bivariant cohomology with the cup product gives a contravariant functor

HH∗ : Sco → {H-algebras}.

For x : X → S in S, the cap product

⌢ : HHi(X)⊗HHj(X) −→ HHj−i(X)

is defined to be the product associated to the composition X
id
−→ X

x
−→ S: for each

α ∈ D
i
X(HX ,HX) and β ∈ D

−j
X (HX , x

!OS),

α⌢β := (−1)ijβ ◦α ∈ D
i−j
X (HX , x

!OS).

With this product, HH∗(X) is a graded left HH∗(X)-module.
Associated to a confined S-map f : X ′ → X one has the H-linear pushforward

of 3.3.3:

f⋆ : HH∗(X
′) −→ HH∗(X).

Thus:

Proposition 3.6.2. With Scf the subcategory of all confined maps in S, bivariant

homology together with the cap product, gives a covariant functor

HH∗ : Scf −→ {symmetric graded H-modules}.

Moreover, for every X ∈ S, HH∗(X) is a graded left HH∗(X)-module.

Proposition 4.7 (with Z = S, f = idX , f ′ = idX′) yields:

Proposition 3.6.3. If g : X ′ → X is both confined and co-confined, then for all

α ∈ HH∗(X) and β ∈ HH∗(X
′),

g⋆(g
⋆α⌢β) = α⌢ g⋆β.

4. Checking the axioms. In this section we prove Theorem 3.4 by verifying
that the axioms for a bivariant theory do hold for the data referred to in that theorem.

In the diagrams which appear, labels on the arrows are meant to indicate where
the represented maps come from—usually by application of some obvious functors.
Moreover, to reduce clutter we have hidden symbols like [i] that denote translation
functors; but the serious reader will easily find them.
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Recall from (3.3.1) that for an S-map f : X → Y ,

HHi(X
f
−→ Y ) := D

i
X(HX , f

!HY ) (i ∈ Z).

Following [FM], we indicate that α ∈ HH∗(X
f
−→ Y ) := ⊕i∈Z HHi(X

f
−→ Y ) by the

notation

X Y .
f

α

Proposition 4.1. (A1) Associativity of product:

For any S-diagram

X Y Z W
f

α

g

β

h

γ

one has, in HH∗(X
hgf
−−→W ),

(α ·β) · γ = α ·(β · γ).

Proof. This property results from the obvious commutativity of the following

diagram, with α ∈ HHi(X
f
−→ Y ), β ∈ HHj(Y

g
−→ Z) and γ ∈ HHk(Z

h
−→ W ):

HX (gf)!HZ (gf)!h!HW (hgf)!HW

f !HY f !g!HZ f !g!h!HW f !(hg)!HW
f !β (−1)jkf !g!γ ps!

α ·β (−1)(i+j)k(gf)!γ ps!

(−1)i(j+k)α ps!(−1)ikps! ps!

Proposition 4.2. (A2) Functoriality of pushforward:

For S-maps f : X → Y , g : Y → Z and h : Z → W, with f and g confined, and

α ∈ HH∗(X
hgf
−−→W ), one has, in HH∗(Z

h
−→W ),

(gf)⋆(α) = g⋆f⋆(α).

Proof. We may assume, α ∈ HHi(X
hgf
−−→ W ). What is then asserted is commu-

tativity of the border of the following diagram:
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HZ g∗HY

(gf)∗HX g∗f∗HX

(gf)∗(hgf)
!HW g∗f∗(hgf)

!HW g∗f∗f
!(hg)!HW

(gf)∗(gf)
!h!HW g∗f∗(gf)

!h!HW

g∗f∗f
!g!h!HW g∗f∗f

!(hg)!HW

h!HW g∗g
!h!HW g∗(hg)

!HW

1©

2©

g♯

g∗f♯(gf)♯

ps∗

(gf)∗α g∗f∗α

ps∗ ps!

ps∗

ps!

ps!

∫gf

ps!

∫f ∫f

ps!

ps!∫g

Commutativity of subdiagram 1© is given by Lemma 3.2.2. Commutativity of 2©
(without h!HW ) results from that of (2.4.4). Commutativity of the unlabeled sub-
diagrams is clear. The result follows.

Proposition 4.3. (A3) Functoriality of pullback:

For any S-diagram, with independent squares,

X ′′ X ′ X

Y ′′ Y ′ Y

h′ g′

h g

f ′′ f ′ fα©

one has, in HH∗(X ′′ f ′′

−−→ Y ′′),

(gh)
⋆
(α) = h⋆g⋆(α).
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Proof. The assertion amounts to commutativity of the border of the next diagram:

h′∗HX′ h′∗g′∗HX h′∗g′∗f !HY h′∗f ′!g∗HY

HX′′ (g′h′)∗HX (g′h′)∗f !HY h′∗f ′!HY ′

f ′′!(gh)∗HY f ′′!h∗g∗HY

f ′′!HY ′′ f ′′!h∗HY ′

1©

2©

3©

B

(gh)♯

ps∗

g♯

((g′h′)♯)−1

α B

(h′♯)−1 ps∗ ps∗

(g′♯)−1

α

g♯

B

B

h♯

Subdiagrams 1© and 3© commute by 3.2(iv); subdiagram 2© commutes by (2.3.1); and
commutativity of the other two subdiagrams is clear. The desired conclusion results.

Proposition 4.4. (A12) Product and pushforward commute:

For any S-diagram

X Y Z W
g h

β

f

α

gf

with f : X → Y confined, one has, in HH∗(Y
hg
−→W ),

f⋆(α ·β) = f⋆(α) ·β.

Proof. We may assume that α ∈ HHi(X
gf
−→ Z) and β ∈ HHj(Z

h
−→ W ). Then



470 L. ALONSO, A. JEREMÍAS AND J. LIPMAN

what is asserted is commutativity of the border of the next diagram:

HY f∗HX

f∗(gf)
!HZ f∗(gf)

!h!HW f∗(hgf)
!HW

f∗f
!g!HZ f∗f

!g!h!HW f∗f
!(hg)!HW

g!HZ g!h!HW (hg)!HW

f♯

f∗α

β ps!

β ps!

β ps!

ps! ps! ps!

∫f ∫f ∫f

The subdiagrams obviously commute, whence the assertion.

Proposition 4.5. (A13) Product and pullback commute:

For any S-diagram with independent squares,

Z ′ Z

Y ′ Y

X ′ X

h′

h

g′ gβ©

h′′

f ′ fα©

one has, in HH∗(X ′ g′f ′

−−→ Z ′),

h⋆(α ·β) = h′
⋆
(α) ·h⋆(β).

Proof. We may assume that α ∈ HHi(X
f
−→ Y ) and β ∈ HHj(Y

g
−→ Z). Then
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what is asserted is commutativity of the border of the next diagram:

HX′

(h′′♯)−1

−−−−→ h′′
∗
HX

f ′!HY ′

h′′
∗
f !HY f ′!h′

∗
HY f ′!h′

∗
HY

h′′
∗
f !g!HZ f ′!h′

∗
g!HZ f ′!h′

∗
g!HZ

h′′
∗
(gf)!HZ

(g′f ′)!h∗HZ f ′!g′!h∗HZ

(g′f ′)!HZ′ f ′!g′!HZ′

1©

α

B

h′♯

B

ps!

ps!

β β

ps!

B

h♯

(h′♯)−1

β

B

h♯

Subdiagram 1© commutes by (2.3.2); and commutativity of the other subdiagrams is
clear. The desired result follows.

Proposition 4.6. (A23) Pushforward and pullback commute:

For any S-diagram with independent squares and with f confined,

Z ′ Z

Y ′ Y

X ′ X

a

b

h′

h

g′ g

h′′

f ′ f

α©gf

one has, in HH∗(Y ′ g′

−→ Z ′),

f ′
⋆(h

⋆(α)) = h⋆(f⋆(α)).
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Proof. What is asserted is commutativity of the border of the following diagram,
in which c denotes the square obtained by pasting a and b:

HY ′ f ′
∗HX′

h′∗HY f ′
∗h

′′∗HX

h′∗f∗HX f ′
∗h

′′∗(gf)!HZ f ′
∗(g

′f ′)!h∗HZ f ′
∗(g

′f ′)!HZ′

h′∗f∗(gf)
!HZ f ′

∗h
′′∗f !g!HZ

h′∗f∗f
!g!HZ f ′

∗f
′!h′∗g!HZ f ′

∗f
′!g′!h∗HZ f ′

∗f
′!g′!HZ′

h′∗g!HZ g′!h∗HZ g′!HZ′

f ′
♯

Bc h♯

Bb h♯

Bb h♯

(h′♯)−1 (h′′♯)−1

f♯ α

α ps!

ps! ps!

ps! Ba

∫f ∫f ′ ∫f ′

θa

θa

θa

∫f ′

1©

2©

3©

Commutativity of subdiagram 2© is given by (2.3.2), and of 3© by (2.6.1). Com-
mutativity of the unlabeled subdiagrams is clear.

Commutativity of subdiagram 1© is equivalent to that of its adjoint, and so of
the border of the following diagram, where k := h′f ′ = fh′′, so that commutativity of
4© and 5© results from (3.2.1), and where commutativity of the other subdiagrams
results directly from the definitions of the maps involved.

f ′∗HY ′ HX′

k∗HY

f ′∗h′∗HY h′′∗f∗HY h′′∗HX

f ′∗h′∗f∗HX h′′∗f∗f∗HX h′′∗HX

f ′∗f ′
∗h

′′∗HX

f ′∗h′♯

k♯

f ′♯

f ′∗h′∗f♯

ps∗ h′′∗f ♯

h′′∗f∗f♯

h′′♯

ps∗ h′′∗ǫf

f ′∗θa ǫf ′

ps∗

ps∗

4©

5©

The desired result follows.



BIVARIANCE, GROTHENDIECK DUALITY, HOCHSCHILD HOMOLOGY, I 473

Proposition 4.7. (A123) Projection formula:

For any S-diagram, with independent square and g confined,

Y ′ Y Z

X ′ X
g′

g h

f ′ fα©

β©

hg

d

one has, in HH∗(X
hf
−−→ Z).

g′⋆(g
⋆α ·β) = α · g⋆(β).

Proof. We may assume that α ∈ HHi(X
f
−→ Y ) and β ∈ HHj(Y ′ hg

−→ Z). What is
asserted is commutativity of the border of diagram (4.7.1) below, where commutativity
of the unlabeled subdiagrams is obvious, and that of subdiagrams 1© and 2© holds by
adjointness of g′♯ and g′♯ (resp. g

♯ and g♯). It remains then to show that 3© commutes.
Via the next, obviously commutative, diagram (in which HZ is omitted),

g′∗f
′!g∗g∗(hg)

! g′∗f
′!(hg)! g′∗(hgf

′)! g′∗(hfg
′)! g′∗g

′!(hf)! (hf)!

g′∗f
′!g∗g∗g

!h! g′∗f
′!g!h! g′∗(gf

′)h! g′∗(fg
′)h! g′∗g

′!f !h! f !h!

ǫg ps! ps! ∫g′

ǫg ps! ps! ∫g′

ps! ps! ps! ps! ps! ps!

commutativity of 3© becomes equivalent to that of

f !g∗g
!h! g′∗g

′∗f !g∗g
!h! g′∗f

′!g∗g∗g
!h!

f !h! g′∗g
′!f !h! g′∗f

′!g!h!

ηg′ via Bd

∫g′ g′∗ ps
!

f !∫g via ǫg

which commutativity is an instance of that of (2.6.2).
The proof of Proposition 4.7 is now complete.
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(4.7.1)

HX g′∗HX′

HX g′∗g
′∗HX

f !HY g′∗g
′∗f !HY g′∗f

′!g∗HY

f !g∗HY ′ g′∗g
′∗f !g∗HY ′ g′∗f

′!g∗g∗HY ′ g′∗f
′!HY ′

f !g∗(hg)
!HZ g′∗g

′∗f !g∗(hg)
!HZ g′∗f

′!g∗g∗(hg)
!HZ g′∗f

′!(hg)!HZ

f !g∗g
!h!HZ g′∗g

′∗f !g∗g
!h!HZ g′∗f

′!g∗g∗g
!h!HZ g′∗(hgf

′)!HZ

f !h!HZ (hf)!HZ g′∗g
′!(hf)!HZ g′∗(hfg

′)!HZ

g′♯

ηg′

ηg′ Bd

ηg′ Bd
ǫg

ηg′ Bd
ǫg

ηg′ Bd

ps! ps!∫g′

α

g♯

β

ps!

∫g

(g′♯)−1

α

g♯

β

ps!

g♯

β

ps!

g♯

β

ps!

1©

2©

3©

5. Realization via Grothendieck duality. In this section we show that the
setup of §2 can be realized in a number of situations involving Grothendieck duality.

5.1. (Notation and summary.) A ringed space is a pair (X,OX) such that X is
a topological space and OX is a sheaf of commutative rings on X. Although only
schemes will be of interest in this paper, some initial results make sense for arbitrary
ringed spaces, enabling us to treat several situations simultaneously. For example,
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it may well be possible to go through all of this section in the context of noetherian
formal schemes, see [AJL], [Nk1, 7.1.6].

A map of ringed spaces f̄ : (X,OX) → (Y,OY ) is a continuous map f : X → Y

together with a homomorphism of sheaves of rings OY → f∗OX . Composition of
such maps is defined in the obvious way. Ordinarily, OX and OY are omitted from
the notation, and one just speaks of ringed-space maps f : X → Y , the rest being
understood.

For a ringed space (X,OX), let D(X) be the derived category of the abelian
category of sheaves of OX -modules, and T = TX its usual translation automorphism.
For A ∈ D(X) (object or arrow) and i ∈ Z, set A[i] := T iA.

We take for granted the formalism of relations among the derived functors RHom
and ⊗L and the derived direct- and inverse-image pseudofunctors R(−)∗ resp. L(−)∗,
as presented e.g., in [L3, Chapter 3].1 For instance, for any f : X → Y as above, the
functor Lf∗ : D(Y )→ D(X) is left-adjoint to Rf∗, see [L3, 3.2.3]; in particular, there
are unit and counit maps

(5.1.1) η̄ = η̄f : id→ Rf∗Lf
∗, ǭ = ǭf : Lf

∗Rf∗ → id .

For any f : X → Y , there are canonical functorial isomorphisms

Rf∗ ◦TX −→
∼ TY ◦Rf∗ , Lf∗

◦TY −→
∼ TX ◦Lf∗.

Accordingly, for any A ∈ D(X), B ∈ D(Y ) and i ∈ Z, we will allow ourselves to abuse
notation by writing

Rf∗
(
A[i]

)
= (Rf∗A)[i], Lf∗

(
B[i]

)
= (Lf∗B)[i].

5.1.2. Let EX be the preadditive category whose objects A,B,C, . . . are just
those of D(X), with

E
i
X(A,B) := HomD(X)

(
A,B[i]

)
∼= ExtiX(A,B),

and composition determined by the graded Z -bilinear Yoneda product

E
i
X(B,C)× E

j
X(A,B)→ E

i+j
X (A,C)

taking a pair of D(X)-maps β : B → C[i], α : A→ B[j ] (i, j ∈ Z) to the map

(β ◦α) : A
α
−→ B[j ]

β[j ]
−−→ C[i][j ] = C[i+ j ].

5.1.3. In subsection 5.2, using their interaction with translation functors, we
enrich the derived direct- and inverse-image pseudofunctors to an adjoint pair of Z-

graded pseudofunctors (−)∗ and (−)∗ on the category of ringed spaces, taking values
in the categories EX .

1We will often use [L3] as a convenient compendium of needed facts about Grothendieck duality
for schemes. This does not mean that referred-to results cannot be found in other earlier sources.
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Then we show in Proposition 5.4 that

HX := EX(OX ,OX) = ⊕i≥0 ExtiX(OX ,OX) ∼= ⊕i≥0 H
i(X,OX)

with its Yoneda product is a commutative-graded ring, and that the category EX

is naturally HX -graded—whence so is any full subcategory. In fact, Proposition 5.5
gives that HX can be identified with the subring of the graded center of EX consisting
of all “tensor-compatible” elements. Furthermore, Proposition 5.6.1 gives that for any
map f : X → Y , the functors f∗ and f∗ respect such graded structures.

5.1.4. A scheme-map f : X → Y is essentially of finite presentation if it is
quasi-compact and quasi-separated, and for all x ∈ X there exist affine open subsets
SpecL ⊃ {x} of X and SpecK ⊃ f(SpecL) of Y such that the resulting K-algebra L
is a ring of fractions of a finitely-presentable K-algebra.

For maps of noetherian schemes, we use in place of “finite presentation” the
equivalent term “finite type.”

5.1.5. Now fix a scheme S, and let S be one of:

(a) The category of essentially-finite-type separated perfect (i.e., finite tor-
dimension) maps of noetherian S-schemes, with proper maps as confined maps, and
oriented fiber squares with flat bottom arrow as independent squares.

(b) The category of composites of étale maps and flat quasi-proper (equivalently,
flat quasi-perfect) maps of arbitrary quasi-compact quasi-separated S-schemes (see
[L3, §4.7]), with quasi-proper maps confined and all oriented fiber squares indepen-

dent. (The reader who wishes to avoid the technicalities involved can safely ignore
this case (b).)

Conditions (A1), (A2), (B1), (B2) and (C) in §2.1 are then easily checked.

As is customary, we will usually denote an object W
w
−→ S in S simply by W,

with the understanding that W is equipped with a “structure map” w.
For any such W, let DW be the full subcategory of EW whose objects are

just those of Dqc(W ), that is, OX -complexes whose homology sheaves are all quasi-
coherent. Since for f : X → Y in S it holds that Lf∗

Dqc(Y ) ⊂ Dqc(X) [L3, 3.9.1] and
Rf∗Dqc(X) ⊂ Dqc(Y ) [L3, 3.9.2], it follows that the pseudofunctors (−)∗ and (−)∗
in 5.1.3 can be restricted to take values in the categories DW . It is assumed hence-
forth that they are so restricted.

Let H be the commutative-graded ring HS := ES(OS ,OS). For any S-object
w : W → S, the natural composite map

ES(OS ,OS)→ EW (w∗OS , w
∗OS) −→

∼
EW (OW ,OW )

is a graded-ring homomorphism from HS to HW . Hence DW is H-graded, and the
adjoint pseudofunctors (−)∗ and (−)∗ are H-graded, see 5.1.3.

We note in Proposition 5.2.4 that for an independent square d, the associated
functorial map θd (§2.5) is a degree-0 isomorphism.

Thus, we have in place all those elements of a setup that do not involve the
pseudofunctor (−)!.

5.1.6. In subsections 5.7–5.10, we treat those elements involving (−)! by using
the twisted inverse-image pseudofunctor from Grothendieck duality. The twisted
inverse image is generally defined only for bounded-below complexes. But we want a
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pseudofunctor with values on all of DW . (For instance, we have in mind Hochschild
homology, which involves complexes that are bounded above, not below.) That is
why we restrict in the examples 5.1.5(a) and (b) to maps of finite tor-dimension: the
twisted inverse image functor f !

+
that is attached to such a map f : X → Y extends

to a functor f ! : Dqc(Y )→ Dqc(X) with

f !C := f !
+
OY ⊗

L
X Lf∗C (C ∈ Dqc(Y )).

“Extends” means that for cohomologically bounded-below C ∈ Dqc(Y ), there is a
canonical functorial isomorphism

f !C −→∼ f !
+
C.

(For case (a), see [Nk2, 5.9]; for (b), [L3, 4.7.2]). This extension can be made pseudo-
functorial (§5.7), and H-graded, the latter as a consequence of the compatibility of ⊗L

X

and Lf∗ with the HX-grading on EX (Propositions 5.5 and 5.6.1).
In §5.8 we associate to each independent square d an isomorphism Bd as in §2.3,

for which the diagrams (2.3.1) and (2.3.2) commute. In §5.9, we associate to each
confined map f a degree-0 functorial map ∫f : f∗f

! → id that satisfies transitivity
(see §2.4).

We conclude by showing that with the preceding data, diagrams (2.6.1) and (2.6.2)
commute, thereby establishing all the properties of a setup.

5.2. Let f : X → Y be a ringed-space map. For any object C in EY , denote the
derived inverse image Lf∗C ∈ EX simply by f∗C. (Despite this notation, it should
not be forgotten that we will be dealing throughout with derived functors.) To any
map γ : C → D[i] in E

i
Y (C,D) assign the map

f∗γ : f∗C
Lf∗γ
−−−→ f∗

(
D[i]

)
= (f∗D

)
[i]

in E
i
X(f∗C, f∗D). Using functoriality of the isomorphism represented by “=” (see

§5.1), one checks that this assignment is compatible with composition in EY and EX ;
so one gets a Z-graded functor f∗ : EY → EX .

In a similar manner, the derived direct image functor Rf∗ gives rise to a Z-graded
functor f∗ : EX → EY .

Proposition 5.2.1. There is an adjunction f∗ ⊣ f∗ for which the corresponding

unit and counit maps

η : id→ f∗f
∗ and ǫ : f∗f∗ → id

are degree-0 maps of Z-graded functors.

Proof. Let ηC ∈ E
0
Y (C, f∗f

∗C) be the D(Y )-map η̄C : C→ f∗f
∗C (see (5.1.1)) and

ǫA ∈ E
0
X(f∗f∗A,A) the D(X)-map ǭA : f∗f∗A→ A.

That the compositions

f∗A
ηf

∗
A

−−−→ f∗f
∗f∗A

f
∗
ǫA−−−→ f∗A, f∗C

f∗ηC−−−→ f∗f∗f
∗C

ǫf∗C
−−−→ f∗C

are identity maps follows from the corresponding properties of η̄ and ǭ. It remains then
to show that the family ηC (C ∈ EY ) (resp. ǫA (A ∈ EX)) constitutes a degree-0 map
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of graded functors. For ηC this means that for any D(Y )-map γ : C → D[i] (i ∈ Z)
the following D(Y )-diagram commutes:

(5.2.2)

C
γ

−−−−→ D[i]
η̄D[i]
−−−−→ (f∗f

∗D)[i]

η̄C

y 1© η̄D[i]

y 2©
∥∥∥

f∗f
∗C −−−−−→

Rf
∗
Lf∗γ

f∗f
∗
(
D[i]

)
f∗
(
(f∗D)[i]

)

Commutativity of subdiagram 1© is clear.
For commutativity of 2©, replace D by a quasi-isomorphic q-flat complex, and

note that the natural map from the derived inverse image to the underived inverse
image of D is then an isomorphism, see [L3, paragraph surrounding 2.7.3.1]. Then,
with f̃∗ denoting the underived direct-image functor, consider the following cube, in
which the front face is 2© and the maps are the natural ones:

D[i] (f̃∗f
∗D)[i]

D[i] (Rf̃∗f
∗D)[i]

f̃∗f
∗
(
D[i]

)
f̃∗
(
(f∗D)[i]

)

Rf̃∗f
∗
(
D[i]

)
Rf̃∗

(
(f∗D)[i]

)

Commutativity of the bottom face is clear. Commutativity of the top and left faces
results from [L3, 3.2.1.3]. To make commutativity of the right face clear, replace the
complex f∗D by a quasi-isomorphic q-injective complex J , and note that the canonical
map f̃∗J → Rf̃∗J is a D(Y )-isomorphism (see [L3, 2.3.5]). Commutativity of the rear
face, which involves only underived functors, is an easy consequence of the definition
of the standard functorial map id → f̃∗f

∗. Commutativity of the front face follows
from that of the others.

An analogous argument, using [L3, 3.2.1.2], applies to the family ǫA .

Corollary 5.2.3. There exist pseudofunctorially adjoint Z-graded pseudofunc-

tors that associate the functors f∗ and f∗ to any S-map f : X → Y .

Proof. For any X
f
−→ Y

g
−→ Z in S, there are functorial isomorphisms

ps∗ : (gf)∗ −→
∼ g∗f∗, ps∗ : f∗g∗ −→∼ (gf)∗

such that for A ∈ EX , ps∗(A) : (gf)∗A −→
∼ g∗f∗A is the D(Z)-isomorphism

ps∗(A) : R(gf)∗A −→
∼ Rg∗Rf∗A, and for C ∈ EZ , ps

∗(C) : f∗g∗C −→∼ (gf)∗C is the
D(X)-isomorphism ps∗(C) : Lf∗Lg∗C −→∼ L(gf)∗C.

That the first diagram in (2.2.1) commutes, as does its analog for (−)∗, follows
from the corresponding facts for the pseudofunctors L(−)∗ and R(−)∗. Consequently,
ps∗ makes (−)∗ into a contravariant Z-graded pseudofunctor, and ps∗ makes (−)∗ into
a covariant Z-graded pseudofunctor. The adjointness of these pseudofunctors, that
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is, commutativity of (2.4.2), results from that of the corresponding diagram for the
adjoint pseudofunctors L(−)∗ and R(−)∗ (see [L3, 3.6.10]).

From [L3, 3.9.5]), one gets:

Proposition 5.2.4. With f∗ ⊣ f∗ as above, for any independent S-square

•
v

−−−−→ •

g

y
yf

•

d

−−−−→
u

•

the map θd : u
∗f∗ → g∗v

∗ in §2.5 is a functorial isomorphism of degree 0.

Proof. That θd has degree 0 results from the fact that it is a composition of three
functorial maps

u∗f∗
ηg
−→ g∗g

∗u∗f∗
ps∗

== g∗v
∗f∗f∗

ǫf
−→ g∗v

∗

all of which are of degree 0 (see 5.2.1 and the proof of 5.2.3).
The rest is clear.

5.3. For a scheme (X,OX), if A and B are OX -complexes and i, j, n ∈ Z, then
since

(
A[i]⊗X B[j ]

)
n =

⊕

p+q=n+i+j

Ap ⊗X Bq =
(
A⊗X B

)
[i+ j ]n,

therefore there is a unique isomorphism of graded OX -modules

ϑ′ij : A[i]⊗X B[j ] −→∼
(
A⊗X B

)
[i+ j ]

whose restriction to Ap ⊗X Bq (p, q ∈ Z) is multiplication by (−1)(p−i)j . One checks
that ϑ′ij is actually a bifunctorial isomorphism of OX -complexes.

Lemma 5.3.1. For any i, j ∈ Z there exists a unique bifunctorial isomorphism ϑij
such that for any OX -complexes A and B, the following diagram in D(X) commutes.

A[i]⊗L
X B[j ]

ϑij
−−−−→

(
A⊗L

X B
)
[i+ j ]

canonical

y
ycanonical

A[i]⊗X B[j ] −−−−→
ϑ′

ij

(
A⊗X B

)
[i+ j ]

Proof. The idea is to apply ϑ′ij to suitable q-flat resolutions of A and B.

More precisely, every OX -complex is the target of a quasi-isomorphism from a
q-flat complex, and for q-flat complexes the canonical functorial map from the de-
rived tensor product ⊗L

X to the ordinary tensor product ⊗X is an isomorphism [L3,
§2.5]; hence the assertion follows from [L3, 2.6.5] (a general method for constructing
maps of derived multifunctors), dualized—i.e., with arrows reversed, in which, with
abbreviated notation, take

• L′′
1 = L′′

2 to be the homotopy category K(X) of OX -complexes,
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• L′
k ⊂ L′′

k (k = 1, 2) the full subcategory whose objects are the q-flat com-
plexes,
• E := D(X),
• H the functor taking (A,B) ∈ L′′

1×L
′′
2 to

(
A⊗XB

)
[i+j ] ∈ D(X) (and acting

in the obvious way on arrows),
• G the functor (A,B) ∈ D(X)×D(X) 7→ A[i]⊗L

X B[j ] ∈ D(X),
• F the functor (A,B) ∈ D(X)×D(X) 7→

(
A⊗L

X B
)
[i+ j ] ∈ D(X),

• ζ : F → H the canonical functorial map, and
• β : G→ H the canonical functorial composite

A[i]⊗L
XB[j ] −→ A[i]⊗XB[j ]

ϑ′

ij
−−→

(
A⊗XB

)
[i+ j ].

Proposition 5.4. The ring

HX := EX(OX ,OX) = ⊕i≥0 ExtiX(OX ,OX) ∼= ⊕i≥0 H
i(X,OX)

is canonically a graded-ring retract of the graded center CEX. Hence HX is graded-

commutative, and EX is HX-graded.

Proof. By §1.4.3, the assertion follows from the existence of a unital product
( ⊗̄,OX , λ, ρ)—to be constructed—on the preadditive category EX .

Define a Z-graded functor

(5.4.1) ⊗̄ : EX⊗Z EX → EX

as follows. (Notation will be as in §1.4.)

First, for any object (A,B) ∈ EX⊗Z EX , A ⊗̄B := ⊗̄(A,B) is the derived tensor
product A⊗L

X B, which lies in EX [L3, p. 64, 2.5.8.1].

Next, the map taking (α1, α2) ∈ E
i
X(A1, B1)× E

j
X(A2, B2) to the map

α1 ⊗̄α2 ∈ E
i+j
X (A1 ⊗̄A2, B1 ⊗̄B2)

given by the composite D(X)-map

A1 ⊗
L
X A2

α1⊗
L
Xα2−−−−−−→ B1[i]⊗

L
X B2[j ]

ϑij
−−−−→
(5.3.1)

(
B1⊗

L
X B2

)
[i+ j ]

is Z-bilinear, so factors uniquely through a map

⊗̄ij : Ei
X(A1, B1)⊗Z E

j
X(A2, B2)→ E

i+j
X (A1 ⊗̄A2, B1 ⊗̄B2)

taking α1⊗α2 to α1 ⊗̄α2 ; and ⊗̄
ij extends uniquely to a Z-linear map

⊗̄ : (EX ⊗Z EX)
(
(A1, A2), (B1, B2)

)
=

EX(A1, B1)⊗Z EX(A2, B2)→ EX(A1 ⊗̄A2 , B1 ⊗̄B2).

For functoriality, it needs to be checked that for all A1
α1−−→ B1

β1
−−→ C1 and

A2
α2−−→ B2

β2
−−→ C2 in EX , with α1 ∈ E

m1

X (A1, B1) and β2 ∈ E
n2

X (B2, C2), it holds that

(β1 ⊗ β2) ◦ (α1 ⊗ α2) = (−1)n2m1(β1 ◦α1)⊗ (β2 ◦α2) : A1 ⊗ A2 → C1 ⊗ C2.
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This straightforward verification is left to the patient reader.

Specializing, one gets the Z-graded endofunctor OX ⊗̄ − of EX , taking an object
A ∈ EX to OX ⊗

L
X A, and a D(X)-map α : A → B[j ] in E

j
X(A,B) to the composite

D(X)-map, in E
j
X(OX ⊗̄A,OX ⊗̄B),

OX ⊗
L
X A

via α
−−−→ OX ⊗

L
X B[j ]

ϑ0j
==

(
OX ⊗

L
X B

)
[j ].

Similarly, one has the Z-graded endofunctor −⊗̄OX . There are obvious degree-0
functorial isomorphisms

λ : (OX ⊗̄−) −→
∼ idEX , ρ : (−⊗̄OX) −→∼ idEX .

It is immediate that ( ⊗̄,OX , λ, ρ) is a unital product, so we are done.

Corollary 5.4.2. Any full subcategory of EX has an HX-grading, inherited

from the preceding one on EX .

The preceding Z-graded unital product is in fact HX-graded. This results from
the following characterization of HX ⊂ CEX .

Proposition 5.5. With notation as in 5.4 and its proof, the following conditions

on ξ ∈ Cn
EX

are equivalent:

(i) ξ ∈ Hn
X = Hn(X,OX).

(ii) For all (α, β) ∈ E
i
X(A,C) × E

j
X(B,D), it holds that

(ξα) ⊗̄ β = ξ(α ⊗̄β), α ⊗̄ (βξ) = (α ⊗̄ β)ξ, and (αξ) ⊗̄ β = α ⊗̄ (ξβ).

Proof. (i)⇒(ii). Since

(ξα) ⊗̄ β = (ξC ⊗̄ idD)◦ (α ⊗̄ β) and ξ(α ⊗̄β) = (ξC ⊗̄D)◦ (α ⊗̄β)

therefore, for the first equality, one need only show that

(5.5.1) (ξC ⊗̄ idD) = ξC ⊗̄D .

Similarly, the second equality reduces to

(5.5.2) (idC ⊗̄ ξD) = ξC ⊗̄D .

The third equality results from the first two, since the hom-sets EX(−,−) are
symmetric graded Cn

EX
-modules.

Thus, one need only treat the case where α : A = C → C and β : B = D → D are
the identity maps idC and idD respectively.

The equality (5.5.1) is equivalent to the obvious commutativity of the natural
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D(X)-diagram, where ⊗ := ⊗L
X ,

OX ⊗ C ⊗D

C ⊗D OX ⊗ C ⊗D OX [n]⊗ C ⊗D

OX [n]⊗ C ⊗D

C[n]⊗D

(OX ⊗ C ⊗D)[n] (C ⊗D)[n]

ξ ⊗L
X idC⊗D

ξ ⊗L
X idC⊗D

ϑn0

ϑn0

ϑn0 ⊗
L
X idD

As for (5.5.2), let τ ′(A,B) : A ⊗X B −→∼ B ⊗X A be the unique bifunctorial
isomorphism of OX -complexes that restricts on Ap ⊗X Bq to the map taking a ⊗ b
to (−1)pq(b ⊗ a) ∈ Bq ⊗ Ap (p, q ∈ Z). One shows as in Lemma 5.3.1 that there is
a unique bifunctorial D(X)-isomorphism τ(A,B) such that for any A and B the
following D(X)-diagram commutes:

A⊗L
X B B ⊗L

X A

A⊗X B B ⊗X A

τ

canonical canonical

τ ′

Equality (5.5.2) is equivalent to commutativity of the border of the natural diagram

OX ⊗ C ⊗D

C ⊗D C ⊗OX ⊗D C ⊗OX [n]⊗D

OX [n]⊗ C ⊗D

C[n]⊗D

(OX ⊗ C ⊗D)[n] (C ⊗D)[n]

idC ⊗
L
X ξ ⊗

L
X idD

ξ ⊗L
X idC⊗D

ϑn0

ϑn0

ϑ0n ⊗
L
X idDτ(OX,C)⊗L

X idD

τ(OX [n],C)⊗L
X idD

1©

2©

3©

Commutativity of subdiagram 1© is easily checked. Commutativity of 2© holds by
functoriality of τ . For commutativity of 3©, one checks, taking signs into account,
that both paths from OX [n]⊗C ⊗D to (C ⊗D)[n] have the same restriction to each
OX [n]⊗ Cp ⊗Dq (p, q ∈ Z).

The desired conclusion results.

(ii)⇒(i). For α = idOX
∈ E

0
X(OX ,OX) and β = idA ∈ E

0
X(A,A) the identity

maps, the third equality in condition (ii) yields

ξOX
⊗̄ idA = idOX

⊗̄ ξA .
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In other words, in the following D(X)-diagram—where unlabeled arrows represent
the natural isomorphisms—subdiagram 4© commutes:

A A[n]

OX ⊗
L
X A[n]OX ⊗

L
X A (OX ⊗

L
X A)[n]

OX [n]⊗L
X A

ξA

idOX
⊗L

X ξA ϑ0n

ξ
OX

⊗L
X idA ϑn0

4©

The other two subdiagrams clearly commute, so the border commutes. But by defini-
tion, the counterclockwise path from the upper left corner to the upper right corner
is ξ′A , where ξ

′ is the canonical image in Cn
EX

of the element ξOX
∈ E

n
X(OX ,OX) =

Hn(X,OX). Thus, after identification of Hn(X,OX) with its image in Cn
EX

, we have
ξ = ξ′ ∈ Hn(X,OX).

5.6. Let f : X → Y be a ringed-space map. The natural composition

µf : EY (OY ,OY )→ EX(f∗OY , f
∗OY ) −→

∼
EX(OX ,OX)

is a graded-ring homomorphism from HY to HX . Hence, from 5.4.2, one gets an
HY -grading on any full subcategory of EX .

The graded functors f∗ and f∗ of §5.2 are actually HY -graded:

Proposition 5.6.1. Let f :X → Y be a ringed-space map, and C ∈ D(Y ),
D ∈ D(Y ), A ∈ D(X) and B ∈ D(X).

(i) The map f∗ : EY (C,D)→ EX(f∗C, f∗D) is HY -linear.

(ii) The map f∗ : EX(A,B)→ EY (f∗A, f∗B) is HY -linear.

(iii) If C = D (respectively A = B) then the map in (i) (respectively (ii)) is a

homomorphism of graded HY -algebras.

Proof. (i) We need to show, for

γ : C → D[i] in E
i
Y (C,D) and h : OY → OY [n] in E

n
Y (OY ,OY ) = Hn

Y ,

that f∗(γh) = (f∗γ)h—whence by symmetry, f∗(hγ) = h(f∗γ). Underlying defini-
tions show that the equality in question amounts to commutativity of the border of
the next diagram (5.6.2), where the unlabeled maps are natural (see [L3, 3.2.4(i)]),
and “=” represents various canonical isomorphisms.

In the subdiagrams 1© and 2© of (5.6.2) one can replace C by a q-flat resolution PC

that belongs to a family of q-flat resolutions that commute with translation (see [L3,
2.5.5], and thereby reduce the question of commutativity to the analogous one in
which all derived functors are replaced by ordinary functors of complexes. The latter
question is easily disposed of.

Commutativity of the other subdiagrams is straightforward to verify.

(ii) As in (i), given α : A → B[i] (in E
i
X(A,B)) and h : OY → OY [n], one wants

commutativity of the border of the next diagram (5.6.3), in which p2(F,G) is the
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(5.6.2)

f∗C

f∗(OY ⊗
L
Y C) f∗OY ⊗

L
X f

∗C OX⊗
L
X f

∗C

f∗(OY [n]⊗
L
Y C) f∗(OY [n])⊗

L
X f

∗C f∗(OY )[n]⊗
L
X f

∗C OX [n]⊗L
X f

∗C

f∗
(
(OY ⊗

L
Y C)[n]

)
(OX⊗

L
X f

∗C)[n]

f∗
(
C[n]

)
(f∗C)[n]

f∗
(
D[i][n]

) (
f∗D[i]

)
[n]

f∗
(
D[i+ n]

)
(f∗D)[i + n] (f∗D)[i][n]

via h via h via µf (h)

Lf∗ϑn0 ϑn0

Lf∗
(
γ[n]

)
(Lf∗γ)[n]

1©

2©

bifunctorial map adjoint to the natural composition in D(X)

f∗(F ⊗L
Y f∗G)→ f∗F ⊗L

X f∗f∗G→ f∗F ⊗L
X G (F,G ∈ D(Y ));

and where unlabeled maps are the natural ones (see [L3, 3.2.4(ii)]).
Commutativity of the unlabeled subdiagrams of (5.6.3) is easily checked.
Commutativity of subdiagram 3© is shown in [L3, p. 104].

As for 4©, it suffices to prove commutativity of the adjoint diagram, namely the
border of the natural D(X)-diagram (5.6.4) below.

Diagram 5© is the commutative diagram 2© in (5.6.2), with C = f∗A.
Diagram 6© is “dual” to diagram 2© in (5.2.2), so its commutativity can be proved

as indicated in the last line of the proof of Proposition 5.2.1.
Commutativity of the remaining subdiagrams is straightforward to verify.
Thus 4© commutes, and (ii) results.

(iii) This follows from (i) (respectively (ii)) and functoriality of f∗.

5.7. Recall examples (a) and (b) in §5.1.5. These examples support a twisted

inverse-image pseudofunctor (−)!
+
, as follows.

A scheme-map f : X → Y is essentially smooth (resp. essentially étale) if it is
essentially of finite presentation (§5.1.4) and formally smooth (resp. formally étale),
i.e., for each x ∈ X , the local ring OX,x is formally smooth (resp. formally étale)
over OY ,fx for the discrete topologies, see [Gr40, p. 115, 19.10.2] and cf. [Gr4, §17.1
and Thm. 17.6.1]. From [Gr4, Theorems (17.5.1) and (17.6.1)] it follows that any
essentially smooth or essentially étale map is flat.
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(5.6.3)

f∗A

f∗(OX⊗
L
X A) f∗OX⊗

L
Y f∗A f∗f

∗OY ⊗
L
Y f∗A OY ⊗

L
Y f∗A

f∗(f
∗OY ⊗

L
XA)

f∗(OX [n]⊗L
X A)

f∗
(
(f∗OY )[n])⊗

L
X A

)

f∗(f
∗(OY [n])⊗

L
X A)

OY [n]⊗
L
Y f∗A

f∗
(
(OX⊗

L
X A)[n]

)
(OY ⊗

L
Y f∗A)[n]

f∗
(
A[n]

)
(f∗A)[n]

f∗
(
B[i][n]

) (
f∗B[i]

)
[n]

f∗
(
B[i+ n]

)
(f∗B)[i+ n] (f∗B)[i][n]

(5.1.1)

p2(
OY

[n],
A)

via µf (h)

via h

via h

Rf∗ϑn0 ϑn0

Rf∗
(
α[n]

)
(Rf∗α)[n]

p2(
OY

,A)

3©

4©

For a ringed space X, let D+
qc(X) ⊂ Dqc(X) be the full subcategory with objects

those complexes G ∈ Dqc(X) such that Hn(G) = 0 for all n≪ 0.

In case (a), [Nk2, 5.3] gives a contravariantD+
qc-valued pseudofunctor (−)!

+
over S,

uniquely determined up to isomorphism by the properties:

(i) When restricted to proper maps, (−)!
+
is pseudofunctorially right-adjoint to

the right-derived direct-image pseudofunctor Rf∗ .

Thus for proper f : X → Y , f !
+
is defined on all of Dqc(Y ), and there is a counit

map

(5.7.1) ∫̄f : Rf∗f
!
+
→ idDqc(Y )

such that (2.4.4), mutatis mutandis, commutes (cf. [L3, proof of 4.1.2]); and fur-
ther, to any independent S-square d as in Proposition 5.2.4, there is associated the
functorial isomorphism θd : u

∗f∗ −→
∼ g∗v

∗, whose restriction Lu∗Rf∗ −→
∼ Rg∗Lv

∗ to
derived-category functors we denote by θ̄d.

There results the base-change map

(5.7.2) B̄d : v
∗f !
+
→ g!

+
u∗

that is adjoint to the natural composition

Rg∗v
∗f !
+
−→∼
θ̄−1
d

u∗Rf∗f
!
+
−−→
∫̄f

u∗.
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(5.6.4)

f∗f∗
(
A[n]

)

A[n](f∗f∗A)[n]f∗
(
(f∗A)[n]

)

(OX ⊗
L
X A)[n](OX ⊗

L
X f∗f∗A)[n]

OX [n]⊗L
X AOX [n]⊗L

X f∗f∗Af∗
(
(OY ⊗

L
Y f∗A)[n]

)

(f∗OY)[n]⊗
L
X A(f∗OY)[n]⊗

L
X f∗f∗A

f∗
(
OY [n]

)
⊗L
X Af∗

(
OY [n]

)
⊗L
X f∗f∗Af∗

(
OY [n]⊗

L
Y f∗A

)

ϑn0ϑn0

f∗ϑn0

6©

5©

(ii) When restricted to essentially étale maps, (−)!
+
is equal to the usual inverse-

image pseudofunctor (derived or not).

(iii) For each independent S-square d as in 5.2.4, with f (hence g) proper and u
(hence v) essentially étale, B̄d is the natural composite isomorphism

v∗f !
+
= v!

+
f !
+
−→∼ (fv)!

+
= (ug)!

+
−→∼ g!

+
u!
+
= g!

+
u∗.

There is a similarly-characterized pseudofunctor (−)!
+

in case (b)—argue as
in [Nk1, Theorem 7.3.2], using [L3, 4.7.4 and 4.8.2.3].

The point of this subsection is to extend (−)!
+
to anHY -graded pseudofunctor (−)!

taking values in the categories DW .

For any f : X → Y in S, denote the “relative dualizing complex” f !
+
OY by Df .

Recalling from §5.2 that we write f∗C for Lf∗C, and with ⊗̄ as in (5.4.1), set

(5.7.3) f !C := Df ⊗̄ f
∗C (C ∈ DY ).

It follows from Propositions 5.5 and 5.6.1(i) that f !(−) is an HY -graded functor

from DY to DX .

Next, for any X
f
−→ Y

g
−→ Z in S, we need a degree-0 functorial isomorphism

ps! : f !g! −→∼ (gf)!.

By [Nk2, 5.8] (in case (a)), or by [L3, 4.7.2] (in case (b)), there is a canonical
functorial isomorphism

(5.7.4) χ
f
C : Df ⊗

L
X f∗C −→∼ f !

+
C (C ∈ D+

qc(Y )).

There is, in particular, an isomorphism

χ
f
Dg

: Df ⊗
L
X f∗Dg −→

∼ Dgf .
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We can now define a degree-0 functorial isomorphism

(5.7.5) ps! : f !g!E −→∼ (gf)!E (E ∈ DZ)

to be the natural functorial composite

Df ⊗
L
X f∗(Dg ⊗

L
Y g∗E) −→∼ (Df ⊗

L
X f∗Dg)⊗

L
X f∗g∗E −→∼ Dgf ⊗

L
X (gf)∗E.

By the proof of [L3, 4.9.5], when E ∈ D+
qc(Z), this ps

! can be identified via χf
g!E

, χg
E

and χgf
E with the isomorphism given by ps!

+
: f !

+
g!
+
−→∼ (gf)!

+
.

Furthermore, for any X
f
−→ Y

g
−→ Z

h
−→ W in S, the following natural diagram

commutes,

(5.7.6) Df ⊗
L
X f∗Dg ⊗

L
X f∗g∗Dh

Df ⊗
L
X f∗(Dg ⊗

L
Y g∗Dh) Df ⊗

L
X f∗Dhg

Dgf ⊗
L
X (gf)∗Dh Dhgf

id⊗L
Xχ

g
Dh

χ
gf
Dh

χ
f
Dg
⊗L
X ps∗

χ
f
Dhg

since it is isomorphic to the natural diagram

f !
+
g!
+
h!
+
OW f !

+
(hg)!

+
OW

(gf)!
+
h!
+
OW (hgf)!

+
OW

f !
+
ps!
+

ps!
+

ps!
+

ps!
+

which commutes because (−)!
+
and ps!

+
form a pseudofunctor.

To show that (−)! and ps! form a pseudofunctor, use (5.7.6) to verify that the
following expansion (5.7.7) of the second diagram in (2.2.1) commutes.

To see that subdiagram 1© commutes when applied to, say, E ∈ D(W ), replace
Dg, g

∗Dh and g∗h∗E by q-flat resolutions to reduce to the analogous question for
ordinary complexes and nonderived tensor products, which is now easily settled.

Similarly, for commutativity of 2© replace Dh and h∗E by q-flat resolutions, and
argue as in the middle of [L3, p. 124].

Checking commutativity of the remaining subdiagrams is straightforward.

5.8. Consider, in S, an independent square

(5.8.1)

Y ′ Y

X ′ X
v

u

g fd

By Proposition 5.2.4, the associated map θd : u
∗f∗ → g∗v

∗ is an isomorphism.



4
8
8

L
.
A
L
O
N
S
O
,
A
.
J
E
R
E
M
ÍA

S
A
N
D

J
.
L
IP

M
A
N

(5.7.7)

Df ⊗
L
X f

∗
(
Dg ⊗

L
Y g

∗(Dh⊗
L
Zh

∗)
)

Df ⊗
L
X f

∗
(
Dg ⊗

L
Y g

∗Dh⊗
L
Y g

∗h∗
)

Df ⊗
L
X f

∗
(
(Dg ⊗

L
Y g

∗Dh)⊗
L
Y (hg)∗

)
Df ⊗

L
X f

∗
(
Dhg ⊗

L
Y (hg)∗

)

Df ⊗
L
X f

∗Dg ⊗
L
X f

∗g∗(Dh⊗
L
Zh

∗) Df ⊗
L
X f

∗Dg ⊗
L
X f

∗(g∗Dh⊗
L
Y g

∗h∗) Df ⊗
L
X f

∗(Dg ⊗
L
Y g

∗Dh)⊗
L
X f

∗g∗h∗

Df ⊗
L
X f

∗Dg ⊗
L
X f

∗g∗Dh⊗
L
X f

∗g∗h∗ Df ⊗
L
X f

∗Dhg ⊗
L
X f

∗g∗h∗ Df ⊗
L
X f

∗Dhg ⊗
L
X f

∗(hg)∗

Dgf ⊗
L
X (gf)∗(Dh⊗

L
Z h

∗) Dgf ⊗
L
X (gf)∗Dh⊗

L
X (gf)∗h∗ Dhgf ⊗

L
X (gf)∗h∗ Dhgf ⊗

L
X (hgf)∗

1©

2©

cf. (5.7.6)
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5.8.2. With notation as in (5.7.1), the functorial flat base-change isomorphism

B̄d(G) : v
∗f !
+
G→ g!

+
u∗G (G ∈ D+

qc(Y ))

is defined in case (a) of §5.1.5 as follows.
If f (hence g) is proper, then B̄d is, as in (5.7.2), the D(X ′)-map adjoint to the

composite map

g∗v
∗f !
+

θ̄−1
d−−→ u∗f∗f

!
+

u∗∫̄
f

−−→ u∗.

That in this case B̄d(G) is an isomorphism for all G ∈ D+
qc(Y ) is a basic fact of

Grothendieck duality theory [L3, Corollary 4.4.3], [Nk2, Theorem 5.3].
When f is not necessarily proper, there exists a factorization f = f̄ ◦f

−
with f̄

proper and f
−

a localizing immersion [Nk2, Theorem 4.1]. Localizing immersions
are set-theoretically injective maps that on sufficiently small affine sets correspond
to localization of rings. They are flat monomorphisms, and if of finite type, open
immersions, see [Nk2, 2.7, 2.8.8, 2.8.7, 2.8.3]. They are essentially étale, so f

−

!
+
= f

−

∗.

Localizing immersions remain so after base change [Nk2, 2.8.1]. Hence d decomposes

into two fiber squares

Y ′ Y

X̄ ′ X̄

X ′ X

h

u

ḡ f̄

v

g
−

f
−

d

d

where g
−
is a localizing immersion, so that g

−
! = g

−
∗.

Let B̄(d, d) be the composite isomorphism, in D(X ′),

v∗f !
+
−→∼ v∗f

−

!
+
f̄ !
+
= v∗f

−

∗f̄ !
+

ps∗

== g
−

∗h∗f̄ !
+
−→∼
B̄d̄

g
−

∗ḡ !
+
u∗ = g

−

!
+
ḡ !
+
u∗

ps!
+== g !

+
u∗.

Arguing as in the proof of [L3, Theorem 4.8.3], one shows that B̄(d, d) depends
only on d, and not on its decomposition. We may therefore denote this functorial
isomorphism simply by B̄d. (See also [Nk2, 5.2, 5.3].)

In particular, we have the D(X ′)-isomorphism

(5.8.3) B̄d(OY ) : v
∗Df = v∗f !

+
OY −→

∼ g !
+
u∗OY = Dg.

Case (b) of §5.1.5 can be treated analogously, see [Nk1, Theorem 7.3.2(2)].

5.8.4. Now, referring to (5.8.1), we define the DX′ -isomorphism

Bd(G) : v
∗f !G→ g!u∗G (G ∈ DY )
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to be the natural composition

v∗(Df ⊗̄f
∗G) −→∼ v∗Df ⊗̄ v

∗f∗G −→∼
(5.8.3)

Dg ⊗̄ v
∗f∗G

id ⊗̄ ps∗

==== Dg ⊗̄ g
∗u∗G.

It results from [L3, Exercise 4.9.3(c)] that if G ∈ D+
qc(Y ) then

(5.8.5) Bd(G) = B̄d(G).

It is left to the reader to verify that Bd is a degree-0 functorial map.
It is also left to the reader to use the definition of Bd to expand the horizontal

and vertical transitivity diagrams (2.3.1) and (2.3.2) and to verify that the expanded
diagrams commute, using e.g., transitivity for B̄d (see [L3, p. 205, (3)] and [L3, p. 208,
Theorem 4.8.3]—whose proof, in view of Nayak’s compactification theorem [Nk2,
Theorem 4.1], extends to essentially finite-type maps), transitivity for θd (cf. [L3,
Prop. 3.7.2, (ii) and (iii)]), and the “dual” [L3, pp. 106–107] of the last diagram in
[L3, 3.4.2.2], as treated in the first paragraph of [L3, p. 104].

5.9. Let f : X → Y be a confined S-map (see §5.1.5). We now define a degree-0
functorial map ∫f : f∗f

! → id that satisfies transitivity (see §2.4).

The projection map p(F,G) (F ∈ Dqc(X), G ∈ Dqc(Y )) is the natural composi-
tion, in Dqc(Y ),

(5.9.1) f∗F ⊗
L
Y G→ f∗f

∗(f∗F ⊗
L
Y G)→ f∗(f

∗f∗F ⊗
L
X f∗G)→ f∗(F ⊗

L
X f∗G).

This p(F,G) is an isomorphism [L3, 3.9.4]. Denote its inverse by p̃(F,G).

From (5.7.1) we have a Dqc(Y )-map f∗Df → OY . Using this map, let ∫̄f (G) be
the natural functorial composition

f∗(Df ⊗
L
X f∗G)

p̃(Df,G)
−−−−−→ f∗Df ⊗

L
Y G −→ OY ⊗

L
Y G −→∼ G.

Lemma 5.9.2. This ∫̄f extends to a degree-0 map ∫f of graded endofunctors

of DY .

Proof. Set D := Df , and write ⊗ for ⊗L
X or ⊗L

Y , as the case may be. Un-
winding definitions, interpret the assertion as being that for any Dqc(Y )-map
α : A→ B[i] (i ∈ Z), the border of the following natural diagram commutes:

f∗(D⊗f∗A)
p̃(D,A)
−−−−−→ f∗D⊗A

∫̄f (OY )⊗id
−−−−−−−→ OY ⊗A −−→ A

via α





y
via α





y
via α





y
via α





y

f∗
(

D⊗f∗(B[i])
) p̃(D,B[i])
−−−−−−→

1©

f∗D⊗B[i]
∫̄f (OY )⊗id
−−−−−−−→ OY ⊗B[i] −−→ B[i]

∥

∥

∥

ϑ0i





y

ϑ0i





y

−−
−−
−−
−→

f∗
(

D⊗(f∗B)[i]
)

(f∗D⊗B)[i]
(∫̄f (OY )⊗id)[i]
−−−−−−−−−→ (OY ⊗B)[i]

f
∗
ϑ0i





y

p̃(D,B)[i]

x





f∗
(

(D⊗f∗B)[i]
) (

f∗(D⊗f∗B)
)

[i]
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Commutativity of the unlabeled subdiagrams is evident. To prove commutativity
of subdiagram 1© replace p̃ by p (reversing the associated arrows), and then look at
the (Lf∗⊣ Rf∗)-adjoint diagram, which is the border of the natural diagram

f∗(f∗D⊗B[i]) f∗f∗D⊗f
∗
(
B[i]

)
D⊗f∗

(
B[i]

)

f∗f∗D⊗f
∗(B)[i] D⊗(f∗B)[i]

f∗
(
(f∗D⊗B)[i]

) (
f∗(f∗D⊗B)

)
[i] (f∗f∗D⊗f

∗B)[i] (D⊗f∗B)[i]

f∗
(
(f∗(D⊗f

∗B))[i]
)

f∗f∗(D⊗f
∗B)[i] (D⊗f∗B)[i]

f∗ϑ0i

ϑ0i ϑ0i

f∗
(
p(D,B)[i]

) (
f∗(p(D,B)

)
[i]

2©

To show that subdiagram 2© commutes, replace f∗D and B by quasi-isomorphic
q-flat complexes, and ϑ by ϑ′ (see 5.3.1), to reduce the question to the analogous one
for ordinary complexes and nonderived functors, which situation is readily handled.
Details, as well as commutativity of the other subdiagrams, are left to the reader.
Thus the adjoint diagram commutes, whence so does 1©, and the conclusion results.

Proposition 5.9.3. Let f : X → Y and g : Y → Z be confined S-maps. Then

with (−)! as in (5.7.3), ps! as in (5.7.5), and ∫ as in 5.9.2, the transitivity dia-

gram (2.4.4) commutes.

Proof. Global duality asserts the existence, for any S-map f : X → Y , of a right
adjoint f× for the functor f∗ : Dqc(X) → Dqc(Y ) (see [L3, 4.1]). For confined f , the
restriction of f× to D+

qc(Y ) can be identified with the functor f !
+

from §5.7(i); in
particular, the relative dualizing complex Df in (5.7.3) can be identified with f×OY .

Furthermore, by [L3, 4.7.2 and 4.7.3(a)], χf
C in (5.7.4) extends to an isomorphism

f !C := Df ⊗
L
X f∗C −→∼ f×C for all C ∈ Dqc(Y ); and by their very definitions, this

extended χf
C and ∫̄f (C) : f∗f

!C → C correspond under the adjunction Rf∗ ⊣ f
×.

Thus identifying f ! with f× via the extended isomorphism χf turns ∫f into the

counit map ∫×f : f∗f
× → id. Furthermore, as in the proof of [L3, 4.9.5], that identifi-

cation of f ! with f× turns ps! in (5.7.5) into the natural pseudofunctorial isomorphism

ps×: f×g× −→∼ (gf)×.

The proof of [L3, 4.1.2] shows that commutativity of diagram (2.4.4) with (−)×,
ps× and ∫×f in place of (−)!, ps! and ∫f , respectively, holds by definition of ps×. The
conclusion follows.

5.10. It remains to show that with d the independent square (5.8.1), dia-
grams (2.6.1) and (2.6.2) commute.
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5.10.1. According to the definitions in sections 5.8 and 5.9, commutativity
of (2.6.1) amounts to commutativity of the following D(Y ′)-diagram, in which
G ∈ Dqc(Y ), ⊗ stands for ⊗L with the appropriate subscript, labels on maps tell how
those maps arise, and unlabeled maps are the natural ones.

u∗f∗(Df ⊗ f
∗G) g∗v

∗(Df ⊗ f
∗G) g∗(v

∗Df ⊗ v
∗f∗G)

u∗(f∗Df ⊗G) u∗f∗Df ⊗ u
∗G g∗v

∗Df ⊗ u
∗G g∗(v

∗Df ⊗ g
∗u∗G)

g∗Dg ⊗ u
∗G g∗(Dg ⊗ g

∗u∗G)

u∗(OY ⊗G) u∗OY ⊗ u
∗G OY ′ ⊗ u∗G

u∗G OY ′ ⊗ u∗G

θ̄d

θ̄d p̃

p̃ ps∗

∫̄f ∫̄f

(5.8.3) (5.8.3)

∫̄g

1©

2©

Commutativity of subdiagram 1© is given by [L3, 3.7.3].
Subdiagram 2©, without ⊗ u∗G, is just (2.6.1) applied to OY . This commutes by

the definition of B̄d(OY ) (= Bd(OY ), see (5.8.5)).
Commutativity of the remaining subdiagrams is straightforward to verify.

5.10.2. As for (2.6.2), since we are now dealing exclusively with confined maps,
we may, as in the proof of Proposition 5.9.3, identify (−)! with a right adjoint of (−)∗ ,
and ∫(−) with the corresponding counit map.

Let ψd : v∗g
! → f !u∗ be the natural composite functorial map

v∗g
! → f !f∗v∗g

! ps
∗== f !u∗g∗g

! ∫g
−→ f !u∗.

The left adjoints of the target and source of ψd are then u∗f∗ and g∗v
∗ respectively;

and the corresponding “conjugate” map is just θd , cf. [L3, Exercise 3.10.4]. Since θd
is an isomorphism, therefore so is ψd , and ψ

−1
d

is the map conjugate to θ−1
d

(see [L3,
3.3.7(c)]). This means that ψ−1

d
is the image of the identity map under the sequence

of natural isomorphisms (where Hom denotes maps of functors)

Hom(f !u∗, f
!u∗) −→

∼ Hom(f∗f
!u∗, u∗) −→

∼ Hom(u∗f∗f
!u∗, id)

∼−−−−→
via θ−1

d

Hom(g∗v
∗f !u∗, id) −→

∼ Hom(v∗f !u∗, g
!) −→∼ Hom(f !u∗, v∗g

!).

Explicating, one gets that ψ−1
d

is the natural composition

f !u∗
ηv−→ v∗v

∗f !u∗→ v∗g
!g∗v

∗f !u∗
via θ−1

d−−−−→ v∗g
!u∗f∗f

!u∗
∫f
−→ v∗g

!u∗u∗
ǫu−→ v∗g

!.

By the definition of Bd when g is proper (§5.8), it results that ψ−1
d

is the natural
composition

f !u∗
ηv−→ v∗v

∗f !u∗
Bd−→ v∗g

!u∗u∗
ǫu−→ v∗g

!,
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that is, ψ−1
d

= φd.
Commutativity of the following natural diagram, whose top row composes, by

definition, to the map induced by ψ
d
= φ−1

d
, and whose bottom row composes to the

identity, is an obvious consequence of Proposition 5.9.3. Commutativity of (2.6.2)
results.

f !u∗u
! f !u∗g∗g

!u! f !f∗v∗g
!u! v∗g

!u!

f !f∗v∗v
!f ! v∗v

!f !

f ! f !f∗f
! f !

f !u∗∫g f !ps∗

f !∫f

f !∫u

f !f∗v∗ ps
!

f !f∗∫v

v∗ ps
!

∫v

6. Example: Classical Hochschild homology of scheme-maps. This
section illustrates some of the foregoing with a few remarks about earlier-known
Hochschild homology and cohomology functors on schemes, especially with regard
to their relation with the bivariant functors arising from Example 3.5(b). Global
Hochschild theory goes back to Gerstenhaber and Schack, and has subsequently been
developed by several more authors. Here we concentrate on the functors defined by
Căldăraru and Willerton ([Ca1] and [CaW]).

For smooth schemes over a characteristic-zero field, bivariant homology groups
coincide with classical Hochschild homology groups; but the classical Hochschild co-
homology groups are only direct summands of the bivariant ones (§§6.4–6.6). Even
in this special case, then, the bivariant theory has more operations on homology.

6.1. Let f : X → Y be a quasi-compact quasi-separated scheme-map, and

δ = δf : X → X ×Y X

the associated diagonal map—which is quasi-compact and quasi-separated, [Gr1,
p. 294, (6.1.9)(i), (iii), and p. 291, (6.1.5)(v)].

The pre-Hochschild complex of f is

Hf := Lδ∗δ∗OX .

(When f is flat, the prefix “pre-” can be dropped, see [BF1, p. 222, 2.3.1].)
The complex Hf gives rise to classical Hochschild cohomology functors

HH i
X|Y (F ) := HiRHomX(Hf , F ) (i ∈ Z, F ∈ Dqc(X)),

and their global counterparts (cf. [BF1, p. 217, 2.1.1])

HHi
X|Y (F ) := ExtiX(Hf , F ) = Hi

(
X,RHomX(Hf , F )

)
.

When X is affine, say X = Spec(A), and Y = Spec(k) with k a field, this
terminology is compatible with the classical one for A-modules.
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The global Hochschild cohomology

HH∗
X|Y (F ) := ⊕i∈Z HH

i
X|Y (F ) = Ext∗X(Hf , F )

is a symmetric graded module over the commutative-graded ring

HX := ⊕i≥0 H
i(X,OX),

see Proposition 5.4.
The sheafified version of the adjunction Lδ∗ ⊣ δ∗ (see e.g., [L3, 3.2.3(ii)]), gives,

furthermore,

HHi
X|Y (F ) ∼= Hi

(
X×Y X, δ∗RHomX(Lδ∗δ∗OX , F )

)

∼= Hi
(
X×Y X, RHomX×Y X(δ∗OX , δ∗F )

)

= ExtiX×Y X(δ∗OX , δ∗F ).

Proposition 6.1.1. Under Yoneda composition, the classical Hochschild coho-

mology associated to f,

HH∗
X|Y (OX) ∼= ⊕i∈Z HomD(X×Y X)(δ∗OX , δ∗OX [i]),

is a graded-commutative HX -algebra, of which HX is a graded-ring retract.

Proof. Commutativity is well-known, cf. [BF1, §2.2]. Here is one quick way to
see it. Let D∗ ⊂ D(X×Y X) be the full subcategory whose objects are the complexes
δ∗G (G ∈ D(X)). With p : X ×Y X → X the first projection, set

E ⊗∗ F := δ∗(p∗E ⊗
L
X p∗F ) (E, F ∈ D∗).

There are obvious functorial isomorphisms

λ : (δ∗OX ⊗∗ −) −→
∼ idD∗

, ρ : (−⊗∗ δ∗OX) −→∼ idD∗
.

Then (⊗∗, δ∗OX , λ, ρ) is a Z-graded unital product, and the commutativity follows
(see 1.4.3).

The HX -algebra structure is given by 5.6.1(iii) (with f replaced by δ), as is a left
inverse for the structure map (with f replaced by p).

6.2. As in §1.4.3, HH∗
X|Y (OX) is a graded-algebra retract of the graded center C∗

of D∗. There is also a natural graded-ring homomorphism from C∗ to the graded
center C of D(X), induced by the essentially surjective functor p∗ : D∗ → D(X). Thus
there is a natural graded-ring homomorphism

(6.2.1) ̟ : HH∗
X|Y (OX)→ C.

For flat f , this is canonically isomorphic to the characteristic homomorphism that
plays an important role in [BF1] (where nonflat maps are also treated). It takes a
D(X×Y X)-map α : δ∗OX → δ∗OX [i] to the natural functorial composition

A ∼= OX ⊗
L
XA
∼= p∗δ∗OX ⊗

L
XA

via α
−−−→ p∗δ∗OX [i]⊗L

XA
∼= OX [i]⊗L

XA
∼= A[i].

One checks, for example, that in 6.1.1, the left inverse—that is induced by p∗—for
HX → HH∗

X|Y (OX) is the composition evOX
◦̟ (see (1.3.1)).
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6.3. One has also the sheafified Hochschild homology functors

HH
X|Y
i (F ) := H−i(Hf ⊗

L
X F ) (i ∈ Z, F ∈ Dqc(X)),

and their global counterparts,

HH
X|Y
i (F ) := TorXi (Hf , F ) = H−i(X,Hf ⊗

L
X F ).

The functorial projection isomorphisms [L3, p. 139, 3.9.4]

π(E,F ) : δ∗(δ
∗δ∗E ⊗

L
X×Y X F ) −→∼ δ∗E ⊗

L
X×Y X δ∗F −→

∼ δ∗(E ⊗
L
X δ∗δ∗F )

(E,F ∈ Dqc(X)), give, furthermore,

HH
X|Y
i (F ) ∼= H−i(X×Y X, δ∗(δ

∗δ∗OX ⊗
L
X F ))

∼= H−i(X×Y X, δ∗OX ⊗
L
X×YX δ∗F )

= TorX×YX
i (δ∗OX, δ∗F ).

6.4. Căldăraru and Willerton work over a “geometric category of spaces” in
which some form of Serre duality holds (see [CaW, end of Introduction]), for example,
the category of smooth projective varieties over an algebraically closed field k of
characteristic zero. What they call the Hochschild cohomology of such a variety X is
simply HH∗

X| Spec(k)(OX).
Their Hochschild homology,

HHcl
i

(
X) := HomD(X×kX)(δ∗Hom(Ωn

X| Spec(k)[n],OX), δ∗OX [−i]
)

(i ∈ Z),

(where n = dimX and Ωn
X| Spec(k) is the sheaf of relative differential n-forms) is shown

in [CaW, §4.2] to be isomorphic to the global Hochschild homology HH
X| Spec(k)
i (OX).

(The “cl” in the notation indicates either “Căldăraru” or “classic.”) Their definitions
and arguments actually apply to any essentially smooth f : X → Y (§5.7); so when

such an f is given we can substitute Y for Spec(k) in the preceding.

6.5. Also, it is indicated near the beginning of [CaW, §5] that in their setup,
Hochschild homology is isomorphic to the bivariant HH∗(X) (§3.6) associated with
Example 3.5(b). This can be seen, more generally, as follows.

First, for any flat f : X → Y , with πi : X×Y X → X (i = 1, 2) the usual projec-
tions, and p(−,−) the projection isomorphism in (5.9.1), one has, for any F ∈ Dqc(X),
the natural composite isomorphisms

(6.5.1)

ζi(F ) : δ∗δ∗OX ⊗
L
X F ∼= πi∗δ∗(F ⊗

L
X δ∗δ∗OX)

πi∗p(F,δ∗OX)−1

−−−−−−−−−→ πi∗(δ∗F ⊗
L
X δ∗OX) ∼= πi∗(δ∗OX ⊗

L
X δ∗F )

πi∗p(OX,δ∗F )
−−−−−−−−−→ πi∗δ∗(OX⊗

L
X δ∗δ∗F ) ∼= δ∗δ∗F.

It can be shown that the isomorphisms ζ1 and ζ2 are in fact equal.

Now suppose the map x : X → S is flat, with Gorenstein fibers. Then, as is
well-known, the complex ωx := x!OS is invertible, that is, each point of X has a
neighborhood U over which the restriction of x!OS is D(U)-isomorphic to OU [m] for
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some m (depending on U , but constant on any connected component of X). The
complex ω−1

x := RHom(ωx,OX) is also invertible, and, in D(X),

ωx ⊗OX
ω−1
x = ωx ⊗

L
X ω−1

x
∼= OX .

There are natural isomorphisms

HHi(X) = Ext−i
X (HX , ωx) −→

∼ Ext−i
X (δ∗δ∗OX ⊗

L
X ω−1

x ,OX)

−→∼ Ext−i
X (δ∗δ∗ω

−1
x ,OX) (see (6.5.1))

−→∼ Ext−i
X×SX(δ∗ω

−1
x , δ∗OX).

In particular, if x is essentially smooth, of constant relative dimension n [Nk2, 5.4],
then ωx

∼= Ωn
X|S [n], yielding in this case that HHi(X) ∼= HHcl

i (X).

6.6. For cohomology, the situation is different. Referring to Example 3.5(b), let
x : X → S be the unique S-map, and δ : X → X ×S X the diagonal.

There are natural functorial maps δ∗ → δ∗Lδ
∗δ∗ → δ∗ composing to the identity,

so the natural identifications

HH∗
X|S(OX)∼= Ext∗X(δ∗OX , δ∗OX) and HH∗(X)∼= Ext∗X(δ∗OX , δ∗Lδ

∗δ∗OX)

entail that the classical Hochschild cohomology HH∗
X|S(OX) is, as a graded group, a

direct summand of the bivariant cohomology HH∗(X).
The projection HH∗(X)։HH∗

X|S(OX) can also be viewed as the map

HH∗(X) = Ext∗X(Hx ,Hx)→ Ext∗X(Hx ,OX) = HH∗
X|S(OX).

induced by ǫδ(OX) : Hx = Lδ∗δ∗OX → OX .

Since HH∗
X|S(OX) is graded-commutative (Proposition 6.1.1), the composition of

̟ in (6.2.1) and evHx
in (1.3.1) gives a natural homomorphism of graded algebras

over HX ,

HH∗
X|S(OX)→ HH∗

X|S(Hx) = HH∗(X),

with image in the graded center of HH∗(X).
Thus HH∗(X) has a natural structure of graded HH∗

X|S(OX)-algebra.
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[Ca1] A. Căldăraru, The Mukai pairing, I: the Hochschild structure, arXiv:math/0308079.
[Ca2] , The Mukai pairing, II. The Hochschild-Kostant-Rosenberg isomorphism, Adv.

Math., 194 (2005), pp. 34–66.
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