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The reader will find in this article a collection of problems, questions and exer-
cises related to the singularities of algebraic and analytic varieties. Many of them are
inspired by the work and mathematical conception of Hironaka: they are concrete,
involve basic ideas and techniques from geometry and algebra, and they can imme-
diately be attacked from scratch. Some problems rely on or use results proven by
Hironaka. Simple and double asterisques indicate the more difficult problems; they
may potentially serve as a topic of future research.

Monomials.

Problem 1. Monomial algebras. The purpose of the exercise is to establish
resolution for toric varieties without passing to polyhedral cones, fans and subdivisions,
as is done classically. Let A be a set of vectors of non-negative integers in Zn, and let
K be a field. For variables s = (s1, . . . , sn), write sα for

∏
i s
αi
i .

(a) Give a criterion in terms of A for K[A] = K[sα, α ∈ A] to be a regular ring.
(b)∗ Let A denote the set of all finite and non-empty subsets A ⊂ Zn. Construct

a map C : A → A with CA ⊂ A such that the following holds: For any choice of map
η : A → Zn with ηA ∈ CA and any A ∈ A, denoting by A′ the transform

A′ = A ∪ {α− ηA, α ∈ CA}.

of A with respect to C and η, the sequence of transforms K[A], K[A′], K[A′′], ...
becomes eventually regular.

Note. The ring K[A] defines an affine toric, not necessarily normal variety. The
map C will prescribe the center of the blowup, the map η chooses the chart of the
blowup. The transformation rule between A and A′ is a generalization of the Euclidean
division to vectors of integers.

Example. A = {(1, 1), (1, 0), (0, 2)} so that K[A] = K[st, s, t2] is non-regular. If
CA = A and ηA = (0, 2), then K[A′] ∼= K[A], whereas for CA = {(1, 1), (1, 0)} and
arbitrary ηA, K[A′] is regular.

References. G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal
Embeddings, Lecture Notes in Math. 339, Springer 1973.
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D. Cox, J. Little, H. Schenck, Toric Geometry, forthcoming.

Problem 2∗. Monomial Jacobian ideals. This problem aims at a classification
of hypersurfaces that admit a purely combinatorial description. For a hypersurface
X, let J(X) be the ideal generated by the defining function of X and all its partial
derivatives. This is the sum of the ideal of X and the Jacobian ideal of the defining
equation. Characterize the (germs of) hypersurface singularities X for which J(X) is
a monomial ideal.

Note. By the Mather-Yau Theorem and its generalization by Gaffney and
Hauser, any germ of a complex analytic hypersurface (of isolated singularity type)
is determined up to analytic isomorphism by its singular subspace, defined by the
(generally non-radical) ideal J(X). If the ideal J(X) is a monomial ideal, then the
singular subspace has a combinatorial description. The simplest examples of singu-
larities with monomial ideals J(X) are Brieskorn singularities xa11 + . . .+ xann = 0 (in
this case, the ideal coincides with the Jacibian ideal).

References. J. Mather, S. S.-T. Yau, Classification of isolated hypersurface
singularities by their moduli algebras, Invent. Math., 69 (1982), pp. 243–251.

T. Gaffney, H. Hauser, Characterizing singularities of varieties and of mappings,
Invent. Math., 79 (1985), pp. 427–447.

H. Hauser, G. Müller, Harmonic and dissonant singularities, in: Proc. Conf.
Algebraic Geometry, Berlin 1985 (ed. Kurke et al.), pp. 123–134. Teubner 1986.

Problem 3. Integral closure of monomial ideals. This is a warm-up exercise for
getting some acquaintance with the concept of integral closure. For an ideal I of a
commutative ring R, define the integral closure I of I as the elements x of R which
satisfy an integrality relation

xk + a1xk−1 + · · ·+ ak−1x+ ak = 0

with ai in the i-th power Ii of I.
(a) Show that the integral closure is again an ideal.
(b) Let R = C{x} be the ring of convergent power series in n variables, and let I

be generated by g1, . . . , gm. Show that f ∈ I if and only if there is a constant C > 0
and a neighborhood U of 0 in Cn so that

|f(a)| < C ·max {|g1(a)|, . . . , |gm(a)|}

for all a ∈ U .
(c) Determine the integral closure of an ideal generated by monomials.

Note. An answer to (c) was given by Howald in terms of Newton polyhedra. An
alternative, analytic proof of this characterization was found by McNeal and Zeytuncu.

References. J. Howald, Multiplier ideals of monomial ideals, Trans. Amer.
Math. Soc., 353 (2001), pp. 2665–2671.

M. Lejeune-Jalabert, B. Teissier, Clôture intégrale des idéaux et équisingularité,
Ann. Fac. Sci. Toulouse Math., 17 (2008), pp. 781–859. With an appendix by J.-J.
Risler.

J. Lipman, B. Teissier, Pseudo-rational singularities and a theorem of Briançon-
Skoda about integral closures of ideals, Michigan Math. J., 28 (1981), pp. 97–116.

J. McNeal, Y. Zeytuncu, Multiplier ideals and integral closure of monomial ideals:
an analytic approach, preprint 2010, Schrödinger Institute Vienna.
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Problem 4. Ordering monomial ideals. This is an exercise on Hironaka’s stan-
dard bases. Consider Nn with a total order ε compatible with addition such that zero
is the smallest element. Let <ε be the induced order on the monomials in n variables.

(a) Show that <ε induces naturally an order, also denoted by <ε, on the set of
monomial ideals in K[x1, . . . , xn].

(b) Show that this order is a well-ordering.
(c) For an ideal I of the formal power series ring K[[x1, . . . , xn]], let inx(I) be

the initial ideal of I, given as the ideal generated by all minimal monomials of the
expansions of elements of I. Show that the minimum min(I) and the maximum max(I)
of inx(I) over all coordinates x1, . . . , xn exist.

(d) Show that K[[x1, . . . , xn]]/I is isomorphic as a K-vectorspace to
K[[x1, . . . , xn]]/inx(I).

(e) Let <ε be compatible with the total degree. Let g1, . . . , gm be generators of I
whose initial monomials generate inx(I). Show that the strict transform I ′ of I under
the blowup of An with center 0 at any point a′ of the exceptional divisor is generated
by the strict transforms of g1, . . . , gm.

(f) Show that min(I ′) ≤ε min(I).

Note. Generators of ideals as in (e), but taking instead of the initial monomials
the initial forms with respect to the natural grading, were called by Hironaka standard
basis (and are called nowadays Macaulay basis). Hironaka developed the extension
of the Weierstrass Division Theorem to ideals as in (d) in order to construct reduced
standard bases, whose orders were then used to define his invariant ν∗. At about
the same time, Grauert established the Division Theorem for convergent power series,
using it for the construction of the semi-universal deformation of an isolated singu-
larity. Proofs for (c) and (f) can be found in Hauser’s paper. The inequality of (f)
is the analog of Bennett’s Theorem asserting the non-increase of the Hilbert-Samuel
function under blowup with center along which normal flatness holds.

References. B. Bennett, On the characteristic function of a local ring, Ann.
Math., 91 (1970), pp. 25–87.

H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero, Ann. Math., 79 (1964), pp. 109–326.

H. Hauser, Three power series techniques, Proc. London Math. Soc., 88 (2004),
pp. 1–24.

B. Singh, Effect of permissible blowing up on the local Hilbert function, Invent.
Math., 26 (1974), pp. 201–212.

Polyhedra.

Problem 5. Lattice points in simplices. Here is a simple counting exercise
that has some relation to resolution in positive characteristics. For integers m, c ≥ 1
consider the simplex ∆ = {α ∈ Nn, |α| = m} and the lattice L = c ·Nn. Characterize
the vectors r ∈ Zn/L such that |(r + ∆) ∩ L| = |(∆ ∩ L)|. Obviously, the set of these
vectors is a union of equivalence classes of the set of vectors of length 0 modulo L.
How many such vectors do exist?

Note. For n = 3, m = 3, c = 2, your answer should be 3. Counting lattice
points in simplices and their translates appears in the theory of wild singularities and
kangaroo points. These singularities represent one of the main obstructions to the
resolution of singularities in positive characteristic. See also Abhyankar’s notion of
good points.
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References. S. Abhyankar, Good points of a hypersurface, Adv. Math. ,68
(1988), pp. 87–256.

H. Hauser, Wild singularities and kangaroo points for the resolution of singulari-
ties in positive characteristic, preprint 2010.

Problem 6. Newton polyhedra with compact facets. Attempts to define an in-
variant of hypersurface singularities in terms of their Newton polyhedra has lead us
to study this problem.

Let P ∈ K[x] be a polynomial in n variables and N its Newton polyhedron at
a given point a ∈ An (i.e., the positive convex hull in Rn of the exponents of the
expansion of P at a). For a blowup of An along a coordinate subspace of codimen-
sion ≥ 2, consider the total transforms P ∗ of P in any of the the affine coordinate
charts, together with their associated Newton polyhedra N∗, taken at the origin of
the respective chart.

(a) Determine N∗ in terms of N .
(b) Show that for any sequence of such blowups the transformed polyhedra have

eventually no compact facet.
(c)∗ For a hypersurface f = 0 in An, consider the locus of points where the

Newton polyhedron of f has in all local coordinates at least one compact facet. Show
that this locus is finite.

Note. Newton polyhedra have been studied by Hironaka (and others) in order
to control the improvement of singularities under suitable blowups. A hypersurface
singularity has normal crossings if and only if its Newton polyhedron is in some local
coordinates an orthant. Hypersurface singularities whose Newton polyhedron has a
compact facet in all local coordinate systems can be seen as being far away from being
normal crossings. It is not clear how to define an invariant which is able to capture
this distance from normal crossings in a coordinate independent manner and which
improves under blowup until all compact faces have disappeared. Considering only
monomial blowups in fixed coordinates, such a measure can be defined and used to
prove (b).

References. C. Bruschek, D. Wagner, Some constructions in the étale topology,
Expositiones Math., 29:1 (2011), pp. 133–141.

V. Cossart, Sur le polyèdre caractéristique, Thèse d’État. Univ. Paris-Sud, Orsay
1987.

H. Hauser, Three power series techniques, Proc. London Math. Soc., 88 (2004),
pp. 1–24.

H. Hauser, D. Wagner, Alternative invariants for the embedded resolution of sur-
faces in positive characteristic, preprint 2009.

H. Hironaka, Characteristic polyhedra of singularities, J. Math. Kyoto Univ., 7
(1967), pp. 251–293.

H. Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ.,
10 (1970), pp. 151-187.

B. Youssin, Newton polyhedra without coordinates, Memoirs Amer. Math. Soc.,
433 (1990), pp. 1–74, 75–99.

Problem 7∗. Hironaka’s polyhedral game. Two player’s A and B play a game
on a non-empty finite subset Γ of Nn, where n ∈ N is a positive integer (3 is a good
candidate). Player A specifies a subset J ⊆ {1, . . . , n}, followed by player B who
selects an element j ∈ J . Then the finite subset Γ is replaced by a transformed
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subset, in the following way: the j-th coordinate of every point is replaced by the sum
of all coordinates with index in J . Then player A specifies again a finite subset, and
so on. Player A has won if Γ has become an orthant, i.e., if it contains a point γ
such that Γ ⊂ γ + Nn. Find a winning strategy for A without using induction on the
dimension.

Note. The polyhedral game appears in various disguises within resolution of
singularities, with various proposals how to win it, the first going probably back to
Zariski. When Hironaka formulated his polyhedral game – with a succinct winning
strategy proposed soon afterwards by Spivakovsky – it was quickly seen that this game
is too coarse to imply resolution of singularities. There then appeared a more exigent
version of the game, the hard polyhedral game, which turned out to be too hard – it
does not admit a winning strategy. It is believed today that resolution of singularities
cannot be reduced to a purely combinatoric problem.

References. M. Spivakovsky, A solution to Hironaka’s Polyhedra Game, In:
Arithmetic and Geometry. Papers dedicated to I.R. Shafarevich, vol II (eds. M.
Artin, J. Tate), Birkhäuser 1983, pp. 419–432.

M. Spivakovsky, A counterexample to Hironaka’s ‘hard’ polyhedra game, Publ.
RIMS, Kyoto University, 18 (1983), pp. 1009–1012.

D. Zeillinger, A short solution to Hironaka’s polyhedra game, L’Enseign. Mathém,
52 (2006), pp. 143–154.

Transversality.

Problem 8. Analytic irreducibility. Here are a few problems that should keep
PhD students in algebraic geometry busy for some time. Of course, the students
could also gain something: insight, satisfaction over a solved puzzle, and credit for a
publication.

(a) Find an effective criterion for checking whether a polynomial in n variables
over C is analytically irreducible at 0.

(b) Find an effective criterion for checking whether a polynomial in n variables
over C defines locally at 0 a normal crossings divisor, i.e. is analytically equivalent to
a monomial.

(c)∗ Is it true that a free divisor in (Cn, 0) has normal crossings if and only if
the singular subspace (defined by the equation and its partial derivatives) is reduced?
Here, a divisor is called free if and only if the module of logarithmic vector fields is
free, and a vector field is called logarithmic if and only if the derivative of any multiple
of the defining equation is a multiple of the defining equation.

(d)∗ Which hypersurface singularities have a reduced singular subspace?
(e)∗ Classify all (not necessarily reduced) curves which may appear as the singular

subspace of a surface.

Note. Clearly, (b) is an easy consequence of (a). A divisor is free if the module
of analytic vector fields on (Cn, 0) which are tangent to the divisor is a free module.
Such divisors have been introduced and studied by Saito. Tangent vector fields are
also called logarithmic, being dual to the logarithmic differential forms.

As for (a), one can consider the normalization of the divisor defined by the polyno-
mial. We have irreducibility if and only if the preimage of zero under the normalization
map has exactly one closed point. A more direct approach is via the Artin Approx-
imation Theorem. There exists, for any integer m and any polynomial f , a number
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k such that if f ≡ g · h modulo terms of degree > k for some polynomials g and h
then f = g · h for convergent series g and h coinciding up to degree m with g and
h. The problem is to determine the bound k explicitly in terms of m and f . This
is related to the more general problem of the existence and the computability of the
Artin function.

Problem (e) is related to the integral of an ideal studied by Pelikaan. This is the
ideal of functions all whose derivatives belong to the given ideal, or, alternatively, the
symbolic square of the ideal.

References. M. Artin, On the solution of analytic equations, Invent. Math., 5
(1968), pp. 277–291.

E. Faber, Normal crossings in local analytic geometry, Ph.D. Thesis, Univ. Vienna
2011.

M. Hickel, Un cas de majoration affine pour la fonction d’approximation d’Artin,
C. R. Acad. Sci. Paris, 346 (2008), pp. 753–756.

R. Pelikaan, Finite determinacy of funtions with non-isolated singularities, Proc.
London Math. Soc., 57 (1988), pp. 357–382.

K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J.
Fac. Sci. Univ. Tokyo, 27 (1980), pp. 265–291.

M. Spivakovsky, Non-existence of the Artin function for Henselian pairs, Math.
Ann., 299 (1994), pp. 727–729.

J. Wavrik, A theorem on solutions of analytic equations with applications to de-
formations of complex structures, Math. Ann., 216 (1975), pp. 127–142.

Problem 9∗. Distance to normal crossings. The resolution problem can be
formulated as the problem of constructing a sequence of blowups such that the total
transform becomes normal crossing. This motivates the following question.

Find a (significant) measure for the distance of a hypersurface singularity from
having normal crossings. This measure should not increase under point blowup.

Note. The condition on point blowups comes from the observation that Hiron-
aka’s invariants generally do not increase if the center is chosen too small (but one
may have problems to achieve an actual decrease). Another argument is that the
total transforms of normal crossings divisors under point blowup are again normal
crossings.

This problem is related to problem (6). Any reasonable resolution invariant should
not increase under point blowup (though, in general, it will only decrease if the center
of the blowup is sufficiently large). Most proposals in the literature try to capture
the monomiality of a function by factoring it into a monomial part (usually given as
the defining equation of the exceptional divisor produced by earlier blowups) and a
singular non monomial part, whose multiplicity is then taken as the required measure.
It is known by examples of Moh that in positive characteristic this invariant does not
behave well under descent in dimension (i.e., when passing to coefficient ideals) and
taking the transform of the coefficient ideal under blowup.

Already for plane curves the problem is interesting and consists in finding a
substitute for the usual invariant given as the lexicographic pair formed by the local
multiplicity and the maximal slope of the first segment of the Newton polygon.

References. T.-T. Moh, On a stability theorem for local uniformization in
characteristic p, Publ. Res. Inst. Math. Sci., 2 (1987), pp. 965–973.
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T.-T. Moh, On a Newton polygon approach to the uniformization of singularities
of characteristic p, in: Algebraic Geometry and Singularities. Proc. Conference on
Singularities, La Rábida. Birkhäuser 1996.

H. Hauser, On the problem of resolution of singularities in positive characteristic
(Or: A proof that we are still waiting for), Bull. Amer. Math. Soc., 47 (2009),
pp. 1–30.

Problem 10. Mikado singularities. A union of smooth varieties is called mikado
if all intersections of its components are scheme-theoretically smooth. Mikado is a
natural generalization of normal crossings. It is inspired by the geometry of hyperplane
arrangements.

(a) Construct an example of two analytically non-isomorphic mikado hypersurface
singularities of the same dimension and having the same number of components.

(b) Construct a union of smooth hypersurfaces whose pairwise scheme-theoretic
intersections are smooth, but which is not mikado.

(c) Find a mikado hypersurface singularity which is not analytically isomorphic
to a hyperplane arrangement.

(d)∗ Find a characterization of mikado singularities through unions of linear
spaces.

Note. Clearly, any union of linear spaces is mikado, as well as any union of
smooth plane curves meeting pairwise transversally. An answer to (a) was given by
Whitney, taking unions of four lines in the plane passing through a given point, with
different cross ratios.

References. D. De Concini, C. Procesi, Wonderful models of subspace arrange-
ments, Selecta Math., 3 (1995), pp. 459–494.

L. Li, Wonderful compactifications of arrangements of subvarieties, Michigan
Math. J., 58 (2009), pp. 535–563.

E. Faber, H. Hauser, Today’s Menu: Geometry and resolution of singular algebraic
surfaces, Bull. Amer. Math. Soc., 47 (2010), pp. 373–417.

Problem 11. Blowup of mikado. This exercise shows that it is not a straightfor-
ward matter to replace normal crossings by mikado schemes in the resolution process.
Show that the blowup of a mikado scheme in An along a center Z ⊂ An transversal
to all its components need not be again mikado.

Note. Make first precise what could be meant by transversal (one possible option
is that the union of the variety and the center is again mikado). The instability of
mikado under blowup was observed by Li Li.

References. L. Li, Wonderful compactifications of arrangements of subvari-
eties, Michigan Math. J., 58 (2009), pp. 535–563.

E. Faber, H. Hauser, Today’s Menu: Geometry and resolution of singular algebraic
surfaces, Bull. Amer. Math. Soc., 47 (2010), pp. 373–417.

Problem 12∗. Resolution of mikado. Find for any mikado scheme an (explicitly
given) birational proper map which transforms the scheme into normal crossings.

Note. Compare this with the resolution of hyperplane arrangements, respec-
tively wonderful models as proposed by Li Li. From a geometric viewpoint, mikado
singularities are suitable final forms for the resolution of singular varieties, but al-
gebraically, normal crossings are much easier to handle. The problem exhibits this
difference.
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References. G. Goward, A simple algorithm for the principalization of mono-
mial ideals, Trans. Amer. Math. Soc., 357 (2005), pp. 4805–4812.

L. Li, Wonderful compactifications of arrangements of subvarieties, Michigan
Math. J., 58 (2009), pp.535–563.

Problem 13. Non normal crossings locus. This exercise exhibits a sublety in
the definition of normal crossings. In (8)(b), we gave the definition of analytic normal
crossings. A divisor is called algebraically normal crossings if for each of its points,
there is a regular system of parameters such that the divisor can be defined locally by
a product of (some of) the parameters.

(a) Find an example of a singularity where the algebraic and the analytic non
normal crossings locus differ.

(b)∗ Show that any variety admits an embedded resolution with centers inside
the algebraic non normal crossings locus.

(c) Show that this is not the case for the analytic non normal crossings locus.

Note. As an embedded resolution aims at transforming all singularities into
normal crossings it is natural to expect that this can be achieved by blowups along
centers which lie inside the non normal crossings locus. However, as mentioned by
Kollár, there is a slight difference between the algebraic and analytic setting.

References. J. Kollár, Semi log resolutions, arXiv:0812.3592v1.

Problem 14∗∗. Casas-Alvero conjecture. We find it intriguing because it is a
simple algebraic questions on polynomials, but yet still open. Let P be a univari-
ate polynomial over a field of characteristic zero. Assume that each (non constant)
derivative shares a divisor with P .

(a) Is P a monomial (ax+ b)k?
(b) What could be the respective statement for multivariate polynomials?

Note. The conjecture was proposed by Casas-Alvero. The common divisors
may a priori be different for each derivative. A proof for polynomials of prime degree
(and several more cases) was given by Graf von Bothmer, Labs, Schicho and van de
Woestijne. For positive characteristic, there exist easy counterexamples. For fixed
degree, it is easy to set up a system of equations which has a solution over K if and
only if there is a counter-example.

References. E. Casas-Alvero, Singularities of plane curves, London Math. Soc.
Lect. Notes 276, Cambridge Univ. Press 2000.

H. C. Graf von Bothmer, O. Labs, J. Schicho, C. van de Woestijne, The Casas-
Alvero conjecture for infinitely many degrees, J. Algebra, 316 (2007), pp. 224–230.

Singular locus.

Problem 15. Singular singular locus. For illustrative purposes, we wanted to
find an easy example of a surface with a singular curve in its singular locus. This
lead us to the following question. (a) Construct a complex algebraic surface X whose
singular locus S = Sing(X) (i.e., the support of the singular subspace) equals the
curve parametrized by (t3, t4, t5).

(b)∗ Answer (a) by a surface whose generic transversal plane section along S is
an ordinary cusp x2 = y3.

(c) Is it possible to realize (a) by a surface whose singular subspace is reduced?
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Note. Any reduced hypersurface with an equation in the square of the ideal of C
has C in its singular locus, but the singular locus might be bigger. Following an idea
of R. Bryant, you may try for (a) with a quasi-homogeneous equation f , using that f
belongs to m · j(f), where m denotes the maximal ideal generated by the coordinates
and j(f) the Jacobian ideal.

Reference. E. Faber, H. Hauser, Today’s Menu: Geometry and resolution of
singular algebraic surfaces, Bull. Amer. Math. Soc., 47 (2010), pp. 373–417.

Problem 16. Symmetric singularities. The following exercise should lead to an
understanding of the difficulties of resolution imposed by symmetries.

(a) Construct an algebraic surface X in A3 whose singular locus is a union of
two or three coordinate axes, say e.g. Sing(X) = V (xy, z), and so that X is invariant
under the linear map exchanging x with y.

(b) Can you achieve that the local multiplicity is constant equal to 2 along
Sing(X)?

(c)∗ Find a non reduced ideal structure on a given union of coordinate subspaces
of An so that the blowup of An with center this ideal gives a smooth transform.

Note. The type of singularities as in (a) causes problems when trying to resolve
them, because, due to the symmetry, one does not know which component of the
singular locus to prefer as the first center of blowup. This is usually handled by
instead blowing up the origin in order to separate the two local branches of the singular
locus. Then, after this preparation, each component of the singular locus can be taken
simultaneously as the center of the next blowup. Observe here that if the type of the
singularity would have reappeared after the first point blowup, one component of the
singular locus would lie in the exceptional divisor, which allows to break the symmetry.

Allowing centers with mild singularities (e.g., normal crossings) could be conve-
nient for resolution purposes. Rosenberg and Faber-Westra have described suitable
non reduced ideals defining normal crossings and giving smooth blowups.

In characteristic 0, there is an obstacle for (b) in the case that the singular locus
consists of all three coordinate axes. See also problem 23.

References. H. Hauser, Excellent surfaces and their taut resolution, In: Reso-
lution of Singularities, Progress in Math. 181, Birkhäuser 2000.

J. Rosenberg, Blowing up non reduced subschemes of An, unpublished manuscript
1998.

E. Faber, D. Westra, Blowups in tame monomial ideals, J. Pure Appl. Algebra,
215 (2011), pp. 1805–1821

Problem 17. Smooth singular locus. This is a geometric version of exercise (2)
(but easier).

Characterize the hypersurface singularities f = 0 whose singular locus is scheme-
theoretically smooth.

Note. Use the Theorem of Mather-Yau and Gaffney-Hauser.

References. J. Mather, S. S.-T. Yau, Classification of isolated hypersurface
singularities by their moduli algebras, Invent. Math., 69 (1982), pp. 243–251.

T. Gaffney, H. Hauser, Characterizing singularities of varieties and of mappings,
Invent. Math., 79 (1985), pp. 427–447 .
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Resolution.

Problem 18. Affine real resolution. Our efforts to visualize resolutions lead us
to the following problem.

(a)∗ Classify the real algebraic surfaces X in A3
R which admit an affine resolution,

i.e., a smooth algebraic surface X ′ in A3
R and a birational morphism π : X ′ → X which

is “real proper”, i.e., the induced map on subsets of R3 is proper in the Euclidean
topology.

Figure 1. An A2-singularity and its real resolution. The exceptional
locus is the union of two -2-curves intersecting transversally.

(b)∗ Is it also possible to define a deformation of X such that the general fiber is

isomorphic (as an embedded real analytic surface) to X̃ (smoothing)?

Note. A typical example is the cone x2+y2 = z2 whose resolution is the cylinder
x2 + y2 = 1 induced by the affine map A3

R → A3
R sending (x, y, z) to (xz, yz, z). The

respective smoothing is given by the family x2 + y2 = t + z2. A more interesting
example is the An-singularity x2 − y2 = zn+1 with the “real smoothing” x2 − y2 =
z(z − t)(z − 2t) · · · (z − nt). The exceptional divisors are the compact components of
the intersections with the planes x = 0 and y = 0.

A necessary criterion for a resolution to be affine real in the above sense is that
the self intersection numbers of the real exceptional divisors are even. This follows
from the fact that smooth hypersurfaces in R3 are orientable, so they cannot contain
closed curves with an odd self intersection number. This also shows that any affine
real resolution is real isomorphic to the minimal resolution.

Reference. P. Hacking, Y. Prokhorov, Smoothable Del Pezzo surfaces with
quotient singularities, Compos. Math., 146 (2010), pp. 169–192.

Problem 19. Drop of order under blowup. An amusing and easy observation.
Let X be a plane curve singularity and consider a sequence of monomial point blowups
(i.e., the successive centers are the origins of the affine charts of the preceding blowup).

(a) Show that the local multiplicity of X drops at least to its half if there appears
in the sequence of blowups at least one chart change.

(b) Take now a surface in three-space and three monomial point blowups in three
different charts (i.e., the final point is the intersection point of the three exceptional
components). How does the local multiplicity behave?
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Reference. H. Hauser, D. Wagner, Alternative invariants for the embedded
resolution of surfaces in positive characteristic, preprint 2009.

Problem 20. Separation of varieties. A special type of singularity is the inter-
section locus of two varieties. The following exercise is aiming at resolving this type
of singularities.

Let X and Y be algebraic, possibly singular affine varieties in AnC. Find a sequence
of blowups in smooth centers contained in X ∩ Y (respectively the transforms of the
intersection) which separates X and Y .

Note. If X and Y are smooth, just apply principalization to the ideal IX + IY
defining the intersection X ∩ Y . In general, take a suitably weighted sum IaX + IbY of
IX and IY so that both powers of the ideals have the same maximal local multiplicity
(suggestion of H. Hironaka and O. Villamayor).

References. S. Encinas, H. Hauser, Strong resolution of singularities in char-
acteristic zero, Comment. Math. Helv., 77 (2002), pp. 421–445.

H. Hironaka, Idealistic exponents of singularity, In: Algebraic Geometry, The
Johns Hopkins Centennial Lectures, Johns Hopkins University Press 1977.

O. Villamayor, Patching local uniformizations, Ann. Scient. Éc. Norm. Sup.
Paris, 25 (1992), pp. 629–677.

Problem 21∗∗. Higher Nash modifications. A single Nash modification does in
general not achieve resolution, for instance because branches with the same tangent
space are not separated. This motivates the following question.

Nash modifications of hypersurfaces are defined as the blowups at the Jacobian
ideal. Geometrically, they are obtained by replacing the singular locus of a hypersur-
face by the projectivized first jet space. Extend this to higher jet spaces.

Note. The first jet space is just the tangent bundle. For higher jet spaces, it is
a priori not clear how to projectivize suitably, i.e., how to take limits of jets.

References. G. Gonzalez-Sprinberg, Désingularisation des surfaces par des
modifications de Nash normalisées, Sém. Bourbaki 1985/86. Astérisque, 145-146
(1987), pp. 187–207.

H. Hironaka, On Nash blowing-up, In: Arithmetic and Geometry II. Progr. Math.
36. Birkhäuser 1983, pp. 103–111.

A. Nobile, Some properties of the Nash blowing-up, Pacific J. Math., 60 (1975),
pp. 297–305.

M. Spivakovsky, Sandwiched singularities and desingularization of surfaces by
normalized Nash transformations, Ann. Math., 131 (1990), pp. 411–491.

T. Yasuda, Higher Nash blowups, Compos. Math., 143 (2007), pp. 1493–1510.

J. A. Moody, On resolving singularities, J. London Math. Soc., 64 (2001),
pp. 548–564.

Problem 22∗. Global descent for resolution. Hiranaka-type resolution uses in-
duction on the dimension: one constructs singularity objects in lower codimension.
The existing constructions are local, and this leads to the necessity of proving that
the local constructions induce globally defined centers.

Construct a globally defined descent object for the resolution of singularities in
characteristic zero.
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Note. The classical descent via hypersurfaces of maximal contact is necessarily
local, by the only local existence of these hypersurfaces. W lodarczyk showed how to
make the local descents intrinsic up to analytic isomorphsims by using homogenized
coefficient ideals. Using modules of derivations and differential operators there is a
certain chance to construct globally defined objects which give a substitute for the
local descent.

Reference. H. Hironaka, Theory of infinitely near singular points, J. Korean
Math. Soc., 40 (2003), pp. 901–920.

Problem 23∗. Failure of maximal contact. An obvious necessary condition for
a hypersurface of maximal contact is that the locus of maximal multiplicity lies in a
hypersurface. This condition fails in positive characteristics.

Characterize all hypersurfaces in AnK , K a field of positive characteristic, whose
locus of points of maximal multiplicity has local embedding dimension n at 0.

Note. The first example was given by Narasimhan, of equation x2 + y3z +
zw3 + wy7 = 0 over a field of characteristic 2. The equimultiple locus is the curve
parametrized by (t32, t7, t19, t15). Note that this example also shows that there need
not always exist locally at a singular point a smooth hypersurface whose transforms
contain all points where the local multiplicity has remained constant. Namely, any
such hypersurface through 0 would get separated from the above curve under a se-
quence of point blowups, while the multiplicity must remain the same for semiconti-
nuity reasons (it remains constant along the curve).

References. R. Narasimhan, Monomial equimultiple curves in positve charac-
teristic, Proc. Amer. Math. Soc., 89 (1983), pp. 402–413.

R. Narasimhan, Hyperplanarity of the equimultiple locus, Proc. Amer. Math.
Soc., 87 (1983), pp. 403–406.

H. Hauser, Seventeen obstacles for resolution of singularities, In: The Brieskorn
Anniversary Volume, Progress in Math. 162, Birkhäuser 1997.

S. Mulay, Equimultiplicity and hyperplanarity, Proc. Amer. Math. Soc., 87
(1983), pp. 407–413.

Problem 24∗∗. Quings. In characteristic p, it is natural to consider polynomials
modulo p-th powers, because p-th powers of a descent object can be removed by an
automorphism of the original resolution object.

(a) Let K be perfect. Show that the surface xp + ypz = 0 is locally at each point
of the z-axis isomorphic to its germ at 0.

(b) Let K be a field of characteristic p > 0. Develop a reasonable concept of local
multiplicity for hypersurfaces in an equivalence class of power series in K[[x]]/K[[x]]p.

(c) Resolve “plane curves” f in K[[y, z]]/K[[y, z]]p.

Note. Taking in (b) the maximum order of a representative in K[[x]] of elements
in K[[x]]/K[[x]]p yields an invariant which is not upper semicontinuous (as observed,
among others, by Hironaka).

References. H. Hironaka, Program for resolution of singularities in charac-
teristics p > 0, Notes from lectures at the Clay Mathematics Institute, September
2008.

H. Hauser, D. Wagner, Alternative invariants for the embedded resolution of sur-
faces in positive characteristic, preprint 2009.
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Problem 25∗∗. Monomialization of morphisms. This is a relative formulation
of the resolution problem. Show that any morphism of varieties over a field of char-
acteristic zero can be transformed via blowups of source and target into a monomial
morphism, i.e., a morphism which can be expressed in suitable local coordinates by
monomials.

Note. There have been important recent advances by Cutkosky and Abramovich,
Karu, Matsuki and W lodarcyzk. In positive characteristic there are simple counterex-
amples.

References. D. Abramovich, K. Karu, M. Matsuki, J. W lodarczyk, Torification
and factorization of birational maps, J. Amer. Math. Soc., 15 (2002), pp. 531–572.

D. Cutkosky, Local monomialization and factorization of morphisms, Astérisque,
260 (1999).

D. Cutkosky, Toroidalization of Dominant Morphisms of 3-Folds, Memoirs Amer.
Math. Soc., 890 (2007).

D. Cutkosky, Monomialization of Morphisms from 3-folds to surfaces, Lecture
Notes in Math. 1786, Springer 2002.

Algebraic series.

Problem 26. Algebraic series. The purpose of the following exercise is to pro-
videsome familiarity with multivariate algebraic power series. A formal power series is
called algebraic or Nash if it is an algebraic element over the polynomial ring, i.e., sat-
isfies a polynomial equation in one variable with polynomial coefficients. The simplest
examples are (1 + x)−1 and

√
1 + x.

(a) Show that any complex algebraic power series in n variables is convergent in
some neighborhood of zero in Cn.

(b)∗ Show that for any algebraic power series h with h(0) = 0 there is a poly-
nomial mapping F : Cn+p → Cp, F (0) = 0, with non zero Jacobian determinant
det(DyF (0)) 6= 0 (where y = (y1, . . . , yp) are the coordinates on Cp) such that the
first component y1 of the implicit solution y(x) of F (x, y) = 0 equals h.

Note. For (a), you may want to find a suitable dominating series. For (b),
normalize the variety defined by the minimal polynomial of h and use Zariski’s Main
Theorem.

References. J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry,
Springer 1998.

J. P. Lafon, Séries formelles algébriques, C. R. Acad. Sci. Paris, 260 (1965),
pp. 3238–3241.

M. Raynaud, Anneaux locaux henséliens, Lecture Notes in Math. 169. Springer
1970.

J. Ruiz, The basic theory of power series, Vieweg 1993.

Problem 27. Recursions for algebraic series. If the sequence of coefficients
satisfy a recursion formula, then this formula gives another way of representing the
power series in finite terms.

(a) Let S =
∑
k akx

k be a univariate algebraic power series over C. Prove that
there exists a recursion formula for the coefficients ak.

(b) Same problem for D-finite power series. A power series is called D-finite if
and only if it satisfies an ordinary differential equation with polynomial coefficients.
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References. R. Stanley, Differentiably finite power series, European J. Com-
bin., 1 (1980), pp. 175–188.

J. Denef, L. Lipshitz, Power series solutions of algebraic differential equations,
Math. Ann., 267 (1984), pp. 213–238.

J. Denef, L. Lipshitz, Algebraic power series and diagonals, J. Number Theory,
26 (1987), pp. 46–67.

Problem 28. Artin Approximation. Here is a(nother) classical topic.
(a) Let X and Y be isolated hypersurface singularities in (Cn, 0). Show that if

X and Y are isomorphic up to a sufficiently high power of the maximal ideal, then X
and Y are analytically isomorphic.

(b)∗∗ Find a proof for the Artin Approximation Theorem which does not use
induction on the dimension. Such a proof should make explicit why the counter-
examples of Gabrielov (separate variables condition for solutions of polynomial equa-
tions) and Becker (nested subring condition for solutions of non-algebraic series) can-
not be avoided.

Note. Assertion (a) was proven by Hironaka and Rossi before Artin had proved
his approximation theorem (which, obviously, gives (a)). Artin’s proof relies on a
multiple use of the Weierstrass Division Theorem. This involves in each application
an analytic coordinate change which need not maintain the nested subring or the
separatedness condition. Popescu’s and Spivakovsky’s proofs for systems of algebraic
equations whose solutions satisfy the nested subring condition are very involved.

References. M. André, Artin’s theorem on the solution of analytic equations in
positive characteristic, Manuscripta Math., 15 (1975), pp. 314–348.

M. Artin, On the solution of analytic equations, Invent. Math., 5 (1968), pp. 277–
291.

M. Artin, Algebraic approximation of structures over complete local rings, Publ.
Math. Inst. Hautes Études Sci., 36 (1969), pp. 23–58.

J. Becker, A counterexample to Artin approximation with respect to subrings,
Math. Ann., 230 (1977), pp. 195–196.

A. Gabrielov, The formal relations between analytic functions, Funkts. Anal.
Prilozh., 5 (1971), pp. 64–65.

M. Greenberg, Rational points in Henselian discrete valuation ring, Publ. Math.
Inst. Hautes Études Sci., 31 (1966), pp. 59–64.

H. Hironaka, H. Rossi, On the equivalence of imbeddings of exceptional complex
spaces, Math. Ann., 156 (1964), pp. 313–333.

T. Ogoma, General Néron desingularization based on the idea of Popescu, J.
Algebra, 167 (1994), pp. 57–84.

D. Popescu, General Néron desingularization, Nagoya Math. J., 100 (1985),
pp.97–126.

D. Popescu, General Néron desingularization and approximation, Nagoya Math.
J., 104 (1986), pp. 85–115.

D. Popescu, Polynomial rings and their projective modules, Nagoya Math. J., 113
(1989), pp. 121–128.

M. Spivakovsky, A new proof of D. Popescu’s theorem on smoothing of ring ho-
momorphisms, J. Amer. Math. Soc., 294 (1999), pp. 381–444.

B. Teissier, Résultats récents sur l’approximation des morphisms en algèbre com-
mutative (d’après Artin, Popescu, André, Spivakovsky), Sém. Bourbaki, 784 (1994),
pp. 1–15.
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J. Wavrik, A theorem on solutions of analytic equations with applications to de-
formations of complex structures, Math. Ann., 216 (1975), pp. 127–142.

Problem 29. Division of algebraic series. This exercise demonstrates that the
set of algebraic power series is not closed under division (with remainder).

(a) Divide xy by (x − y2)(y − x2) as a power series in K[[x, y]], taking for the
divisor the initial monomial xy. More precisely, write (x − y2)(y − x2) = xyQ + R,
with Q,R ∈ K[[x, y]] and no monomial summand of R is divisible by xy. What do
you observe?

(b)∗ Let f ∈ K[[x1, . . . , xn]] be an xn-regular algebraic series (i.e., f(0, . . . , 0, xn)
6= 0). Show that the Weierstrass division of any algebraic series by f yields an al-
gebraic quotient and remainder. (The Weierstrass division is defined by requiring
that no monomial summand of the remainder is divisible by the leading monomial of
f(0, . . . , 0, xn.)

(c) Find suitable functional equations for the series
∑
k≥0 x

2k and
∑
k≥0 x

k2 .
(d) Divide xy by the series xy− z(1 + y)(1 + x2y) with initial monomial xy as in

(a). Is the remainder an algebraic series?

Note. According to Hironaka, the example from (a) is due Gabber-Kashiwara.
It yields a lacunary series as the remainder of the division which therefore is not
algebraic. This and similar examples were studied in combinatorics by Bousquet-
Mélou and Petkovšek as generating functions for counting walks in lattices. Lafon
proved (b), and Hironaka extended the division to ideals of algebraic series in the
sense of the Grauert-Hironaka-Galligo Division Theorem, assuming that the initial
ideal satisfies a natural generalization of xn-regularity.

References. J. P. Lafon, Séries formelles algébriques, C. R. Acad. Sci. Paris,
260 (1965), pp. 3238–3241.

H. Hironaka, Idealistic exponents of singularity, In: Algebraic Geometry, The
Johns Hopkins Centennial Lectures. Johns Hopkins University Press 1977.

M. Bousquet-Mélou, M. Petkovšek, Linear recurrences with constant coefficients:
the multivariate case, Discrete Mathematics, 225 (2000), pp. 51–75.

Problem 30∗∗. Algebraic solutions of ODE’s (Grothendieck’s p-Curvature Con-
jecture). Let ai(x) ∈ Q[x] be polynomials in one variable x, and consider the ordinary
differential equation

D : aky(k) + ak−1y(k−1) + · · ·+ a1y′ + a0y = 0.

Then D has a complete set of algebraic series solutions if and only if, for almost
all primes p, the reduction Dp of D modulo p has a complete set of rational solutions
in Fp(x).

Note. The conjecture is still wide open. The name is due to the formulation
of the conjecture in terms of the associated Galois group. In the discrete case, i.e.,
difference equations, there is a formulation and proof of the conjecture by Di Vizio.

References. N. Katz, A conjecture in the arithmetic theory of differential equa-
tions, Bull.Soc. Math. France, 110 (1982), pp. 203–239 and pp. 347–348.

L. Di Vizio, On the arithmetic theory of q-difference equations. The q-analogue
of the Grothendieck-Katz’s conjecture on p-curvatures, Invent. Math., 150 (2002),
pp. 517–578.
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Symmetry.

Problem 31∗∗. Symmetries of hypersurfaces. The following is one of the main
challenges in Cauchy-Riemann geometry, and even for manifolds no complete answer
is known.

(a) Let X be the germ of a smooth real analytic hypersurface in (Cn, 0). Describe
the group of local biholomorphic automorphisms of (Cn, 0) fixing X.

(b) Determine the relation of the holomorphic automorphism group of X with its
Lie algebra.

(c) Same problem as in (a), with X singular.

Note. The subgroup of Aut(Cn, 0) of ambient analytic automorphisms fixing X
is an infinite dimensional Lie group whose Lie algebra consists of the germs of analytic
vector fields on (Cn, 0) which are tangent to X. It was shown by Hauser and Müller
that for n ≥ 3 the group as well as its Lie algebra determine X up to isomorphism.

References. S. Chern, J. Moser, Real hypersurfaces in complex manifolds, Acta
Math., 133 (1974), pp. 219–271.

H. Hauser, G. Müller, Affine varieties and Lie algebras of vector fields, Manuscr.
Math., 80 (1993), pp. 309–337.

H. Hauser, G. Müller, A rank theorem for analytic maps between power series
spaces, Publ. Math. IHES, 80 (1994), pp. 95–115.

B. Lamel, N. Mir, Parametrization of local CR automorphims by finite jets and
applications, J. Amer. Math. Soc., 20 (2007), pp. 519–572.

Problem 32. Symmetries of product singularities. The question below has its
origin in mere curiousity: is the symmetry of a product singularity determined by the
symmetry of the factors?

(a) Determine the local symmetries of the Cartesian square C × C of the cusp
C : x2 = y3 at 0. A local symmetry of a variety X ⊂ Cn is an analytic isomorphisms
of the germ of Cn at 0 fixing X.

(b)∗ Is it possible to construct the automorphism group of a Cartesian product
from the automorphisms of the factors?

Reference. H. Hauser, G. Müller, Automorphisms of direct products of algebroid
spaces, In: Singularity Theory and its Applications, Warwick 1989, Part I Springer
Lecture Notes in Math. 1462, 1991.

Problem 33. Enzensberger’s Star. The Astroid x2/3 + y2/3 = 1 is the real plane
curve (hypocycloid) parametrized by (cos(3t), sin(3t)). It equals the trajectory of a
point on a small circle rolling inside a larger circle.

(a) Determine the ratio of radii and the polynomial equation of the Astroid.
(b) Find an analoguous compact real algebraic surface in R3.
(c) Answer (b) by requiring the surface to have isolated singularities.
(d)∗ Find a construction recipe for this surface analogous to the rolling circles.

Note. The equation x2/3 + y2/3 = 1 with rational exponents can be replaced by
a polynomial equation by raising it twice to the third power. In three variables, it is
a bit more work to find the polynomial equation for x2/3 + y2/3 + z2/3 = 1. Note that
this solves (b) but not (c).

The solution of (c) has lead to the design of a surface with the purpose of hon-
ouring the German author and poet Hans-Magnus Enzensberger.
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Reference. A. Fritz, H. Hauser, Platonic Stars, Math. Intelligencer 32, 2
(2010), pp. 23–36.

Miscellanea.

Problem 34. Polynomially defined singularities. We think that the second
question is natural, but we do not know the answer.

(a) Show that any complex analytic hypersurface singularity can be defined by
a polynomial in as many variables as the codimension of the singular locus indicates,
with coefficients convergent power series in the remaining variables.

(b)∗ Is any complex analytic hypersurface singularity algebraic, i.e., analytically
isomorphic to a singularity that can be defined by a polynomial?

Note. (a) is easy for isolated singularities. The general case of (a) is due to
Shiota. Question: Is it possible to define an even more precise normal form, e.g., f
having tail (= f minus initial monomial) in the direct complement of its jacobian
ideal? Compare this with Arnold’s classification of simple singularities.

References. V. Arnold, Singularity Theory, Cambridge University Press.
T. De Jong, G. Pfister, Local Analytic Geometry, Advanced Lectures Math.,

Vieweg 2000.
M. Shiota, Equivalence of differentiable mappings and analytic mappings, Publ.

Math. Inst. Hautes Études Sci., 54 (1981), pp. 37–122.

Problem 35∗∗. Plain varieties. Another natural question which we do not know
how to answer.

Call a complex algebraic variety plain if it is everywhere locally (in the Zariski
topology) isomorphic to an open subset of affine space. Is plain equivalent to smooth
and rational?

Note. Clearly, every plain variety is smooth and rational. The converse is true
for curves and surfaces.

References. G. Bodnár, H. Hauser, J. Schicho, O. Villamayor, Plain varieties,
Bull. London Math. Soc., 40 (2008), pp. 965–971.

Problem 36∗∗. Strong factorization (an open problem). Show that any pro-
jective birational morphism between non singular varieties is a sequence of blowups
along non singular subvarieties followed by a sequence of blowdowns to non singular
subvarieties.

Note. The factorization by an arbitrary sequence of blowups and blowdowns,
known as the Weak Factorization Theorem, was proven by W lodarczyk, extending
ideas of Morelli. For surfaces, see Hartshorne V.5.4.

References. D. Abramovich, K. Karu, K. Matsuki, J. W lodarczyk, Torification
and factorization of birational maps, J. Amer. Math. Soc., 15 (2002), pp. 531–572.

D. Cutkosky, Local factorization of birational maps, Adv. Math., 132 (1997),
pp. 167–315.

D. Cutkosky, Local monomialization and factorization of morphisms, Astérisque,
260 (1999).

R. Hartshorne, Algebraic Geometry, Springer 1977.
K. Karu, Local strong factorization of birational maps, J. Alg. Geom., 14 (2005),

pp. 165–175.
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R. Morelli, The birational geometry of toric varieties, J. Alg. Geometry, 5 (1996),
pp. 751–782.

J. W lodarczyk, Toroidal varieties and the weak factorization theorem, Invent.
Math., 154 (2003), pp. 223–331.

Problem 37∗∗. Normalization. This is not really a well-posed mathematical
exercise, but merely an attempt we found inspiring.

Find a refinement of the notion of integral closure of rings and normal varieties
which ensures smoothness in codimension 2.

Note. Let A be a finitely generated K-algebra which is a domain, and let A′ be
its integral closure in the quotient field of A. If A is the coordinate ring of a variety
X, A′ describes the normalization X ′ of X. It is well known (see e.g. Mumford) that
the singular locus of X ′ has codimension ≥ 2 in X.

The refinement of the integral closure could not be just another overring of A′,
because the normalization is already maximal among all birational affine varieties
with a proper birational morphism down to the normalized variety.

A positive answer to the problem would yield a one step resolution of surfaces,
as the normalization does for curves. It is conceivable that such a concept had again
to do with extension properties as is the case for weakly holomorphic functions on
normal varieties. Note here that the extension or integration of differential forms in
the context of the singular Frobenius Theorem often requires that the exceptional set
has codimension ≥ 3.

References. T. De Jong, G. Pfister, Local Analytic Geometry, Advanced Lec-
tures Math., Vieweg 2000.

B. Malgrange, Frobenius avec singularités. I, Codimension un. Publ. Math. Inst.
Hautes Études Sci., 46 (1976), pp. 163–173.

R. Moussu, Sur l’existence d’intégrales premières, Ann. Inst. Fourier, 26 (1976),
pp. 171–220.

D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes Math., 1358,
Springer 1999.

O. Zariski, P. Samuel, Commutative Algebra, Graduate Texts Math., 28, Springer
1975.

Problem 38. Multiplicity and localization. This is an exercise in commutative
algebra.

Let (R,m) be a regular local ring and I a non zero ideal in R. Let R̂ denote

the completion of R and set Î = I · R̂. For a prime ideal p in R, denote by S the
localization of R at p, and by J the ideal generated by I in S. Define the order ord(I)
of I as the maximal power of m containing I, and similarly for J .

(a) Show that ord(Î) = ord(I).
(b)∗ Show that ord(J) ≤ ord(I).

Note. The inequality of (b) is due to Zariski. To prove it, reduce first to the
case where R/p has dimension 1 and then use (a) and resolution of curves. You may
also consult Hironaka, Thm. III. 3.1.

References. H. Hironaka, Resolution of singularities of an algebraic variety
over a field of characteristic zero, Ann. Math., 79 (1964), pp. 109–326.

Problem 39∗. Adjoints. Adjoint functions are a classical computational tool in
birational geometry. The arithmetic and geometric genus of X can be read off from
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the Hilbert function of the ideal of adjoint functions. Similarily, the plurigeni of X
are related to higher adjoint ideals. The homogenuous parts of the adjoint ideals can
be used to define canonical maps, minimal models, and Mori fibrations. For singular
hypersurfaces, the computation of adjoint function requires some sort of resolution.
Invent a method for computing adjoints without resolution of singularities.

Note. For curves, computing of adjoints is basically equivalent to computing
the normalization. For surfaces, there is an efficient algorithm computing adjoints,
available in the computer algebra system Magma. It requires the computation of
“pieces of a resolution”, which are analytically isomorphic to some resolution of the
singularities of the given surfaces.

References. T. Beck, J. Schicho, Adjoint computation for hypersurfaces using
formal desingularizations, J. Algebra, 320 (2008), pp. 3984–3996.

P. Blass, J. Lipman, Remarks on adjoints and arithmetic genera of algebraic
varieties, Amer. J. Math., 101 (1979), pp. 331–336.

Problem 40. Topology of plane curve singularities. The following questions
are motivated by “numerical analysis” of the singularities of a plane algebraic curve.
What can be said about the singularities if the coefficients of the defining polynomial
is known only up to a small numerical error?

Intersecting a complex curve singularity (X, 0) ⊂ (C2, 0) with a sufficiently small
ε-sphere around p, one obtains a link that classifies the topological type of the singu-
larity. The links that can be obtained in this way are called algebraic links.

(a)∗ Can the link become non-algebraic when the radius of the sphere becomes
larger?

(b)∗ Assume that (X, 0) intersects a sphere with radius ε > 0 in an algebraic link
L. Can we continously deform (X, 0) to a curve singularity with link L, such that the
induced deformation of the intersection with the sphere is an isotopy of links?

References. M. Borodzik, Deformations of singularities of plane curves, Topo-
logical approach, preprint, arXiv 0907.4129.

M. Borodzik, Morse theory for plane algebraic curves, preprint, arXiv 1101.1870.
M. Hodorog, M. Mourrain, B., J. Schicho, A symbolic-numeric algorithm for

computing the Alexander polynomial of a plane curve singularity, Proc. SYNASC
2010, IEEE Trans. 2010.

Note added in proof. Bernard Teissier has kindly informed us that question
(b) of Problem 34 has a negative answer which is due to H. Whitney. The germ of
the hypersurface defined by the equation

(y − x)(y − 2x)(y − 3x)(y − (t− 1)x)(y − (et − 1)x) = 0

cannot be isomorphic to an algebraic variety, since among the five cross ratios of
four of the lines respectively, two at least are algebraically independent as functions
of the parameter t.

In the real analytic setting and taking homeomorphisms, the problem is due to
René Thom. In the Lipschitz case, similar questions have been investigated by Valette.

Teissier has conjectured the following: Any reduced complex analytic germ is
isomorphic to the intersection – inside a suitable non singular space – of an algebraic
germ of higher dimension with a smooth analytic germ, the second being transversal
to the canonical Whitney stratification of the first.
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