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CONSTRUCTING KÄHLER-RICCI SOLITONS FROM

SASAKI-EINSTEIN MANIFOLDS∗

AKITO FUTAKI† AND MU-TAO WANG‡

Abstract. We construct gradient Kähler-Ricci solitons on Ricci-flat Kähler cone manifolds and
on line bundles over toric Fano manifolds. Certain shrinking and expanding solitons are pasted
together to form eternal solutions of the Ricci flow. The method we employ is the Calabi ansatz over
Sasaki-Einstein manifolds, and the results generalize constructions of Cao and Feldman-Ilmanen-
Knopf.
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1. Introduction. Kähler-Ricci solitons are self-similar solutions of the Kähler-
Ricci flow. They are classified as expanding, steady, and shrinking solitons for obvious
reasons. The convention is that an expanding soliton lives on (0,∞) and a shrinking
soliton lives on (−∞, 0). The self-similarity reduces the Ricci flow equation to an
elliptic system for a pair (g,X) consists of a Kähler metric g and a vector field X on
a background manifold. In particular, any Kähler-Einstein metric is a steady soliton
with X = 0. Kähler-Ricci solitons arise as parabolic blow-up limits of the Kähler-
Ricci flow near a singularity. We refer to [5] and [9] and for surveys of results on
Kähler-Ricci solitons and the role they play in the singularity study of the flow.

In this article, we construct new Kähler-Ricci solitons from Sasaki-Einstein man-
ifolds. Sasaki-Einstein manifolds are links of Ricci-flat Kähler cones and singularity
models in Calabi-Yau manifolds. We first show that there is an expanding soliton
flowing out of the Kähler cone over any Sasaki-Einstein manifold. The method we
employ is an ansatz of Calabi in his construction of Kähler-Einstein metrics ([3], see
also [14]). This Ansatz is then applied to circle bundles over toric Fano varieties on
which possibly irregular Sasaki-Einstein metric exist by [11]. We obtain both ex-
panding and shrinking solitons depending on the degree of the associated line bundle.
Certain pair of shrinking and expanding solitons can be pasted together to form an
eternal solution of the Kähler-Ricci flow which lives on (−∞,∞) with singularities
along the zero section of the line bundle, but the shrinking solitons extend smoothly
to the zero section when the Sasaki-Einstein structure is regular. These results gener-
alize the constructions of [4] and [9]. While the examples in [4] and [9] are rotationally
symmetric, our examples in general do not carry any continuous symmetry.

Similar constructions for eternal solutions of Lagrangian mean curvature flows
were discovered in [15] and [16]. They were shown to satisfy the Brakke flow-a weak
formation for the mean curvature flow. As a weak formulation of the Ricci flow has
not yet been established, we may ask to what extent our examples would qualify as
generalized solutions of the Ricci flow (see also the discussion in §1.2 of [9]). It will be
a good indication if the flow satisfies Perelman’s monotonicity formula [18] across the
singularity. This will be pursued later. At this moment, we note that the Gaussian
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density of Perelman’s functional of known Ricci solitons are computed in [6] and [13].
The main theorems in this paper are stated as follows.

Theorem 1.1. Let M be a Fano manifold of dimension m, and L → M be a
positive line bundle with KM = L−p, p ∈ Z+. For 0 < k < p, let S be the U(1)-bundle
associated with L−k, which is a regular Sasaki manifold. Let Z be the zero section of
L−k. Suppose that S admits a possibly irregular Sasaki-Einstein metric. Then there
exist shrinking and expanding solitons on L−k − Z, and they can be pasted together
to form an eternal solution of the Kähler-Ricci flow on (L−k − Z) × (−∞,∞). If S
admits a regular Sasaki-Einstein metric, i.e. if M admits a Kähler-Einstein metric
then the solution of the Kähler-Ricci flow corresponding to the shrinking soliton for
t ∈ (−∞, 0) extends smoothly to the zero section Z.

Recall that a Sasaki manifold S is an odd dimensional Riemannian manifold with
its cone C(S) a Kähler manifold. In the following theorem the apex of C(S) is not
included in C(S).

Theorem 1.2. Let S be a compact Sasaki manifold such that the transverse
Kähler metric gT satisfies Einstein equation

RicT = κgT

for some κ < 0 where RicT denotes the transverse Ricci curvature. Then there exists
a complete expanding soliton on the Kähler cone C(S).

Note that, when a Sasaki manifold S satisfies the assumption of Theorem 1.2, S
is necessarily quasi-regular so that S is an orbi-U(1)-bundle over an Kähler-Einstein
orbifold with negative scalar curvature. This is because, if it is irregular, a torus of
dimension bigger than 1 acts as isometries and there is a Killing vector field inducing a
nontrivial action on the Kähler-Einstein local orbit spaces of negative Ricci curvature.
But this is impossible because of the transverse version of the well-known Bochner
theorem: If the Ricci curvature is negative then there are no nontrivial Killing vector
fields. One can prove this transverse version using the Appendix of [11].

This paper is organized as follows. In section 2 we review Kähler-Ricci flows and
Kähler-Ricci solitons. In section 3 we review Sasaki manifolds with transverse Kähler-
Einstein structure. In section 4 we obtain an ordinary differential equation to get a
gradient Kähler-Ricci soliton by Calabi’s ansatz. In section 5 we extend Cao’s work
[4] to construct expanding solitons on Ricci-flat Kähler cones. After preparatory argu-
ments in the case of line bundles over Fano manifolds in section 6, we extend in section
7 the results of [9] to construct shrinking and expanding solitons on line bundles over
Fano manifolds such that the associated U(1)-bundles admit Sasaki-Einstein metrics.
This last condition is satisfied when the base manifolds are toric Fano manifolds ([11]).
The shrinking soliton in section 7 and the expanding soliton in section 5 are pasted to-
gether to give an eternal solution, and obtain Theorem 1.1. In section 8 we introduce
gradient scalar solitons and set up an ordinary differential equation to obtain them by
Calabi’s ansatz. We get a necessary condition to have a complete gradient scalar soli-
ton on the cone C(S) of a Sasaki manifold S with transverse Kähler-Einstein metric.
We show that a special case when the transverse Kähler-Einstein metric has negative
transverse Ricci curvature gives gradient expanding Ricci solitons in Theorem 1.2.

2. Kähler-Ricci flows and Kähler-Ricci solitons. Given a Kähler manifold,
the Kähler metric g can be written as

gij = g(
∂

∂zi
,
∂

∂zj
)
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where z1, · · · , zm are local holomorphic coordinates. The Kähler form ω of g is written
as

ω = igijdz
i ∧ dzj ,

and the Ricci form ρ(ω) of ω is expressed as

ρ(ω) = −i∂∂ log det(gij).

The coefficients

Rij = − ∂2

∂zi∂zj
log det(gkℓ)

of ρ(ω) constitute the Ricci tensor Ricg of g.

A Kähler-Ricci flow is a family ωt of Kähler forms with real parameter t satisfying

(1)
d

dt
ωt = −1

2
ρ(ωt).

We could remove the coefficient 1/2 in (1) by taking homothety of the Kähler form,
but we use the convention of (1) in order to adapt to the convention of the paper [10]
so that we can refer to the computations there directly.

A Kähler-Ricci soliton is a Kähler form ω satisfying

(2) −1

2
ρ(ω) = λω + LXω

for some holomorphic vector field X where λ = 1, 0 or −1. Note that the imaginary
part of X is necessarily a Killing vector field, i.e. an infinitesimal isometry. When

LXω = i∂∂u

for some real function u, we say that the Kähler-Ricci soliton is a gradient Kähler-
Ricci soliton. According as λ = 1, 0 or −1 the soliton is said to be expanding, steady
and shrinking.

Given a Kähler-Ricci soliton (2) with λ = ±1, if we put

(3) ωt := λtγ∗t ω

where γt is the flow generated by the time dependent vector field

(4) Yt :=
1

λt
X,

then ωt is a Kähler-Ricci flow. The Kähler form is of course a positive form, and
therefore when λ = 1, the Ricci flow exists for t > 0 and ω1 = ω, and when λ = −1,
the Ricci flow exists for t < 0 and ω−1 = ω. When λ = 0 if we put

(5) ωt := γ∗t ω

where γt is the flow generated by the vector field X , then ωt is a Kähler-Ricci flow.
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3. Ricci-flat Kähler cones with aperture. In this section we first review
basic facts about Sasakian geometry. Good references are the book [2] and the papers
[11] and [10].

We wish to construct gradient Kähler-Ricci solitons on Ricci-flat Kähler cones.
Recall that a cone manifold C(S) is a Riemannian manifold diffeomorphic to (0,∞)×S
with a cone metric g is of the form

g = dr2 + r2g

where g is a Riemannian metric on S and r is a coordinate on (0,∞). A Riemannian
manifold S is called a Sasaki manifold if C(S) is a Kähler cone manifold.

Let the complex dimension of C(S) be m+ 1. Then the real dimension of Sasaki
manifold (S, g) is 2m+ 1. (S, g) is isometric to the submanifold {r = 1} = {1}× S ⊂
(C(S), g), and they are usually identified. Let J be the complex structure on C(S)
such that (C(S), J, ḡ) is Kähler. Then we have the vector field ξ̃ and the 1-form η̃
on C(S) defined by

ξ̃ = Jr
∂

∂r
, η̃ =

1

r2
ḡ(ξ̃, ·) =

√
−1(∂̄ − ∂) log r.

It is easily seen that the restrictions ξ = ξ̃|S and η = η̃|S to {r = 1} ≃ S give a vector
field and a one form on S. The one form η on S is a contact form and the vector field
ξ is the Reeb vector field of the contact form η, that is ξ is the unique vector field
which satisfies

i(ξ)η = 1 and i(ξ)dη = 0.

There are two Kähler structures involved in the study of Sasaki manifolds. One
is the Kähler structure on C(S). The Kähler form ω of (C(S), J, ḡ) is given by

ω =
1

2
d(r2η̃) =

√
−1

2
∂∂̄r2.

The second one is the transverse Kähler structure of the flow, called the Reeb flow,
generated by the Reeb vector field ξ. This is a collection of Kähler structures on
the local orbit spaces of the Reeb flow. The vector field ξ̃ is a Killing vector field
on (C(S), ḡ) with the length ḡ(ξ̃, ξ̃)1/2 = r. The complexification ξ̃ −

√
−1Jξ̃ of the

vector field is holomorphic on (C(S), J). Since the local orbit spaces of the Reeb flow
on S and the local orbit spaces of the holomorphic flow generated by ξ̃ −

√
−1Jξ̃ on

C(S) along S can be identified then they define a transverse holomorphic structure of
the Reeb flow, i.e. holomorphic structures on the local orbit spaces of the Reeb flow.
But since η is a contact form and non-degenerate on the contact distribution, i.e.
the kernel of η, we obtain the transverse Kähler structure by identifying the tangent
spaces of local orbit spaces with the contact distribution. Thus the transverse Kähler
structure is a collection of Kähler structures on local orbit spaces of the Reeb flow.
The Kähler forms on local orbit spaces are lifted to S to form a global 2-form

ωT :=
1

2
dη,

called the transverse Kähler form. The transverse Kähler form can be lifted also to
C(S) and can be expressed as

ω̃T =
1

2
dη̃ =

i

2
d(∂ − ∂) log r = ddc log r.
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The Ricci curvature RicT of the transverse Kähler metric gT is related to the Ricci
curvature Ricg of (S, g) by

(6) Ricg = RicT − 2gT + 2m η ⊗ η.

We wish to use Calabi’s ansatz when the transverse Kähler structure is Kähler-
Einstein. This last condition is equivalent to say that the orbit spaces have Kähler-
Einstein metrics.

There is a related notion in classical Sasakian geometry, called η-Einstein man-
ifolds. A Sasaki manifold S is called an η-Einstein manifold if for some constants α
and β

Ricg = αg + β η ⊗ η.

Since Ric(ξ, ξ) = 2m by (6), we have α + β = 2m, and (6) also shows that the
transverse Kähler metric is Einstein with

ρ(ωT ) = (α+ 2)ωT .

Conversely a Sasaki manifold with a transverse Kähler-Einstein metric has an η-
Einstein metric. Therefore RicT is positive definite if and only if α + 2 > 0, that is
α > −2. Obviously (S, g) is Sasaki-Einstein, i.e. η-Einstein with β = 0 if and only
if Ricg = 2mg, and also if and only if RicT = (2m+ 2)gT . The Gauss equation also
tells us that (S, g) is a Sasaki-Einstein manifold if and only if (C(S), g) is a Ricci-flat
Kähler manifold.

The typical example is when (S, g) is the (2m+ 1)-dimensional standard sphere
in which case C(S) = Cm+1 − {o} with the flat metric and the orbit space of the
Reeb flow is CPm with a multiple of the Fubini-Study metric such that the Einstein
constant is (2m+ 2).

Given a Sasaki manifold with the Kähler cone metric g = dr2+ r2g, we transform
the Sasakian structure by deforming r into r′ = ra for positive constant a. This trans-
formation is called the D-homothetic transformation. Then the new Sasaki structure
has

(7) η′ = d log ra = aη, ξ′ =
1

a
ξ,

(8) g′ = agT + aη ⊗ aη = ag + (a2 − a)η ⊗ η.

Suppose that g is η-Einstein with Ricg = αg + βη ⊗ η. Since the Ricci curvature
of a Kähler manifold is invariant under homotheties the transverse Ricci form is
invariant under the D-homothetic transformations : Ric′T = RicT . From this and
Ricg′(ξ′, ξ′) = 2m we have

Ricg′ = Ric′T − 2g′T + 2mη′ ⊗ η′(9)

= RicT − 2agT + 2mη′ ⊗ η′

= Ric|D×D + 2gT − 2agT + 2mη′ ⊗ η′

= αgT + 2gT − 2agT + 2mη′ ⊗ η′.

This shows that g′ is η-Einstein with

(10) α′ =
α+ 2− 2a

a
.



38 A. FUTAKI AND M.-T. WANG

Thus we have proved the following well-known fact.

Lemma 3.1. Under the D-homothetic transformation of an η-Einstein metric we
have a new η-Einstein metric with

(11) ρ′T = ρT , ω′T = aωT , ρ′T = (α′ + 2)ω′T =
α+ 2

a
ω′T ,

and thus, for any positive constants κ and κ′, a transverse Kähler-Einstein metric
with Einstein constant κ can be transformed by a D-homothetic transformation to a
transverse Kähler-Einstein metric with Einstein constant κ′. The same is true for
negative κ and κ′, and for κ = κ′ = 0.

Given a Sasaki-Einstein metric, a positive constant multiple of the Kähler cone
metric of its D-homothetic transformation may be called a Ricci-flat Kähler cone
metric with aperture, whose Kähler form ω̃ is of the form

(12) ω̃ = Ci∂∂ log r2q

for some positive constants C and q where g = dr2 + r2g is the Ricci-flat Kähler cone
metric of the given Sasaki-Einstein metric.

4. Solitons on Ricci-flat Kähler cones. In this section we apply Calabi’s
ansatz to transversely Kähler-Einstein Sasaki manifolds to obtain gradient Kähler
Ricci solitons. Suppose that we have a transversely Kähler-Einstein Sasaki manifold
so that we have an η-Einstein metric with

Ricg = αg + β η ⊗ η.

This is a transverse Kähler-Einstein metric with transverse Kähler form ωT = 1
2dη

satisfying

ρT = κ ωT

with κ = α+ 2. As was explained in the previous section, on C(S) we have

η = 2dc log r, ωT = ddc log r.

The Calabi’s ansatz seeks for a special metric of the form

ω = ωT + i∂∂F (s).

where we put

s = log r

and where

F ∈ C∞((s1, s2)), (s1, s2) ⊂ (−∞,∞).

Here we search metrics of this form for Kähler-Ricci solitons. We further put

σ = 1 + F ′(s),

and define ϕ(σ) by

(13) ϕ(σ) = F ′′(s).
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Since

i∂∂F (s) = iF ′′(s)∂s ∧ ∂s+ iF ′(s)∂∂s

we have

ω = σωT + ϕ(σ)∂s ∧ ∂s.

Put

lim
s→s1

σ(s) = lim
s→s1

(1 + F ′(s)) = a, lim
s→s2

σ(s) = lim
s→s2

(1 + F ′(s)) = b.

Because of the positivity of ω we must have

(14) σ > 0 and ϕ(σ) > 0

on the region a < σ < b. By σ′(s) > 0, the map σ : (s1, s2) → (a, b) is a diffeomor-
phism.

Conversely, given a positive function ϕ on (a, b) with a > 0 such that

lim
σ→a+

∫ σ

σ0

dx

ϕ(σ)
= s1, lim

σ→b−

∫ σ

σ0

dx

ϕ(σ)
= s2

we define σ(s) by

s =

∫ σ(s)

σ0

dx

ϕ(x)

and define F (s) by

F (s) =

∫ σ(s)

σ0

x− 1

ϕ(x)
dx.

Note that

ds

dσ
=

1

ϕ(σ)
,

dσ

ds
= ϕ(σ) = F ′′(s)

dF

ds
=
σ − 1

ϕ(σ)

dσ

ds
= σ − 1.

If we put s = log r and consider σ and F as a smooth function on

C(S)(s1,s2) := {es1 < r < es2} ⊂ C(S)

then

ωϕ := ωT + ddcF (s)(15)

= σωT + ϕ(σ)i∂s ∧ ∂s
= σωT + ϕ(σ)ωcyl

gives a Kähler form on C(S)(s1,s2) with the Kähler metric

g = σgT + ϕ(σ)gcyl
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where ωcyl and gcyl denote the cylindrical Kähler form and Kähler metric on C−{o}.
It is also possible to write

(16) ωϕ = i∂∂(s+ F (s)).

Let (z0, z1, · · · , zm) be local holomorphic coordinates on C(S) such that

∂

∂z0
=

1

2
(r
∂

∂r
− iJr

∂

∂r
) =

1

2
(r
∂

∂r
− iξ̃).

Then we have

dz0 =
dr

r
+ idψ

and

idz0 ∧ dz0 = 2
dr

r
∧ dψ

where ψ is a local coordinate along the orbit of the Reeb field, so that ξ̃ = ∂/∂ψ.
Using these coordinates one can show as in [10] that

ωm+1
ϕ = σm(m+ 1)ϕ(σ)i∂s ∧ ∂s ∧ (ωT )m

= σm(m+ 1)ϕ(σ)
i

2
dz0 ∧ dz0 ∧ (ωT )m(17)

and that

ρϕ = ρT − i∂∂ log(σmϕ(σ))

= κωT − i∂∂ log(σmϕ(σ)).(18)

Lemma 4.1. Let Q be a smooth function in s. Then grad′ Q(s) is a holomorphic
vector field if and only if

grad Q(s) = µr
∂

∂r

for some constant µ ∈ R. Moreover this is equivalent to

(19) Qs = µϕ(σ)

and also to

(20) Q = µσ + c

where c is a constant.

Proof. The former half follows because r ∂
∂r − iJr ∂

∂r is the only s-dependent
holomorphic vector field. For the latter half of the lemma, since

ϕ(σ)gcyl = ϕ(σ)(ds2 + dθ2)

= ϕ(σ)

(
dr2

r2
+ dθ2

)
=
ϕ(σ)

r2
(dr2 + r2dθ2)
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we have

gradQ =
r2

ϕ(σ)
Qs

∂s

∂r

∂

∂r
=

r2

ϕ(σ)
Qs

1

r

∂

∂r
=

r

ϕ(σ)
Qs

∂

∂r
.

This and the former half of the lemma show

r

ϕ(σ)
Qs = µr,

which implies (19). This completes the proof of Lemma 4.1.
Now let us derive the gradient Kähler-Ricci soliton equation in terms of ϕ. By

(18) we have

ρωϕ
= i∂∂(κs− log(σmϕ(σ))).

Comparing this with (16)

(21) ρωϕ
+ 2λωϕ = i∂∂(κs− log(σmϕ(σ)) + 2λs+ 2λF ).

Put

Q := −κs+ log(σmϕ(σ)) − 2λs− 2λF

so that

ρωϕ
+ 2λωϕ = −i∂∂Q.

In order for ωϕ to be a gradient Kähler-Ricci soliton, gradQ must be the real
part of a holomorphic vector field. So we may apply Lemma 4.1 to this Q. Then we
see from (19) that ϕ(σ) must satisfy

(22) ϕ′(σ) +
(m
σ

− µ
)
ϕ(σ) − (κ+ 2λσ) = 0.

In general a solution to the ODE y′ + p(x)y = q(x) is

(23) y = e−
∫
p(x)dx

(∫
q(x)e

∫
p(x)dxdx+ C

)
.

It follows from (23) that the solution to (22) is given by

(24) ϕ(σ) =
νeµσ

σm
− 2λσ

µ
−

2λ+ κµ
m+1

µm+2

m∑

j=0

(m+ 1)!

j!
µjσj−m.

In the next section we construct Kähler-Ricci solitons on C(S). We thus assume
(s1, s2) = (−∞,∞). We also assume a := lims→−∞ σ(s) ≥ 0. It follows from this
assumption that

(25) ϕ(a) = 0.

It also follows from (24) and (25) that, in either cases of λ = −1, 0 or λ = 1, ν is
determined by

ν = e−µaam


2λ

µ
a+

2λ+ κµ
m+1

µm+2

m∑

j=0

(m+ 1)!

j!
µjaj−m


(26)

=: νλa (µ).



42 A. FUTAKI AND M.-T. WANG

5. Expanding solitons on Ricci-flat Kähler cones. In this section we extend
Cao’s construction [4] of expanding soliton on Cn to the general Ricci-flat Kähler
cones, i.e. the Kähler cones over Sasaki-Einstein manifolds. In this case we require

a = 0.

Geometric reasoning of this requirement is given in sections 4.1 and 4.2 in [9], and we
do not reproduce it here. Then near σ = 0 we have

ϕ(σ) =
νeµσ

σm
− νλ0 (µ)

σm

m∑

j=0

µjσj

j!
− 2λσ

µ
(27)

≈ ν − νλ0 (µ)

σm
(28)

where νλ0 (µ) is the one given as (26) with a = 0:

νλ0 (µ) =
(m+ 1)!(2λ+ κµ

(m+1))

µm+2
.

But we must have

(29) ν = νλ0 (µ),

for if ν < νλ0 (µ) then ϕ(σ) < 0 near σ = 0 contradicting (25), and if ν > νλ0 (µ) then
σ(s) becomes 0 for finite s > −∞.

With this ν, ϕ is written as

ϕ(σ) =
κ

m+ 1
σ + νλ0 (µ)

∞∑

j=2

µj+mσj

(j +m)!
,

so we have a solution σ : (−∞, r1] → R of dσ/ds = ϕ(σ).
Put λ = 1 and µ = −1/q with arbitrary fixed q > 0. We know that ϕ(0) = 0 and

ϕ′(0) > 0. If b is any positive solution of ϕ(b) = 0 then by (22)

ϕ′(b) = κ+ 2b > 0.

This implies that there is no positive zero b, and we have ϕ > 0 for all σ > 0. For
large σ we see from (27) that

dσ

ds
= −2σ

µ
+G(

1

σ
)

where G is smooth at zero. Since µ < 0 then σ extends for all s ∈ R and has the form

σ(s) = e−
2s
µ E(e

2s
µ ) = r−

2
µE(r

2
µ )

where E is smooth at zero and E(0) > 0. This soliton is asymptotic to a Ricci-flat
Kähler cone metric with aperture as can be seen as follows. The vector field µ

2tr
∂
∂r

generates a one parameter group {γt} of transformations such that

γ∗t r = t
µ

2 r.
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Then

γ∗t s = log γ∗t r =
µ

2
log t+ s.

The flow {tγ∗t ω} satisfies

tγ∗t ω = t(t
µ

2 r)−
2
µE((t

µ

2 r)
2
µ )i∂∂s

+t

(
− 2

µ
t−1r−

2
µE(tr

2
µ )− 4

µ2
E′(tr

2
µ )

)
i∂s ∧ ∂s

→ E(0)

(
r−

2
µ i∂∂s− 2

µ
r−

2
µ i∂s ∧ ∂s

)
(30)

as t→ 0. Since we put q = − 1
µ then (30) is equal to

(31) E(0)
(
r2qi∂∂ log r + 2qr2qi∂ log r ∧ i∂ log r

)
= E(0)i∂∂

(
r2q

2q

)
.

This is a Kähler cone metric of an η-Einstein Sasaki manifold.
Thus we have proved the following:

Theorem 5.1. Let S be a compact Sasaki-Einstein manifold and C(S) its Kähler
cone. Then there is a gradient expanding soliton which is asymptotic to a Ricci-flat
cone metric with aperture.

6. Line bundles over toric Fano manifolds. Let M be a Fano manifold of
dimension m, and L → M be a positive line bundle with KM = L−p, p ∈ Z+. Take
k ∈ Z+. Let S be the U(1)-bundle associated with L−k, which is a regular Sasaki
manifold with the Kähler cone C(S) biholomorphic to L−k minus the zero section. It
is proven in [11] that when M is toric then S admits a possibly irregular toric Sasaki-
Einstein metric. Keeping this result in mind we assume that S is a possibly irregular
Sasaki-Einstein manifold whose cone C(S) is nevertheless biholomorphic to the cone
of the regular Sasaki structure, i.e. the total space of L−k minus zero section.

Let κ = 2p
k . Then by a D-homothetic transformation we may assume we have a

transverse Kähler-Einstein metric, i.e. η-Einstein Sasaki metric, such that

ρT = κωT

where ωT and ρT are respectively the transverse Kähler form and its transverse Ricci
form. Then we have

(32) 2[ωT ]/2π = c1(L
k).

In this set-up we apply the computations in section 4, and we have a gradient Kähler-
Ricci soliton ωϕ with ϕ given by (24). Let

lim
s→−∞

σ(s) = a, lim
s→∞

σ(s) = b,

and suppose that a > 0.

Lemma 6.1. If σ is a zero of ϕ then

(33) ϕ′(σ) = κ+ 2λσ.
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Thus if λ = −1 then there are at most two positive zeros, one a with 0 < a ≤ κ
2 and

one b with κ
2 ≤ b. If λ = 1 then there is at most one positive zero 0 < a < 1.

Proof. This follows immediately from (22).

Theorem 6.2. Suppose that the Sasaki-Einstein structure is regular. Then the
Kähler-Ricci soliton given by the solution of (24) with a > 0 extends to the zero section
smoothly if and only if

a = λ(1 − p

k
) = λ(1− κ

2
).

In particular we have 0 < k < p if λ = −1 and that p < k if λ = 1.

Proof. Suppose that ωϕ extends to the zero section as a Kähler form. Since ωϕ

satisfies the Kähler-Ricci soliton equation we have

− 1

2π
[2λωϕ]|M =

1

2π
[ρωϕ

]|M = c1(M) + c1(L
−k).

On the other hand, from

ωϕ = σωT + ϕ(σ)ωcyl

and (32) we have

− 1

2π
[2λωϕ]|M = −λakc1(L).

If λ = ±1 then we have

a = λ(1 − p

k
) = λ(1− κ

2
).

Since a > 0 this shows that 0 < k < p if λ = −1 and that p < k if λ = 1.
Conversely, suppose that we have a = λ(1 − κ

2 ). By (33) if λ = −1 we have

ϕ′(a) = κ− 2a = κ− (κ− 2) = 2.

If λ = 1 then

ϕ′(a) = κ+ 2a = κ+ (2− κ) = 2.

Then the extension to the zero section follows from the Proposition 6.4 below.
Here we take up the problem of completeness of the metrics obtained by Calabi’s

ansatz starting from a compact η-Einstein metric. We do not necessarily assume that
the η-Einstein structure has transversely positive Ricci curvature.

Proposition 6.3. Let ωϕ be the Kähler form obtained by Calabi’s ansatz starting
from a compact Sasaki manifold with an η-Einstein metric g. Then ωϕ defines a
complete metric with noncompact ends towards the end points of I = (a, b) if and only
if the following conditions are satisfied at the end points:

• At σ = a, ϕ vanishes at least to the second order.
• If b is finite then as ϕ vanishes at σ = b at least to the second order.
• If b = ∞ then ϕ grows at most quadratically as σ → ∞.
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Before starting the proof we change the variable by

τ = σ − a

because this makes the arguments more transparent. We regard ϕ as a function of τ ,
and then what we need to show is that, for example, at τ = 0, ϕ vanishes at least to
the second order, and if b = ∞ then ϕ grows at most quadratically as τ → ∞.

Proof. First define the function ℓ(s) by

(34) ℓ(s) =

∫ τ(s)

τ0

dx√
ϕ(x)

.

Then

(35)
dℓ

ds
=

1√
ϕ(τ)

dτ

ds
=

√
ϕ(τ).

Thus ℓ(s) gives the geodesic length along the s-direction with respect to the Kähler
form ωϕ of (15); recall s = log r.

Next consider at τ = 0. By elementary calculus ℓ(s) → ∞ as τ → 0 if and only if
ϕ vanishes at 0 at least to the second order. By the same reason, if b is finite then ϕ
must vanish at τ = b − a at least to the second order. Similarly if b = ∞, ℓ(s) → ∞
as τ → ∞ if and only if ϕ grows at most quadratically.

Proposition 6.4. Let ωϕ be the Kähler form obtained by Calabi’s ansatz starting
from a regular compact η-Einstein Sasaki manifold. Suppose that the profile ϕ is
defined on (a,∞) and that t1 = −∞. Then ωϕ defines a complete metric, has a
noncompact end towards σ = ∞ and extends to a smooth metric on the total space of
the line bundle up to the zero section if and only if ϕ grows at most quadratically as
σ → ∞ and ϕ(a) = 0 and ϕ′(a) = 2.

Proof. As before we use the change of variable

τ = σ − a

and regard ϕ as a function of τ . As in the proof of the previous proposition ϕ must
grow at most quadratically as τ → ∞. Now let us consider at τ = 0. From the
assumptions of the proposition the Sasaki manifold S is the total space of the U(1)-
bundle associated with an Hermitian line bundle (L, h) whose curvature form ωT is
Kähler-Einstein on the base manifold of L. Let z be the fiber coordinate and put
r2 = h|z|2. This is the Kähler form of the cone C(S), which is isomorphic to L minus
the zero section. Recall that the Kähler form ωϕ given by (15) is of the form

ωϕ = (τ + a)ωT + ϕ(τ)∂s ∧ ∂s.

Let π : Lk → M be the projection and i : M → Lk the inclusion to the zero section.
Since ωT is the restriction to Lk − i(M) of π∗ωKE where ωKE is the Kähler form
of a Kähler-Einstein metric on the base manifold M , ωT naturally extends to the
zero section i(M). Therefore we have only to consider ωϕ in the direction of the

holomorphic flow generated by 1
2 (ξ̃ − iJξ̃). Thus we look at

ϕ(τ) idt ∧ dct = ϕ(τ)

4
id log r2 ∧ dc log r2(36)

=
ϕ(τ)

4r2
(h idz ∧ dz +O(|z|)).
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Hence we need only to find the condition for limτ→0 ϕ(τ)/r
2 to exist and be positive.

Suppose that

(37) ϕ(τ) = a1τ +O(τ2).

Since s = log r, τ + a = 1 + F ′(s) and ϕ(τ) = F ′′(s) we have

(38)
dτ

ds
= ϕ(τ) = a1τ +O(τ2).

Thus

(39) lim
τ→0

ϕ(τ)

r2
= lim

s→−∞

ϕ′(τ)dτds
2r drds

=
a1
2

lim
τ→0

ϕ(τ)

r2
.

Therefore if limτ→0
ϕ(τ)
r2 exists and is positive then a1 = 2, i.e. ϕ′(0) = 2. Conversely

if ϕ′(0) = 2 then we have

(40)
dτ

dt
= ϕ(τ) = 2τ +O(τ2) = 2τα(τ)

where α(τ) is a function of τ real analytic near τ = 0 with α(0) = 1 since ϕ is a real
analytic function by (24). We then have

(41)
dτ

τα(τ)
= 2dt

and from this

(42) log τ + β(τ) = c+ 2t

where β(τ) is a real analytic function of τ with β(0) = 0. From this we have

(43) τ = e−β(τ)ec+2t = r2ec−β(τ).

Thus we obtain

(44) lim
τ→0

ϕ(τ)

r2
= lim

τ→0

2τ +O(τ2)

r2
= ec.

This completes the proof of Proposition 6.4.

7. Expanding and shrinking solitons on line bundles over Fano mani-

folds. In the set-up of the section 6 we first consider expanding solitons on L−k with
k > p. Recall that λ = 1 and a = 1 − p/k in this case by Theorem 6.2. By the
same argument as in the proof of Lemma 5.1 of [9] we can prove that an expanding
soliton on L−k must have µ < 0. By (24) the dominant term of ϕ is − 2σ

µ because the

exponential term is tame. We may write σs = ϕ(σ) in the form

σs = −2σ

µ
+G

(
1

σ

)

where G is smooth at zero. Considering the behavior of 1/σ for large s we find that

σ(s) = e−
2s
µ B(e

2s
µ )
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where B is a smooth function with B(0) > 0. Using s = log r we get

ω = e−
2s
µ B(e

2s
µ )ωT +

(
− 2

µ
e−

2s
µ B(e

2s
µ )− 4

µ2
B′(e

2s
µ )

)
ωcyl(45)

= r−
2
µB(r

2
µ )i∂∂s+

(
− 2

µ
r−

2
µB(r

2
µ )− 4

µ2
B′(r

2
µ )

)
i∂s ∧ ∂s.(46)

The vector field µ
2tr

∂
∂r generates a one parameter group {γt} of transformations

such that

γ∗t r = t
µ

2 r.

Then

γ∗t s = log γ∗t r =
µ

2
log t+ s.

The flow {tγ∗t ω} satisfies

tγ∗t ω = t(t
µ

2 r)−
2
µB((t

µ

2 r)
2
µ )i∂∂s

+t

(
− 2

µ
t−1r−

2
µB(tr

2
µ )− 4

µ2
B′(tr

2
µ )

)
i∂s ∧ ∂s

→ B(0)

(
r−

2
µ i∂∂s− 2

µ
r−

2
µ i∂s ∧ ∂s

)
(47)

as t→ 0. If we put q = − 1
µ then (47) is equal to

(48) B(0)
(
r2qi∂∂ log r + 2qr2qi∂ log r ∧ i∂ log r

)
= B(0)i∂∂

(
r2q

2q

)
.

This is a Ricci-flat Kähler cone metric with aperture.
Thus we have proved1:

Theorem 7.1. Let M be a Fano manifold, and L→M be a positive line bundle
with L−p = KM , p ∈ Z+. Suppose that the U(1)-bundle of KM admits a possibly
irregular Sasaki-Einstein metric whose cone C(S) is biholomorphic to the total space of
KM minus the zero section. For k > p, L−k minus the zero section admits a gradient
expanding soliton such that the corresponding Kähler-Ricci flow g(t) converges to a
Ricci-flat Kähler cone metric with aperture, or equivalently a Kähler cone metric over
a transversely Kähler-Einstein Sasaki manifold. Here the Kähler cone manifold is
biholomorphic to L−k minus the zero section and the transversely Kähler-Einstein
Sasaki manifold is diffeomorphic to the total space of U(1)-bundle associated with
L−k. If S admits a regular Sasaki-Einstein metric, i.e. if the underlying toric Fano
manifold M admits a Kähler-Einstein metric then the above soliton extends smoothly
to the zero section.

In the set-up of the previous section 6 we next consider shrinking solitons on L−k

with 0 < k < p. Recall that λ = −1 and that a = κ/2− 1 = p/k − 1 in this case. By

1Professor X.H. Zhu kindly informed us that the regular case of Theorem 7.1 and 7.3 was also
obtained by Y. Bo [1]. A more general and complete set of Ricci solitons was obtained by A. Dancer
and McKenzie Wang in [8].
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the same argument as in the proof of Lemma 6.1 of [9] we can prove that an shrinking
soliton on L−k must have µ > 0 and ν = 0.

From (24), ϕ(a) = 0 can be re-written as

(49) f(a, µ) :=
(m+ 1)!

amµm+2


2am+1µm+1

(m+ 1)!
+

(
2− κµ

m+ 1

) m∑

j=0

ajµj

j!


 = 0.

The following lemma can be proved in the same way as Lemma 6.2 in [9].

Lemma 7.2. For each 0 < σ < κ
2 , there exists a unique positive root µ of

f(σ, µ) = 0. This root satisfies µ > 2(m+1)
κ .

Proof. We may write f in the alternate form

(50) f(σ, µ) =
(m+ 1)!

σmµm+2




m+1∑

j=0

(2σ − κj
m+1 )σ

j−1

j!
µj



 .

Since 0 < σ < κ, the coefficients

1, · · · ,
(2σ − κj

m+1 )σ
j−1

j!
, · · · ,

(2σ − κ(m+1)
m+1 )σ(m+1)−1

(m+ 1)!
=

(2σ − κ)σm

(m+ 1)!

change sign only once, so there is at most one positive root µ of f(σ, µ) = 0. One sees

from (49) that f(σ, 2(m+1)
κ ) = σ > 0, while f(σ, µ) ∼ (σ − κ)/µ < 0 as µ→ ∞.

Since there is no exponential term one can see that σ exists for −∞ < s <∞. It
is now obvious that σ > 0, σ′ > 0. This defines a shrinking soliton on L−k.

The vector field − µ
2tr

∂
∂r generates a one parameter group {γt} of transformations

such that

γ∗t r = (−t)−µ

2 r.

Then

γ∗t s = log γ∗t r = −µ
2
log(−t) + s.

The flow {tγ∗t ω} satisfies

−tγ∗t ω = −t((−t)−µ

2 r)
2
µD(((−t)−µ

2 r)−
2
µ )i∂∂s

−t
(
2

µ
((−t)−µ

2 r)
2
µD((−tr− 2

µ )− 4

µ2
D′(tr−

2
µ )

)
i∂s ∧ ∂s

→ D(0)

(
r

2
µ i∂∂s+

2

µ
r

2
µ i∂s ∧ ∂s

)
(51)

as t→ 0. If we put q = 1
µ then (51) is equal to

(52) D(0)
(
r2qi∂∂ log r + 2qr2qi∂ log r ∧ i∂ log r

)
= D(0)i∂∂

(
r2q

2q

)
.

This is a Ricci-flat Kähler cone metric with aperture, or equivalently a Kähler cone
metric of a transversely Kähler-Einstein Sasaki manifold with positive basic first
Chern class.
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Thus we have proved :

Theorem 7.3. Let M be a Fano manifold, and L→M be a positive line bundle
with L−p = KM , p ∈ Z+. Suppose that the U(1)-bundle of KM admits a possibly
irregular Sasaki-Einstein metric whose cone C(S) is biholomorphic to the total space
of KM minus the zero section. For 0 < k < p, L−k minus the zero section admits a
gradient shrinking soliton g(t) for −∞ < t < 0 such that g(t) converges as t → 0 to
a Ricci-flat Kähler cone metric with aperture, or equivalently a Kähler cone metric
over a transversely Kähler-Einstein Sasaki manifold. Here the Kähler cone manifold
is biholomorphic to L−k minus the zero section and the transversely Kähler-Einstein
Sasaki manifold is diffeomorphic to the total space of U(1)-bundle associated with
L−k. If S admits a regular Sasaki-Einstein metric, i.e. if the underlying toric Fano
manifold M admits a Kähler-Einstein metric then the soliton extends smoothly to the
zero section.

Proof of Theorem 1.1. By Theorem 5.1 we have the expanding soliton on (L−k−Z)
and the corresponding Kähler-Ricci flow on (L−k − Z)× (0,∞). By Theorem 7.3 we
also have the shrinking soliton on (L−k −Z) and the corresponding Kähler-Ricci flow
on (L−k−Z)×(−∞, 0). By adjusting the solitons by homothety so that E(0) = D(0)
we get a smooth soliton on (L−k − Z) × (−∞,∞). If S admits a regular Sasaki-
Einstein structure then the shrinking soliton extends smoothly to the zero section as
stated in Theorem 7.3. This completes the proof of Theorem 1.1.

8. Complete solitons in the cone of compact η-Einstein Sasaki mani-

folds. Let us define a gradient scalar soliton to be a Kähler metric g such that the
scalar curvature S satisfy

(53) S − c+∆Q = 0

where c is a constant and Q is a smooth function whose gradient vector field of Q is
the real part of a holomorphic vector field. The gradient scalar solitons are also called
generalized quasi-Einstein metrics ([12], [17]). We wish to find gradient scalar solitons
using Calabi’s ansatz on the cone of Sasaki manifold with transverse Kähler-Einstein
structure (or equivalently η-Eintstein Sasaki manifold), and with this purpose we go
back to the beginning of section 4. Let ωϕ be the Kähler metric on C(S) defined by
Calabi’s ansatz, expressed as (15). In this section we require (a, b) = (1,∞). Thus
we require

σ − 1 = F ′(s) > 0

and

ϕ(σ) = F ′′ > 0.

Let u(σ) be a smooth function of σ. Then

ddc u(σ) = d (u′(σ)
dσ

ds
dcs)(54)

= u′(σ)ϕ(σ)ddcs+ (u′ϕ)′ϕds ∧ dcs

= u′(σ)ϕ(σ)ddcs+
1

ϕ
(u′ϕ)′dσ ∧ dcσ.

Taking wedge product of this with

(55) ωm
ϕ = σm(ωT )m +mσm−1 ∧ ϕ−1dτ ∧ dcσ
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and comparing it with

(56) ωm+1
ϕ = σm(m+ 1)ϕ−1 dσ ∧ dcσ ∧ (ωT )m.

we obtain the Laplacian ∆ϕ with respect to ωϕ is expressed as

(57) ∆ϕu =
m

σ
u′ϕ+ (u′ϕ)′.

From (15) and (18) the scalar curvature Sϕ of ωϕ is given by

Sϕ =
κm

σ
−∆ϕ log(σmϕ(σ))(58)

=
κm

σ
− mϕ

σ

d

dσ
log σmϕ− d

dσ
(ϕ

d

dσ
log σmϕ)

=
κm

σ
− 1

σm

d2

dσ2
(σmϕ).

From (58) and Lemma 4.1 the gradient scalar soliton equation is written as

Sϕ − c =
κm

σ
− c− 1

σm

d2

dσ2
(σmϕ)

= ∆ϕ(−µσ)
= −µ(mϕ

σ
+ ϕ′)

= − µ

σm

d

dσ
(σmϕ).

Namely the gradient scalar soliton equation is

(59) (σmϕ)′′ − µ(σmϕ)′ = mκσm−1 − cσm.

Integrating this we obtain

(60) (σmϕ)′ − µσmϕ = κσm − c

m+ 1
σm+1 + c1.

Applying (23) the solution to

y′ − µy = κxm − c

m+ 1
x+ c1

is given by

y = eµx(−κ
m∑

j=0

xm−j

µj+1
e−µx m!

(m− j)!
+

c

µ(m+ 1)
xm+1e−µx(61)

− c

µ

m∑

j=0

xm−j

µj+1
e−µx − c1

µ
e−µx + c2).

= −(κ+
c

µ
)

m∑

j=0

m!

(m− j)!

xm−j

µj+1
+

c

µ(m+ 1)
xm+1 − c1

µ
+ c2e

µx.

Substituting y = σmϕ and x = σ into (61) we obtain the solution ϕ(σ) as

(62) ϕ(σ) = −(κ+
c

µ
)

m∑

j=0

m!

(m− j)!

σ−j

µj+1
+

c

µ(m+ 1)
σ − c1

µ
σ−m + c2e

µσσ−m
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In order for the solution to be complete near σ = 1 we need only have

ϕ(1) = ϕ′(1) = 0

by Proposition 6.3. Then it follows from (60) that

(63) c1 = −κ+
c

m+ 1
.

Substituting (63) into (60) we get

(64) (σmϕ)′ − µσmϕ = σm(κ− c

m+ 1
σ)− κ+

c

m+ 1
.

The constant c2 is determined by ϕ(1) = 0 using (62) and (63), and is given by

(65) c2 = e−µ(κ

m∑

j=1

m!

(m− j)!

1

µj+1
+ c

m∑

j=0

m!

(m− j)!

1

µj+2
).

Theorem 8.1. Let S be a compact Sasaki manifold with transversely Kähler-
Einstein metric with RicT = κωT , in other words S is a compact η-Einstein Sasaki
manifold. Consider Calabi’s ansatz (59) for the gradient scalar soliton equation (53).
Suppose κ − c

m+1 ≥ 0, c < 0 and µ < 0. Then there exists a solution ϕ(σ) giving a
complete gradient scalar soliton in the cone C(S).

Proof. With the constants c1 and c2 given by (63) and (65) we have ϕ(1) =
ϕ′(1) = 0. We first show that for σ > 1 we have ϕ > 0. Since c < 0 and σ > 1 we
have from (64)

(σmϕ)′ − µσmϕ ≥ (κ− c

m+ 1
σ) − κ+

c

m+ 1

= − c

m+ 1
(σ − 1) > 0.(66)

This shows that ϕ(σ) can not be nonpositive for σ > 1.

Thus the Kähler form ωϕ of Calabi’s ansatz (15) exists for all σ > 1. We have
ϕ(1) = ϕ′(1) = 0 and ϕ(σ) is linear growth when σ → ∞. Hence this metric is
complete by Proposition 6.3. This completes the proof of Theorem 8.1.

Proof. [Proof of Theorem 1.2] Comparing (60) with (22) we see that a gradient
scalar soliton is a gradient Ricci soliton if and only if

c1 = 0 and 2λ = − c

m+ 1
.

This equivalent to

(67) c = (m+ 1)κ = −2λ(m+ 1)

The assumption of Theorem 8.1 is satisfied if κ < 0 and µ < 0. But κ < 0 is assumed
in Theorem 1.2 and the choice of µ is arbitrary and we may take µ < 0. This completes
the proof of Theorem 1.2.
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