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Introduction. Let G be a connected reductive group over an algebraically closed
field k of characteristic p ≥ 0. Let W be the Weyl group of G. Let W be the set
of conjugacy classes in W. The main purpose of this paper is to give a (partly
conjectural) definition of a surjective map from W to the set of unipotent classes in
G (see 1.2(b)). When p = 0, a map in the opposite direction was defined in [KL, 9.1]
and we expect that it is a one sided inverse of the map in the present paper. The
(conjectural) definition of our map is based on the study of certain subvarieties Bw

g

(see below) of the flag manifold B of G indexed by a unipotent element g ∈ G and an
element w ∈ W.

Note that W naturally indexes (w 7→ Ow) the orbits of G acting on B × B by
simultaneous conjugation on the two factors. For g ∈ G we set Bg = {B ∈ B; g ∈ B}.
The varieties Bg play an important role in representation theory and their geometry
has been studied extensively. More generally for g ∈ G and w ∈ W we set

Bw
g = {B ∈ B; (B, gBg−1) ∈ Ow}.

Note that B1
g = Bg and that for fixed g, (Bw

g )w∈W form a partition of the flag manifold
B.

For fixed w, the varieties Bw
g (g ∈ G) appear as fibres of a map to G which was

introduced in [L3] as part of the definition of character sheaves. Earlier, the varieties
Bw
g for g regular semisimple appeared in [L1] (a precursor of [L3]) where it was shown

that from their topology (for k = C) one can extract nontrivial information about the
character table of the corresponding group over a finite field.

I thank David Vogan for some useful discussions.

1. The sets Sg.

1.1. We fix a prime number l invertible in k. Let g ∈ G and w ∈ W. For i, j ∈ Z

let Hi
c(Bw

g , Q̄l)j be the subquotient of pure weight j of the l-adic cohomology space

Hi
c(Bw

g , Q̄l). The centralizer Z(g) of g in G acts on Bw
g by conjugation and this induces

an action of the group of components Z̄(g) on Hi
c(Bw

g , Q̄l) and on each Hi
c(Bw

g , Q̄l)j .

For z ∈ Z̄(g) we set

Ξw
g,z =

∑

i,j∈Z

(−1)itr(z,Hi
c(Bw

g , Q̄l)j)v
j ∈ Z[v]

where v is an indeterminate; the fact that this belongs to Z[v] and is independent of
the choice of l is proved by an argument similar to that in the proof of [DL, 3.3].
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2 g. lusztig

Let l : W −→ N be the standard length function. The simple reflections s ∈ W

(that is the elements of length 1 of W) are numbered as s1, s2, . . . . Let w0 be the
element of maximal length in W.

Let H be the Iwahori-Hecke algebra of W with parameter v2 (see [GP, 4.4.1]; in
the definition in loc.cit. we take A = Z[v, v−1], as = v2, bs = v2 − 1). Let (Tw)w∈W

be the standard basis of H (see [GP, 4.4.3, 4.4.6]). For w ∈ W let T̂w = v−2l(w)Tw. If

si1si2 . . . sit is a reduced expression for w ∈ W we write also T̂w = T̂i1i2...it .
For any g ∈ G, z ∈ Z̄(g) we set

Πg,z =
∑

w∈W

Ξw
g,z T̂w ∈ H.

The following result can be proved along the lines of the proof of [DL, Theorem 1.6]
(we replace the Frobenius map in that proof by conjugation by g); alternatively, for g
unipotent, we may use 1.5(a).

(a) Πg,z belongs to the centre of the algebra H.

According to [GP, 8.2.6, 7.1.7], an element c =
∑

w∈W
cwT̂w (cw ∈ Z[v, v−1]) in the

centre of H is uniquely determined by the coefficients cw(w ∈ Wmin) and we have
cw = cw′ if w,w′ ∈ Wmin are conjugate in W; here Wmin is the set of elements of
W which have minimal length in their conjugacy class. This applies in particular to
c = Πg,z, see (a). For any C ∈ W we set ΞC

g,z = Ξw
g,z where w is any element of

C ∩Wmin.
Note that if g = 1 then Πg,1 = (

∑
w v2l(w))1. If g is regular unipotent then

Πg,1 =
∑

w∈W
v2l(w)T̂w. If G = PGL3(k) and g ∈ G is regular semisimple then

Πg,1 = 6 + 3(v2 − 1)(T̂1 + T̂2) + (v2 − 1)2(T̂12 + T̂21) + (v6 − 1)T̂121; if g ∈ G is a

transvection then Πg,1 = (2v2 + 1) + v4(T̂1 + T̂2) + v6T̂121.

For g ∈ G let cl(g) be the G-conjugacy class of g; let cl(g) be the closure of
cl(g). Let Sg be the set of all C ∈ W such that ΞC

g,1 6= 0 and ΞC
g′,1 = 0 for any

g′ ∈ cl(g)− cl(g). If C is a conjugacy class in G we shall also write SC instead of Sg

where g ∈ C.
We describe the set Sg and the values ΞC

g,1 for C ∈ Sg for various G of low rank
and various unipotent elements g in G. We denote by un a unipotent element of G
such that dimBun

= n. The conjugacy class of w ∈ W is denoted by (w).
G of type A1.

Su1
= (1),Su0

= (s1); Ξ
1
u1,1 = 1 + v2,Ξs1

u0,1
= v2.

G of type A2.

Su3
= (1),Su1

= (s1),Su0
= (s1s2).

Ξ1
u3,1 = 1 + 2v2 + 2v4 + v6,Ξ

(s1)
u1,1

= v4,Ξ
(s1s2)
u0,1

= v4.

G of type B2, p 6= 2. (The simple reflection corresponding to the long root is denoted
by s1.)

Su4
= (1),Su2

= (s1),Su1
= {(s2), (s1s2s1s2)},Su0

= (s1s2).

Ξ1
u4,1 = (1 + v2)2(1 + v4),Ξ

(s1)
u2,1

= v4(1 + v2),Ξ
(s2)
u1,1

= 2v4,

Ξ
(s1s2s1s2)
u1,1

= v6(v2 − 1),Ξ
(s1s2)
u0,1

= v4.
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G of type B2, p = 2. (u′
2 denotes a transvection; u′′

2 denotes a unipotent element with
dimBu′′

2
= 2 which is not conjugate to u′

2.)

Su4
= (1),Su′

2
= (s1),S(u

′′
2 ) = (s2),Su1

= (s1s2s1s2),Su0
= (s1s2).

Ξ1
u4,1 = (1 + v2)2(1 + v4),Ξ

(s1)
u′

2
,1 = v4(1 + v2),Ξ

(s2)
u′′

2
,1 = v4(1 + v2),

Ξ
(s1s2s1s2)
u1,1

= v8,Ξ
(s1s2)
u0,1

= v4.

G of type G2, p 6= 2, 3. (The simple reflection corresponding to the long root is denoted
by s2.)

Su6
= (1),Su3

= (s2),Su2
= {(s1), (s1s2s1s2s1s2)},Su1

= (s1s2s1s2),

Su0
= (s1s2).

Ξ1
u6,1 = (1 + v2)2(1 + v4 + v8),Ξ

(s2)
u3,1

= v6(1 + v2),Ξ
(s1)
u2,1

= v4(1 + v2),

Ξ
(s1s2s1s2s1s2)
u2,1

= v8(v4 − 1),Ξ
(s1s2s1s2)
u1,1

= 2v8,Ξ
(s1s2)
u0,1

= v4.

G is of type A3. (The simple reflections are s1, s2, s3 with s1s3 = s3s1).

Su6
= (1),Su3

= (s1),Su2
= (s1s3),Su1

= (s1s2),Su0
= (s1s2s3).

Ξ1
u6,1 = (1 + v2)(1 + v2 + v4)(1 + v2 + v4 + v6),Ξ

(s1)
u3,1

= v6 + v8,

Ξ
(s1s3)
u2,1

= v6 + v8,Ξ
(s1s2)
u1,1

= v6,Ξ
(s1s2s3)
u0,1

= v6.

G of type B3, p 6= 2. (The simple reflection corresponding to the short root is denoted
by s3 and (s1s3)

2 = 1.)

Su9
= (1),Su5

= (s1),Su4
= {(s3), (s2s3s2s3)},Su3

= {(s1s3), (w0)},
Su2

= (s1s2),Su1
= {(s2s3), (s2s3s1s2s3)},Su0

= (s1s2s3).

Ξ1
u9,1 = (1 + v2)3(1 + v4)(1 + v4 + v8),Ξ

(s1)
u5,1

= v8(1 + v2)2,

Ξ
(s2s3s2s3)
u4,1

= v8(1 + v2)(v4 − 1),Ξ
(s3)
u4,1

= 2v6(1 + v2)2,

Ξ
(s1s3)
u3,1

= v8(1 + v2),Ξ
(w0)
u3,1

= v14(v4 − 1),Ξ
(s1s2)
u2,1

= 2v8,

Ξ
(s2s3)
u1,1

= 2v6,Ξ
(s2s3s1s2s3)
u1,1

= v8(v2 − 1),Ξ
(s1s2s3)
u0,1

= v6.

G of type C3, p 6= 2. (The simple reflection corresponding to the long root is denoted
by s3 and (s1s3)

2 = 1; u′′
2 denotes a unipotent element which is regular inside a Levi

subgroup of type C2; u
′
2 denotes a unipotent element with dimBu′′

2
= 2 which is not

conjugate to u′′
2 .)

Su9
= (1),Su6

= (s3),Su4
= {(s1), (s2s3s2s3)},Su3

= {(s1s3), (w0)},
Su′

2
= (s1s2),Su′′

2
= (s2s3),Su1

= (s2s3s1s2s3),Su0
= (s1s2s3).
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Ξ1
u9,1 = (1 + v2)3(1 + v4)(1 + v4 + v8),Ξ

(s3)
u6,1

= v6(1 + v2)2(1 + v4),

Ξ
(s2s3s2s3)
u4,1

= v10(v4 − 1),Ξ
(s1)
u4,1

= 2v8(1 + v2),

Ξ
(s1s3)
u3,1

= v8(1 + v2),Ξ
(w0)
u3,1

= v14(v4 − 1),Ξ
(s1s2)
u′

2
,1 = v6(1 + v2),

Ξ
(s2s3)
u′′

2
,1 = v6(1 + v2),Ξ

(s2s3s1s2s3)
u1,1

= v10,Ξ
(s1s2s3)
u0,1

= v6.

1.2. We expect that the following property of G holds:

(a) W = ⊔uSu

(u runs over a set of representatives for the unipotent classes in G).
The equality W = ∪uSu is clear since for a regular unipotent u and any w we

have Ξw
u,1 = v2l(w). Note that (a) holds for G of rank ≤ 3 if p is not a bad prime for

G (see 1.1). We will show elsewhere that (a) holds for G of type An (any p) and of
type Bn, Cn, Dn (p 6= 2). When G is simple of exceptional type, (a) should follow by
computing the product of some known (large) matrices using 1.5(a).

Assuming that (a) holds we define a surjective map fromW to the set of unipotent
classes in G by

(b) C 7→ C

where C ∈ W and C is the unique unipotent class in G such that C ∈ Su for u ∈ C.
We expect that when p = 0 we have

(c) cu ∈ Su

where for any unipotent element u ∈ G, cu denotes the conjugacy class inW associated
to u in [KL, 9.1]. Note that (c) holds for G of rank ≤ 3 (see 1.1). (We have used the
computations of the map in [KL, 9.1] given in [KL, §9], [S1], [S2].)

Note added on October 21, 2010. After this paper was submitted, property (a) was
established (in good characteristic) in the author’s paper ”From conjugacy classes in
the Weyl group to unipotent classes”, to appear in Representation Theory (electronic).

1.3. Assume that G = Sp2n(k) and p 6= 2. The Weyl group W can be identified
in the standard way with the subgroup of the symmetric group S2n consisting of all
permutations of [1, 2n] which commute with the involution i 7→ 2n+1−i. We say that
two elements of W are equivalent if they are contained in the same conjugacy class of
S2n. The set of equivalence classes in W is in bijection with the set of partitions of
2n in which every odd part appears an even number of times (to C ∈ W we attach
the partition which has a part j for every j-cycle of an element of C viewed as a
permutation of [1, 2n]). The same set of partitions of 2n indexes the set of unipotent
classes of G. Thus we obtain a bijection between the set of equivalence classes in W

and the set of unipotent classes of G. In other words we obtain a surjective map φ

from W to the set of unipotent classes of G whose fibres are the equivalence classes in
W. We will show elsewhere that for any unipotent class C in G we have φ−1(C) = Su

where u ∈ C.
1.4. Recall that the set of unipotent elements in G can be partitioned into ”spe-

cial pieces” (see [L5]) where each special piece is a union of unipotent classes exactly
one of which is ”special”. Thus the special pieces can be indexed by the set of isomor-
phism classes of special representations of W which depends only on W as a Coxeter
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group (not on the underlying root system). For each special piece σ of G we consider
the subset Sσ := ⊔C⊂σSC of W (here C runs over the unipotent classes contained in
σ). We expect that each such subset Sσ depends only on the Coxeter group structure
of W (not on the underlying root system). As evidence for this we note that the
subsets Sσ for G of type B3 are the same as the subsets Sσ for G of type C3. These
subsets are as follows:

{1}, {(s1), (s3), (s2s3s2s3)}, {(s1s3), (w0)}, {(s1s2)},
{(s2s3), (s2s3s1s2s3)}, {(s1s2s3)}.

1.5. Let g ∈ G be a unipotent element and let z ∈ Z̄(g), w ∈ W . We show how
the polynomial Ξw

g,z can be computed using information from representation theory.
We may assume that p > 1 and that k is the algebraic closure of the finite field Fp. We
choose an Fp split rational structure on G with Frobenius map F0 : G −→ G. We may
assume that g ∈ GF0 . Let q = pm where m ≥ 1 is sufficiently divisible. In particular
F := Fm

0 acts trivially on Z̄(g) hence cl(g)F is a union of GF -conjugacy classes
naturally indexed by the conjugacy classes in Z̄(g); in particular the GF -conjugacy
class of g corresponds to 1 ∈ Z̄(g). Let gz be an element of the GF -conjugacy class in
cl(g)F corresponding to the Z̄(g)-conjugacy class of z ∈ Z̄(g). The set Bw

gz
is F -stable.

We first compute the number of fixed points |(Bw
gz
)F |.

Let Hq = Q̄l ⊗Z[v,v−1] H where Q̄l is regarded as a Z[v, v−1]-algebra with v

acting as multiplication by
√
q. We write Tw instead of 1 ⊗ Tw. Let IrrW be a set

of representatives for the isomorphism classes of irreducible W-modules over Q̄l. For
any E ∈ IrrW let Eq be the irreducible Hq-module corresponding naturally to E.
Let F be the vector space of functions BF −→ Q̄l. We regard F as a GF -module by
γ : f 7→ f ′, f ′(B) = f(γ−1Bγ) for all B ∈ BF . We identify Hq with the algebra
of all endomorphisms of F which commute with the GF -action, by identifying Tw

with the endomorphism f 7→ f ′ where f ′(B) =
∑

B′∈BF ;(B,B′)∈Ow
f(B) for all B ∈

BF . As a module over Q̄l[G
F ] ⊗ Hq we have canonically F = ⊕E∈IrrWρE ⊗ Eq

where ρE is an irreducible GF -module. Hence if γ ∈ GF and w ∈ W we have
tr(γTw,F) =

∑
E∈IrrW tr(γ, ρE)tr(Tw, Eq). From the definition we have tr(γTw,F) =

|{B ∈ BF ; (B, γBγ−1) ∈ Ow}| = |(Bw
γ )

F |. Taking γ = gz we obtain

(a) |(Bw
gz
)F | =

∑

E∈IrrW

tr(gz, ρE)tr(Tw, Eq).

The quantity tr(gz, ρE) can be computed explicitly, by the method of [L4], in terms
of generalized Green functions and of the entries of the non-abelian Fourier trans-
form matrices [L2]; in particular it is a polynomial with rational coefficients in

√
q.

The quantity tr(Tw, Eq) can be also computed explicitly (see [GP], Ch.10,11); it is a
polynomial with integer coefficients in

√
q. Thus |(Bw

gz
)F | is an explicitly computable

polynomial with rational coefficients in
√
q. Substituting here

√
q by v we obtain the

polynomial Ξw
g,z . (Here we use the trace formula for Frobenius maps.) This argument

shows also that Ξw
g,z is independent of p (note that the pairs (g, z) up to conjugacy

may be parametrized by a set independent of p).
This is how the various Ξw

g,z in 1.1 were computed, except in type A1, A2, B2

where they were computed directly from the definitions. (For type B3, C3 we have
used the computation of Green functions in [Sh]; for type G2 we have used directly
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[CR] for the character of ρE at unipotent elements.)

1.6. In this section we assume that G is simply connected. Let G̃ = G(k((ǫ)))

where ǫ is an indeterminate. Let B̃ be the set of Iwahori subgroups of G̃. Let W̃ be
the affine Weyl group attached to G̃. Note that W̃ naturally indexes (w 7→ Ow) the

orbits of G̃ acting on B̃×B̃ by simultaneous conjugation on the two factors. For g ∈ G̃

and w ∈ W̃ we set

B̃w
g = {B ∈ B̃; (B, gBg−1) ∈ Ow}.

By analogy with [KL, §3] we expect that when g is regular semisimple, B̃w
g has a

natural structure of a locally finite union of algebraic varieties over k of bounded
dimension and that, moreover, if g is also elliptic, then B̃w

g has a natural structure of

algebraic variety over k. It would follow that for g elliptic and w ∈ W̃,

Ξw
g =

∑

i,j∈Z

(−1)i dimHi
c(B̃w

g , Q̄l)jv
j ∈ Z[v]

is well defined; one can then show that the formal sum
∑

w∈W̃
Ξw
g T̂w is central in

the completion of the affine Hecke algebra consisting of all formal sums
∑

w∈W̃
awT̂w

(aw ∈ Q(v)) that is, it commutes with any T̂w. (Here T̂w is defined as in 1.1 and the
completion of the affine Hecke algebra is regarded as a bimodule over the actual affine
Hecke algebra in the natural way.)

2. The sets sg.

2.1. In this section we assume that G is adjoint and p is not a bad prime for G.
For g ∈ G, z ∈ Z̄(g), w ∈ W we set

ξwg,z = Ξw
g,z |v=1 =

∑

i∈Z

(−1)itr(z,Hi
c(Bw

g , Q̄l)) ∈ Z.

This integer is independent of l. For any g ∈ G, z ∈ Z̄(g) we set

πg,z =
∑

w∈W

ξwg,zw ∈ Z[W ].

This is the specialization of Πg,z for v = 1. Hence from 1.1(a) we see that πg,z is in
the centre of the ring Z[W]. Thus for any C ∈ W we can set ξCg,z = ξwg,z where w is

any element of C. For g ∈ G let sg be the set of all C ∈ W such that ξCg,z 6= 0 for some

z ∈ Z̄(g) and ξCg′,z′ = 0 for any g′ ∈ cl(g) − cl(g) and any z′ ∈ Z̄(g′). We describe

the set sg and the values ξCg,z = 0 for C ∈ sg, z ∈ Z̄(g), for various G of low rank and
various unipotent elements g in G. We use the notation in 1.1. Moreover in the case
where Z̄(g) 6= {1} we denote by zn an element of order n in Z̄(g).

G of type A1.

su1
= (1), su0

= (s1); ξ
1
u1,1 = 2, ξs1u0,1

= 1.

G of type A2.

su3
= (1), su1

= (s1), su0
= (s1s2).

ξ1u3,1 = 6, ξ
(s1)
u1,1

= 1, ξ
(s1s2)
u0,1

= 1.
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G of type B2.

su4
= (1), su2

= (s1), su1
= {(s2), (s1s2s1s2)}, su0

= (s1s2).

ξ1u4,1 = 8, ξ
(s1)
u2,1

= 2, ξ
(s2)
u1,1

= 2, ξ
(s1s2s1s2)
u1,1

= 0,

ξ(s2)u1,z2
= 0, ξ(s1s2s1s2)u1,z2

= 2, ξ
(s1s2)
u0,1

= 1.

G of type G2.

su6
= (1), su3

= (s2), su2
= (s1), su1

= {(s1s2s1s2s1s2), (s1s2s1s2)}, su0
= (s1s2).

ξ1u6,1 = 12, ξ
(s2)
u3,1

= 2, ξ
(s1)
u2,1

= 2, ξ
(s1s2s1s2s1s2)
u1,1

= −3, ξ(s1s2s1s2s1s2)u1,z2
= 3,

ξ(s1s2s1s2s1s2)u1,z3
= 0, ξ

(s1s2s1s2)
u1,1

= 2, ξ(s1s2s1s2)u1,z2
= 0, ξ(s1s2s1s2)u1,z3

= 2, ξ
(s1s2)
u0,1

= 1.

G of type B3.

su9
= (1), su5

= (s1), su4
= {(s3), (s2s3s2s3)}, su3

= (s1s3),

su2
= {(s1s2), (w0)}, su1

= {(s2s3), (s2s3s1s2s3)}, su0
= (s1s2s3).

ξ1u9,1 = 48, ξ
(s1)
u5,1

= 4, ξ
(s2s3s2s3)
u4,1

= 0, ξ(s2s3s2s3)u4,z2
= 4, ξ

(s3)
u4,1

= 8,

ξ
(s3)
u4,1

= 0, ξ
(s1s3)
u3,1

= 2, ξ
(w0)
u2,1

= 0, ξ(w0)
u2,z2

= 6

ξ
(s1s2)
u2,1

= 2, ξ(s1s2)u2,z2
= 0, ξ

(s2s3)
u1,1

= 2, ξ(s2s3)u1,z2
= 0,

ξ
(s2s3s1s2s3)
u1,1

= 0, ξ(s2s3s1s2s3)u1,z2
= 2, ξ

(s1s2s3)
u0,1

= 1.

G of type C3.

su9
= (1), su6

= (s3), su4
= {(s1), (s2s3s2s3)}, su3

= (s1s3),

su′

2
= (s1s2), su′′

2
= (s2s3), su1

= {(s2s3s1s2s3), w0}su0
) = (s1s2s3).

ξ1u9,1 = 48, ξ
(s3)
u6,1

= 8, ξ
(s2s3s2s3)
u4,1

= 0, ξ(s2s3s2s3)u4,z2
= 4,

ξ
(s1)
u4,1

= 4, ξ
(s1)
u4,1

= 0, ξ
(s1s3)
u3,1

= 2, ξ
(s1s2)
u′

2
,1 = 2, ξ

(s2s3)
u′′

2
,1 = 2,

ξ
(s2s3s1s2s3)
u1,1

= 1, ξ(s2s3s1s2s3)u1,z2
= 1, ξ

(w0)
u1,1

= −3, ξ(w0)
u1,z2

= 3, ξ
(s1s2s3)
u0,1

= 1.

2.2. For any unipotent element u ∈ G let nu be the number of isomorphism
classes of irreducible representations of Z̄(u) which appear in the Springer correspon-
dence for G. Consider the following properties of G:

(a) W = ⊔usu

(u runs over a set of representatives for the unipotent classes in G); for any unipotent
element u ∈ G,

(b) |su| = nu.

The equality W = ∪usu is clear since for a regular unipotent u and any w we have
ξwu,1 = 1. Note that (a),(b) hold in the examples in 2.1. We will show elsewhere that
(a),(b) hold if G is of type A. We expect that (a),(b) hold in general.
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Consider also the following property of G: for any g ∈ G, w ∈ W,

ξwg,1 is equal to the trace of w on the Springer representation

of W on ⊕iH
2i(Bg, Q̄l).(c)

Again (c) holds if G is of type A and in the examples in 2.1; we expect that it holds in
general. Note that in (c) one can ask whether for any z, ξwg,z is equal to the trace of wz

on the Springer representation of W × Z̄(g) on ⊕iH
2i(Bg, Q̄l); but such an equality

is not true in general for z 6= 1 (for example for G of type B2).

REFERENCES

[CR] B. Chang and R. Ree, The characters of G2(q), Istituto Naz. di Alta Mat. Symposia Math.,
XIII (1974), pp. 395–413.

[DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann.
Math., 103 (1976), pp. 103–161.

[GP] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras,
Clarendon Press Oxford, 2000.

[KL] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Isr. J. Math., 62
(1988), pp. 129–168.

[L1] G. Lusztig, On the reflection representation of a finite Chevalley group, in Representation
theory of Lie groups, LMS Lect. Notes Ser. 34, Cambridge U. Press, 1979, pp. 325–337.

[L2] G. Lusztig, Unipotent representations of a finite Chevalley group of type E8, Quart. J. Math.,
30 (1979), pp. 315–338.

[L3] G. Lusztig, Character sheaves, I, Adv. in Math., 56 (1985), pp. 193–237.
[L4] G. Lusztig, On the character values of finite Chevalley groups at unipotent elements, J. Alg.,

104 (1986), pp. 146–194.
[L5] G. Lusztig, Notes on unipotent classes, Asian J. Math., 1 (1997), pp. 194–207.
[Sh] T. Shoji, On the Green polynomials of Chevalley groups of type F4, Comm. in Alg., 10 (1982),

pp. 505–543.
[S1] N. Spaltenstein, Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl
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