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ESTIMATES FOR THE HEAT KERNEL ON DIFFERENTIAL FORMS
ON RIEMANNIAN SYMMETRIC SPACES AND APPLICATIONS *
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Abstract. We prove upper bounds estimates for the large time behavior of the heat kernel
and for the resolvent of the form Laplacian on Riemannian symmetric spaces, and we obtain L2te.
estimates for its resolvent on locally symmetric spaces. We deduce lower bounds for the bottom
of the spectrum of the form Laplacian and some results on the vanishing of the L2-cohomology of
locally symmetric spaces.
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1. Introduction. In the last decades the heat kernel has become a fundamen-
tal and powerful tool, subject of a rich and vast literature, reflecting its universality
and formidable efficiency: Atiyah-Singer index theory, K-theory, spectral geometry,
zeta and theta functions, L2-invariants, anomalies, quantum gravity, ... (see e.g.
[4], 7], [28], [37]). Despite these tremendous advances, explicit estimates for the
asymptotics of the heat kernel and computation of related L2-invariants are not avail-
able in general. However, for a large class of Riemannian manifolds, representation
theoretic techniques may be used to obtain estimates for the asymptotics, compute
L?-invariants and derive some results on the L2-cohomology.

More precisely, let G be a non compact connected semisimple Lie group with
finite center and K a maximal compact subgroup of G. The homogeneous space
G/K is naturally equipped with a structure of a non compact Riemannian symmetric
manifold, the metric being induced by the Killing form of G. A finite dimensional
representation (7, E) of K induces a homogeneous vector bundle £ over G/K. The
group G acts by left translations on the Hilbert space L?(G/K, £) of square integrable
sections of £. Let

D:L*G/K,E) — L*(G/K,E)

be a G-invariant selfadjoint positive elliptic operator, i.e D commutes with the action
of G on L*(G/K,E). Denote by P, =e ' the fundamental solution of the heat
equation

DP,=-2P, t>0
Py=9
where § is the Dirac function. In particular, for each ¢ in L*(G/K, &), the convolution
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product P; x 1) is a solution of the heat equation in L?(G/K, &)

Doy = —Z¢p, t>0

¢o = 1.

It is known (see [6]) that the heat operator P; =e P is a bounded operator on
L*(G/K, &) so that

(P.f)(g) = /G Pulg.g)f(g)dd', Vi € I*(G/K,E)
where
Pi: G x G— End(E)

is the heat kernel, and End(F) denotes the vector space of complex endomorphisms
of E.

On the other hand, a torsion free discrete subgroup I of G acts on the left on G/ K,
so that the double coset space I'\G/K is a locally symmetric Riemannian manifold.
Except otherwise stated, we assume that I" is not of finite covolume in G. Since G/K
is simply connected, it is the universal cover of I'\G/K and

I ~ I, (I\G/K).

The bundle £ can be pushed down to a bundle over I'\G/K and we let L*(T\G/K, &)
denote the corresponding Hilbert space of square integrable sections. In particular, the
operator D drops down to I'\G/K and defines a locally invariant selfadjoint positive
elliptic operator

D: L*(I\G/K,€) — L*(I\G/K, ).

Write respectively 15,5 and ’ﬁt for the corresponding heat operator and heat kernel. In

this setting a certain pair (D, &) will be distinguished. This particular pair, which we

will focus on, may be thought of as a fundamental model for the general theory.
Consider the Cartan decomposition

g=t3Ps

of g, where g (resp. t) is the complexification of the Lie algebra of G (resp. K) and
s is a complex vector subspace of g satisfying the bracket relations

[t,s] Cs and [s,s] C L

The adjoint representation of G induces a finite dimensional representation o, of K
on the exterior product

V, = Als

of s, for £ =0,---,dim(s), known as the isotropy representation. It should be noted
that the decomposition of g, into irreducible components is not known in general, ex-
cept for (real) rank one groups [13]. We have made some explicit computations for real
groups with (real) rank two and for complex groups. These results are described in
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the appendix. From now on we choose the representation (7, E) to be the isotropy rep-
resentation of K. In particular the Hilbert space LQ(G/K, &) (resp. L*(I\G/K,€E))
identifies naturally with the space L?(G/K,V,) (resp. L*(T\G/K,V;)) of square in-
tegrable (-forms on G/K (resp. I'\G/K). Then we take D (resp. D) to be the
Hodge-de Rham Laplacian A, (resp. 54) acting on /-forms, with corresponding heat
kernel Pf (resp. ﬁf) Related to the large time behavior of the heat kernel, there
are several interesting L2-invariants of I'\G /K which can be computed explicitly [33].
One of these invariants will bear some special interest to us. Let Aj be the restriction
of Ay to the orthogonal complement of Ker(A;) in L?(G/K,V;). The T-trace of the
corresponding heat kernel Pf L is defined as follows:

TYF(Pf’L) :/ Tr(Pf’L(:c,:c))dx
f

where F C G/K is a fundamental domain for the action of I' on G/K. Then the fth
Novikov-Shubin invariant of I'\G/K is given by

(1.1) a((D\G/K) = sup{b € Ry | Trp (P;") A O 2)).

This value (possibly infinite), which does not depend on T, nor on the Riemannian
metric on T'\G/ K, measures the asymptotic behavior of the spectral density function
of Ay at 0. Roughly speaking the ¢th Novikov-Shubin invariant measures the thickness
of the spectrum of Ay near 0. Using a Plancherel formula for differential forms, we
have computed, for I" of finite covolume, explicitly these invariants in [26] (see [33] for
a more complete discussion on L2-invariants of locally symmetric spaces):

rkc(G) —rke(K) if £ € I(G; K) and rke(G) > rke(K)
ar(T\G/K) =

oot otherwise

where rkc(G) (resp. rke(K)) denotes the complex rank of G (resp. K) and I(G; K)
is the interval [ dimgr(G/K) — 1 (tkc(G) — tke(K)), 3 dimr(G/K) + 4 (tke (G

In the sequel we shall focus on the continuous part of the heat kernel. More
precisely, let ’Pf L be the heat kernel associated with Aj, i.e the projection of Pf onto
the restriction of A, to the orthogonal complement of Ker(A,) in L*(G/K, V). Tt
turns out that by a result of Borel (2.7), P{ and P/t coincide when rka(G) > rke(K)
or when rkc(G) = rke(K) and £ # § dimg (G/K).

We now turn to the statement of our main results.

THEOREM 1 (Theorem 3.1). For all € €]0, 1] there exist two positive numbers ae
and A. such that, for all g € G and t € R satisfying || g ||> Ac and t > 1, we have

2
1—c gl iz

| P (9) 1< ace™ 2B Py (g)e Tz 3¢

where M\¢(G/K) is the bottom of the spectrum of Ay, ®g is the Harish-Chandra spher-
ical function on G, r is the minimal dimension of non trivial split components of
cuspidal parabolic subgroups of G and z is the minimum of the orders of zero of the
Harish-Chandra c-functions corresponding to the conjugacy classes of proper cuspidal
parabolic subgroups of G.

The strategy of the proof is
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- use the expression of ’Pf L derived from the Plancherel formula for square
integrable ¢-forms on G/ K,

- following an idea of Alexopoulos and Lohoué [2], we decompose the scalar
pI‘OdUCt <pf’L(g)naﬁ>Afsca g € Ga in two pieces <P1,e(9) and 50276(9) with
support depending on €, observing that we can choose n and g in the same
irreducible component of oy,

- combine a recent result of van den Ban and Souaifi on the proof by Delorme
of a Paley-Wiener Theorem on the group G, to see that ¢ . is smooth and
compactly supported, whose support does not contain g,

- estimate ¢ .

A link between the power of ¢ in the above estimate and the ¢th Novikov-Shubin
invariant of I'\G/K is provided by Corollary 3.10.

THEOREM 2 (Theorem 4.1). For all € €]0,1[, there exist two positive numbers be
and Be such that, for all g € G satisfying || g ||> B, we have

(A= 1) (g) 1< beBo(g)e™ 1S/ Ol

where p is a complex number in the resolvent set of Ay and 7, ¢(G/K) is some positive
real number depending on p and on the bottom of the spectrum of Ay.

The main steps of the proof are

- estimate the convolution product (Ay — )™ % Pfo for € sufficiently small,

- prove that the constants involved in our estimates do not depend on ¢,

- take the limit ¢g — 0.
In the case of functions, i.e when ¢ = 0, sharp estimates for the heat kernel Pf and
the resolvent of Ay were obtained by J.-P. Anker and L. Ji in [3].

THEOREM 3 (Theorem 5.9). Assume that T is of finite covolume in G. Then for
all complex number . with positive imaginary part and element g € T\G, there exists

a positive number € such that (54 - u)fk(g, ) belongs to L**<(T\G/ K, End(A’s)), for
1
all integer k > 1 dimg (G/K).

The main lines of the proof are

- recall, by a result of A. Borel and H. Garland, that the kernel Ker(ﬁg) of A,
is finite dimensional,

- use a result of N. Lohoué on the stability of LP-cohomology around 2 to show
that the orthogonal projection Ty : L*(I'\G/K, A’s) — Ker(A/) is a bounded
operator on L?T¢(I'\G/K, A’s) for some positive real number e,

- use a Stein interpolation theorem to prove that (54 — u)fl is a bounded
operator on LP(I'\G/K, A’s) for p € [2,2 + ¢] and Im(p) sufficiently large,

- analyze the generic terms occuring in the kth power of (34 - u)fl, with
k> idimR(G/K).

Note that this theorem, combined with Proposition 5.5, generalizes a result of R.

Miatello and N. Wallach proved for functions, i.e when ¢ = 0, in the case where G has
real rank one (Theorem 3.4 in [30]).

THEOREM 4 (Theorem 6.1). Let B(T'\G/K) be the bottom of the spectrum of
Ay and 6(T) the critical exponent of T'. We assume that T is of infinite covolume in
G. Let p be the half sum of positive restricted g-roots and pmin the minimum of the
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values p(X), || X ||= 1, taken on the closure of a positive Weyl chamber in s. If we
assume that \¢(G/K) does not vanish, then we have
() if 5(T) < pmn then Be(T\G/K) > M (G/ ),
(i) i pmin < 8(0) < | 1] +y/N(GK) then 3i(I\G/K) > \(G/K) — (5(T)
2
Pmm) ) and
(i6) i | 6(T) — pruin 1 || 911 < 8(T) and A(G/K) > (5(T) = prnin)? then
2
Be(T\G/K) = M(G/K) = (8(T) = pmin) -
The main idea of the proof is
- use Poincaré series to deduce, from the previous theorem, an estimate for the
resolvent of Ay,
- combine this estimate with some recent result of E. Leuzinger on y(I'\G/K).
An immediate consequence on the L2-cohomology of T'\G/K can be deduced (see
Section 2.13 for definitions).

COROLLARY (Corollary 6.5). The (reduced or unreduced) L*-cohomology group of
degree ¢ of T\G/K is trivial in the following cases:
(i) 5(F) < Pmins
(ii) pmin < 0(T) <[ p || +v/Ae(G/K) and \/M(G/K) > 6(T) = pin,
(i) | 6(T) — ponin 1< || p1] < 5(T) and /Xe(GTR) >| 5(T) = pin |-

In particular, in these cases, the kernel of 54 is reduced to {0}.

Analogous results for hyperbolic manifolds were obtained by G. Caron and E. Pedon
in [13].

Our paper is organized as follows: in Section 2, we fix notations, recall some
facts and give a representation theoretic description of the bottom of the spectrum
of Ay (proposition 2.32). Section 3 (resp. Section 4) is devoted to the proof of upper
bounds estimates for the large time behavior of the heat kernel (resp. resolvent) of
Ay. Section 5 contains a proof of an L**¢-estimate for the resolvent of Ay. In Section
6, we give lower bounds for the bottom of the spectrum of A, and we deduce some
results on the vanishing of the (reduced or unreduced) L*-cohomology of I'\G/K.
Finally we have gathered in the appendix some computations on the bottom of the
spectrum of A,. The main results in this paper were announced without proof in [25].

Acknowledgements. We thank Erik van den Ban for providing us with some
new insights on Delorme’s Paley-Wiener theorem which helped us to fill a gap in a
first version of the paper. The second named author is indebted to Martin Olbrich for
useful conversations. We also thank the referee for comments and suggestions that
helped us improve the paper.

2. Preliminaries.

2.1. Roots, decompositions and norms. Let G be a non compact connected
semisimple real Lie group with finite center and Lie algebra g¢. Fix a Cartan involution
O of G and let K be the corresponding maximal compact subgroup of G with Lie
algebra €. We shall drop the subscript 0 for the complexification. Let 6 be the Cartan
involution of gg derived from © and let

go = & D so

be the associated Cartan decomposition. There is a finite number s of conjugacy
classes of 0-stable Cartan subalgebras in gg, so we fix an element b; o in each class
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and we put
a;0=hioNso and t, 9 = h;oNE.

Let A; be the set of g-roots relative to h; and fix a system of positive roots A;r C A;.
Write X; for the set of restricted roots, i.e the set of go-roots with respect to a; .
Choose a system E;-" C %; of positive restricted roots with the compatibility condition

(a €Al and ofq,, # 0) = ala,, €357

As usual write

pi:% 204

aEAj

for the half-sum of positive roots and

Paio = % 2{: MaQ

anj

for the half-sum of positive restricted roots counted with their multiplicities, i.e
me = dim(go)q, where (go), denotes the root space corresponding to .. The subset
E;-H' of Ej will denote the set of positive indivisible restricted roots

1
5 = {ae o | Ja g X

Write rke(G) and rke(K) for the complex ranks of G and K respectively. Denote by
W, the Weyl group associated with A; and by | W; | its order. Let

N0 = (g0)a and m;g=t;0+ (g0)s-
>

aesy BEA,Bla; 4=0

Write (M;)e, A; and N; for the analytic subgroups of G with Lie algebra m; o, a;0
and n; o respectively. There exists a unique ©-stable subgroup M; of G such that the
centralizer of a; in G is M;A;. The subgroup

P, = M; A;N;

is a cuspidal parabolic subgroup of G, in particular the discrete series (M;)q of M; is
not empty. We may describe, in this way, the set of all conjugacy classes of cuspidal
parabolic subgroups of G with Lie algebra

Pi,o =m; 0D a; 0 Dn;o-

Observe that the group G itself is cuspidal if, and only if, the discrete series éd of G
is not empty, i.e rka(G) = rkc(K).

We shall drop the subscript ¢ and simply write ag for a maximal abelian subspace
of s9, a its complexification, ¥ the set of restricted roots, pq, the half-sum of positive
restricted roots and P = M AN the corresponding (minimal) parabolic subgroup of
G. The real rank rkr (G) of G is the dimension of ay. The Iwasawa decomposition of
G is

G =KAN



HEAT KERNEL 535

where any element g of G can be written in a unique way as

g9 =k(g)e"@n(g).

Moreover our choice of X% fixes a positive Weyl chamber aa’ in ap which defines the
following Cartan decomposition of G

G = Kexp(a)K
where any element g of G can be written as
(2.1) g=ki(g)e” @ka(g),

a being the closure of aar . Note that the component a™(g) of g is uniquely deter-
mined, whereas the K-components k1(g) and k2(g) are not.
The Killing form of g

K:gxg—C, (X,Y)— Tr(ad(X) o ad(Y))
defines the following G-invariant inner product on g
<XaY> = 7IC(X79(Y))

which in turn induces a Riemannian structure on the symmetric space G/K, whose
tangent space at the origin eK is identified with s. In particular, this enables us to
identify g with its vector dual g*, as well as subspaces of g with subspaces in g*. We
shall denote by the same symbol || || the induced norms on g and g*, as well as the
norm on G defined by

g lI=lla™(g) I] -

In particular one has
g~ [|=ll g || and || kgk' ||=|| g || for all g € G and k, k' € K.

2.2. Principal series representations. Fix a proper parabolic subgroup P; =
M;A;N; of G. Let §; be a discrete series representation of M; in some Hilbert space
Vs, equipped with an M;-invariant scalar product (,)v;, and an induced norm || [|v; .
Let a; be a linear form on a;. The principal series representation of G associated with
the data P;, §; and «; is the induced representation

d : .
TP; 65,00 e:f Indgi ((51- ® e%itPa;0 ® 1)
of G in some Hilbert space Hp, ,s;,a,. More precisely, write V> for the space of smooth

vectors in ¢; and consider the vector space Hp 5 . of Vi°-valued smooth functions
on G satisfying the equivariance relation

flgman) = = TP @5,(m)~Y(f(g)) Vg € G, m € M;, a € A, n€ N,

equipped with the scalar product

(D12 b2, s . = /K (1(k) (k) v, d.
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Then the Hilbert space Hp, s;,q, is the completion of HE 5 . with respect to this
norm on which G acts by left translations. If o; is imaginary then TP,;,8;,a; 1S @ Unitary
representation (Chapter VII of [20]). The module of smooth vectors of the principal
series representation mp, 5, o, of G has a realization in the space C*°(K; ;) of smooth
Vs,-valued maps ¢ : K — V5, on K transforming under the rule

p(km) = 6, (m)p(k) Vk € K, me KN M,
If g € G decomposes under G = K M; A; N; as

9= r(g)u(g)e™ n

then the action of G on C*°(K;4;) is given by

(22)  Tpsen(9)d(k) = e CFPai) HOTID 5 (10671 E)) T (k(g k).

This is known as the compact picture realization of the principal series representation
TP, 5;.a; (chapter VII of [20]).

2.3. LP-integrable differential forms on G/K. The group K acts on s by
the restriction of the (linear extension of the) adjoint action Ad of G. This action
induces a representation o, of K on the exterior product V, = Ns

oe(k)(v1 Ava A=+ Avg) = Ad(k)vr A Ad(K)vs - - - A Ad(k)ve, £2> 1,
oo(k)v=v, veC,
known as the isotropy representation. Observe that, by Hodge isomorphism, o, and

Odim(s)—¢ are equivalent for all 0 < £ < dim(s). The isotropy representation is not
irreducible in general, and its explicit decomposition into irreducibles

(2.3) (00, Vo) =~ Pl V{)
is still an open problem. We fix a K-invariant scalar product (, )¢, on V5 such that
(Vi Vi) ={0}if i # 3

The isotropy representation defines a homogeneous vector bundle Vy over G/K and
we let LP(G/K,V,) be the space of its LP-sections, i.e the LP-integrable ¢-forms on
G/K, with p € N*. Naturally there is an action, by left translations, of the group
G on LP(G/K,V,). More precisely, the tensor product LP(G) @ A’s is equipped with
an action of G and of K given respectively by L ® 1 and R ® o¢, where LP(G) is the
space of LP-integrable complex functions on G and L (resp. R) is the left (resp. right)
translation by G. In particular, we obtain an isomorphism of G-modules

LP(G/K, V) ~ (LP(G) ® A's) ™,

K . . . .
where (Lp (G)® /\45) denotes the subspace of K-invariant vectors, equipped with
the natural norm

| & [lora/r,v)= (/G I o(g) %, dg)%.
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When ¢ = 0, i.e in the case of functions, we will simply write L?(G/K). Next the
group K acts on the vector space End(Azs) of complex endomorphisms of A’s as
follows

Ge(k)(T) = ay(k) o T o ay(k)™Y, Vk € K, VT € End(A%s).

This representation induces a homogeneous vector bundle End(A%s) over G/K and
LP(G/K,End(A’s)) will denote the space of LP-sections. We also have an isomorphism
of G-modules

LP(G/K, End(A's)) ~ (LP(G) ® End(Afs)) .

for the K-action R ® gy, with the norm

1
16 ler@ i enaiaean= ([ 11606) naiarn ds) "

In the case where p = 400, these definitions are adapted as usual.

2.4. Laplacian on square integrable differential forms on G/K. The
Killing form of g induces a sequence of G-equivariant maps

canonical « Killing injection quotient

End(g) "— g®g" — g®g — T(g) U(g),

where End(g) denotes the vector space of complex endomorphisms of g, g* the vector
dual of g, T'(g) the tensor algebra of g and U(g) the enveloping algebra of g. Let Q¢
be the image in (the center of) U(g) of the identity. Any element A = A;-Agy----- Ap

of U(g) defines a differential operator A on G

A=A 0---0A, where (4;f)(g) flexp(—tA;)g) Vf € C(G), g € G.

T dt,,

In particular, the G-invariant differential operator Qg on G is the Casimir operator
of G. Similarly we define the Casimir operators Qi of K and Qs of M;. The
representation mp, s, o, defines, by differentiation, an action of U(g) on the smooth
vectors of Hp, s5,,a,- We will denote this action by the same symbol 7p, 5, q,. It is

known that Qg acts as a scalar operator on the (smooth vectors of the) principal
series representation mp, 5, o, (see Proposition 8.22 of [20])

7TP7L767,1CV7, (QG) = wéiaamld
with
(24)  wp b0, =l char(§) |2 + [ aq |I* = 1] pi |IP= 6:(Qar)+ [ @i |I* = 1] pa, |7,

where char(¢;) denotes the infinitesimal character of §;. If we let
Q= / R(k) ® oo (k)dk
K

K
be the projection of L?(G) ® A’s onto the subspace (LQ(G) ® /\25) of K-invariant

vectors, then the Laplacian Ay acting on square integrable ¢-forms on G/ K is defined
by

(2.5) ApoQr=—Qo(Qg®Iduy).
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On the other hand, the spectrum sp(Ay) of Ay decomposes as a discrete spectrum
spa(A¢) and continuous spectrum sp.(Ay)

(2.6) sp(Ag) = spe(Ag) U spa(Ag).

It is well known that (see Theorem A and B in [8], and Proposition 1.2 in [33])
if rke(G) > rke(K):
Ker(Ay) = {0} for all ¢,
0 € sp(Ay) & 20 € {dim(G/K) + tke(K) — tke(G), dim(G/K) +

rke(G) — rkC(K)}
if I‘kc( ) = I‘kc( )
Ker(A%dlmR(G/K)) is infinite dimensional, and Ker(A,) = {0} if £ #
0 € sp(A1 dimg(c/K)), and sp(Ayg) is strictly bounded away from zero if
( # 1 dimgr(G/K).
For the harmonic /-forms, writing

G(o¢) = {m € Gq | char(w) = char(llg)}
where 1 denotes the trivial representation of GG, we have

> ncB(op Mr if Tke(G) = rke(K) and € = 1 dimg (G/K),
(2.7)  Ker(Ay) =
{0} otherwise.

In other words, Ker(A;) is either reduced to {0} or is infinite dimen-
sional. Observe that the number dimg(G/K) + rke(K) — rke(G) is positive and
dimg (G/K) + rkc(G) — rke(K) is always even. A throughout discussion on the spec-
trum of A, for more general manifolds is given in [27].

2.5. Plancherel formula for square integrable differential forms on G/K.
Following (2.6) the space of square integrable ¢-forms decomposes under the action of
G into a continuous part and a discrete part

LQ(G/Kv vl) = L2(G/K7 Vl)c S2) L2(G/K7 vl)d-

The Harish-Chandra Plancherel formula decomposes the continuous part of the bireg-
ular representation L ® R of G as

LQ(G)C =~ Z Z /* 7‘[5 —1v; ®HP i/ —1v; Cs, (V Vz)dl/z;
i, dim(a;)>0 5, (M), 000

where @ (resp. ®) denotes the Hilbert sum (resp. product), dv; a Lebesgue measure
on af, and, for a fixed §; € (]\Z)d, the function cs, is the Plancherel density. It is
known that cs; is a non-negative continuous function with polynomial growth on a7
(Theorem 19 of [18]), i.e there exist a positive real number b; and a non negative
integer N; € 4N (both depending on ¢;) such that

N;
T

(2.8) cs, (V=1r) < bi(1+ || vi [I?)
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We have
é\a o~
*(G)eeA's~ Y > / /Haq,,\/—_lui‘@(H*Pq,,ai,J—_lyi@Aeﬁ) cs, (V—1v;)dv;
1, dim(ai)>0 67,6(1/\4\7;)d Cl;,[)
so that

(LX(@). ® Als)™

(2.9) ~ Z Z

i, dim(ai)>05,e(M;)q = ©°

&
o~ * K
H(;h /*1Vi®(HPi,6i, /v, ® AZE) C(;q’(\/ —1l/i)dl/i.
a‘k

Next the Frobenius reciprocity Theorem implies that the restriction Indﬁiﬁ x(0i |Mmink
) of 75, /=1, to K does not depend on v;. If we let Hs, be the completion of the
complex vector space C*°(K;d;) with respect to the norm given by

17 = ([ 115015, ax) ™

then the restriction to K is an isometry of Hp 5. /=7, onto the K-module Hs,.
Moreover the complex vector space (7—[; 1 ® Alg)K is isomorphic, as a K-module,

to the space Homg (Hs,, A’s) of K-equivariant homomorphisms from s, onto V;, so
that (2.9) becomes

57
L*G/E Vi)~ > > Hs, =1, ®Homg (Hs,, A's*)es, (V—1v;)dy;.

i, dim(a;)>0 5, (3f;)q 0
In particular the only principal series representations TP, 5, 3/ =Tus of G appearing in

the above decomposition are those satisfying Homps,nx (0¢,0;) # {0}. We deduce
that (see Section 5 of [26])

LQ(G/I(7 Vg)c

S R K
= Z Z / Hpi,5i7\/jlvi®(7_[;i,6i,\/jlui ® Aeﬁ) cs, (V—1v;)dv;,

i, dim(a:)>0 5, € 173 (o) * 0
where
(2.10) Mi(op) " {5 e (M;)q | Homg, g (07, ) # {0}} .
Similarly for the discrete part, we deduce, from (2.7), that

> redoy) Hr ® Homg (Hr, A's*) if tke(G) = rke(K)
L2(G/K, Ve)a — and ¢ = 1 dimg (G/K),

{0} otherwise.
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Therefore the Plancherel formula for square integrable /-forms is given by

L2(G/K,Vg)

3 R K
= Z Z / HPivgigﬁVi(g(H;q,,é“\/jlui ® Als) cs, (V—1v;)dv;

i, dim(ai)>0 5, € M; (o) %0

+ > Hr®Homg (Hy, A's")
TFE@(O’Z)

1
if rkc(G) = rke(K) and ¢ = 3 dimg (G/K),

(2.11)
LQ(G/K, Vi)

@
= Z Z / Hpm(sma\/—_lw@(H;iﬁi,\/*_lw ® Afs) Kc5i (\/__h/i)dy’i

*

i, dim(a;)>0 5, € M, (op) ~ *4:0

if rkc(G) # rke(K) or £ # %dimR(G/K).

2.6. Spherical Fourier transform and inverse Fourier transform. Con-
sider the decomposition (2.3) of the isotropy representation and write pr; for the
corresponding projection

pr; Vi — Vej .
Let f: G — A's be a compactly supported smooth map which is K-equivariant, i.e
fgk) =0y (k) f(9), Vg€ G, ke K.

We decompose f as the sum
F=>F
J
of K-equivariant maps, where

fj :pr]-of.

Similarly to (2.10), define for each j the set
i def. — .
Mi(o}) L {6 € (Mi)a | Homs (o, 8) # {01}

For §;, j and ¢ fixed, let {Tﬁ f?,«}rzl be an orthonormal basis of the (finite dimensional)

complex vector space Homg (Hs,, Vlj ) with respect to the usual scalar product

(B,C) = Tr(B*C)

dim (V)
where B* denotes the adjoint of B. Define the maps

0j_ 0 Cx _ 0,5
Tyl =) Tyl and T37" = T30
T T
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Now the Fourier transform f7 of f7 is the map

£ Mi(0}) x V=Tafo = Hp, 5, /7, x Homg (Hs,, V)
defined by

— 1 P »

(2.12) fI(0i, V=1vi) = 7/ T, 50— (9) © T3 (1 (9)) @ Ty dg.
dim(V}) Je

The inverse Fourier transform is given by

F(9)

_ 1 1 o -1 o1 (F3 (50, ~Tvs

=X X T am) e, B 0T O b iy (P 60V 7T))

i 5,eM;(o)) .0

(2.13) xcs, (V—1v;)dv;
where
(I%i cHp, 5/~ @ HomK(Hém‘/ej) - Vej

is the contraction map. The Fourier transform of f is f =5 ; ﬁ It should be
noted that when G has a non empty discrete series, then P; = G for some i, with
A; = N; = {e} and c4,(0) > 0.

REMARK 2.14. When £ =0, f = f7: G — C is a compactly supported complex-
valued function on G. In this case, one has

(I)-ZL (7TPi767,7\/—_11/i (g_l) ® 1H0mK(’H5i,Véj) (?‘;(51, \/__11/1)))
- T”(”Pi,éi,ﬁyi (g7 0 (5, \/*_11/@-))

so that our formulas (2.12) and (2.13) reduce to

(2.15) J?((Si,\/—_lw)Z/Gﬂp“(;%,\/_—ll,%(g)f(g)dg

and

fo=> > |ml/_|/ Tr(ﬂpi,aq,,\/:w(g_l)Of(%\/—_1Vi)>céi(\/—_1w)dw
i se(Mya 70

which are respectively the Harish-Chandra Fourier transform and inverse Fourier
transform for complez-valued functions on G [18].

2.7. Spherical functions on G. In the sequel, it will be useful to write the
Fourier transform in term of some spherical functions on G. From (2.12) we have

(Trp“éi"/__h’% (g_l) ® 1H0mK(H5iﬁVEj) (ﬁ(él’ \ _1%)))

1 N, Jx (e 0.
= Tp. — T .7.7 9 ! ®T _’]d ’
dim(vg)/G s/ Tw: (91577 (7 (99) @ Ty dg
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so that
@, (%1070 57 © Dot ) (7 00V =T00) )
B dﬁw | ¥ s @ e s
- dlmtVej ) (%5 =, * (),
where \I/f;] N is the End(Vlj )-valued function on G defined by

0, 0,5 0,5
sl (9) =T57 omp, 5. /=1, (9) 0 T Vg € G.

\I/f;lj Vi is] an End(Vej )-valued Ug—spherical function on G satisfying the following prop-
erty 11

o.ubi _ 4,j
QG\I}&',W - wPivfsiv\/*lyi\Il(smVi'

REMARK 2.16. If F is an End(‘/}j)—valued function on G, we define the Fourier
transform of F' as the map

o~

M;(0}) x v—1a}g— End(V{)
OVTn) o BT = [ W (0) 0 Flad,

The Harish-Chandra spherical function ®, on G associated with A € a* is the
function defined by (see Chapter VII of [20])

(2.17) @A(g):/ e~ (Atpag)(log(alg™ k) gf.
K

By Proposition 7.4 of [20], for all K-finite vectors w,v in Hs, there exists a positive
real number d; such that for all g € G

(2.18) | Ty 50T (D V), o, 1S di®0(9) | w s, 1 0 (1, -

Moreover the following estimate of the spherical function ®q will be useful (see Propo-
sition 2.2.12 in [3]). There exists a positive number C' such that, for all g € G

(2.19) Do(g) < C(Taexs (1+ ala* (g)) )eProl@" @),

2.8. On Delorme’s Paley-Wiener Theorem. We recall a recent result of P.
Delorme on the Paley-Wiener theorem of Arthur [16]. We first start with the notion
of successive partial derivatives of principal series representations of GG introduced by
Delorme. For this we will follow the description of van den Ban and Souaifi given in
[5]. Let V be a Fréchet space and V, be a finite dimensional real vector space with
complexification V. For any n € V* and any holomorphic map ® : V* — End(V),
one defines the derivative ®( of ® along 1 as the following holomorphic map

0

50 o) Y "% End(V @ V)
n
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with
d
2200 @D (or,v2) = (#(N)vr + (B + 2m)2) a0, SN2 )
By iteration, for any finite sequence n = (91,72, -+ ,nn) € V*, one defines the suc-

cessive derivative ®( of ® along 7 as the map
) ;Y 1A Epqv )
with

(2.21) M — ( B (@(nN))(nN—l) 3 .)(m)

where V(" is the direct sum of 2%V copies of V.

Recall, from section 2.1, that agy is a maximal abelian subspace in sg and A =
exp(ap) is the analytic subgroup of G with Lie algebra ag. Denote by P(A) the
set of cuspidal parabolic subgroups of G containing A. The set P(A) is finite and
each element P of P(A) has Langlands decomposition P = MpApNp where Mp
is reductive, Ap abelian and Np nilpotent with Lie algebras mpg, apg and npg
respectively. Recall that pg,, is the half sum of positive roots in go relative to apg
counted with their multiplicities, for some fixed positive system for apo-roots in go.
Recall that we drop the subscript 0 for the complexification of real vector spaces.
We shall write Py for the (standard) minimal parabolic subgroup. Given § € (Mp)q,
write End(C°° (K, 5)) for the vector space of endomorphisms of C*°(K,d) and define
the map

Tps () G — (a} — End(C™(K, 5))), g (A = WP,&,A(Q))

where mp 5 » denotes the principal series representation of G associated with P, § and
A. Here we use the realization of the principal series in the compact picture described
n (2.2). Let D for the set of 4-tuples & = (P, 4§, \,n), where P € P(A), § € (Mp)a,
A € ap and 7 is a finite sequence in ap. We shall simply write Dp, for the set of
4-tuples £ = (P, 0, A\, n) with P = Py. Given £ = (P,0,\,n) € D, we define the partial
derivative along 1 of the principal series representation mp s » as the G-representation
defined by the following map

(2:22) 7e s G = End (C%(K,8)™ ), g mp5.0)(9)" (V)

where we have used the notation in (2.20) and (2.21) with Vo = apg and V =
C>*(K,0). Let C(ap) be the vector space of complex functions on a} and O(a%) the

vector space of complex valued holomorphic functions on a}. Write S(P;0) for the
space of bi-K-finite elements of End(C*°(K, d)). Then, for an element

(2.23) ve D P (o6 esrd),

PcP(A) 66(1\7;)01

we define in a similar way ¢¢ € End(C°° (K, 5)(’7)). Given a finite sequence & =
(&1,&2,- -+ ,€&N) of elements in D, we define

Mg =T, B Tg, B+ B Tey and Qg = Pg, B P, B+ B Py -

We can now state Delorme’s intertwining conditions for a map ¢ as in (2.23).
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(i) For each finite sequence ¢ € DV, the map ¢¢ preserves all invariant subspaces
of m¢, and
(ii) for any two finite sequences ¢! € DN and ¢2 € DM2, and any two se-
quences of closed invariant subspaces U; C Vj for mg;, the induced maps
(E&j € End(V;/U;) are intertwined by all intertwining operators T : Vi /U; —»
Vo /Us.
There is a third condition. In the compact picture realization of principal series
representations (2.2), each compactly supported smooth function f € C°(G) has an
operator valued Fourier transform defined by (see (2.15))

(2.24) f(P, 5, ) def- mrsa(f) = /Gf(g)ﬂp@)\(g)dg € End(COO(K; 5))

-~

In particular, if f is bi-K-finite then f(P,d,\) belongs to S(P;d). Define the pre-
Paley-Wiener space PWp™(G, K, r) associated with the parabolic P € P(A) as the
space of maps ¢ € B¢ 577, O(ap) ® S(P;6) for which there exists a number r > 0
and for every n > 0 a number C,, > 0 such that

(i), || ¢(P,5,A) ||< Cr(14 | A [)e RO for all § and A,
where Re()\) denotes the real part of A\. Then Delorme’s Paley-Wiener space is the
vector space defined by (Définition 3 in [16])

PW, (G, K) = {¢ € Dpep(a) Bye iy, Olah) @ S(P;0) | ¢ statisfies
(2.25) conditions (¢), (1) and (z‘iz‘)r}.

Finally, we can now state the Paley-Wiener theorem proved by Delorme.

Paley-Wiener Theorem (Théoréme 2 of [16]). Let D..(G) be the space of complex-
valued functions on G which are compactly supported in the closed ball in G of radius
r and center the neutral element of G. The map D, (G) = PW,(G,K), f— fisa
topological isomorphism of Fréchet spaces.

Unfortunately Delorme’s intertwining conditions, especially condition (ii), are
not easy to check, even in particular cases. It turns out that, using recent results of
van den Ban and Souaifi (Lemmas 4.1 and 4.2 in [5]), one can reduce considerably
these intertwining conditions enabling us to use Delorme’s Paley-Wiener theorem in
our specific situation. Since we shall make an essential use of van den Ban and
Souaifi’s observation, and for the convenience of the reader, we include the proof of
this reduction.

PROPOSITION 2.26. [5] Let ¢ be a map as in (2.23). Then one has
(1) the map ¢ satisfies Delorme’s intertwining conditions if, and only if, it stat-
isfies condition (1).
(2) The following assertions are equivalent
(a) ¢ satisfies (i) for each finite sequence of data in D.
(b) & satisfies (i) for each finite sequence of data in Dp,.

Proof. For (1), let &7, m¢;, U; and V; be as in (ii), for j = 1,2. Let T': V1 /Uy —
Va2 /Us be an intertwining operator. In particular T is equivariant and the graph of T
is an invariant subspace of V7 /Uy & V2/Us. Since ¢ statisfies (i), the map 551 ® 552
preserves the graph of T, i.e T o 551 = 552 oT.
For (2), (a) = (b) is obvious. For the other direction, one proceeds in several steps.



HEAT KERNEL 545

e Fix a 4-tuple £ = (P,d, \o,n) € D, where P € P(A) is a cuspidal parabolic
subgroup of G containing A with Langlands decomposition P = MpApNp. The
group Mp is a real reductive subgroup of G with Cartan decomposition Mp = (M pN
K) exp(mp,o Nsg). Let a’P’O be a maximal abelian subspace of mp N sg so that

(2.27) ap =apo D a/1:>’0.

e By the subrepresentation theorem, there exist a (minimal) parabolic subgroup
'» of Mp with Langlands decomposition

Qp = MpAN}

where A = exp(ap ), a unitary irreducible representation o € Mp of M} and linear
form p € a5 on a5 such that

0 ~ subrepresentation of Inng,Pcf Quel.
P

e There exists a minimal parabolic subgroup @p of G containing A such that
Qp € P(A) and

QpNMp=Qp.
Then, using induction by stages, one obtains that:

Indgé ® Ao ® 1 >~ subrepresentation of Indg (Indgf,Pg Qu® 1) @A ®1
P

~ subrepresentation of Indgpa ®@M+p) el

where we have identified, using (2.27), a} and a} , with subspaces of a*.
e For the successive derivatives, we deduce that

(m)

m -~ subrepresentation of T p o No-ti-

TPs0 =

In other words, if we define £ to be the 4-tuple (Qp, 0, Ao + 1, 1) € D, we have
(2.28) me o~ subrepresentation of mg/.

e On the other hand, the parabolic subgroups P and @ p of G are conjugate under
the Weyl group of G with respect to A, i.e there exists w € Nk (ag) such that Qp =
w~!Pyw. This induces an intertwining operator from g, s x4 t0 T Py w-0,w-(Ao+-42)
and implies, for the successive derivatives, that

e ~ (W)
Qpr,0, 0+ — " Po,w-o,w-(Ao+p)

where w acts on 17 componentwise. Defining the 4-tuple &, = (Po,w-o,w- (Ao +p), w-
1) € Dp, and using (2.28), we deduce that

m¢ > subrepresentation of 7.

e By additivity, this extends to the case where £ is a finite sequence
(€1,&,--+ ,&n) € DN which proves that (b) = (a). O
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2.9. On the bottom of the spectrum of A,. From Kuga’s formula (see
Proposition 2.5 of [10]), one has

(229) TP; 6,00 (Af) = —TP;6i,a; (QG)
independently of the degree ¢. Moreover it is known from [38] that
(2.30) 6; € Mi(or) = || char(8,) ||<| pi |

and the equality holds only if b; is maximally compact (i.e g does not have real roots
relative to b;). Since there is a discrete number of irreducible unitary representations
§; of M occurring in L?(M;) with Harish-Chandra parameter contained in the closed

ball defined by || char(d;) ||<|| pi ||, the set ]\/4\1-(04) is finite. We define the real number
(231)  M(G/K) = inf{ — Wp, 5 Tvs | 85 € Mi(ov), v €0l 1< < s}.

In particular we have
(i) M(G/K) > 0 for all ¢ (by( 2.30)),

(i) A(G/K) = inf { | pi > = || char(s;) 1> | & € Mi(oe), 1< i < s} (by(
2.30)), and
(i) M(G/K) = 0 & 20 ¢ [dimR(G/K) + rko(K) — the(G), dimp(G/K) +
rke(G) - ko (K)| (by (27).
The link with the bottom of the spectrum of Ay is given by the following proposition.

PROPOSITION 2.32. The number A\i(G/K) equals the bottom of the spectrum of
Ay.

Proof. Let uy be the bottom of the spectrum of Ay. By the Plancherel theorem
(2.11) and Kuga’s formula (2.29), we know that

MN(G/K) < .

Assume that A\¢(G/K) < pe and let ¢ be a smooth real function with compact support
in the interval [A¢(G/K), p1¢]. Then we have

P(Ag) =0

where

+oo
o(A) = / B(t)eY Ay,

Now we choose d; € ]\/4\1-(0@) and v; € aj such that
M(G/E) <[] pi |[* = I] char(6) |I* + || vi |I*< pe
and we pick a non zero (-form f in L?(G/K,V;) such that

F6i,V/=1) £ 0
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and f(éi, -) is continuous on v/—1a;j,. Then we deduce that

@(D0) f(0i,vV/=Twi) = (|| pi |1 — || chax(d;) |12 + [ i |1*)F(6:, vV=1w3)
#0
which is absurd. O

In the case of functions, i.e when ¢ = 0, it is not difficult to check, using the Plancherel
formula for functions, that

M(G/K) =] pay |7 -

However the bottom of the spectrum of Ay is not known in general (see the appendix
for computations of A¢(G/K) in some examples).

2.10. Heat kernel for differential forms. Recall that the Laplacian on G is
the negative elliptic differential operator A on G defined by

A=Qq—20k.

We denote by P, = e*® the fundamental solution of the corresponding heat equation
on G

0

Ad — —
O =5

.

It is well known that
(Pof)(g0) = /G pi(g5 " 9)f(9)dg W € L2(G), g0 € G

where p; € L2(G)NC>=(G) is the heat kernel on G [6]. Similarly we may consider the
heat equation for differential forms on G/K

0
Ay = ——
2on T, ol
and the corresponding fundamental solution
Pf = ¢ tAe,

The operator
P! LX(G/K, V) — L*(G/K, V)

is a smoothing pseudo-differential operator commuting with the representation 7, of
G. Actually we have

(PLo)(an) = [ ritai"a)(0a))dg Vo € L(G/K. Vi), oo € G
where
Pt G — End(A’s)
is a smooth map satisfying the covariance property

(2.33) pi(kgk') = ou(k) "' o pj(g) o oe(k') ™" Vg € G, kK € K.
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We shall refer to pf as the heat kernel of /-forms on G/K (see Section 2 of [6]). It is
easy to see from (2.5) that

e—tAg OQ@ _ Q@ o (etA ® 62tQK),

and
(2.34) pi(g) = / pe(k™ gk Yoo (k) oy (k) dkdk.
KxK

Similarly, for each irreducible component UZ of the isotropy representation, we define
the heat kernel pi”

.
py”(g) o pr; = pr; o pi(g), Vg€ G.

Write pf’L for the heat kernel corresponding to the projection AeL of Ay on the
orthogonal complement, of Ker(A;) in L2(G/K, V;). The heat kernel pi* is defined
accordingly. From the Plancherel formula for differential form (2.11), one can deduce
an explicit formula for pf’j L using spherical Fourier transform (see (8.6) of [26])

(2.35) pf’jvi(g)
1 1 } 4
= Z Z |W |7/ et P; .8,/ —1v; lllgjyl (Q)Caqr( /_1Vi)dl/i-
o a

3, dim(a;)>0 67,61\/4\1'(0%)

Moreover one can check that

At = 2 i
Pt 8tpt
Py (00 V=Tw) = frisi Ty

ph *pf;j :pfﬁt/ for all ¢,¢ > 0.

It should be noted that the continuous heat kernel pf’L coincides with the full heat
kernel p{ whenever rkc(G) > tke(K) or £ # 3 dim(G/K).

In the sequel, we shall use the following basic estimates of the heat kernel h; for
functions on G/K (Chapter V of [14] for 0 < ¢ < 1 and Section 3 of [24] for ¢t > 1).
There exist positive constants C; and C5 such that, for all g € G, we have

2
lgll

(2.36) he(gK) < Oyt~ 2 Wr(G/E) =75 for 0 <t < 1,
and
(2.37) hi(gK) < C’gt*%rkR(G)*‘E+ﬂe*””"0H2t for t > 1.

On the other hand, there is a well known relation between h; and the heat kernel pf
on /-forms. Indeed, there exists two positive numbers o, and Cs such that, for all
t>0and g € G (Lemme 2.4 in [22]), one has

(2.38) 1 £(9) |lmnaaes) < Cae™he(gK).

The heat operator on functions on G/K will be denoted by H;.
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2.11. Laplacian on square integrable differential forms on locally sym-
metric spaces. If I' is a torsion free discrete subgroup of G, it acts on the left on
G /K, so that the double coset space I'\G/K is locally symmetric. Except otherwise
stated, we do not assume that I' is of finite covolume in G. Since G/K is simply
connected, it is the universal cover of I'\G/K and I" ~ II; (I'\G/ K). Moreover, given
a Haar measure on G, there exists a unique measure dv on I'\G such that

(239) [ s@s= [ [ sag)]anrs)

for all compactly supported function f on G. A smooth ¢-form on I'\G/K may be
viewed as a smooth Afs-valued function ¢ on G satisfying the relation

d(vgk) = ae(k)'o(g), Ygecg, ke K, yeT.

Write C§°(I'\G/ K, V) for the complex vector space of compactly supported smooth
(-forms on I'\G/K. Similarly, we define the vector space LP(I'\G/K,A's) of LP-
integrable ¢-forms on I'\G/ K, equipped with the norm

1

19 larermra=( [ 1169 e, i)’

When ¢ = 0, i.e in the case of functions, we shall simply write C3°(I'\G/K) and
L*(I'\G/K). The space LP(I'\G/K,&End(A%)) of End(A’s)-valued LP functions on
IN\G/K is defined accordingly, with the norm

1
19 g rmension= ( [ 1166) s )"

Write
de : C5°(I\G/K, Vi) — C5°(D\G/ K, Ve41)
for the exterior differential and
dy : CSO(T\G/K,Vi41) = CC(T\G/K, Vy)
for its adjoint. Then, the locally invariant positive elliptic operator
Ay =djdg + de_1d_,

is the Laplacian on compactly supported smooth ¢-forms on T'\G/K. This differential
operator has a unique selfadjoint extension to L?(I'\G/K,V;) which will be also de-

noted by the same symbol 54. In particular, we may also consider the heat equation
on "\G/K

- 9
Dppy = —a@-

We shall write ﬁf for its fundamental solution and ¢ for the corresponding heat
kernel. The estimate (2.38) is still true if we replace p! (resp. hy) by p¢ (resp. Ef)
where Ef (resp. ﬁt) denotes the heat kernel (resp. heat operator) on functions on
I'\G/K. Similarly we define -~ and hi'*.
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2.12. On the bottom of the spectrum of A;. Let 8,(I'\G/K) be the bottom
of the L?-spectrum of Ay:
(2.40)  Be(D\G/K) = inf {(Aef, f)r2mvayracsy| f € CF(D\G/K,A's*),
| f ll2ayi.acs)= 1}

In the case of functions, i.e £ = 0, some estimates for Sy(I"\G/K) have been proved
by E. Leuzinger [21]. More precisely, let D(, ) be the Riemannian distance on G/K
induced by the Killing form. The Poincaré series associated with I' is given, for all
z,2’ € G/K and s € R, by

Ps(x,2’) = Z e 5Dy’
yer

Then the critical exponent of I" is the real number 6(I") defined as follows. For all
z,2’ € G, Ps(x,2’) converges for s > §(I") and diverges for s < 6(T"), i.e

§(T) = inf {s | Z e~sPEe) < —l—oo}.
ver
It is not difficult to check that (see Section 2.2 of [21])
0<6() <21 pag |l -
When T is a lattice in G, it is known that (see Theorem 7.4 of [2])
o) =2 || pao I -
In the general case, we have the following result.

Theorem (E. Leuzinger, Section 1 of [21]). Let G be a semisimple Lie group
without compact factors and with trivial center. Let ppqn be the positive real number
defined by

prmin = inf {pay (X) | X € af, || X ||=1}
If T is a torsion free discrete subgroup of G, the following estimates hold.

(i) I O(T) € [0, pmin] then Bo(T\G/K) =|| pa, |1,

(if) if 5(|1|;) € [gmm ;1 pag 1] then || pa, [|2 =(3(F) = pmin)? < Bo(T\G/K) <[]
Pag ||~ an

(i) 3 5T) € [ 11 peo I 21| peo 1] then
5\24&93{0; | Pag 12 =(0(1) = pmin)?} < Bo(T\G/K) <I| pa, [I* =(3(T) = I pa ||

2.13. L?-cohomology on T'\G/K. We do not assume that I is of finite covol-
ume in G. Let Wa, be the vector subspace of L?(T'\G/K,V,) defined, for £ > 0,
by

Wgye = {w € LQ(F\G/K, Ve) | || dow ||L2(F\G/K,W)< +OO}.

It is easy to check that the kernel Ker(d,) of d; is a subspace of Wy, which is
closed in L*(T'\G/K, V;). However, the image Im(dy_1) of d¢_1 need not be closed in
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L*(T\G/K,V;). We are therefore led to define the unreduced L?-cohomology group
HY(T\G/K) of degree ¢ of I\G/K

HY(T\G/K) = Ker(dy)/Tm(dy_1)

and the reduced L?-cohomology group " (IM\G/K) of degree £ of I\G/K
— (¢ .
T (0\G/K) = Ker(dy) /Tm(d_1),

where Im(d,_1) denotes the closure of Im(dy_1) in L*(I'\G/K, V). Observe that there
is a natural surjection

HOM\G/K) — T (T\G/K)
and
" (M\G/K) ~ Ker(dy) N Tm(dr_1) " = Ker(A)

- 1 -
where Im(d,_1)" denotes the orthogonal of Im(d,_;) in L*(T\G/K,V,). When T is
cocompact, unreduced and reduced L?-cohomologies coincide.

3. Estimates for the heat kernel.

THEOREM 3.1. Let G be a non compact connected semisimple real Lie group with
finite center and K a mazimal compact subgroup of G. Let \¢(G/K) be the bottom
of the spectrum of Ay and ®y the Harish-Chandra spherical function on G. Put
r = inf { dimg (a;0) > 0} and z = inf {order of zero of c5; at v; =0, 0; € Mi(O'g)}.
Then, for all € €]0, 1], there exist two positive numbers a. and A such that

__1-c_lgll? s
||Pf’L(g) || End(ats) < ace” M EE) P (g)e” Traa? 4t et

forall g € G and t € R satisfying || g ||> Ae and t > 1.

Proof. Throughout the proof the symbols B; and C; will denote positive real
numbers. _

Step 1: we reduce the problem. Since the Casimir operator Q2 of K acts a
a scalar operator on each irreducible component o} of o, and, any two irreducible
components are orthogonal with respect to the scalar product (, )¢5, we may assume
that n and 8 belong to the same irreducible component o} for some j. Then, using
the Cartan decomposition (2.1), we have

PL(9)n,w)aes = (017 (900, B) as
= (pp7 (k1(9)e™ Dka(9))n . B) ace
= (P (e D)) (ka(9))n, o3 (k1(9)) " B)ars by (2.33).

Therefore it is enough to consider (pt”*(a)n, B)acs for a € exp(ag) and 7, 8 € V).
In particular, from (2.35), we obtain

(P (a)n, BYacs

1 1 i
_ Z Z _ / P8, vy, <\I/§’jy1 (a)n, BYaescs, (V —1v;)dy;.
u*

W; i J
i, dim(a:)>0 5, M; (o) | | dim(V}/)

i,0
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Put nf; = Tfi’j*n and ) ; = Tfi’j*ﬁ so that 7/ ; and §f; are two K-finite vectors in
Hs, with

[, e W, @ B) s, (VT
a

*
7,0

[t e (@ B s, (VT
a

,0

Define the operator
¢ T2 14 ¢
ni,j oy ﬂi,j . Htsi — Hﬁiaf — <77i7_j af>7'[<5iﬂi,j

and write £ and & for the complex functions

&t ]\Z(O’Z) x af — C, (§;, ;) > e!¥Pidio
& raf = C, q; oy efrivin

Consider the End(#Hs, )-valued map

—

¢f : Ml(o-z) X a: - EHd(H&J, ((51',061') = €t(5i7ai)nf,j ®ﬁf,]

Following an idea of Alexopoulos and Lohoué [2], we decompose this map in two
pieces. For this we fix a smooth function ¢ : R — R such that {(r) =1 if | 7 |[> 1,
and ¢ vanishes in an neighborhood of the origin. Then, for € €]0, 1], define the function

Co:af >R, yr—>C<(1+e)HZH)

and write
(32) O = b+ Pha
with

'ti,a((s’ia Oéi) = (gztil * é;)(al) nf,j ® B’L{j
B (i) = (€6, x T — Ca)lai) mf; ® B
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Here it should be noted that the convolution and the Fourier transform are defined
on a}, in particular only the parabolic subgroup P; = M;A;N; is involved. We have

(pr?(a)n, B) ars

1 1
> 2 | Wi | dim(V})

& dim(a;)>0 5, € M (o))

></ P T g s, (@0l B s, cs, (V= Tvi)dv
a‘k

,0
1 1
22 Wilamep)

i, dim(a;)>0 5, e M, (o7)

x / e"Pi8i /Ty Tr(TrP,L-,éi,\/—_lui(a) o (ni; ® Bf,j))céi(V —lvi)dv;
1

a
*

i,

0
— Tr(7p, 5,,v=1s,; (@) 0 6i(8i, V=Twi) ) s, (V—=Twi)dvi
Z | W; | dlm(wj) /a:’[) ( P, VAV )

& dim(a;)>0 5, € M (o))

Z Z | 1 m /* Tr(ﬂpiyém/,—lyi(a) o qﬁ;a(éi,\/—_11/1-))C57,(\/—_11/i)d1/i
4 a;

. — i |
%, dim(a;)>0 5i€Mi(UZ) ,0

Ly DL / T (7, 5,101 (8) © B (61, V/=T) )5, (V=T )i

] : J
i, dim(a;)>0 5, € 3, (o) | Wi | dim(V})

(3.3)

s

Observe that
(3.4) Ot a8y i) = (€, % T = Ca)(a)é5," () 94 (8, ).
Consider the global maps

(3.5) o' =0, +oc P P ) @End(C(K,5))
Pi€P(A) ;€ (M)

where
q)fz(Pia 51'7 ai) = qua(éi, Oti)
BL (P, 07, 0i) = ¢, (85, )

Step 2: we apply Delorme’s Paley- Wiener theorem to ;I;fl
* We start with the pre-Paley-Wiener condition (iii), in Section 2.8 for some r
which will be specified below. For u,v € Hg’, one has

<~§,a(6i7 \% _11/1‘)’&,’1])7-[6% - Afia(\/ _1Vi)
where the function
e,V =1alg = C V=1 = £(05, V=103) (1 = Ca) (V=113) (0} s u)as, (Bl V)2

1
is supported in the closed ball in af, of radius R, = Toe || a || and center the origin.
: €

i

Now the classical Paley-Wiener theorem implies that
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. (Eﬁ , extends to an entire function on af, in particular the map ®! is holomor-
phic in the variable «;, and
e for all integer N € N, we have

N _ ) %
sup (14 [] i [[2) " e~ RelRDl | 4 [(57, 04) [ < +oo.
E *

Therefore, since ]\/4\1-(05) is a finite set, one has for all 01,6, € U(¥)

N _
sup_ (1+ || e ||* + || char(6;) ||*) e Re|[Re(ai)l|
aiEa:,dieMi(aj)

X || s, (01)0E 4 (85, 03) 75, 0, (02) ] (345, 0y < 00,

where

| 761,00 (01) DL 0 (65, 005, 0, (02) |1, (Hs,.0,)

Il ||—SH [|I= | < 6l7al( 1) ( “a’t)7 61,ozl( 2) 1,w2>7_[6 |
w1 wal|=1 02)w
I HSH [|= | <~za( & 1) 5170%( 2) 177517051(91) 2>H5 |
wil||=||wa]||=1 O2)w W

Then, by bi-K-equivariance (2.33) of the heat kernel, we deduce that

ohe P P O)) @End(S(K,d))

P.eP(A) 5,e(IT))a

and ®! satisfies pre-Paley-Wiener condition (iii), for r = R,.
* We turn now to the intertwining conditions (i) and (ii). By (3.3) we see that
the map ®! is actually the Fourier transform ®! = ht of the complex-valued function

h: :G—C, g~ (pf’j’L(g_l)m@Ms-

Fix a basis {X;} of go such that a; = >, @; ;(X;,-) and choose a sequence {f,} of
compactly supported smooth functions on GG with supports in some balls in G such
that (see [36])
lim, 400 fn(g) =1, Yg € G, and, 3C > 0 such that Vk; € N, Vg € G,
| (LX) - L(X; ) £u) () < c and
lim o (LG )M - LX) £)(9) = 0,
Then, we have for u € H§?

|| fnht P, 0, az)u - ht(P17 di al)u ||7‘l6
= [ (50 = Dba(a) e, s (o) |
= /G | fn(g) -1 | | <pfyjﬁj_(gil)naﬂ>/\’fs | || WPigéiyai(g)u ||Hpi,5iwai dg.

Now, since the Casimir operator Q K acts on Vej by a non-negative scalar og (§~2 K), We
deduce from (2.34) that

pil(g™h) = i) / Pk g o (K)o (') k.
KxK
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But it is not difficult to check that (see Lemma 8 of [34])

| / pe(k~Lg KV dkdk |< Cy | pralg™) | Vg eG, t>1
K

and it is also well known that (see Theorem 1 of [32])

gll

_ 1lall?
| pes1(g™") |< Coe 3D Vg € G, t > 1.
Therefore we have

i i S _ llgll?
120797 gnaqs) < Cae® 7 )e 500 Vg e G, t> 1.

On the other hand, one has (see Proposition 7.15 of [20])

| 7P 610 (9)0 1345, < CaellREC@DIISL

llgll2

Since the function g s e~ 3D TR pejonos to L1(@), we may apply the
Lebesgue convergence theorem to see that

lim || fnht(Pi,éi,ai)u —ﬁt(Pi,éi,ai)u ||HP7,,6i,a7,: 0.

n—-+oo

Similarly, we have
I TP;,6:,0 (Xj)mt(Pz‘, 03, 0)u — TP; 85,00 (Xj)ﬁt(Pia 8iy 0i)u ||Hpi,5i7ai

11 [ 14(9) (o) = e (X5) 1,5 (0 .,

11 [ (o) (5(9) = 1) Lo . DX D) .,

= /GC% |ls=0 he(exp(—sX;)g) (fn(exp(—sX;)9) — 1)7E, 5,,0:(9)udg |35, 5, .,

< /G | (LX) (9)(fu(9) = D) [ 7P 6100 (D)0 |25, 5,0, A9

+/G | he(g) | 1 (LX) fn)(9) [ 1 7P, 600 ()0 M3, 5,0, 495
and, by iteration, the Lebesgue convergence theorem shows that
| (7p,,5;,0: (X )k1 "'7I'Pi,67,,ai(ij)kp (mt(Piy6i706i)u_/ﬁt(Pi76iyoéi)u) ||Hpi,5i,ai in oo 0.
Therefore, since EE is compactly supported, it satisfies intertwining condition
(1/)\ so that if V' is a closed G-invariant subspace of Hp, 5, o;, then, we have that
fnhe(P;, 6;, )V C V. Taking the limit n — 400 and using (3.4), we get that

@ (P, 85, 0)V C V.

Next let V7 x V5 be a closed invariant subspace for %ﬂpiygiyai. Since f, h; satisfies

intertwining condition (i), the partial derivative % mt leaves Vi x Vo invariant,
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using definition (2.20). Observing that

-~

0 — 0
{a—Akfnht(Piaéhai) - a—)\kht(Piv(Shai)} (v1,v2)

= (fnht(Piv(Siaai)Ul + ai,kfnht(Pia5i;ai)v27fnht(Pi;51’7051')7)2)

- (ﬁt(ﬂaéi;ai)vl +Oéi,kﬁt(Pi,51‘,041')02,7%(3‘,5@041)02), V(vi,v2) € Vi x Vi
and using the same arguments as above, we deduce that %@t leaves V1 x V4, invariant,
i.e

(3.6 (5 (Pudisan)] (0 12)

= ((nf,j 1) 25, + 2t k(15 7U2>Hai)(ﬁf,j70)
+ <77£,] 5U2>7‘l5i (Oaﬁf,]) S Vl X ‘/2; V(U17U2) S Vl X ‘/2
On the other hand, we have, for all (v1,v2) € V1 x V3

[%&)Z(ﬂ,%ai)} (01,02)

. 9 .
= ((eh Q) @)l endos, + o (€h (T Gl embs, ) (55,0
+ (&5, * (1= Ca)) (@) (m;  vadas, (0, B )

In particular, since both & and &§ * (1/—E1) are radial functions i(ffz (P;,6;,0)

)W
leaves V7 x V5 invariant. Indeed, when «a; = 0, one has

9 Ht
|:a)\k; q)a(Pia 51'; 0)i| (vla UQ)
0

= (&, % (=) 05 (0) | 52 (P, 6:,0) | (vr,v2) € Vi x Vo,

Actually, if (nfj ;v2)#s, = 0, and ; need not be trivial, then

8

o ~
{G—MQZ(R,%%)} (v1,v2)
- (1/—?1))(0@)5575(0‘1')[%@(R’&’ai)} (v1,v2) € V1 x V3.

If both a; # 0 and (nf,j ,v2>7.[6i # 0, then, applying (3.6) for two distinct ¢; # 0
and ty # 0, we see that both vectors (5 ;,0) and (0, ;) belong to Vi x Vz which
implies that [%@fl (P, b, ai)} (v1,v2) belongs to Vi x V. Therefore the first partial
derivative of @fz leaves invariant any closed invariant subspace Vi x V5 for %wp“(smm,
ie
0 =;,.
{—@a(z,éi,ai)}‘/l X Vo C Vi x Va.
Ok
82
Next let (V4 x Vo) x (V3 x V) be a closed invariant subspace of g TPudiaic
k T

2

OALOA,

dt leaves the subspace

Using the same argument as above we show that
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(Vi x Vo) x (V3 x V4) invariant, i.e

((Ufj 0135, + 200 0 (155 V2) s, + 260 k(05 5 Us) 2,

i

AP o i (15 va) s, + 2051 (1 7U4>Hai) ((B;,0),(0,0))
(0 w2, + 2ty vins, ) (0,86, (0,0))
(01 w3, + 2t (0l va)s, ) ((0,0), (85,0))

<77'Lj 7U4>Ha ((0 O) (0 ’L]))
€ (Vi x Vo) x (V3 x Vi),

for all ((v1,v2), (v3,v4)) € (V1 X Vo) x (V3 x Vy), @ € a* and ¢ > 0. On the other hand,
we have, by definition

82 Tt
mq)a((vh UQ)? (U37 U4))

= (% (T T @)ty ondoes, + (€6, % (T=G) )y s 02,

+ i(53- * (1= Ca)) () (nfy , vs) s,

3)\(33)\ (fé 1 *Ca))(ai)ij:U4>H5i)((5fj,0),(0,0))

(6 + T=00) @0y vy, + 5 (€6, = (1= G) @)y vy, ) (0. 5), (0,0)
+ (% T2 @0y v, + 5 (€6, * (T G @)y vad e, ) (0,00, (55,0))
+ (0l s vadas, + 2t (nfy va)aes, ) (0,0, (85,0))

+ (85, % (1= C)) (@) (nfy , va) s, ((0,0), (0, 55)

Then, as in the case of the degree one above, by considering different values of «; and
t, we deduce that

92
DN, O (P, 6, i) ((v1, v2), (v3,v4)) € (V1 x Vo) x (V3 x Vi)

82
é)Ak O\,

S PL (P, 65, ) (01, 02), (v3,0)) € (Vi x Vi) x (Vg x V).

In a similar way, if W is a closed invariant subspace for the successive partial

oldl
derivative WTF&, » of 75, we show that the successive partial derivative
g1 YN,

oldl ~
——®' leaves W invariant. And so does the corresponding derivative of ®?
ONE ... 9\ “
J1 Jp

ol Ziﬂw W,
—_— C .
dp ~a

OAT; -+ O

In other words, the map CT)Z satisfies intertwining condition (i), when P; is a minimal
parabolic subgroup of G in P(A). It should be noted that the fact both nf’ ; and ﬂf’ ; do
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not depend on «; and ¢ is essential in our arguments. Therefore, by Proposition 2.26,
the map ®! actually satisfies both Delorme’s intertwining conditions (i) and (ii). In
particular, the global map 52 belongs to Delorme’s Paley-Wiener space PWg_ (G, K)
defined in (2.25). We apply Delorme’s Paley-Wiener theorem to see that there exists
a complex-valued function p on G which is supported in the closed ball in G of radius

1
R. = Toe || a || and center the neutral element such that
€

1 1 ~
Z Z KA 7dim(Vj) /* Tr(wP”;h 1, (@) © ¢ (s, \/711/1'))C5i(\/711/i)d1/i
i SiEI\//Ti(ai) ‘ ¢ i.0

= p(a™t)
=0.

Step 3: we estimate the term in (3.3) involving ®,. Recall that ¢ ,(d;, ;) =
(&, * Ca)(aw) nf; ® Bi; so that, writing ¢ (1) = e~tvill* (3.3) implies that

| (p " (a)n, B acs |

1 1
=12 2 | Wi | dim(V})

i 5i6ﬂi(0£)

< v B (€ (T, (VT |

,0

< Bie” B0 (a) || |[acsll B [1acs Sup/ | (pe % Ca) (i) 2 (1 || i |2 Nedv
i Ja

*
,0

(by (2.8), (2.18) and the Cauchy-Schwartz inequality)

< Bae MO0 (a) || [lcel| 6 e sun ([ 30 1 (095G P dz)

%0 |q|<N;

[

(by equivalence with the Sobolev norm, where

olal

Dq:mand |q|:q1+...+qp)

= Bae 000 (a) || [ce| 6 lace s [

211> 2 llall 14 <n,

1
2

| (D"3iGa)(2) | d2)

2
[all

< Bse KD (a) || 1 || acsll B llars € T if £ > 1
dim(a; o) 2112
(since §y(z) = (2t)"— 2 = et )
and therefore

lla]|?

3.7) 1957 (@) gnaars) < bege XS Bg(a)e 307
for some positive constant b. ; depending on both € and j. Similarly we have

0.3,
(38) [ (@, B)ass |
< Baem B0 (a) || || sesll B llazs Sup/ e~ es (V=1vy)dv;.
a

N
t 7,0
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Now recall from (2.8) that there is a polynomial Ps, such that c5, < Ps,. Writing
Ps, = Zkzo ayvF, we have

/ e*t”l’iH?Pgi(W)dW
a

70
112
:Zak/ et gy,
k>0 alo
+oo R .
= E ak/ z/fdz/i/ et phtdimr(aio0) =1 g,
E>0 [lvil|=1 0

(using spherical coordinates)

_dimg(ai0) _k k oo —r2 k+dim (ai0)—1
=t 2 E t™2ay v dv; e "r RU84,0)72 (],
k>0 [lvs||=1 0

Then we deduce from (3.8) that
(3.9) | pr7 (a) lEna(ats) < B5€_tké(G/K)t_#<I>o(a) ift>1

where z = inf; {order of zeroofcs, at v; = 0, § € ]\/4\1‘(0'@)} and r =

inf; { dimg (a;0) > O}. Combining (3.7) and (3.9) we obtain

£,5,L _ £,5,L 1-3 £,5,L 3
(@) llmnacare) = 11 D2 (@) ind ey || 25 (@) DEngeare

_ € 2
-5 || .

< cfvje_t/\é(G/K)‘I)o(a)e_WTt‘é%” ift>1

for some positive constant c. ; depending on both € and j. O
When G has an empty discrete series, i.e rka(G) > rke(K), the positive integer
r equals rke(G) — rke(K) and the previous theorem may be restated as follows.

COROLLARY 3.10. Under the assumptions of Theorem 3.1, if G does not have
discrete series representations then, for all € €]0, 1], there exist two positive numbers
A, and a. such that

llgll?

1-e
(3.11) ||pf’J‘(g) ||End(A’fs)§ aeeit)‘e(G/K)fI)o(g)e Gr202 46 4=

24 rhe (G) —rhe (K)
€ 2

forall g € G and t € R satisfying || g ||> Ae and t > 1.

If G has an empty discrete series and is such that z = 0 (as it is the case for
the hyperbolic groups G = SO.(2n + 1,1), with n > 1), the exponent of ¢ in the
estimate (3.11) has a nice geometric meaning. Indeed, in this case the (positive)
integer rkc(G) —rkc (K) is the £th Novikov-Shubin invariant a,(I'\G/K) of the locally
symmetric space I'\G/K, where T" is a torsion free discrete subgroup of G of finite
covolume (see (1.1)).

4. Estimates for the resolvent.

THEOREM 4.1. Let G be a mon compact connected semisimple real Lie group
with finite center and K a mazimal compact subgroup of G. For a complex number
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w with real part Re(u) and imaginary part Im(p) satisfying either Im(u) # 0 or
Re(p) < M(G/K), define the positive number

\(G/K) ~ Rety) 41/ (MG/K) — Relw) +
: |

Tt (G/K) =

Then, for all € €]0, 1], there exist two positive numbers b and B, such that
(42) 1 (Ar = )7 (g) || < bePo(g)e ™I mme(G/FONlall
for all g € G satisfying || g ||> Be.

Proof. We follow the same strategy (and notation) as in the proof of the above
theorem. Throughout the proof the symbols B; and C; will denote positive real
numbers.

Step 1: Write Rﬁ for the resolvent operator (Ay — u) =1 of Ay. For € > 0 define
R . = Rﬁ * P!, and the following functions

€0

_ 12 1
(i) =e collvill”) by (Vi) = 5

—Wp, 6/ —Tv; T H
and (;56(7’1(1/1) = ;?i(Vi)eeowPi’ai’m"i,

Then we have, for all a € eXp(a_+) and n, B € Vej

1
(
= Z Z ! ;/ Tr(wpméi,\/_—lw o¢§”(5i,\/7_11/i))c,;i(\/f_1yi)dz/i
| Wi | dim(V}) Jas

i 67,61/\-4\1'(05)
where ¢;°(d;, ;) = ‘256?1'(’/1')775,3' ® ﬂf,j

1 1
= 7/ Tr(7p, 5, v=1v, © Dita(0is V=111)) €5, (V—1v;)dv;

Wi 1 J *
i 6i€1\/4\-;(0g) | |d1m(‘/€ ) a

,0
using Delorme Theorem with ¢5°, (0;, ;) = (gf)g?i * Ca)(l/i)ﬂf,j ® ﬂﬁj
and (, is defined as in the proof of Theorem 3.1 above,

=2 X |1 |;,eﬁo(||char<si>u2fumu2)
W; dim(V;)

x / (T g1 m1on (@15 BE V200, (e + Co) i )es, (VTvi) s
a‘k

,0

— A€0
where ¢¢, = ¢1%$2,
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so that
| <R/€,eo (a)n ) B>A@5 |

< Biem M@ (a) | 9 |lacsll B llace Sup/ | (Peo % Ca) i) [P (L [ v [[2)Nedws

*
am,()

(by (2.8), (2.18) and the Cauchy-Schwartz inequality)

< Bye M@K @ (a) sup (/ Yo H(DM@EE *P2) D) (2) dZ) ’
g 950 |koy |+ ka2 | <N

-

(by equivalence with the Sobolev norm, where

oldl
Dl=—%  and |ql=qi++q).
Ozt -+ - Ozg? lal=a %)
(4.3)
— _dim(ai0) _ =112 ) )
Step 2: Recall that ¢1%(2) = (2¢0) = e “o . Define the following family
of complex numbers {7;} by

7 =|| char(d;) [|* — || pi ||* +.

Note that our assumptions on g implies that the imaginary part of 7; is positive. We
deduce that

dim(a; o)

~ 7T — dim(a; -1 1
(04) Boale) = VIRl 502 (| 2 )T 2 T H

i,
2

o (illz1D

where H&l) denotes the Bessel-Neumann function (see p. 65 of [29]). Indeed assume
that 7, = v/ —1r; is imaginary with r; > 0, then

)= [
©2i (%) = T sV
ary 1[0 P 477

*

400
= eﬁ<z,ui>/ =t (WallP+72) gy,
0

%30
+oo
:/ eftr?/ eftIIViIIQGV*MZ”’i>d1/idt
0 aio
im +o0 im
:2_%“%0)/ e—t’!‘ft—%we_%dt
0
dim(a; o)
i \——-1
— K dim i || Z
=1 sy 7 | 1D

(where K, denotes the modified Bessel function, see p. 85 of [29]),

. \/—_17“- dim(az0) |
=V T e (VT 2D
2

|z |l

dim(a; o)

™ — dim(a; -1 1
= V=17l |l dim(ai0)42 (/Tp, || 2 []) 2 Hgizq(w_l(\/_—m||z||),
2

since (see p. 67 of [29])

1 = =
(4.5) Ku(z) = 5\/—171’6\/7_15&[{&1)(267\/7_15).
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Now (4.4) follows by analytic continuation.

Step 3: We shall prove that there exists a positive constant A; that does not
depend on ¢y so that

(4.6) | (DM(B50, 5 $2,0) (2) |< Azl

for || z || sufficiently large. Indeed fix a smooth function ¢ such that {(z) = 1 if
|| z ||> 1 and ¢(z) = 0 if z belongs to some neighborhood of 0. Write

(4.7) Da,i = @%z + @%z

where @} ; = (1 — ()@a,; and @3 ; = (Pa,i. It turns out that

lz—yll?

Dkl‘P1 1(2 —y) =Py, (z —yle *o

where Py, (z — y) is a polynomial in z — y with term of highest degree equal to
dim(a; o) dim(a; ()

(260) ™77 (21 = )™ - (2aim(as o) — Yaima(as )" with [ b |= ki ook
k)illm(ﬂi,l)). We obtain successively

sup | DM@ (2 —y) |

llyll<1
im(a; ( i _1)?2
S2_d (;7,,[)) —|k1\— a3,0) || ; ||\k1 (Hz‘\l\eol)
(since 2 || z ||>|| z =y |[>]| z || =1 for || z || sufficiently large)
im dim(aj,0) 212
<92 fmi0) || z ||~ 6*“91‘* e | 2 |[2F] e~ 5
(since ||z || -1 > =1l 5 I for ||z [|>2)
im dun( .
< gl - S Sl Sl
(for ||z ||>2)
im dim( i,0) 2112
g P g
2
(Writing w = M)
€0
dim(a; o) dim(a; o) 112112
< Bi27 |k1|7760 2 e w2
(for some positive number By that does not depend on 60)
dim(az o) _ dmai0) a2 22
— Bl2_|k1|_T€0 2 e 6deg ¢ Gdeg
o dimai0) =112
< By2~ [kl = =" ¢~ 6aeq
(for some positive number By that does not depend on €y and for || z ||> 1)
< B22 |k1|_<11x11(cx7 0) (4r)—dim(2ﬂi’0) —HZH2

(for €o sufficiently small).
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In particular we have, for || z ||> Im(7;)

| (DM (85 % 8,0 (2) | = | (DM (85%) * 83,)(2) |

< sup | DMGY(2—y) | | 22.)(2) | dy

llyll<1 llyli<1
(4.8) < Byetm(m)llzll

(for some positive number Bs that does not depend on eo).

Step 4: We turn now to Dkl(cﬁi?i * {5%1) Combining the following relation
satisfied by the modified Bessel functions (see p. 67 of [29])

(Z%jz)m[z,va(z)] = (=172 Kypm(2), m=1,2,3,--

along with (4.4), (4.5) and the asymptotics of K, given on p. 139 of [29], we see that
there exists a positive number C such that

| (DMB5.:)(2) =] (DM (@2:)(2) |< Crem Il
for || z || sufficiently large. Hence one has

| DM (5% % 23,)(2) | = | @5 * (D™ 33 ,)(2) |
dim(a; o)
SC1/ (2€0)™
a*

i,0

—Im(ry)||2—y]| ,— 122
e E e ‘o dy

dim(a; o)

= Clgf' (/ eflm('ri)||zf2 6"“’”67”“’”2dw
l1z[1=112vEowl|

n / e—Im(n)\\Z—%/awlle—llwllzdw)
l12l1<ll2vgwl]

(writing w =

=)
NG

Now we have

. _ _ 2
/ o—Im(r)l|z—2yagull —[lwl? gy,
[1211>1[2y/@wl]

2
< e—Im(T,,)HzH/ eIm(rl12veowl] g =Ilwll* g,
l[=l1=]12v/€owl]

_dim(a;,0)

[ull? ik i 714 £
< e~ Im()ll2l] / ol ull =55 g dima o) = =T g
a

*
i,0
(writing u = 2\/eqw)
dim(a; o)

i ) Clwlz o _dim(aio0)
7671m('rl)||z||/ etm(T)llull ;=7 9 dlm(ai,o)eo T du
[lu||>Im(7;)

_ dim(a;,0)

+e—1111(7,,)||z||/ I (r) | lull 7”4“5‘0‘ o= dim(aio) 2 gy
llul| <Im(7:)
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with
ul|? ' _dim(a4,0)
elm(Tllull =1y 2—d1m(ai,o)60 T du
[lu||>Im(7s)
[l |? ) _dim(aio)  jjup?
:/ emrollull,~ 5 g dim(aso) (3 o~ B gy
[|u||>Im(7;)
. _dim@ai0) )
< sup  emEO-lmiDil [ g-dim(aie) T R gy
[|u]|=Im(7;) alo
) dim(a; o) _ P
s e(Im(ﬂ)—HuII)IIUH/ g PmSO lwl? gy,
[|u]|=Im(7:) alo
o 3
(wrltlng u =22 \/eow)
<Gy
and
Lul|? . _ dim(ai,0)
/ emimllull, = Y o dim(aio) (3 g
[lu||<Im(r;)
dim(a; o) lul|2
) . _dim(ai0)
< eltm(m) / g dim(aso) =7 R gy
‘1:,0
)2 _ 2
:eam(n))/ ol gy
aio
(Writing U= 2\/601])
<Cs
so that

/ e~ Im(rollz=2v@wll~llwll® gy < ¢ e—Tmmllzll
121> 2wl

for || z || sufficiently large. On the other hand, we have

/ o~ Im(ro)llz=2y/@wll g1l gy,
2l1<2y/@ll

< e—hn(mnzn/ 2Im(r) (1211= 1 Veswl) o= llwll® gy,
l1211<l12/Eowl|

_ ) ) _ =12
<e Im(7:)||2]] p2Im(7:)||2]] o — 5

< C e mm)ll=l
and thus
(4.9) | (D*(B5, % 33,,)(2) |< CreM)lI=l

for || z || sufficiently large. Now (4.6) follows from (4.7), (4.8) and (4.9).
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Step 5: Finally we deduce that

1

(/u* | (D™ (3%, % §2,) D** Ca(2) |2 dz)i

i,0
Il

< (Az/
121> Lol

1
T (/ 6—2(1—6)1m(ﬂ)||Z|Ie—Qdm(ﬂ)IIZIIdZ) 2
2]

|lal
|Z 1+€

1
6—21m(n)HZHdZ) 2

1

1 —€ 5

< AP Imm)uau(/ e—2dm(n)HZHdZ) 2
111> 4ed

- Deyie*%?m(ﬂ)llall
(for some positive number D, ; depending on e)
< Dme*(l*?E)Im(Ti)HaH.
In particular, for || a || sufficiently large, (4.3) can be rewritten as follows
| (R}, B) | < Bae (G K) @ (a) sup D je~ (12 ma)llall
< Dfefeo/\g(G/K)q)o(a)ej(lfk)\\a\\infi{lm('ri)}
(for some positive number D, depending on ).

The theorem follows by taking the limit ¢g — 0, since D, does not depend on ¢g, and
by observing that

Il pi 117 = | char(8,) |2 —Re(s) + \/( 91 12— || char(3:) [[2 —Re(u)) " + Im(y2)?
Im(m;) = 3 .
a

5. L?>Tc_estimate for the resolvent of ﬁg. We start with some properties of
the resolvent. Let I be a torsion free discrete subgroup of GG. The resolvent operator
Rﬁ = (Ar — )7t (resp. RY = (A —v)7Y), where p (resp. v) is a complex number
in the resolvent set of A, (resp. 3@), is a kernel operator. Given a positive integer k,
define (whenever the integrals converge) the maps

1 teo
(91,92) € G x G = R, (91, 92) = m/ et p (g1, go)dt
- JO

and

. ~0 1 T el vtntss
(91, 92) € T\G x T\G = R, (1, 2) = m/o e By (g1, g2t

When k£ = 1, we shall simply write Rf; and ﬁf in stead of Rﬁ,l and ﬁf,l so that
R (91, 92) = Z Ry (91 '192).
~yer

In the case of functions, i.e when ¢ = 0, write S, for the resolvent (Ag — u)~! of the
Laplacian Ay on G/K. The following estimate of Sy, for || g ||> 1 and p real such
that 0 < pu <|| pa, ||? is due to Anker and Ji (Theorem 4.2.2 in [3]):

(5.1) S,(9) = Cpbo(g)e~ 191V eaelF=4



566 N. LOHOUE AND S. MEHDI

for some positive constant C,,. Here f; < f> means that there exist two real numbers

C and C’ such that 0 < C < ?EZ; < for || g ||> 1. We will denote by S, the
2

resolvent (Ag — )~ of the Laplacian Ag on I'\G/K so that

V(91,92) = Y Sulgr 'vg2)-
~yer

The following two propositions are well known, however we were not able to find a
precise reference for their proofs. Therefore, for the convenience of the reader, we
shall provide a proof.

PROPOSITION 5.2. (1) Assume k is a positive integer and | a negative real

number. Let 1 < p < 400 be an integer and write p' for the conjugate of p, i.e

1 1
-+ == 1. Then we have
p

p
(i) wa(g, ), for all g € G, belongs to LP(G/K,End(A’s)) outside any ball cen-

IIpa0 12

tered at g with finite radius, provided p + o < 0.

(i) If dimgr(G/K) > 2kp’, then Re x(g,-) belongs to Lp(G/K, End(A’s)).
(2) Assume p is a complex number such that: Im(p) # 0 or Re(p) < M\(G/K).
Then, outside any ball centered at the origin with finite radius, we have
(i) Rﬁ(~,e) belongs to C°(G/K,End(A's)),
(i) there exist a positive real number C,, and a continuous function ¢, both
depending on u, such that for all g € G satisfying 0 <|| g ||< 1:

C o

I R3(9,€) || Bracacs) < Culog(ll g 1) + dulg), if dimr(G/K) = 2.

Proof. Throughout the proof A; will denote a positive real number. Let us start
with the large time behavior. We have

+00 Foo
I / " e pi(g9)dt |lpnacacs) < / " Te || py(9) |lmnacacs) dt
1
—+o0
SAI/ By, (g)dE by (2.38).
1

Next, one has

| he ll2ra/ry =1
| ot || oo (/i) < Agt™ 2R@=1 g lleao Py (2.37),

Writing
1 1-6 0

p 1 00
for 6 € [0, 1], we deduce, by interpolation, that

kg (@+2(=tt leagll?

0 ﬁ 7 7
| he llzoarmy<ILhe (Lo oy =11 R | Do (/i) S Ast % e v
(G/K)
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Therefore
+oo +oo rkg (G)2|st+] llpag |12
- ko1 BRI (g, eyl
||/ R el pldt || Lo () K ena(ats)) < A3/ ¢ 2 elitoe
1 1
2
is  finite if p+ar— ||p;0 I¥ <0 or if u+a47w:0 and
tkr (G) +2 | 1T |> 2kp’. Observe that the function
+oo
g r—>/ th=telmtadty, (g)dt
1
is bounded and continuous provided p + ap— a |2< 0, which is the case if
p 1% Pag )
2
by Lo
2
Similarly, we have
1
I / "L pl(g)dt ||mnacacs) </ e || py(g) llgnacare) dt
0
1
< A4/ tk_le(“"’a’f)tht(g)dt by (2.38)
0
1
(5.3) §A5/ {13 aima G/ K) o= U5 gy 1,0 (2.36)
0

and, by interpolation,

1 1
I / e Pyt || Lo (6 K End(atay) < As/ th= 1= gy dimr(G/K) gy
0 0

which is finite if dimg(G/K) < 2kp’. This proves (1)(i) and (1)(ii).

We now turn to (2). We shall use the previous assertion. Fix a real number pg
such that po + ay < 0 and Rfm(-, e) is smooth outside any ball centered at the origin
with finite radius. Iterating the basic relation

¢ _ pt ¢ ¢
RM - RMO + ('u - NO)RMO © RM’
we deduce that for all positive integer N

N
(5.4) R, = (u— o)V Ry, yoR,+ Z p— po) Ry, ;.

j=1
Let {X;} be a basis of gg. Choose N even and sufficiently large so that both Rio’% (,e)
and L(Xj)qRio,%(" e) are L? on any ball centered at the origin with finite radius.
Then, since R, is a bounded operator on L*(G/K, \’s), we see that the convolution
product Rﬁm% (,e)* th(~, e) is square integrable on any ball centered at the origin
with finite radius, so that

LX) (RE, n(e) x RE(€)) = (LIX;)IR, w(e))  (RL x *xRL(-e))

1o, 5 Ho 55
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is continuous on such neighborhoods. The identity (5.4) implies that L(X j)qRﬁ(-, e)
is continuous which proves (2)(i). Finally, from (5.3), we see that

1
I / Tt p! (g)dt [ gnacare)
0
Yl dim (G/K) —Ual?
< AG/ t 2p’ R e 't dt
0

< Ar(p) || g PRI RGO dimg (G/K) 2 2k + 1

for some positive real number As(p) depending on p (after the change of variable
2

u = %). Now (2)(ii) follows by taking k = 1, with the obvious modification if

dimg (G/K)=2.0

PROPOSITION 5.5. (1) Assume that k and p are positive integers with
1
k> 1 dimg (G/K), and p is a real number satisfying p+ oy < 0. Let g be an el-

ement of G. Then, outside any ball centered at § with finite radius, ﬁfhk(g, -) belongs

to LP(T\G/K, End(A’)) and, there exists a positive real number A(g) depending on
g such that

=~ _ 5(g) 7\ -1 (5 (dime (G/K)—1)
IR 1(9:) lmoenacsnainion = Alg) (inf {1552 ) .

where 6(g) denotes the injectivity radius of T\G/K at §.

(2) Assume q > 1 and p is a complex number satisfying Im(p) # 0 or Re(u) <
Be(T\G/K). Then

(i) RE (,-) is well defined, and

H,q

(it) ﬁﬁyq(g, ) belongs to L*(I\G/ K, End(A’s)).

Proof. Throughout the proof A; will denote a positive real number. First we
have:

I RE k(g1 ) Lo o\6/ i end(ats))

+oo
< / " Le || Br(gr, ) |z (0\G /K, end(ats)) dlt
0

+oo -
< A / $Lelt et || Ty (an, ) [|oree) dt by (2.38).
0
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Next, by the semigroup property of the heat kernel, we have

| 7e(91,) pr vy Z/ e (g1, G2)dv(go)
G

— /F Z hi(gy " vg2)dv(go)

\G yel’

= / hi(g1, g2)dg2
G
=1

I Et(g'lv Ve ma/r) = Supﬁt(g'hgé)
g2

= he(g1,41)
= [ ht(g1,-) 1720\ 5

<|[Hy o 1Fesrell Pa(ins) [[emgyy  fort > 1.

2
Writing p > 1 as

1 1-—
_:_9+£ for 6 €[0,1],
p 1 o0

we deduce that

| 71, ) eeeveymy < Re (g1, d1)
e PPN NR (g1, 1) if > 1

IN

so that
Sk e k—1 t7 6
| Ri(915°) lle\a/K,end(ats) < Al/ e teOthl gy, gr)dt.
0

Hence we have

+00 7
/ th—Le(ntae=080(ING/KNtR0 (o) o)) dt
0

inf{1;241 ) .
§A2/ tk—1—§(d1mR(G/K)+1)dt
0

(by Theorem 6 of [15])

5(¢ k—1—(54 ) (dimr (G/K)+1)
§A3(inf{1; (gl)}) ’ "

1
(since k > 1 dimg (G/K) +1)

and
+oo -
th=telmtetnf (g, g1)dt
inf{1; 241}
e (utad)t || 7 =
k=1 _(p+ap)t 20 s (120
< A, / g PN g el Ry ) B

< As(q1) a positive real number depending on g;



570 N. LOHOUE AND S. MEHDI

which proves (1). For (2), we shall first consider the case where ¢ = 1. If g is a real
number satisfying uo + ap < 0, then

~ . . . . ~ . . ~ a—1 . .
I / Rl ) 1620 lenaae = / R (1:62) Rags — 0)* ™ F(G2)din |
N
c(f) 1l Ruo a(915) ||L2(F\G/K,Af5)

for some positive constant depending on f. Choosing an integer a > 1+% dimg (G/K),
we deduce from (1) that R{, (g1,-) is well defined outside any ball centered at ¢

with finite radius. The same argument shows that RZ ok 18 well defined on such
neighborhoods for all k > 1. Next similarly to (5.4), we have

(56) Efb = (,LL - MO)NRMO N © Re + Z n—= IU‘O R;m,j

On the other hand, by the semigroup property of the heat kernel, one has

R (92, )RE, n(91,7) = / . Rl n (91, 93) © R (3, G2)dgs
T
_ >14 . =0/ - =/ . ..
= /F\GR“O’];(91,94)/F\GRH(937QQ) oR,,, x (94, 93)dg3dga.

Fix g4 and choose an even integer N sufficiently large such that g3 — ﬁfm ~ (G4, 93)
’2
belongs to L2(I'\G/K, End(A’s)) (by (1)). Then

> CACNDE ﬁfm,g(g%g}s)dés CAR )7€ y(0a;7) € L*(P\G/K, End(A’s)),
r

since Eﬁ is a bounded operator on L?(T'\G/K, A’s), and (5.6) implies that ﬁf; (g1,-) is
square integrable outside any ball centered at g with finite radius. Actually the same
argument shows that gs — A7 o) (Rl o R " )(d1, g2) belongs to L*(I'\G/K, End(A's))
for all integer @ > 1, so that Re oRe 1o, N 18 C"X’ outside any ball centered at ¢ with finite

radius. Applying (5.6) we deduce that ﬁﬁ is C'*° on such neighborhoods. This proves
(2)(i)(ii) for ¢ = 1. The case where ¢ > 2 follows by induction from the following
formula

N
G7) R, ch o) Ry g0 By o | (0= o) B,

r=1
d
REMARK 5.8. If T is of finite covolume in G, we may assume that the injectivity

6(g1)\  6(g1)
2 } T2

radius is small enough so that Mz'n{l,

. In this case, the assertion (1)

of the previous proposition can be restated as follows. ﬁﬁ,k is LP outside the diagonal
1

of T\G/K for all integers k > 1 dimg (G/K) and p > 1, and real numbers p < —ay.

The assertion (2) may be restated accordingly.
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THEOREM 5.9. Let G be a mon compact connected semisimple real Lie group
with finite center, K a maximal compact subgroup of G and I' a torsion free discrete
subgroup of G with finite covolume. Fix an element g in G. Then for all complex
number p with positive imaginary part, there exists a positive number € such that

~ 1
RLx(9,) € L*T9(D\G/K,End(A's)), for all integer k > 7 dimr (G/K).

Proof. Throughout the proof C; will denote a positive real number.
Step 1: Let us decompose the Hilbert space L*(I'\G/K, A’s) as follows

L*(D\G/K, A’s) = Ker(Ay) & Ker(Ag)*

where Ker(ﬁg) denotes the space of square integrable harmonic ¢-forms and Ker(ﬁg)L
its orthogonal complement. By a result of A. Borel and H. Garland [9], Ker(ﬁg) is
finite dimensional for all £ when I is of finite covolume. So we may write the orthogonal
projection Ty : L2(T'\G/K, A’s) — Ker(Ay) on Ker(A;) as

Ty = {ej, e

J

where {¢;} is some orthonormal basis of Ker(Ay).
Step 2: By Lemma 2 of [23], there exists a positive number € such that

@; € L*T(T\G/K, ') Ve € [0,¢].
It turns out that Ty is a bounded operator on L**¢(I'\G/K, A’) for all € € [0, ¢].
Indeed let f € L>T¢(I\G/K, A’s) and write € for the conjugate iiz
T" has finite covolume in G, the Holder inequality implies that
¢; € LYT\G/K, ') Vq € [1,2].
In particular, ¢; € LY (P\G/K, A's) and (¢, f) € L"(T\G/K). Observe that T} is
also a bounded operator on L¢ (I'\G/K, A’) by selfadjointness.

Step 3: Let w be a complex number with positive imaginary part. Fix a real
number ¢ €]0, 1] and let B, be the ball of radius ¢ centered at the origin. We have

/ o I Rt (9. 90) [lEnd(acs) dgo
gol||>Bec

of 2 + €. Since

<. [ Do (a (go))e 1IN @) lagy by (4.2)
[la* (go)|I>Be

< Cl/ (Ha62++ (1+ a(a+(g0))))efpno<a+<go>>ef<1fc>rw,z<c/f<>\\a+<go>||dgo
llat(go)||>Be
by (2.19)
e / (Tacs+ (14 a(X)) ) e 0-0-0m G/OIXI g
+
%
by integration formula (Prop. 5.28 of [20]).
The latter integral is finite if
pao(X) < (1= )1 e(G/K) || X |I, VX € af
1
© 1w (G/K) > 7——pa,(Y), WY €ag, [V [|=1

2

& M(G/K) = Relw) + /(M (G/K) ~ Re(w)” + Im(w)? > =5
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where pp,q. is the positive real number defined by

Pmaxz = SUP {pug(Y) | Y e ag_v || Y ||: 1}'

Moreover, Proposition 5.2 (2)(ii) shows that the integral

A -y 1R800 lenacaes do
go||SbDe

is finite for all complex number w with positive imaginary part. On the other hand,
observe that for all ¢ € L?(I'\G/K, A’s), one has

1 (RL6) (@) llace = | / R (3, 40)dG0)ddo [lave
G

-1l f o R 000t o s

yel

<ll6llmarmac [ S IR 990) lsnaiace) dio
"G 2ot

=] ¢ llo (n\a/K,Ats) /G || R%, (. 90) ||End(ats) dgo-
Thus R’ is a bounded operator on L'(I\G/K, A's) if

T s — (W(G/K) = Re(w))” = (M(G/K) = Re(w)) "

Recall that, by definition, R is a bounded operator on L?(I'\G/K, A’s) if Im(w) > 0.

Step 4: Let eg be the smallest non zero eigenvalue of ﬁg and z a complex number.
Then R., . o (1 —T7) is a bounded operator L*(I'\G/K, A’s) if Im(2) > 0, and, from

z+eg
the previous step, R’ is bounded on L'(T'\G/K, A's) if

Im(w)? > (

2 ) 2 2
Tm(z)? > (mpm(m — (M(G/K) — eq — Re(z))) - (AE(G/K) —eq— Re(z)) .
Therefore, for all f € L€ (I'\G/K, A%), one has

I R£+e0 °© (]1 - Té)f ||Le’(F\G/K,A/~’s) < Cs | (]1* Té)f ||Le’(F\G/K,A/~’s)

<[ fl
ie E§+eo o (I —1Ty) is a bounded operator LE/(F\G/K, As). Now, using the Stein

interpolation theorem (Theorem V.4.1 in [35]), we deduce that Eﬁ_m) o(1-Ty) isa
bounded operator on LP(T'\G/K, A’s) for ¢ < p < 2 and Im(z) satisfying

L' (T\G/K,Als)

Im(z) > 0\/(ﬁp%“w — (M(G/K) — o — Re(z)))2 — (M(G/K) e - Re(z))2

1-6

!

6
+ 3 with 6 € [0,1] and ¢ €]0, 1[. Finally, observing that

where — =
P €

1

P eOTg(f) Vf e LP(I\G/K, A)

((54 — e fz)71 oTe)(f) - _
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and writing
(54 —eg — z)fl = (54 —eg — z)71 oTy + (54 —eg — z)71 o (1-1Ty),
we see that Eﬁ%o is a bounded operator on LP(I'\G/K, As). In particular, Eﬁﬂo is
bounded on LP(I'\G/K, A’s).

Step 5: Let pg be a real number satisfying po + a¢y < 0 and p a complex number
with Im(p) > 0. Recall that, from formulas (5.4) and (5.7), one has

M LA Z CJ — Ho) Ruo Nj © ﬁfm’ © [Z(” - uo)’”ﬁﬁom

where the generic term is of the form ﬁﬁml% o th j tho r(k—7)" Then it is enough

to consider the case where j = r = 1. By the semigroup property, we have
,R'e (gla')Rfm k+N—1 92; / RH glag3 O,R'fm,k-l—N—l(g&gQ)dg&

But, by proposition 5.5(1), we know that R# k( (g1,-) is L7 outside any ball centered at

g1 with finite radius, for all ¢ > 2. Therefore Ru (d1,) is L? on such neighborhoods
if Im(u) satisfies the condition

Tm(p1) > e¢ (q fc)gp%m ~ ((G/K) ~ Re(n))” — (M(G/K) ~ Re(p))

Finally, in the case where

0 < Im(p) < e\/ (%p — (W(G/K) ~ Re()) — (M(G/EK) ~ Re())”

we apply the previous result, replacing 6 by 6’ with

0< 6 < Im(y) [(O_%)Qpi — (M(G/K) — Re(u)))2 B (AZ(G/K) - Re(u))? -3
and 1_1- .7 o
¢ 2"

REMARK 5.10. Using the same argument as above, one can show that the resol-
vent R, of Ay is a bounded operator on LY(G/K, A’s) for ¢ > 2 and

Im(p) > e¢ (T ageras — (W(G/) = Rew)) = (M(G/K) = Re()

2
where q¢ = 139 with 6 € [0,1] and ¢ €]0,1].
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6. Lower bounds for the bottom of the spectrum of ﬁg and L*-
cohomology of I'\G/K.

THEOREM 6.1. Let G be a mon compact connected semisimple real Lie group
with finite center, K a maximal compact subgroup of G and I' a torsion free discrete
subgroup of G. We assume that T is of infinite covolume in G and that the bottom of
the spectrum of Ay does not vanish. Then we have

(i) if 0(T) < pmin then Bo(T\G/K) > \(G/K),

(i1) if prin < O(T) < || pa || +v/A(GTK) then Bo(T\G/K) = M(G/K) — (5(T)—

2
Pmm) ) and
L 2
fiii) if | 6(T) — pmin 1< 1| pao | < 6(T) and A(G/K) = (5() = pruin)” then
2
Be(T\G/K) = X(G/K) = (3(T) = pimin) -

Proof. Throughout the proof the symbols B; will denote positive real numbers.
Let 6 be a smooth function on G defined by 6(g) =1 for || g ||< 1 and 6(g) = 0 for
|| g || sufficiently large. For a real number p < A¢(G/K), decompose the kernel R, of
the resolvent (A, — p)~! as follows

Y 0,2
R,=R, +R,
where RG! = R, and R? = (1 —60)R!,. Accordingly the kernel ﬁﬁ of the resolvent
(Ay — p)~! decomposes as
¢ _ el 50,2
(6.2) R,=R, +R,".

Now we have, using (2.39)

/ I REM(G1, 92) enacars) dg2 = / 1> RE (91" v92) Hlenacars) dg2
G r ~yer

= /F\G > IRE (91 792) llenacacs) déo

yel
= [ IR 01.02) lnaiacs do.
G

Since Rﬁ’l is integrable on the unit ball of G, by Proposition 5.2 (2)(ii), we deduce
that, for all ¢ in L?(I'\G/K, A%s)
(6.3) I éﬁ’1¢ llL2m\ay/r.ats) < Bl @ |lL2mvay i ats) -

Next choose a real number p. such that

| Pag 117 =(1 = €)*(Ne(G/K) — 1) < pe < || pag |
for some € €]0,1[. Then, combining Theorem 4.1 and (5.1), there exists a positive
constant C,_, depending on ¢, such that

Rff(g, ) < Cu.Su.(g,-) for || g|| sufficiently large.
In particular we have
R (01,02) = > R (91 'v92)
~yer

< C;te Z Szte (9;1792)

yel

= CucSuc(91,92)
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so that
1 (RE26)(G1) are = | / R0 )0t s
N

<. / 8o (91:92) || 6(32) Ilace d(ie).
NG

Now, by the assertion (i) of Leuzinger’s theorem (see Section 2.11), we know that gﬂg
is bounded on L?(I'\G/K), so that

(6.4) I Rﬁ’% llz2\a/k,at)< Ba || & [|2(m\a/r.ats) -

Finally, we deduce, from (6.2), (6.3) and (6.4), that R/, is bounded on L*(I'\G/K, A’s)

| RL& || p2vaymoncs) < Bs || & |2 Gy roats) -

Therefore 8,(T'\G/K) > \(G/K), which proves (i). The proof of (ii) and (iii) is very
similar.

For (ii) we choose p < \(G/K) — (6(T) — pmm)2 and

| pao |12 =(1 = 2N(G/E) = 1) < pre < || pa |12 = (8(T) = prmin)”

For (iii) we choose 1 < A\¢(G/K) — (§(T') — pmm)2 and

1o 117 (L= (G/K) ~ 1) < pre < sup {05 g 1F —(3() — prnan)* -

0

COROLLARY 6.5. Under the assumptions of the previous theorem, the (reduced
or unreduced) L?-cohomology group of degree { of T\G/K wvanishes in the following
cases:

(ii) pin < 8(T) < || pay || +V/A(GTE) and /3(GTEK) > 8(T) = prn, and

(iit) [ 6(T) = pmin | <[] pag [| < (L) and \/Ae(G/K) >[ 6(T) = pmin |-

In particular, in these cases, the kernel of Ay is reduced to {0}.

Proof. We deduce from the previous theorem that, in each case (i)-(ii)-(iii), any
square integrable closed ¢-form on I'\G/K is exact. In other words, the unreduced
L2-cohomology group H (l)(F\G /K) of degree £ is trivial, and therefore the reduced

L*-cohomology group " (I"\G/K) vanishes as well. O

Finally, to sum up, we can say that using algebraic and analytic tools from rep-
resentation theory of semisimple Lie groups, we obtained estimates for large time be-
havior of the heat kernel for dfferential forms on symmetric spaces of the type G/K,
where G is a non compact connected semisimple Lie group with finite center and K
a maximal compact subgroup of G (Theorem 3.1). Then, combining these estimates
with some techniques from the theory of special functions, we deduced estimates for
the resolvent of the form Laplacian on G/K (Theorem 4.1). As a byproduct, we ob-
tained L2T¢-estimates for the resolvent of the form Laplacian A ¢ on locally symmetric
spaces I'\G/K when T is a torsion free discrete subgroup of G with finite covolume
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(Theorem 5.9). The latter estimates play an important role in the theory of “Eisen-
stein transforms” and the Langlands’ decomposition of L*(T'\G//K) (see Theorems 4.2
and 4.7 in [30]). As an application of these L*"-estimates, we derived lower bounds
for the bottom of the spectrum of A, when T has infinite covolume (Theorem 6.1) and
a vanishing criterion for L2-cohomology of I'\G/K (Corollary 6.5). We also mention
that, after our results were announced in [25], G. Carron posted a preprint on his
webpage in which he proves, using techniques rather different from ours, analogous
estimates for the Green kernel and the heat kernel for Laplacian-type operators on
symmetric spaces [12].

Appendix A. On the computation of \(G/K).

A.1. The complex case. Let G be a connected complex semisimple Lie group
and K a compact real form of G. If by is a maximal abelian subspace in the Lie
algebra £y of K then the complexification of by + v/—1bg is a Cartan subalgebra of g.
Write A = A(g, h) for the set of g-roots relative to h. If we define the following real
number

Ce(G) = sup{]|[< Q >u,||* | Q@ C A, sup{0;£ —1ke(G)} <] Q< £}

where < () >p, denotes the restriction to by of the sum of elements in the subset @
and | @ | is the number of elements in @, then we have

N(G/K) = % dimp (G/K) — Co(G).

A.2. The real case. We consider the Hermitian spaces G/K =
S80.(2,n)/50(2) x SO(n) with n > 2. Recall from Section 2, if 7p 5 7, is
the principal series representation associated with a cuspidal parabolic subgroup
P, = M;A;N; of G, §; a discrete series representation of M; and v; a linear
form on a;, then the Casimir operator of G acts on the (smooth vectors of the)
Tp, 5, /—1v; a8 the scalar operator wp, 5. /=1, ,Id where wp 5 /7, is the real num-
ber || char(8;) || — || vi ||? — || pi ||* defined by (2.4). In particular, to compute the
numbers A\¢(G/K), defined by (2.31), we may assume that v; = 0. If X is the minimal
M; N K-type of §; then the infinitesimal character char(d;) of §; is given by (see p.
310 of [20]):

char(d;) = A — p(m;) + 2p(m; N E)

where p(m;) (resp. p(m;NE)) is the half sum of positive roots of m; (resp. m;NE) relative
to t;. Here t; is a Cartan subalgebra of m such that h; = t; ® a; is a Cartan subalgebra
of g. Under the Cayley transform, h; becomes a compact Cartan subalgebra of g,
and the roots in A; transform accordingly (see p. 417 of [20]). Note that when M;
is compact then §; is just a highest weight representation with highest weight A and
infinitesimal character A + p(m;).
1) G/K = S0.(2,2n)/S0(2) x SO(2n), n > 1.

By Hodge isomorphism  A(SO0.(2,2n)/SO(2) x SO(2n)) =

An—1(S0(2,2n)/S0(2) x SO(2n)) for 0 < ¢ < 4n, so we may restrict our

attention to 0 < ¢ < 2n.

Up to a conjugacy, we need only to consider the minimal parabolic with M; =

M = MnNK ~ SO(2n —2). Using branching laws for SO(2n) — SO(2n —1)

and SO(2n —1) — SO(2n — 2) (Theorems 8.1.3 and 8.1.4 of [17]) along with
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the explicit decomposition of the isotropy representation for the Hermitian
groups given in [31], one finds that

n=1: M(SO.(2,2n)/SO(2) x SO(2n)) = i for £ =0,1,2.
n=2: (SO.(2,20)/SO(2) x SO(2n) = 2.
A (50.(2,20)/50(2) x SO(2n) = .
M (SO.(2,20)/S0(2) x SO(2n)) = % for £ = 2,3,4.
0> 3 M(SO.(2,21)/50(2) x SO(@n)) = 2 ;i” 1
M (SO.(2,2n)/SO(2) x SO(2n)) = W
A2 (S0.(2,2n)/SO(2) x SO(2n)) = 2"27475”5
A (S0.(2,20)/50(2) x SO(2n)) = ﬁ (2n2 + % + M) for £ > 3
and £ odd,
A(SO.(2,2n)/50(2) x SO(2n)) = % (202 +2n+1+ W)

for ¢ > 4 and ¢ even.

2) G/K = 50.(2,2n+1)/50(2) x SO2n+1), n > 1.

Again A (SO.(2,2n + 1)/50(2) x SO2n + 1)) = Aant2-2(S0:(2,2n +
1)/50(2) x SO(2n + 1)) for 0 < ¢ < 4n + 2, by Hodge isomorphism, so
we may restrict our attention to 0 < ¢ < 2n + 1.

Now we need to consider two parabolic subgroups P; and P, with M; =
MiNK ~ SO(2n—1) and M2 ~ SO.(1,2n), MoNK ~ SO(2n). In particular,
using branching laws for SO(2n + 1) — SO(2n) and SO(2n) — SO(2n — 1)
(Theorems 8.1.3 and 8.1.4 of [17]), one finds that

n=1: M\(S0c(2,2n+1)/SO(2) x SO(2n +1)) = g
A(SOL(2,2n+ 1)/SO(2) x SO(2n + 1)) = o for £=1,2,3,

n>2: A(S0.(2,2n+1)/SO(2) x SO(2n + 1)) = fg;%;’
A1 (SO.(2,2n 4+ 1)/50(2) x SO(2n + 1)) = WTSJ?;Q
A2(S0.(2,2n +1)/SO(2) x SO(2n + 1)) = %’
Ae(S0e(2,2n +1)/50(2) x SO(2n +1)) = 1= (%2 + i + @)

for £ < 2n, £ even,



o978

P.

G.

N. LOHOUE AND S. MEHDI

A (SO.(2,2n +1)/SO(2) x SO(2n + 1)) = 4n1+ S(? 4 @)
for £ < 2n —1, £ odd,
Ae(S0.(2,2n + 1)/50(2) x SO(2n + 1)) = m for £=2n — 1,20+ L.
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